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Abstract

Accelerated degradation tests (ADT) have been widely used to assess the reliability of prod-
ucts with long lifetime. For many products, environmental stress not only accelerates their
degradation rate but also elevates the probability of traumatic shocks. When random traumatic
shocks occur during an ADT, it is possible that the degradation measurements cannot be taken
afterward, which brings challenges to reliability assessment. In this paper, we propose an ADT
optimization approach for products suffering from both degradation failures and random shock
failures. The degradation path is modeled by a Wiener process. Under various stress levels, the
arrival process of random shocks is assumed to follow a non-homogeneous Poisson process.
Parameters of acceleration models for both failure modes need to be estimated from the ADT.
Three common optimality criteria based on the Fisher information are considered and com-
pared to optimize the ADT plan under a given number of test units and a pre-determined test
duration. Optimal two- and three-level optimal ADT plans are obtained by numerical methods.
We use the general equivalence theorems to verify the global optimality of ADT plans. A nu-
merical example is presented to illustrate the proposed methods. The result shows that the op-
timal ADT plans in the presence of random shocks differ significantly from the traditional ADT
plans. Sensitivity analysis is carried out to study the robustness of optimal ADT plans with

respect to the changes in planning input.
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Acronyms and Abbreviations
Accelerated degradation test
General equivalence theorems
Maximum likelihood estimation
Proportion of failure under use condition
Proportion of failure under the maximum stress

Relative efficiency

Notation
Degradation path of the test product
Lifetime of the test product
Degradation threshold

Standard Brownian motion

Inverse Gaussian distribution with mean {&and scale

True parameters

MLE of [

RXEth lifetime percentile

Inspection interval in the ADT

Drift parameter under standardized stress %
Number of stress levels

Number of test units

Level of the Eh stress

Proportion of test units allocated to the h stress
Number of test units allocated to the Z&h stress

Fisher information matrix



BaEnIsam CDF and PDF of the standard normal distribution

V= == Trace of matrix UE

EEPHEC Determinant of I

AHEET Expectation of random variable {f
SLrEweyO Asymptotic variance of #i

AR AR Two-level test plan and optimal plan
BSHRR The optimal compromise plan

1. Introduction

Accelerated reliability tests are commonly used to assess the reliability of new products,
especially those with extremely long lifespan under field use. In such tests, the products are
exposed to elevated stress conditions, such as higher temperature, pressure, humidity, or a com-
bination of them. Data analysis and optimal planning of accelerated tests have drawn
considerable attention from reliability researchers and engineers, who desire to predict the re-
liability as precise as possible through a more economical approach. Test information from a
well-planned accelerated reliability test can provide useful guidance for maintenance

scheduling and warranty prediction [1], [2]. For an overview, see Elsayed [3].

Inferences of lifetime distribution from accelerated life tests (ALT) is becoming very chal-
lenging because many highly reliable products have none or very few failures even under
elevated stresses in a reasonable test duration. In such situations, we can resort to accelerated
degradation tests (ADT) if the product has one or more measurable quality characteristics (QC)
that can be modeled as degradation processes [4]. Instead of observing the failure times as in
ALT, degradation levels of test units are measured periodically in ADT. The planning of ADT
or other types of degradation test, such as step-stress ADT (SSADT) [5] and accelerated
destructive degradation tests (ADDT) [6] have proved to be efficient in enhancing the accuracy
of reliability assessment and saving experimental resources. The optimal ADT plans based on
Wiener processes [7], [8], gamma processes [9]-[11] , and inverse Gaussian processes [12]

have been intensely studied in the literature.



Most existing works on optimal ALT/ADT planning assumed that there was only one failure
mode. However, many products have more than one failure modes. Neglect of any failure mode
may significantly influence the optimality of reliability test plans and therefore the prediction
accuracy of lifetime, thus it is necessary to consider multiple failure modes when planning
accelerated tests. Bai and Chun [13] discussed the optimal simple step-stress ALT (SSALT)
plans with independent competing causes. Afterward, Pascual [14], [15] studied the ALT plan-
ning by considering independent Weibull or lognormal competing risks. For repairable sys-
tems, Liu and Tang [16] used a Bayesian D-optimality criterion to optimize ALT plans with
independent risks, and an extension to SSALT can be found in Liu and Qiu [17]. Similar ideas
have also been discussed for ALT with multiple stresses [18] and dependent failure modes

[19].

Although there are numerous studies on ALT planning with more than one failure modes,
fewer studies have addressed the ADT modeling and planning with multiple failure modes. Ye
et al. [20] developed a burn-in planning method by differentiating normal and mortality failure
modes. The optimal two-variable ADT planning method for gamma processes was discussed
in Tsai et al. [10]. Li and Jiang [21] proposed a SSADT planning method with independent
stochastic degradation processes. Furthermore, SSADT planning problem with two dependent
gamma processes was studied by Pan and Sun [22]. Haghighi and Bae modeled and analyzed
linear degradation data and traumatic failures with competing risks in an SSADT experiment
with the cumulative exposure model [23]. Nevertheless, to our knowledge, none of the studies
in literature has considered both degradation and shock failures in the ADT planning problem,
although the joint modeling of degradation and random shocks as well as related
maintenance/warranty problems have been very popular in recent literature [24]-[26]. It is
common that either performance degradation or random traumatic shocks could lead to fail-
ures. Generally, performance degradation is due to the natural aging and usage of a product,
and if the performance degrades to an unsatisfactory level, the product is deemed failed alt-
hough it may still work. For example, an LED lamp are commonly regarded failed if its light
intensity drops to a certain level. On the other hand, traumatic shocks are more likely to be
caused by external events that influence the whole system, such as the sudden change in cur-
rency and voltage for electronic devices. The shocks lead to immediate product failures. During
an ADT, the degradation measurability can be influenced by random shocks. Regarding the
LED lamp example, if a lamp suddenly goes out during an ADT, its brightness cannot be

