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The spiral wind-up and diffusive decay of a passive scalar in circular streamlines is
considered. An accelerated diffusion mechanism operates to destroy scalar fluctuations
on a time scale of order P 1/3 times the turn-over time, where P is a Péclet number.
The mechanism relies on differential rotation, that is, a non-zero gradient of angular
velocity. However if the flow is smooth, the gradient of angular velocity necessarily
vanishes at the centre of the streamlines, and the time scale becomes greater. The
behaviour at the centre is analysed and it is found that scalar there is only destroyed
on a time scale of order P 1/2. Related results are obtained for magnetic field and
for weak vorticity, a scalar coupled to the stream function of the flow. Some exact
solutions are presented.

1. Introduction
The problem of how fluid motion interacts with molecular diffusion to accelerate

diffusion and transport has many facets and many applications. The aim of this paper
is to clarify fundamental issues of time scales in the basic situation in which a scalar
is transported in a smooth steady vortex, consisting of closed circular streamlines
in planar flow. The evolution of a passive scalar in this configuration is discussed
by Rhines & Young (1983) and in a similar Cartesian geometry by Moffatt (1983).
These authors show that variation of structure along streamlines is destroyed on a
rapid, order-P 1/3 time scale because of the action of differential rotation in enhancing
gradients. Here P is a Péclet number and units are chosen to make the turn-over
time of the flow of order unity. Left behind is an axisymmetric distribution of scalar,
constant along streamlines, which diffuses only on the longer, order-P time scale of
molecular diffusion.

In a related paper Moffatt & Kamkar (1983) obtain the analogous result for flux
expulsion of a weak magnetic field. Here a vector potential for the magnetic field
is transported as a passive scalar. The effect of accelerated diffusion is to destroy
gradients of the scalar and so to expel flux from the vortex. The time scale here is
of order Rm

1/3, where Rm is the magnetic Reynolds number. These results explain the
scalings found in numerical simulations of flux expulsion by Weiss (1966).

A third area in which accelerated diffusion in closed streamlines is important is
the evolution of vorticity itself. In two-dimensional flow, vorticity is an active scalar
as it is inextricably coupled to the stream function of the flow field. However when
vorticity is weak and fine-scaled it acts approximately as a passive scalar and is often
subject to spiral wind-up and accelerated diffusion. This is seen in the homogenization
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of vorticity in ocean gyres (Rhines & Young 1982) and other geophysical vortices
(e.g. McCalpin 1987; Sutyrin 1989; Smith & Montgomery 1995), and generally in the
relaxation of flows to Prandtl–Batchelor states in which vorticity is constant along
streamlines (Batchelor 1956). The time scale of accelerated diffusion is now of order
R1/3, where R is the Reynolds number (Lundgren 1982). Similar time scales have been
identified for viscous effects in critical-layer cat’s eyes (Stewartson 1978).

These processes are important in the behaviour of coherent vortices evolving freely
in two-dimensional turbulence; in this case the leading effect on the internal dynamics
of a coherent vortex is a time-dependent strain from other vortices (see Lingevitch &
Bernoff 1995). This can generate spiral arms of vorticity with azimuthal wavenumber
n = 2 which are subject to accelerated diffusion as the vortex regains axisymmetry
through spiral wind-up (e.g. Melander, McWilliams & Zabusky 1987; Bernoff &
Lingevitch 1994) or relaxes to a state controlled by the external strain (Jiménez,
Moffatt & Vasco 1996). Sometimes the vortex does not relax to axisymmetry, but
after external forcing relaxes to a stable non-axisymmetric state, for example a
tripole (Koumoutsakos 1997; Rossi, Lingevitch & Bernoff 1997; Dritschel 1998).
This relaxation process again involves wind-up of fluctuations in vorticity, but in
the streamlines of the new non-axisymmetric state, and these fluctuations would be
destroyed diffusively on an order-R1/3 time scale. For strictly inviscid flow, R = ∞,
fluctuations always remain, but tend to zero in a coarse-grained sense (see Bassom &
Gilbert 1998, referred to herein as BG, 1999, 2000).

This accelerated diffusion of an advected field in closed streamlines has been termed
the ‘shear–diffuse mechanism’ (Bernoff & Lingevitch 1994) to emphasize the role of
shear by differential rotation to enhance gradients and so diffusion. If differential
rotation vanishes at a given radius, then the arguments leading to the 1/3-power-law
time scale do not apply, as many authors have pointed out. However in a smooth
vortex with circular streamlines, the differential rotation necessarily vanishes at the
centre, by smoothness considerations. This raises the question we shall address in this
paper: what is the time scale for accelerated diffusion of advected fields at the centre
of circular streamlines, and what is the ultimate form of those fields?

To be more specific, let α(r) be the angular velocity of the flow, in the plane, as
a function of radius r. If the flow is smooth, that is infinitely differentiable, then
the axisymmetric stream function and vorticity distribution expand as power series
in r2 at the origin. The same is true for the angular velocity α(r) and so necessarily
α′(0) = 0. Using the linearity of the advection–diffusion equation and axisymmetry
of the underlying flow, we may decompose a passive scalar field into Fourier modes
proportional to einθ , where n is an azimuthal wavenumber. For n 6= 0 this scalar
field is wound up into spiral arms by the flow and is damped by diffusion, leading
to multiplication by the damping term exp(−n2α′(r)2t3/3P ) at a given radius r. The
cubic power in t leads to accelerated diffusion that strikes when t = O(P 1/3) for n 6= 0.
However this assumes that α′(r) = O(1), and if this is not the case then a more careful
estimate of the shear–diffuse time scale is

tshear−diffuse = α′(r)−2/3P 1/3 (1.1)

(and analogously for magnetic field or vorticity). Clearly this estimate breaks down at
the centre of the vortex where α′(r) = 0, and the time scale becomes longer. Our aim
is to find this longer time scale, assuming that α(r) has a leading quadratic behaviour
in r as r → 0, which is the generic case for a smooth vortex.

Note that the n = 0 mode is unaffected by motion and is governed by just the
diffusion equation; this mode decays on the long O(P ) time scale. We are interested



Accelerated diffusion in the centre of a vortex 397

in non-axisymmetric modes with n 6= 0 and their accelerated decay, in other words
in the relaxation of a scalar (or other) field to axisymmetry. We emphasize that our
study does not apply to accelerated diffusion in a singular flow field, for example a
point vortex, for which α′(r) diverges as r tends to zero (Bajer 1998). Note also that if
α′(r) has a wide variation with r then the above estimate gives a range of time scales
and this can introduce anomalous scaling properties for diffusion (Flohr & Vassilicos
1997).

The paper is structured as follows. In § 2 we consider a passive scalar in a given
flow with circular streamlines and an exactly quadratic angular velocity profile α(r).
This problem may be solved analytically for arbitrary Péclet number. The solution
shows how scalar is destroyed by the shear–diffuse mechanism and reveals the new
scalings for destruction of passive scalar at the origin, in particular the longer time
scale there. We consider the general case of passive scalar in smooth flows with
circular stream lines (§ 3). The problem becomes reduced to an inner problem close to
the origin, which is identical to the exact problem discussed in § 2. We relate this to
flux expulsion in § 4, and ask the question: in flux expulsion from circular streamlines
how does the magnetic field at the centre of the streamlines decay (Weiss 1966)?

We consider the shear–diffuse mechanism acting on weak vorticity fluctuations
(§ 5) and obtain an exact solution including viscosity, which builds on the studies
of Lundgren (1982) and BG. This solution again provides the key to understanding
the general problem of the destruction of vorticity by viscosity near to the origin in
general smooth flows. Finally § 6 offers a concluding discussion.

2. Passive scalar: an exact solution
Using plane polar coordinates (r, θ), a passive scalar Σ(r, θ, t) in the incompressible

flow u = r−1∂θΨ r̂ − ∂rΨ θ̂ given by the stream function Ψ obeys the equation

∂tΣ + J(Σ,Ψ ) = ε∇2Σ (ε ≡ P−1), (2.1)

with

J(a, b) ≡ r−1(∂ra ∂θb− ∂θa ∂rb) (2.2)

(e.g. Rhines & Young 1983). This equation is non-dimensionalized using the scale of
the flow and its turn-over time, and we are interested in the limit of weak diffusion
and large Péclet number ε = P−1 → 0. We consider the case of a smooth steady
axisymmetric flow field Ψ = Ψ (r), with angular velocity α(r) = −r−1∂rΨ . We may
take a Fourier mode

Σ(r, θ, t) = σ(r, t)einθ + c.c. (n > 1), (2.3)

where ‘c.c.’ denotes the complex conjugate of the preceding expression. We do not
consider the case n = 0, for which the shear–diffuse mechanism does not operate:
distributions of scalar constant on streamlines decay only on the long O(P ) time scale
(see Rhines & Young 1983). The most important case for a scalar is n = 1, which
includes the case of an initially uniform gradient of scalar across the system; the
effect of accelerated diffusion will be to homogenize the value of scalar within the
closed streamlines.

The scalar field σ evolves according to

∂tσ + inα(r)σ = ε∆σ, ∆ ≡ ∂2
r + r−1∂r − n2r−2. (2.4)

In any smooth axisymmetric flow field the stream function Ψ (r) must expand near
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the origin as a power series in r2, and so must the angular velocity α(r), defined by
α(r) = −r−1∂rΨ . The simplest non-trivial exact model to consider has

α(r) = α0 + α1r
2 (α1 6= 0). (2.5)

The first term gives an unimportant solid-body rotation, while the second is the
first allowed term giving differential rotation and so spiral wind-up and accelerated
diffusion. The angular velocity here increases without bound as r increases; however
this unphysical feature will be rectified in the matched solutions of the next section.