tracked after the failure. In this situation, test planners need to consider the possibility that



increasing number of random shocks under elevated stress conditions significantly decreases
the test information due to the partial missing of degradation measurements. Figure 1 shows
an illustration of such cases, where each 10 test units are allocated to low- and high-level
stresses, respectively. The measurements from high-level stress provide more information on
the acceleration relationship of degradation, but the stress also leads to more shock failures
during the test. As is shown there are only three test units that survive to the end of the test and
provide full degradation information during the test. In contrast, there is no shock failure for
the units under low-level stress, and the degradation measurements are complete, yet the deg-
radation increase is not significant so that the inference of the degradation rate can be greatly
influenced by random noises. In previous ADT studies, test planners usually took full ad-
vantage of the highest possible stress to obtain measurements with high degradation rate as
long as it is believed that the degradation mechanism remains the same for the highest stress
[27]. However, if random shocks are taken into account, higher stress may lead to much more
shock failures in the test process and the number of degradation measurements become con-
siderably less, which will cause loss in data to estimate unknown parameters and predict life-

time under use condition.
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Figure 1 Stress-related shocks in ADT experiment

Considering the shock issue in ADTs, we propose an optimal ADT planning approach with
competing failure modes in this paper. The product to be tested is assumed to suffer from both

degradation and shock failures. Both failure modes are accelerated by a common experimental



factor during the test. If a test unit fails due to a shock, the degradation cannot be tracked
afterward. The random shocks are assumed to be independent of the degradation levels and
arrive by a Poisson process with intensity determined by the stress. The objective is to obtain
the optimal ADT plans under three common optimality criteria. Our results show the necessity
of incorporating random shocks into the model by investigating the optimal ADT plans under

various failure assumptions.

The rest of the paper is organized as follows. Section 2 presents the ADT modeling with
competing failure modes and derives the expression of the lifetime distribution. Planning cri-
teria and optimization problem formulation are discussed in Section 3. In Section 4, a numerical
example is provided to illustrate the application of the proposed planning method, followed by
a sensitivity analysis in Section 5. Finally, Section 6 concludes the paper and discusses areas

for future research.

2. ADT modeling with competing failure modes

2.1. Joint modeling of degradation and random shocks

Stochastic models have been widely used to model degradations because of their clear phys-
ical explanations and tractable mathematical properties [28]. We use a Wiener process to model
the degradation in this paper. The model proposed in this paper can also be applied to other
degradation processes, such as gamma processes and inverse Gaussian processes. It is assumed
that the product suffers from a measurable Wiener degradation, denoted by 1A degrada-
tion failure is deemed to occur when §&2&2hits a pre-determined threshold ¥& thus the failure
time is the first passage time (FPT) of &0 threshold #2 denoted by §;. The basic Wiener

process is a drifted Brownian motion as follows:
IR AR R (1)

where 2JHX 7%s the drift parameter, #i&is the diffusion parameter, ##81s a time scale function
to describe the nonlinearity degradation path, and ¥##is the standard Brownian motion. As in
many previous literature of reliability modeling and testing [7], #HE2RuAL s assumed, i.e., the
degradation path is linear with respect to time. Under this assumption, §f follows an inverse
Gaussian (IG) distribution with mean ¥ Bfand scale 1™ B& that is, i 722 BIAE" Ifo
of which the PDF is given by
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where &is the CDF of standard normal distribution. In addition to degradation risk, random
traumatic shocks may also occur to the product of interest. As this type of failure is sudden and
immediate, we call it a “shock failure”. We assume that shock failures are independent of deg-
radation failures. It is noted that the assumption of independency is valid if the two failure
modes do not have interactive effect. Take LED lamps as an example, the natural internal per-
formance degradation in light intensity and sudden shocks caused by the voltage or currency
have no direct correlation because the shocks are mainly due to external reasons, however, they
may be both influenced by environmental stresses such as temperature and humidity. The time

between random shocks can be modeled by an exponential distribution with mean X[#Denote

the time to a shock failure as {fffg, of which PDF and CDF are given by
1 LS. S U, S xiFec SR 4)

The lifetime of the product, denoted by § is determined by either degradation failure or
shock failure times, whichever comes first, i.c., it Of&ff#. Afe). We can derive the CDF of
ifas follows:
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and the PDF is given by
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where Z@#is the PDF of standard normal distribution.