We assume that the passive scalar field is everywhere smooth and so must tend
to zero as σ = O(rn) at the origin. In the exact solution we consider the simplest
allowable initial condition

σ(r, 0) ≡ σ0(r) = crn, (2.6)

where c is a constant; for n = 1 this is precisely the case of a uniform scalar gradient.
If there is no diffusion, ε = 0, then the solution of (2.4) for this initial condition is

σ = crne−in(α0+α1r
2)t (ε = 0), (2.7)

which gives spiral wind-up and indefinite fine-scaling of the scalar field. With diffusion,
ε > 0, we seek a solution of the form

σ = g(t)rne−inα0t−if(t)r2

(2.8)

(see Lighthill 1966; Brunet & Haynes 1995). Substituting this into equation (2.4) and
equating terms in σ and r2σ leads to two first-order differential equations

f′ = nα1 − 4iεf2, g′/g = −4iε(n+ 1)f, (2.9a, b)

which may be solved as

f(t) = nα1µ
−1 tanh τ, g(t) = c(cosh τ)−n−1, (2.10a, b)

with

τ = µt, µ = (1 + i)
√

2εnα1. (2.11)

Equations (2.8), (2.10) and (2.11) furnish an exact solution to the passive scalar
problem defined by the sytem (2.4)–(2.6). It is helpful to think of nα1 > 0, but the
results are also valid for nα1 < 0. Note that as ε → 0 for fixed time t, this solution
tends to the diffusionless solution (2.7) as µ−1 tanh τ→ t.

The form of this solution is the key to the remainder of this paper, and it is worth
interpreting carefully. We have in mind the case of low diffusivity, with 0 < ε � 1
fixed, and we have to understand the solution as a function of radius r at all times t.
The situation is summarized schematically in figure 1 as a space–time diagram with
axes r and t. Plots of the scalar field Σ(r, θ, t) are also shown for three characteristic
times in figures 2(a–c) for n = 1 and (d–f) for n = 2. Figures 2(a, d) show spiral
wind-up occurring; (b, e) show the wave of accelerated diffusion approaching the
origin, while (c, f) show what is left behind, an exponentially decaying eigenfunction
of fixed form. Another view of the process is given by plotting the maximum value
of the scalar field Σmax(t) and its radial location rmax(t), given by

r2
max = (χ/α1)(cosh 2χt+ cos 2χt)(sinh 2χt− sin 2χt)−1, (2.12a)

Σ2
max = 8|c|2(2χ/α1e)

n(cosh 2χt+ cos 2χt)−1(sinh 2χt− sin 2χt)−n, (2.12b)

where χ = Re µ. Figure 3 shows rmax and Σmax plotted against t on a log–log scale,
for n = 1 (solid) and n = 2 (dashed). There are two phases: in the first rmax and Σmax
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Figure 1. Schematic diagram of the evolution of a passive scalar. Different regimes are shown on
a space–time diagram with axes (r, t).

decrease algebraically with time, while in the second rmax equilibrates at a low level
and Σmax decreases faster, actually exponentially with time.

Plainly there are two important ranges of time, during which different processes
occur. The first is t� ε−1/2, corresponding to τ� 1. We may then approximate (2.10)
to give

f = nα1t− 4in2α2
1εt

3/3 + O(ε2t5), g ∼ c, (2.13a, b)

and the leading approximation† for σ is

σ(r, t) ∼ crne−in(α0+α1r
2)t e−4n2α2

1r
2εt3/3. (2.14)

This shows the shear–diffuse mechanism (Moffatt & Kamkar 1983; Rhines & Young
1983): the second exponential term represents a decay superposed on the spiral wind-
up in the first term. It is helpful to think informally of a ‘wave’ of shear–diffuse
destruction approaching the origin from r = ∞, along the curve t = O(ε−1/3r−2/3)
shown in figure 1: below this curve there is just spiral wind-up, above it the scalar
is destroyed. This incoming wave can be seen in the plots, figure 2(b, e), of the exact
solution, and in figure 3.

The approximation (2.14) breaks down for τ = O(1), that is t = O(ε−1/2), when the
wave is a distance r = O(ε1/4) from the origin. In this case all terms in the exact
solution are important and govern evolution of the scalar in the shaded region of
figure 1; this corresponds to the cross-over between the two phases visible in figure 3.
For larger times t� ε−1/2 and τ� 1 we may again approximate

f(t) ∼ nα1/µ, g(t) ∼ c2n+1e−(n+1)µt, (2.15a, b)

which leads to

σ(r, t) ∼ crn 2n+1 e−nα1r
2/µ ept, p = −inα0 − (n+ 1)µ. (2.16)

† Strictly the approximation is only valid for t� ε−2/5. If more terms are retained in f the period
of validity increases and approaches t = O(ε−1/2), when the whole expansion becomes non-uniform.
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Figure 2. Evolution of isolines of a passive scalar Σ(r, θ, t) as given by the exact solution (2.8),
(2.10) and (2.11), for (a, c) t = 0.5, (b, d) t = 3, and (c, f) t = 20. In (a–c) n = 1, while in (d–f) n = 2.
Other parameter values are c = 1, α0 = 0, α1 = 1 and ε = 0.01.

This asymptotic solution represents a decaying, rotating eigenfunction with a Gaussian
structure, seen in figure 2(c, f) and in figure 3.

It decays exponentially on the t = O(ε−1/2) time scale since

Re p = −(n+ 1)
√

2εnα1. (2.17)
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Figure 3. Plot of (a) log10 rmax as a function of log10 t, and (b) log10 Σmax as a function of log10 t.
Parameter values are as in figure 2 with the n = 1 curve solid and n = 2 dashed.

This is slower than the O(ε−1/3) shear–diffuse time scale, but faster than the long
O(ε−1) time scale of molecular diffusion because the residual differential rotation
at the origin enhances diffusion by reducing the radial scale to r = O(ε1/4). This
longer time scale is a result of the ‘survival’ of the vorticity at the vortex centre. At
t = O(ε−1/2), when we see a clear transition from algebraic to exponential decay in
figure 3(b), the amplitude of the solution is already quite low, with Σmax = O(εn/4). A
more precise estimate may be obtained from figure 3(a) using (2.12). In the first phase
rmax decays according to r2

max ∼ 3/(4α1χ
2t3) while in the second phase rmax equilibrates

at r2
max ∼ χ/α1. Equating these two approximations for rmax gives the time of the

cross-over, when

t ∼ (3/4)1/3χ−1 ≡ (3/4)1/3(2εnα1)
−1/2, Σmax ' 1.66|c|(0.264εn/α1)

n/4. (2.18)

We shall generalize and elaborate on this basic example in the following sections.
However it enables us to answer the question of the time scale for destruction of
the scalar at the centre of the vortex. This time scale is O(P 1/2), longer than the
shear–diffuse O(P 1/3) time scale for radii where α′(r) does not vanish.

3. Passive scalar: the general case
The case of a passive scalar in a general smooth axisymmetric flow field becomes

straightforward given the exact solution in § 2. Assuming smoothness of the flow field
and of the passive scalar, we now have

α(r) = α0 + α1r
2 + O(r4) (α1 6= 0), (3.1)

σ(r, 0) = σ0(r) = crn + O(rn+2), (3.2)

as r → 0, in place of (2.5), (2.6). We assume that α′(r) is non-zero for r > 0.
The solution giving the wind-up and decay of scalar through the shear–diffuse

mechanism takes the form

σ(r, t) ∼ σ0(r)e
−inα(r)te−n

2α′(r)2εt3/3 (3.3)

for r = O(1), as derived in Moffatt & Kamkar (1983) and Rhines & Young (1983).
The accelerated decay of scalar strikes at the radius or radii where |α′(r)| is maximum
and spreads out from there. For example, for an isolated Gaussian vortex, α′(r) has a
single maximum and tends to zero as r → 0 or r →∞. The decay of scalar spreads out
towards the origin, and towards large radii. For the wave of shear–diffuse destruction
which approaches r = 0 with increasing time, figure 1 once more becomes relevant.
The solution (3.3) becomes invalid at t = O(ε−1/2) (Moffatt & Kamkar 1983), at which
point the wave has reached a radius r = O(ε1/4).
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This represents an inner region, and to find out what happens subsequently to the
scalar at these distances from the origin (the scalar further out having already been
destroyed), we introduce a short length scale s and long time scale T with r = ε1/4s
and t = ε−1/2T . We set

σ(r, t) = e−inα0t [ρ(s, T ) + O(ε1/2)], (3.4)

taking out the angular velocity at the origin. The leading-order field ρ satisfies

∂Tρ+ inα1s
2ρ = (∂2

s + s−1∂s − n2s−2)ρ. (3.5)

This is precisely the equation for the model problem of § 2 (see (2.4), (2.5)) with ε = 1
and α0 = 0. We can read off the solution for ρ and rewrite this in terms of t, r and ε
to obtain

σ(r, t) ∼ g(t)rne−inα0t−if(t)r2

(0 6 r � 1), (3.6)

with f and g defined in (2.10), (2.11) above. This matches onto the solution (3.3)
for moderate times, t � ε−1/2, and for long times becomes precisely the decaying
eigenfunction given above in (2.16). The errors in this approximation are of order
ε1/2.

In conclusion, the schematic diagram of figure 1 applies in the case of generic
smooth flows with circular streamlines provided that the differential rotation vanishes
nowhere except at the origin. The wave of shear–diffuse destruction approaching the
origin arrives at a time of order P 1/2; on this time scale the scalar gradient there is
destroyed according to the exact solution of § 2. Left behind is only an exponentially
decaying remnant of the passive scalar field. If α′(r) also tends to zero as r →∞ then
another wave heads outwards to large radii (Bernoff & Lingevitch 1994; Bajer 1998).