2.2. ADT data modeling

Suppose a total number of i test units are provided for the ADT and assume that there is
only one stress factor in the test. Let Bfand 8 be the stress under use condition and maximum
stress level allowed in the test, respectively. There are totally #&stress levels in the test, denoted

by B&A Let #fitsbe the number of test units allocated to the Zh stress level, ZC XA | AF
and ;;@ilf“ HAL §fif OV e assume that the stress simultaneously influences the degradation rate
and the intensity of random shocks. Firstly, we standardize 8§as follows:

DA 1 BET ) BaI B BTSN
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For the details of the acceleration model and standardization, see Jakob et al. [29] and Lim
and Yum [7, Sec. 3.1]. The standardization yields §8\ *and § 4 X Denote 28k the drift

parameter of the Wiener degradation process under stress gand it is given by
SR 2o, i e AE (7)

The shock failure rate s also influenced by the elevated stress. Let ##%fbe the shock fail-

ure rate under stress % We have
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The unknown parameters in the model are fEc S8, BEAH, AHE We assume that the total
number of test units #¢, the test duration &, and the measurement time interval Z&re pre-
determined. Therefore, the decision variables in the problem are the stress levels and the pro-
portion of test units allocated to each level. Due to the presence of shock failures, some deg-
radation measurements for a certain test unit cannot be obtained, i.e., the degradation measures
are “censored” by a shock failure. Assume % L 21258 e, there are 2T measurements for a
test unit if it survives until the end of the test. The shock failure is not self-announcing and can
only be revealed by inspection. As we only have interval inspections, the shock failures are

interval censored. The probability that the §§h test under stress 8%has a shock failure between
measurement E3F Xand B X EEMEED) is given by
i v TR <G5S0 I, (R RS
w2 FiliSEg s XS IR R

)

and the probability that the §8h test unit under stress fsurvives from shock failures during the

test is
Pl e H il x ZEEE SR o AR (10)

Denote §f,=hs the degradation process for the §&h test units under stress 8 By the prop-
erties of Wiener process, the increment between the EF =Xand E%th inspection interval, ﬁﬁw,

follows a normal distribution. For Bt =4, | 2Zf:
1. oar 95, BECIRIE AR R ESPSIE IS IR, (11)
A realization of §f§,is denoted as fEu et Higbe the integer variables describing the occur-

rence of shock failures, for the §&h test unit under §% and

i e n AR aversip CANMBRNZEET) Za BIlE ReNRABRIOAORE SRS
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The likelihood function of f&s given by
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where %z 1s the indicator function. The log-likelihood function can be expressed as
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The log-likelihood function can be maximized to obtain the MLE of unknown parameters,

denoted by Hﬂﬁﬁ}y plugging F;ﬁqto Eq. (5) or (6), we can obtain the maximum likelihood esti-

mated lifetime distribution for the product.

10



3. Optimization of ADT plans

3.1. Planning criteria and the Fisher information

To design a test with a relatively large sample size, test planners can adopt a particular
asymptotic criterion based on the Fisher information of unknown parameters. Several common

criteria include [30]:

e [C1]: ¥ optimality: to maximize the determinant of Fisher information matrix;

e [C2]: fFoptimality: to minimize the trace of the first order approximation of variance-
covariance matrix of the MLEs of unknown parameters, which is equivalent to mini-
mizing the sum of the eigenvalues of the inverse Fisher information matrix;

e [C3]: #&optimality: to minimize the asymptotic variance of the estimated 100£th per-

centile of the lifetime distribution, i.e., %'UEW%

For convenience, we use [C1], [C2] and [C3] to represent §&, & and {#optimality crite-
rion, respectively. [C1] and [C2] concern more about the overall statistical variability of pa-
rameter estimates, whereas [C3] considers the accuracy of a specific lower lifetime percentile

estimate that can be directly used to guide maintenance and warranty.

The optimization through any of above criteria needs the derivation of Fisher information
matrix, which can provide a good approximation for the inverse of the large-sample asymptotic
variance-covariance matrix of f& The Fisher information is obtained by taking the expectation
of negative second derivatives of J#82In our model, the Fisher information matrix W} tan

be expressed as

[}7::= =

1@1&&*}5#%*;% ri Aumﬁ%%ﬂ XX XX XX 1 %
= Z=1
E%Hm:g%* wﬁ#ﬁﬂ Aumﬁ% : = = - 7
E XX XX Aumﬁ%’iﬁﬂ XX XX %
e = =
B D, %aﬁlvﬁ:* =
& XX XX XX AR — W AR NS
: "R K (2
= XX XX XX Aumﬁ%ﬁ?ﬁﬂ Auﬁjﬁﬁ%? ‘E% i %’H*T

(14)
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For the term ASZFSEEOEITO after trivial derivations we have the expression of
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The expectation can be calculated by
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As for ¥ =4\ AR, e, u fun 2ol FRFEERIBER ~EFR ool ST nd also
TH /et 2F b1 e 26t ARSI EIES S hus following Eq. (16) we have,
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Similarly, the other elements in & are given. The details are given in Appendix A.

3.2. Optimization problem formulation

In this subsection, we formulate optimization problems for the three criteria. With the Fisher

information given analytically, optimization based on [Cl1] and [Cl] can be easily

12



implemented. However, for [C3], we need to derive the asymptotic variance of the estimator
of a certain lifetime percentile. To approximately evaluate the asymptotic variance by the

Fisher information, we employ the delta method. Based on Eq. (5) and (6), the expression for

s xewesiilis given by

e P (18)

where & #8Hs the first derivative of Jf B Owvith respect to fg i.e.,

o e S0 #5000 R Jpo R Jo R B
REMB S, iy, R,y

The detailed expression of J& #8Hs given in Appendix B.