4. Magnetic field: flux expulsion
We consider briefly the problem of wind-up of magnetic field and flux expulsion.

The field lies in the plane of the flow and we write B = ∇ × (Aẑ). The component
A(r, θ, t) of the magnetic vector potential is transported as a passive scalar with
diffusivity ε = Rm

−1, where Rm is the magnetic Reynolds number. The results of § 2
and § 3 now hold when Σ is replaced by A, and analogously σ by a. Isolines of the
scalar field Σ become isolines of A, and these are magnetic field lines. The evolution of
these isolines shown in figure 2 may be interpreted in these new terms. The magnetic
field is

B ≡ b(r, t)einθ + c.c., b(r, t) = inar−1 r̂ − ∂ra θ̂. (4.1)

We shall focus on the specific case n = 1 (figure 2a–c), which is of primary
importance as it includes the case of a uniform magnetic field crossing the region of
closed streamlines, as in the simulations of Weiss (1966). The first phase of differential
rotation and shear–diffuse destruction for the vector potential yields a magnetic field

b ∼ [ia0r
−1 r̂ − (a′0 − a0(iα

′t+ 2α′α′′εt3/3))θ̂]e−iαte−α
′2εt3/3 (r = O(1)), (4.2)

using the solution (3.3) for a, with initial condition a(r, 0) = a0(r). At a radius of
order unity fields grow to a strength O(ε−1/3) before being damped by the shear–
diffuse mechanism on the time scale O(ε−1/3) as seen numerically (Weiss 1966). These
maximum fields correspond to points on figure 1 for r = O(1) lying just below the
wave of shear–diffuse destruction. Note that as the field increases, so does the Lorentz
force feedback on the flow. If Rm is increased, the initial level of the field is ever more
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tightly constrained if its evolution is to remain kinematic, not affecting the flow field,
until eliminated by diffusion.

If we move in closer to the origin, following the shear–diffuse wave sketched in
figure 1, the maximum fields decrease. It may be verified that as the shaded region
(r = O(ε1/4), t = O(ε−1/2)) is approached the maximum field tends to values of only
order unity before being destroyed by diffusion. The field near the centre of the vortex
behaves as

b ∼ g(t)[ir̂ − (1− 2if(t)r2)θ̂]e−iα0t−if(t)r2

(0 6 r � 1) (4.3)

from (3.6) and taking a0(r) ∼ cr as r → 0.
At the very centre, r = 0, we may substitute for g(t) from (2.10b) and use (4.1) to

obtain

B ∼ 2|c| [cosh((1 + i)t
√

2εα1)]
−2(i sin(α0t− φ)− j cos(α0t− φ)) (4.4)

in terms of Cartesian unit vectors, with c = |c|eiφ. For t� ε−1/2 the vector at the origin
undergoes solid-body rotation, and then for t� ε−1/2 decays exponentially according
to this prescription, valid for general flow fields provided α1 6= 0 at the origin. This
relatively slow decay at the centre was noted by Weiss (1966); see his figure 6. If
α1 = 0 the time scale will become longer: if α(r) ∼ α0 + αmr

2m at leading order with
αm 6= 0, then balancing the terms ∂t, αmr

2m and ε∆ indicates that the time scale for
decay at the origin is t = O(ε−2m/(2m+2)), and the spatial scale is r = O(ε1/(2m+2)). In
the extreme case of solid-body rotation near the origin the time scale of diffusion
becomes of order Rm (Parker 1966).

5. Vorticity: an exact solution
We now consider the evolution of weak vorticity in a steady flow with circular

streamlines, having stream function Ψ (r) and vorticity Ω(r) = −∇2Ψ . We shall not be
concerned about how this flow is maintained; it could be driven by body forces, or by
distant boundaries. Alternatively it could be decaying viscously on a long time scale,
say O(R), much longer than the processes described below. Weak vorticity ω(r, θ, t),
with corresponding stream function ψ(r, θ, t), is introduced into the flow and satisfies
the linearized Navier–Stokes equation

∂tω + J(ω,Ψ ) + J(Ω,ψ) = ε∇2ω, ω = −∇2ψ (ε ≡ R−1), (5.1)

where R is the Reynolds number. Replacing ω(r, θ, t) and ψ(r, θ, t) by Fourier modes
ω(r, t)einθ and ψ(r, t)einθ (using the same symbols to avoid introducing further notation)
leads to the equations

∂tω + inα(r)ω + inβ(r)ψ = ε∆ω, ω = −∆ψ, (5.2)

where the angular velocity α(r) and the vorticity gradient rβ(r) are given by

α(r) = −r−1∂rΨ, β(r) = r−1∂rΩ = r−1∂r(r
−1∂r(r

2α)) (5.3)

in terms of the basic flow. We again exclude the case n = 0. The case n = 2 represents
the leading vorticity fluctuations generated by straining a coherent vortex, for example
in two-dimensional turbulence. The case n = 1 corresponds to the homogenization
of a uniform vorticity gradient, a Poiseuille flow, by the vortex, but also includes the
steady solutions corresponding to infinitesimal translations of the vortex, which do
not undergo spiral wind-up (see Lingevitch & Bernoff 1995; Llewellyn Smith 1995).

We assume that spiral wind-up of vorticity occurs (see for example the ‘mixing
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hypothesis’ of Bernoff & Lingevitch 1994), and seek an exact solution to the equation
(5.2) that describes this process. Motivated by § 2, we take

α(r) = α0 + α1r
2, β(r) = 8α1 (5.4)

(using (5.3)). We then have to solve

∂tω + in(α0 + α1r
2)ω + 8inα1ψ = ε∆ω, ω = −∆ψ. (5.5)

Noting that ω, ψ = O(rn) at the origin, it is convenient to transform to X and Y
given by

ω = rne−inα0tX(r, t), ψ = rne−inα0tY (r, t) (5.6)

so that the governing equations become

∂tX + inα1r
2X + 8inα1Y = ε∆1X, −X = ∆1Y , (5.7a, b)

with ∆1 ≡ ∂2
r + (2n+ 1)r−1∂r .

If there is no viscosity, ε = 0, then an exact solution may be written in terms of
Kummer functions (see Abramowitz & Stegun 1965, herein referred to as AS),

X = ctn/2−κM(a+ 1, b, s), Y = dtn/2−κ−1M(a, b, s), s = −inα1r
2t, (5.8)

where

κ =
1

2

√
n2 + 8, a = κ+ n/2, b = n+ 1,

d

c
=
κ− n/2

8inα1

(5.9)

(BG). This solution represents spiral wind-up at some distance from the origin,
matched onto a solution that is regular at the origin itself. Further discussion is given
when viscosity is introduced below.

Now we seek an exact solution with viscosity using the ansatz

X = g(t)M(a+ 1, b, s), Y = h(t)M(a, b, s), s = −ir2f(t), (5.10)

with a and b defined above in (5.9). This ansatz is substituted into (5.7) and gives
differential equations for f(t), g(t) and h(t). Relegating the details to an Appendix,
the resulting exact solution is given by

ω = g(t)rne−inα0tM(a+ 1, b, s), ψ = h(t)rne−inα0tM(a, b, s), s = −ir2f(t), (5.11)

with

f(t) = nα1µ
−1 tanh τ, (5.12a)

g(t) = c(µ−1 sinh τ)n/2−κ(cosh τ)−n/2−κ−1, (5.12b)

h(t) = d(µ−1 sinh τ)n/2−κ−1(cosh τ)−n/2−κ, (5.12c)

τ = µt, µ = (1 + i)
√

2εnα1 (5.12d)

and constants defined as in (5.9).
Equations (5.11), (5.12) are an exact solution to evolution under the viscous lin-

earized Navier–Stokes equations (5.2), with the basic angular velocity profile given in
(5.4). The function f(t) and variable τ are the same as in the case of a passive scalar.
Also note that µ−1 sinh τ → t in the limit ε → 0 and so the viscous solution (5.11),
(5.12) reduces precisely to the inviscid solution (5.6), (5.8) in this limit.
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Figure 4. Schematic diagram of the evolution of weak vorticity. Different regimes are shown on a
space–time diagram with axes (r, t).

Figure 4 gives a schematic interpretation of behaviour of the solution in a space–
time diagram, and figure 5 shows the exact solution at various times for n = 1 and
n = 2. These two figures parallel the earlier figures 1 and 2 for the passive scalar.
Note that for the case n = 1, the constants κ = 3/2, a = 2 and b = 2; the Kummer
functions in (5.11) take the simple form

M(a, b, s) = es, M(a+ 1, b, s) = (1 + s/2)es

(AS 13.6.12, 13.4.10).
To understand the exact solutions plotted in figure 5, we first consider moderate

times. In this case spiral wind-up occurs (figure 5a, d) and vorticity in outer regions is
destroyed by the shear–diffuse mechanism (figure 5b, e). This is correct for 1 � t �
ε−1/2, that is τ� 1, and we may use the approximations

f = nα1t− 4in2α2
1εt

3/3 + O(ε2t5), g ∼ ctn/2−κ, h ∼ dtn/2−κ−1. (5.13)

We substitute these into the exact solution. For small radii r = O(t−1/2) the Kummer
functions cannot be approximated, as s is of order unity. In this case we are in the
region marked ‘Kummer solution’ in figure 4; here the Kummer functions give an
inner solution, regular at the origin, that matches onto the region labelled ‘spiral
wind-up’ further away. In this region of spiral wind-up r � t−1/2, implying s � 1,
and we may approximate the Kummer functions using the formula

M(a, b, s) ∼ essa−bΓ (b)/Γ (a) (5.14)

(AS 13.5.1). In this case the solution reduces to

ω ∼ Cr2κe−in(α0+α1r
2)te−4n2α2

1r
2εt3/3, ψ ∼ ω(4n2α2

1r
2t2)−1, (5.15)

with C = c(−inα1)
κ−n/2n!/Γ (κ+ n/2 + 1). This gives spiral wind-up of vorticity with

a Cr2κ envelope, together with a wave of shear–diffuse destruction approaching the
origin at a distance r = ε−1/2t−3/2 (see figure 4).