A test plan B includes the setting of Fand &, that is, B 8 ZgA | FRAlA | AR CIn gen-
eral, the optimization problem is formulated as follows,
Minimize IFeaadeEBIE  for [C1]
AMEEELTE  for [C2)
Lol for [C3)

subject to IREERE = B XA | AF (19)
iz
7
SIRE
RHgE wa ey
it 2", B XA \ AB

3.3. General equivalence theorems to verify global optimality

For a test with §&stress levels, we have &l =continuous variables between 0 and 1 to be
optimized. As the objective function for each criterion is apparently nonlinear and difficult to
evaluate the convexity, we have to resort to numerical optimization methods to solve the prob-
lem, which makes it important to verify the optimality of ADT plans. We use the Whittle’s
general equivalence theorems (GET) [31] to verify the global optimality of the plans.

13



The GET is commonly used to verify the global optimality of a given experimental design
derived by the Fisher information matrix or its associated functions. Following the previous
GET literature, we define the derivative function at a test plan 8% and stress level Fas 188550

under different criteria as,

1. [C1]: $B-optimality:
i N e e e T 20)

where By is the 1-level plan in which all the test units are allocated to stress level £§
figsge is the number of unknown parameters, i.e., the dimension of the Fisher infor-

mation. In our case, figye B &

2. [C2]: $Eoptimality [32]:
e A semen o meen, o i s m )

3. [C3]: #optimality:

B cEEEseRRRR, e AR AR P el
g i soewgblam  (22)

According to the GET theorem, f#*®is globally optimal if and only if 40 IE#F* & xx
St

To verify the optimality of B#* it is sufficient to show that JEE*EEHL x%or all Ebelonging to

1B i

BMand (EBEEN 1otherwise. Therefore, plots of the derivative function against $ican be

used to verify optimality.

4. An application example

4.1. Optimal ADT planning to test carbon-film resistor

The example of carbon-film resistor [7] is modified and revisited to illustrate the proposed
methods. The degradation characteristic of interest is the percentage increase in the resistance
of the resistor. It is assumed that at the beginning of the test the resistance is zero and the
degradation process is well modeled by a linear Wiener process, denoted by IEZZ1The domi-
nating factor that influences the degradation path was temperature, and higher temperature was
proved to accelerate the degradation rate. The Arrhenius model is used to link the stress with

model parameters. The maximum thermal environment that the test chamber can provide is
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RE°C and the temperature under use condition is &&HE. The resistor is considered to fail when
there is a 5% increase in resistance, i.e., ¥ L & We assume that there are 200 test units for the

experiment and the maximum test duration is 1500 hours with the inspection interval 75 hours,

i.e., BT &SN LIS

The stress variable is standardized based on the Arrhenius relationship; denote g and
as the maximum and use temperature in the Kelvin scale, respectively. For this example, {fffg #C

mrlK, i, e EEK. Denote {ffias the temperature of the Zh stress, the standardized tempera-

ture s obtained as

IS A E N g L
2 Hm#ﬁﬂ}% HAL al:l:‘—l.lIJ?ltfﬁTJ.—ﬁgt

which satisfies g HAL X/, HAL XX

Based on the pre-estimation and experts’ opinions, the pilot parameters for the degradation
acceleration model is set as Sy Fil RN BFHEASABFALIFor the traumatic shocks, we as-
sume that at the use condition, only 0.5% of the test units are expected to fail within the test
duration 1500 hrs, and 30% of the test units fail under EH. Therefore, the additional pilot
setting is SR FFFOAATUD making [ FFEASAORAERADRATAUE Figure 2
shows an illustration of the behaviors of 20 simulated test units under the maximum stress
levels. As we can see there are 5 shock failures among the test units until the end of the test,

and the degradation levels after the shocks are not observable.
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Figure 2 An illustration of the ADT test from a sample of 20 under the maximum stress.

Asterisks (*) corresponds shock failures.

For [C3], we set S8 XX% that is, to minimize the asymptotic variance of estimated 0.1 quan-

tile of the lifetime. The objective values under various plans under [C1], [C2] and [C3] are

plotted in contour plots in Figure 3. By solving the optimization problems in Eq. (19), the two-

level optimal ADT plans are given in Table 1. For comparison, Table 2 lists the optimal ADT

plans regardless of shock failures.
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Figure 3 Contour plot of objective value under different ¥g;and &l for [C1]-[C3]
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The contour plots intuitively show there is a unique local optimal plan that is also global
optimal under each criterion. The optimal plan under [C1] is more sensitive to the change in

&8s while the optimal plan under [C2] or [C3] is more sensitive to the change in Fgs

Table 1 Optimal 2-level ADT plans

Optimal 2-level plan

Objective
Criterion 3 s £ value
Low  0.553 108.0  0.510
[C1] EEGRHEIIING 0 7B
High 1 173.0  0.490
Low 0397 89.6.0  0.815
[C2] . TR =S
High 1 173.0  0.185
Low 0422 925  0.890
[C3 e el =ouBERE
] High 1 173.0  0.110

Table 2 Optimal 2-level ADT plans with only degradation failures

Optimal 2-level plan

with only degradation failures Objective
Criterion 3 A5 Rk value
Low 0.600 114.0 0.500
[C1] GG 457 ERRE
High 1 173.0 0.500
Low 0.493 100.8 0.820
[C2] PRI TOES
High 1 173.0 0.180
Low 0.489 100.3 0.880
[C3] . vl eafEiE
High 1 173.0 0.120

For all the three criteria, the optimal ADT plans with shock consideration have smaller lower

stress level and more units allocated at lower stress compared with those regardless of shock

17



failures. This is because the presence of shock failures prevents the optimal plan from exploring
more at the maximum stress due to the risk of information loss caused by shocks. In both cases,
by comparison, for [C1] the optimal plans tend to allocate more test units at higher stress levels,
while for [C2] and [C3] the optimal plans allocate significantly more units at the lower stress.
It is interesting to observe that for [C2], the optimal lower stress in Table 1 is significantly
smaller than Table 2, and the objective value also differs drastically. The reason behind this is
that by considering shock failures, the variability of the two additional parameters contributes
significantly to the sum of variance of all parameters because the information on shock failures
is much less than degradation failures. Therefore, the optimization under [C2] is dominated by
the shock model. It is also noted that even though there are considerable differences in optimal
stress levels from Table 1 and Table 2, there is only very slight difference in optimal propor-

tions.