At times t = O(ε−1/2) the wave of destruction reaches radii of order r = O(ε1/4)



406 K. Bajer, A. P. Bassom and A. D. Gilbert

3

2

1

0

–1

–2

–3

3

2

1

0

–1

–2

–3

3

2

1

0

–1

–2

–3

3

2

1

0

–1

–2

–3

3

2

1

0

–1

–2

–3

3

2

1

0

–1

–2

–3
–3 –2 –1 0 1 2 3 –3 –2 –1 0 1 2 3

–3 –2 –1 0 1 2 3–3 –2 –1 0 1 2 3

–3 –2 –1 0 1 2 3 –3 –2 –1 0 1 2 3

(d )(a)

(b)

(c)

(e)

( f )

Figure 5. Evolution of isolines of weak vorticity ω(r, θ, t) as given by the exact solution (5.11),
(5.12). In (a–c) n = 1, while in (d–f) n = 2. Parameter values and times are as in figure 2.

from the origin and the above approximation breaks down; the boundary r = O(t−1/2)
between the inner Kummer function solution and the region of spiral wind-up also
reaches these radii at these times, and all elements of the solution are involved in the
shaded region of figure 4.
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At later times t� ε−1/2, that is τ� 1, the vorticity field settles down to an exponen-
tially decaying eigenfunction of constant spatial structure, as shown in figure 5(c, f).
To obtain its form analytically we again approximate, with

f ∼ nα1/µ, g ∼ cµκ−n/222κ+1e−(2κ+1)µt, h ∼ dµκ+1−n/222κ+1e−(2κ+1)µt, (5.16)

to give

ω ∼ cµκ−n/2rn22κ+1eptM(a+ 1, b, s), ψ ∼ dµκ+1−n/2rn22κ+1eptM(a, b, s), (5.17a)

s = −inα1r
2/µ, p = −inα0 − (2κ+ 1)µ. (5.17b)

This represents an eigenfunction with decay rate

Re p = −(2κ+ 1)
√

2εnα1 ≡ −(
√
n2 + 8 + 1)

√
2εnα1. (5.18)

Note that the decay here is faster than in the scalar case (cf. (2.17)). The eigenfunction
forms may be seen in figure 5(c, f); although written in terms of Kummer functions
these have similarities with the Gaussian forms for a passive scalar in figure 2(c, f).

The exact solution for vorticity may again be used as an inner solution for wind-up
in more general angular velocity profiles α(r), and in this case figure 4 continues to
show the situation schematically. An approximate long-time solution capturing spiral
wind-up and destruction by the shear–diffuse mechanism for general α(r) is given by

ω ∼ g(r)e−inα(r)te−n
2α′(r)2εt3/3, ψ ∼ ω(n2α′(r)2t2)−1, (5.19)

valid for r � t−1/2 (Lundgren 1982; Bernoff & Lingevitch 1994; BG). Here the
vorticity is acting as a passive scalar at leading order, and the stream function is
subdominant. The function g has the scaling behaviour g(r) ∼ Cr2κ for small r.
Analogously to the discussion in § 3, if this full solution is approximated for small r, it
gives that in (5.15), and so the exact solution (5.11) acts as an inner solution for (5.19);
this includes satisfying regularity at the origin, and capturing the behaviour of the
shear–diffuse wave as it comes inwards, in (5.19) and (5.15), to destroy the vorticity
there on the O(R1/2) time scale and leave only an exponentially decaying remnant,
(5.17). This time scale has also been found by Prochazka & Pullin (1995) in an
eigenvalue study of perturbations to a Gaussian vortex. However their eigenfunctions
are localized near the edge of the vortex, whereas we focus on the centre of the vortex.

For vorticity the role of the exact solution as an inner solution is more fundamental
than for the passive scalar. In the latter case, the exact solution corresponds to a
definite initial condition (2.6). However for vorticity the exact solution (5.11), (5.12)
diverges if we reduce t to zero. This is a result of the active coupling of vorticity
to the stream function and the unboundedness of α(r) for increasing r in the exact
solution. Conversely as time is increased this same coupling leads to a rather rapid
suppression of vorticity near the origin with an emergent power law g(r) ∼ Cr2κ that
is fairly flat, even before diffusion takes hold. Let us consider a realistic situation, say
a finite smooth vortex, for which the quadratic behaviour of α(r) only applies close
to the origin, and introduce weak vorticity. There follows a transient for t = O(1),
during which none of the above theory applies, before spiral wind-up occurs for
t� 1. The field is then described by Lundgren’s (1982) solution (5.19), and the exact
solution discussed in this section plays its role as an inner solution, describing inviscid
suppression of vorticity close to the origin, and the subsequent damping effects of
viscosity.
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6. Discussion

We have analysed the cases of a passive scalar, magnetic field and weak vorticity
by means of exact solutions that may be matched onto very general solutions for the
wind-up and accelerated diffusion of these fields in circular streamlines. We find that
while the time scales for accelerated diffusion by the shear–diffuse mechanism are
O(P 1/3), O(Rm

1/3) and O(R1/3) respectively, these estimates become invalid near the
centre of the streamlines. Fields there are only destroyed on the longer time scales
O(P 1/2), O(Rm

1/2) and O(R1/2) respectively, to leave behind a vanishing remnant, an
eigenfunction decaying exponentially.

The origin is significant as it corresponds to a point where α′(r) = 0 and so a point
where spiral wind-up occurs non-uniformly. A similar situation arises if this occurs
at some non-zero radius, or if the flow field is such that α(r) → 0 as r → ∞. For
a localized vortex, this latter problem is equivalent to wind-up by a point vortex at
the origin, and has been considered for vorticity by Bernoff & Lingevitch (1994) and
magnetic fields by Bajer (1998); note that a passive scalar and weak vorticity behave
analogously in the far field (as β ' 0 there).

A key assumption in our study is that the underlying flow is infinitely differentiable
at the origin, which forces the behaviour α(r) ' α0 + α1r

2 for small r. However,
non-smooth profiles have been set up in recent plasma physics experiments which
correspond to vortices with α(r) ' α0 +α1r (Driscoll & Fine 1990; Cass 1998; Schecter
et al. 1999, 2000). This profile is singular as ∇2Ω ' 3α1/r and so in the presence of
viscosity the profile would be smoothed out, at least on some fine, inner length scale.
Extending our work to this case remains a topic for further investigation; here we only
note that the length and time scales for decay at the origin are given by r = O(ε1/3) and
t = O(ε−1/3). We have also assumed that the underlying flow with circular streamlines
is steady. Essentially it can only evolve on a time scale longer than O(P 1/2), O(Rm

1/2)
or O(R1/2), respectively. If the vortex is decaying freely through viscosity then it will
evolve on an O(R) time scale, and so for the analysis we have presented to be valid
for a passive scalar we require P � R2, and Rm � R2 for magnetic field. Otherwise
the evolution of the underlying flow field would become involved in the problem.

This study could be extended in a number of ways. We have considered only
circular streamlines and vortices where the flow lies in the plane. However vortices
subject to two-dimensional strain (Jiménez et al. 1996; Bassom & Gilbert 1999) or
three-dimensional strain, whether axisymmetric (Lundgren 1982) or not (Moffatt,
Kida & Ohkitani 1994), are important in modelling turbulent flows in two and
three dimensions. The basic shear–diffuse mechanism will undoubtedly be present
in all these situations. Similar results would be expected for the case of a vortex
in two-dimensional strain, replacing circular streamlines by ones of more general
shape, locally elliptical at the origin. For the model of Lundgren (1982), the shear–
diffuse mechanism is accelerated by axisymmetric stretching and occurs at times of
order logR. However, the situation is less clear for a vortex in three-dimensional
non-axisymmetric strain (Moffatt et al. 1994) and this deserves further investigation.
Finally note that from a mathematical point of view this class of problems is
interesting because the advection–diffusion operator is non-normal with respect to
an L2 norm (see e.g. Trefethen 1997, example 5), and becomes increasingly so in the
limit of weak diffusion; this allows long non-trivial transients, for example growing
magnetic fields, before inevitable diffusive decay (see also Childress & Gilbert 1995,
§ 9.3.2, § 9.4).
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Appendix
In this Appendix we indicate how the solutions (5.12) are obtained. Note that

equations (5.9) fix the constants κ, a, b and d/c and imply the useful identity
a(κ − n/2) = 2: we use these definitions repeatedly below without further comment.
It may be checked that

∆1 M(a, n+ 1, s) = −4iafM(a+ 1, n+ 1, s) (A 1)

for any a (using AS 13.1.1, 13.4.10), and so (5.7b) requires

g = 4iafh. (A 2)

To satisfy (5.7a) we substitute (5.10) and use (A 1) to simplify the right-hand side, to
yield

g′M(a+ 1, b, s)− ir2f′gM ′(a+ 1, b, s) + inα1r
2gM(a+ 1, b, s)

+8inα1hM(a, b, s) = −4iε(a+ 1)fgM(a+ 2, b, s). (A 3)

Replacing r2 by s using (5.10) and gathering some terms gives

(g′ − nα1sg/f)M(a+ 1, b, s) + (sgf′/f)M ′(a+ 1, b, s)

+8inα1hM(a, b, s) = −4iε(a+ 1)fgM(a+ 2, b, s). (A 4)

Now we may use Kummer function identities to write this equation in terms only of
M(a+ 1, b, s) and M ′(a+ 1, b, s). Specifically, we have from AS 13.4.11, AS 13.4.10,

(n/2− κ)M(a, b, s) = (n/2− κ− s)M(a+ 1, b, s) + sM ′(a+ 1, b, s), (A 5)

(n/2 + κ+ 1)M(a+ 2, b, s) = (n/2 + κ+ 1)M(a+ 1, b, s) + sM ′(a+ 1, b, s). (A 6)

We substitute these into (A 4) to obtain a complicated expression. Nonetheless in
terms of functions of s it only involves the three independent terms M(a + 1, b, s),
sM(a+1, b, s) and sM ′(a+1, b, s). If we set the sum of terms multiplying each of these
functions to zero we obtain three relations between functions of t, respectively,

g′ + 8inα1h = −4iε(κ+ n/2 + 1)fg, (A 7a)

−nα1g

f
+

8inα1h

κ− n/2 = 0,
gf′

f
− 8inα1h

κ− n/2 = −4iεfg. (A 7b, c)

The second of these is identically satisfied using (A 2). For the remaining two equations
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we use (A 2) to eliminate h and leave

g′/g = −nα1(κ− n/2)f−1 − 4iε(κ+ n/2 + 1)f, f′ = nα1 − 4iεf2. (A 8a, b)

Equation (A 8b) is the same as in the passive scalar case (see (2.9a)); given its
solution (2.10a), (2.11), equation (A 8a) may be solved for g and finally h obtained
from (A 2).
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