As advised in Section 3.3, we should verify the global optimality of the ALT plans given in
Table 1. By utilizing the GET, we plot the derivative functions against the lower stress level
Fxunder three criteria in Figure 4. The figure shows that the 2-level plans given in Table 1 are
the globally optimal plans over the feasible temperature range in the experiment. It is noted
that the GET ensures that the plans we obtained are optimal, but cannot ensure the uniqueness
of these optimal plans. Nevertheless, the contour plots in Section 4.1 have supported that the

optimal plans are unique within the feasible range of decision variables.

[C1): D-optimality [C2):A-optimality 105 [C3]: V-optimality

Derivative function

Figure 4 Derivative function against lower stress level gunder [C1], [C2], [C3]
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4.2. Simulation study

To investigate the possible outcomes of the experiment, we use Monte Carlo simulation to
illustrate the sampling variability by assuming that the pilot parameters are true. A total of 1000
sets of ADT data were generated under optimal plans, and we calculate the MLE for unknown
parameters based on each sample. The average and standard deviation for each MLE under
[C1], [C2] and [C3] are shown in Table 3. We can see that the simulated outcomes are quite
close to the theoretical results. Moreover, under the current optimal plan setting for the pilot

parameters, the precision of the estimated parameters is high. Therefore, the optimal plans

should yield reasonable efficiency in most cases if the pilot parameters are reasonable.

Table 3 A simulation study of optimal plans

Criterion
[C1] [C2] [C3] True
AR (0.553,1,0.51,0.49)  (0.397,1,0.82,0.19)  (0.422,1,0.89,0.11)  value
E g -8.3112 -8.3107 -8.2999 -8.3
‘2eigh 0.1599 0.1457 0.1317
' queffh 2.5096 2.5082 2.4975 2.5
‘24 0.1685 0.1605 0.1607
s QiR 0.0270 0.0270 0.0270 0.027
- AR 0.0003 0.0003 0.0003
' b -12.8589 -12.8594 -12.7381 -12.61
‘2aigh 1.1581 1.0092 0.8044
' Guigh 4.5037 4.4774 4.3320 4.27
‘2eigh 1.2116 1.1209 1.1442
Obj. value 1285 2322 2.9158=R
Theoretical 9.2 7R 2.245 2.8 7FEXRE
Ob;. value

4.3. 3-level compromise plans

In Section 4.1, we have demonstrated that the 2-level test plans are optimal under the three

criteria of interest. However, in practice, the 3-level compromise plans may be adopted to check
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the validity of the acceleration regression model, especially in case of significant nonlinearity
in the model in the experimental region. For the compromise plans, an extra stress level 2, is
added to experiment, where %, i ZE s F80 [ As in Tseng and Lee [33] three common rules

for ADT compromise plans are as follows:

e &z The proportion of allocation is fixed at 4:2:1. The stress levels need to be optimized.

e U& The proportion of allocation of the added stress level is fixed at 10%. Other varia-
bles of the plan need to be optimized.

e U The proportion of allocation of the added stress level is fixed at 20%. Other varia-

bles of the plan need to be optimized.

The relative efficiency (RE) for each optimal compromise 3-level plan ﬁ%%fﬁwith respect to
the 2-level globally optimal plan Bffor J8A 12 A5 AR representing the three optimality criteria

is given as follows,
o [C1]: Tt ceaHERREE e
o [C2]: Tiraun HHiFEEERBS R S P R (T
o [C3]: Thnc BewsSHRRE e SRER
Based on the three planning rules, we derive the optimal compromise plans and compute

the RE under each criterion respectively. The results are summarized in Table 4.

Table 4 Optimal compromise ADT plans under [C1], [C2] and [C3]

Optimal 3-level compromise plan

Criterion Rules - RE
'8 #s it Rl

Low 0.52 104.0 0.57

[ Middle 0.76 135.6 0.29 0.270
High 1.00 173.0 0.15
Low 0.52 104.0 0.43

[C1] [ Middle 0.76 135.6 0.10 0.914
High 1.00 173.0 0.47
Low 0.48 99.2 0.34

=98 Middle 0.74 132.8 0.20 0.844
High 1.00 173.0 0.47

[C2] Low 0.26 74.9 0.57 0.867
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Middle 0.63 117.9 0.29

-
| 2L

High 1.00 173.0 0.15
Low 0.37 86.6 0.72

[F8 Middle 0.68 124.5 0.10 0.952
High 1.00 173.0 0.19
Low 0.33 82.3 0.62

=98 Middle 0.66 121.8 0.20 0.907
High 1.00 173.0 0.19
Low 0.34 83.4 0.57

i Middle 0.67 123.1 0.29 0.866
High 1.00 173.0 0.15
Low 0.40 90.0 0.79

[C3] [ Middle 0.70 127.2 0.10 0.947
High 1.00 173.0 0.12
Low 0.37 86.6 0.69

[ Middle 0.68 124.5 0.20 0.901
High 1.00 173.0 0.12

The REs shown in the table demonstrate that the performance of ligand Ufgis better than
Emunder all the criteria. Nevertheless, Ifghas reasonable REs that is over 85% under [C2]
and [C3], but the RE of i&gis extremely low under [C1] because the 4:2:1 allocation rule is far
from optimal allocations under [C1]. It is straightforward that the performance of Uiggis better
than Uigas it allocates less test units under the compromise additional stress level. However,
this also weakens the statistical capability to validate the model, which is the main objective of
the compromise. In general, Iiggor IFgare recommended as the rules for compromise plans,
based on the test planners’ confidence in the pilot acceleration regression model and the num-
ber of available test units. With the compromise plans, degradation and lifetime data from three
stress levels are obtained in a test. Three-level data provide possibility to verify the acceleration
regression models in Egs. (7)-(8). For example, if the true model in Eq. (7) is a log-quadratic
model rather than log-linear, i.e., 2B 257 S, v 55w BI20F0 we can fit the three-level
data to the alternative model to verify if it is more appropriate, and it is noted that it is not
applicable for two-level data. In practice, the compromise plans are suggested to be used if the

prior information of the acceleration model is not believed to be very reliable [34], [35, p. 341].
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5. Sensitivity analysis and robustness of the test plan

As the robustness is of great importance in application of a test plan, in this section, we
investigate the effects of various changes in test planning inputs on the optimal plans to explore

the robustness of the proposed plans.

5.1. A general sensitivity analysis

The pilot model parameters are usually given by experts or preliminary estimation; thus they
are subject to estimation errors. To study the influence of estimation errors on the optimal plans,
we increase and decrease each parameter by 10% and obtain the optimal plans. We use a
Taguchi orthogonal design {Hfgewith 5 factors (parameters) and 3 levels, where +1 and -1 rep-
resents 10% increase and decrease in the pilot parameter and 0 stands for no change. The opti-
mal plans under each setting are given in Table 5. A summary is made to show the range and
standard deviation of each optimal plan setting by varying the parameters under each criterion
in Table 6. We notice that all the optimal plans have the high stress level at 1 and the variation
of allocation proportions is slight, thus we concentrate on the changes in the optimal lower
stress level ?g Table 7 shows the effect rankings on Fgfor unknown parameters based on the

analysis of the Taguchi design, and rank 1 represents the parameter with the largest effect.

Table 5 Effects of parameter changes on the optimal 2-level ADT plans

Optimal 2-level plan

[C1] [C2] [C3]

O OH TR % % % B, By | % % AR BL | % % B
-1 -1 -1 -1]048 1 052 048 {031 1 081 0.19 031 1 092 0.09
-1 -1 -1 0 (050 1 053 047 |[036 1 081 020 (036 1 090 0.11
-1 -1 -1 +1(050 1 055 046 (040 1 079 022 (038 1 089 0.12
O o0 O -11/054 1 051 050 (034 1 082 018 {040 1 090 0.11
0O 0 O O |05 1 051 049 {040 1 082 0.19 (043 1 0.89 0.11
0O 0 O +1(057 1 052 049 (044 1 081 0.19 [045 1 088 0.12
+1 +1 +1 -11]057 1 050 050 (034 1 083 0.18 {049 1 088 0.13
+1 +1 +1 0 [059 1 050 050 (041 1 082 0.18 {050 1 088 0.13
+1 +1 +1 +1(060 1 051 050 |046 1 082 0.19 [051 1 0.88 0.13
-1 0 +1 -11]052 1 050 050 (034 1 083 0.18 (041 1 090 0.11




0 -1 0 +1 0 (054 1 051 050|040 1 082 0.18 (042 1 090 0.11
0 -1 0 +1 +1]056 1 051 050 046 1 082 0.19 {043 1 0.89 0.11
0 0 41 -1 -1/051 1 052 048 {032 1 081 0.19 {031 1 091 0.09
0 0 41 -1 0 (052 1 053 047 {037 1 080 020 (036 1 090 0.11
0 0 41 -1 +1/052 1 055 046 {040 1 079 022 {039 1 088 0.12
o 1 -1 0 -1]05 1 051 050 (034 1 08 0.18 {039 1 090 0.11
0 1 -1 0 0 (058 1 051 049 {040 1 082 0.19 (043 1 0.89 0.11
o 1 -1 0 +1/059 1 052 049 {044 1 081 0.19 {046 1 0.88 0.12
!l -1 4 0 -1/051 1 051 050 ({035 1 082 0.18 {036 1 091 0.10
1 -1 41 0 0 |053 1 051 049 {040 1 082 0.19 {040 1 090 0.11
1 -1 41 0 +1/054 1 052 049 {044 1 081 0.19 {043 1 0.89 0.12
1 0 -1 41 -1|054 1 050 050 (034 1 083 0.18 (043 1 0.89 0.11
1 0 -1 41 0 |05 1 051 050 ({041 1 082 0.18 {045 1 0.89 0.12
1 0 -1 41 1 (058 1 051 050 ({046 1 082 0.19 {047 1 0.88 0.12
1 +41 0 -1 -1/054 1 052 048 {036 1 081 020 ({031 1 092 0.09
1 +1 0 -1 0 |054 1 053 047 {040 1 080 020 (036 1 090 0.11
1 41 0 -1 +1|054 1 055 046 [042 1 079 022 {039 1 0.89 0.11
Table 6 Summary of the general sensitivity analysis
Optimal 2-level plan
Criterion
wpEERO EoTe e Fggn  eesn

[C1] 0.1173 0.0450 0.0301 0.0142

[C2] 0.1440 0.0400 0.0436 0.0116

[C3] 0.2086 0.0400 0.0558 0.0111

Table 7 Effects ranking of parameters on the optimal lower stress level

Ranks of effect on %
Criterion —
1 2 3 4 5
[C1] 5, Wiy i W B
[C2] 4, My s il i
[C3] Wy o 2 Wiy B
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The results show that optimal plans under [C3] are more sensitive to the variation of param-
eters than those under [C1] and [C2]. Nevertheless, as Table 5 shows, the optimal plans do not
change drastically when the parameters are changed in the range of 10% unless several param-
eters are overestimated or underestimated simultaneously, which rarely happens in practice
because the correlations of the parameters are generally negative. Under the three criteria, the
shock model parameters show at least equal significant effects on the optimal plans as the
degradation parameters. For [C2] and [C3], the shock model parameters have larger effects on
the optimal plans. It is noted that the intercept of shock acceleration model Hfgranks highest
under [C3]. This is due to the fact that [C3] concerns more on the accuracy of extrapolation of
the lifetime, and the intercept parameter of shock models determine the shock failure rate under
use condition, which is of great importance when test planners try to predict the field lifetime.

The degradation diffusion parameter #8always exerts the least influence on the test planning.

5.2. Effect of shock failure model

The previous section has shown that the parameters on shock failures influence the optimal
ADT plans in a more sensitive way, which motivates us to conduct a further sensitivity analysis
on these parameters from a more intuitive perspective to the engineers. We change the propor-
tions of shock failures under use and maximum stress levels to see how optimal plans vary
under [C1], [C2] and [C3]. Note that these proportions are set by test planners prior to the
experiment based on their experience and preliminary estimation, and the settings directly
change the parameters Hf/&fsin the ADT model. The optimal plans are listed in Table 8-10 for
[C1], [C2] and [C3], respectively. For convenience, we denote PF0 and PF1 as the proportions

of shock failures use stress and maximum stress levels respectively.

Table 8 Optimal ADT plans under [C1] (8-optimaility) under different shock failure as-

sumptions.
PF1
10% 30% 50% 70% 90%
% 0.68,1.00 0.71,1.00 0.71,1.00 0.71,1.00  0.72, 1.00
0.005%
PFO gL 050,050 051,049 052,048 053,047  0.55,0.45
% 0.66,1.00 0.69,1.00 0.70,1.00 0.70,1.00  0.70, 1.00
0.01%

0.50,0.50 0.51,0.49 052,048 053,047 0.55,0.45

24



7% 0.58,1.00 0.62,1.00 0.64,1.00 0.64,1.00 0.64,1.00
gl 050,050 051,049 052,048 053,047 055,045

0.1%

% 045,1.00 051,1.00 0.54,1.00 0.55,1.00 0.55,1.00
gl 050,050 051,049 052,048 053,047 055,045

1%

Table 9 Optimal ADT plans under [C2] (§REoptimaility) under different shock failure as-

sumptions.
PF1

10% 30% 50% 70% 90%

0,005, % 066,100 0.70,1.00 0.72,1.00 0.73,1.00 0.73, 1.00
. 0

Bl 0.80,020 0.80,020 080,020 0.78,022  0.75,0.25

ool % 063,100 0.68,1.00 070,1.00 0.71,1.00 0.71,1.00
. 0

PFO Bl 081,019 080,020 079,021 078,022 0.76,0.24

o190 % 045100 056,100 059,1.00 061,1.00 0.62,1.00
. 0

L 082,018 080,020 0.80,0.20 0.79,0.21  0.76,0.24

¥% 0.01,1.00 0.28,1.00 0.34,1.00 042,1.00 0.47,1.00
L 082,018 083,027 081,0.19 0.79,021  0.78,0.22

1%

Table 10 Optimal ADT plans under [C3] (§&optimaility) under different shock failure as-

sumptions.
PF1
10% 30% 50% 70% 90%
0.005% 7% 049,1.00 0.48,1.00 0.47,1.00 0.46,1.00 0.43,1.00
' ’ &% 0.88,0.12 0.88,0.12 087,013 0.86,0.14  0.85,0.15
7% 049,1.00 0.48,1.00 0.47,1.00 0.46,1.00 0.43,1.00
PFO 0.01%
&% 0.88,0.12 0.88,0.12 087,013 0.86,0.14  0.85,0.15
0.19, 7% 048,1.00 0.49,1.00 0.48,1.00 0.47,1.00  0.44, 1.00
. 0

&% 0.88,0.12 0.88,0.12 087,013 0.88,0.12  0.85,0.15

1% %% 0.07,1.00 0.31,1.00 0.39,1.00 0.43,1.00 0.45,1.00
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#% 098,002 092,008 090,0.10 0.88,0.13  0.85,0.15

Under all the three criteria, as PFO increases, the optimal lower stress gets lower and the
respective allocation proportion gets larger. However, we see some differences in the change
of optimal plans under different criteria. For [C1] and [C2], as PF1 increases, the optimal lower
stress becomes larger and fewer test units are allocated to it. On the contrary, as PF1 increases
under [C3], the optimal lower stress becomes lower and fewer test units are allocated to it for
PHO from 0.005% to 0.1%. For [C3], it is interesting to observe that when PFO is large enough,
such as 1%, the optimal stress lower stress increases as PF1 increases. In addition, when PF0
and PF1 are relatively near, for example, when PFOHAL R and PF1HAL X or B4, almost all
test units are allocated to a very low stress level. Under this assumption, because the shock
failures occur very early under normal stress, thus a slightly elevated lower stress can produce
a reasonable number of shock failures. Moreover, when PF0O and PF1 are both large, the shock
failure parameters play a more significant role in predicting lifetime. This is also the reason
that we have seen a considerable difference in optimal plans under PF0=1% and other PF0
settings. In practice, the test planners should be careful when estimating the pilot parameters
of shock failure models. If the shock intensity is underestimated, the derived ADT plan may
deviate significantly from the true optimal plan. The result of such parameter misspecification

may lead to a significant reduce of information from the real test.

5.3. Effect of percentile of interest

Although engineers or managers usually concern about a lower percentile of lifetime for a
product to support decision making, the specific value of %¥may vary due to different needs.
Because *fdoes not influence the optimal plans under [C1] and [C2], we change 2¥from 0.1 to
0.9 to see the variation in optimal plans under [C3]. The optimal lower stress level and propor-

tion is shown in Figure 5 and the optimal asymptotic variance of %ﬁ plotted in Figure 6.
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Figure 5 Optimal test plans under [C3] when Zvaries

Asymptolic variance

Figure 6 Minimized asymptotic variance of B when “varies

The optimal proportion allocated to lower stress almost remains unchanged when “varies
from 0.1 to 0.9, and the optimal lower stress level increases from 0.42 to 0.47. The reason of
the increase in Fgsis that more failures need to be observed for inference of a higher percentiles.

pELY

The minimum l?§'l—7<l‘-'l}lﬁ!llncreases drastically with 2 but stays relatively small with a small %

The change in optimal plans with various s not as significant as the change with the fluctu-

ated parameters, as shown in the previous two subsections. Due to the fact that the test planners
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mostly wish to estimate lower percentiles, the test plan is relatively robust with respect to the
change in £ Therefore, the data from an optimally planned test with a small can be reasona-

bly reused to estimate other lifetime percentiles if fremains relatively small.

5.4. Effect of censoring time

Censoring in a reliability test is necessary due to the constraint of time. If there is no limi-
tation on test time, one can test the units at use stress without extrapolation to make inferences
of field reliability. By varying the right censoring time, we give the optimal ADT plans under

different criteria in Table 11.

Table 11 Optimal ADT plans for various censoring time

Optimal 2-level plan

[C1] [C2] [C3]
% o AL OB TR R OBL OB T B B A

750hrs (1 mo.s) 056 1 050 050040 1 082 0.18(043 1 089 0.11
1500hrs 2 mo.s) 055 1 051 049 {039 1 082 0.18 042 1 0.89 0.11
7500 hrs (10 mo.s) 0.50 1 054 046 |035 1 0.79 021 [037 1 0.89 0.12
750k hrs (8 yr.s) 0 1 060 040 (0 I 060 04010 I 1 0

As expected, larger censoring time results in a reduced optimal lower stress. Furthermore,
when the censoring time is extremely large, such as 8 years in the table, the optimal lower
stress level is set at use stress. For [C1] and [C2], there are still a proportion of 40% test units
allocated to the lower stress under a very large 5 because these criteria consider the variability
of all parameters. In contrast, as [C3] concerns about the lifetime percentile at use stress, when

the censoring time is large enough, all the test units are allocated to the lower stress in the

optimal plan.

6. Concluding remarks

The paper has investigated the optimal constant-stress ADT plan for products subject to
competing degradation and shock failures. During the test, it is assumed that traumatic shocks
may occur and terminate the process of the degradation measurement. A novel ADT model
based on competing failure modes is employed to derive the Fisher information for the un-

known parameters. Large sample approximation provides tractable ways to optimize ADT
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plans easily by avoiding running computationally intense simulations to evaluate the plans. We
use three common optimality criteria to optimize the ADT plans. A real example of LED lamps
from previous literature is used to illustrate the method. The result shows that the presence of
random shock failures considerably influences the optimal ADT plans under three criteria. The
general equivalence theorems are used to verify the optimality of the 2-level plans. We also
study different rules of three-level compromise plans, and we suggest 10% or 20% allocation
rule to the middle stress in such problems. Furthermore, the general sensitivity analysis shows
that the optimal plans are fairly robust under slight errors in pilot parameters. However, we

have to emphasize that the parameters of shock failure models should be carefully specified.

The ADT model described in the paper can also be extended to step-stress ADT (SSADT),
which is more appropriate if the test units are very limited. In addition, models incorporating
multiple dependent shocks and degradation failures could be adopted in the ADT planning
framework, where copula function can be applied in model construction, and revealing

asymptotic properties of unknown parameters are challenging and of interest to investigate.

Appendix A: Elements of the information matrix

Following Eq. (17), the other elements in the information matrix are given by
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where
455, 2o, R ES TR oo ARSI T SIS TR RIS
i PSS RIS

and
%ﬁ&fﬁ:ﬂ %ﬁlvﬁ:% W =n
AR e AR i HJL 558
rRFE, = E
e,

R PO e %’éﬁﬁ%%
(23)

Appendix B: Elements of /= &

For an arbitrary time Bwe have
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