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Accelerated discovery of stable lead-free hybrid
organic-inorganic perovskites via machine learning
Shuaihua Lu1, Qionghua Zhou1, Yixin Ouyang1, Yilv Guo1, Qiang Li1 & Jinlan Wang1

Rapidly discovering functional materials remains an open challenge because the traditional

trial-and-error methods are usually inefficient especially when thousands of candidates are

treated. Here, we develop a target-driven method to predict undiscovered hybrid organic-

inorganic perovskites (HOIPs) for photovoltaics. This strategy, combining machine learning

techniques and density functional theory calculations, aims to quickly screen the HOIPs

based on bandgap and solve the problems of toxicity and poor environmental stability in

HOIPs. Successfully, six orthorhombic lead-free HOIPs with proper bandgap for solar cells

and room temperature thermal stability are screened out from 5158 unexplored HOIPs and

two of them stand out with direct bandgaps in the visible region and excellent environmental

stability. Essentially, a close structure-property relationship mapping the HOIPs bandgap is

established. Our method can achieve high accuracy in a flash and be applicable to a broad

class of functional material design.
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T
he development of functional materials is the cornerstone
of innovations in industry, and discovering materials with
targeted property has always been a hotspot in science. The

emergence of advanced techniques, such as high-throughput
calculations based on density functional theory (DFT) has
accelerated the search process at certain level1–4. However, the
increasing scale of practical problems and complexity of materials
require more sophisticated and effective methods for enormous
database. Fortunately, the rapid development of material genome
project5 and artificial intelligence technology has brought exciting
hope to this dilemma6–8. Most recently, machine learning (ML)
technology has been made significant progress in the rational
material design, such as efficient molecular organic light-emitting
diodes9, low thermal hysteresis shape memory alloys10, piezo-
electrics with large electrostrains11 and so on. Bypassing complex
quantum mechanics, ML technology can not only greatly accel-
erate materials design with high accuracy, but also learn trends
within materials’ basic composition from big material data.

While ML technology sheds light on in the field of material
design on inorganic perovskites12–15, the discovery of hybrid
organic–inorganic perovskites (HOIPs) has never been reported
yet in this way. HOIPs, as one of the most promising photovoltaic
materials, have attracted tremendous interest recently. The most
distinguished virtues of HOIPs includethe high power conversion
efficiency (PCE), low-cost experimental synthesis and tunable
bandgaps16–20. Since the first successful application of
CH3NH3PbX3 (X= Cl, Br) with a PCE of 3.8% in 2009 by Kojima
et al.21, great efforts have continually been devoted to improve
their PCE. Currently, the PCE of solar cells based on HOIPs has
been boosted up to 22.1%22. Despite the great progress of HOIP-
based solar cells, two key challenges limit the emerging materials
for large scale commercial applications. One of the serious issues
is toxicity, due to the element of lead (Pb), which contributes to
most of the HOIP-based solar cells with high PCEs23,24. The
other well-known factor is that their environmental stability is
particularly poor, even with strict protection procedures. There-
fore, it is of paramount importance to find stable Pb-free HOIPs
with high PCE and sustainable air stability25–28. Unfortunately,
due to the complexity and diversity of HOIPs structures (they are
composed of organic molecules and inorganic metal frames),
DFT-based high throughput calculations are too expensive and
time consuming, not to mention experiments.

Here, we develop a target-driven method to discover stable Pb-
free HOIPs based on ML technique and DFT calculations. We
first train our ML model from 212 reported HOIPs’ bandgap
values, and predict the bandgaps of 5158 unexplored possible
HOIPs. A close structure-property relationship mapping HOIPs’
bandgap is concurrently excavated out from ML data, in which
the ranges of tolerance factor, octahedral factor, metal electro-
negativity, and polarizability of organic molecules are defined for
ideal HOIP-based solar cells. After further screening, six stable
Pb-free HOIPs are selected as promising solar cells materials with
proper bandgap.

Results
Design framework. Our multi-stage material design approach is
schematically illustrated in Fig. 1, and the prediction engine
consists of three integral components: input HOIPs data, ML
algorithm, and DFT calculations. As a common ML procedure,
an input dataset of HOIPs, each of which is described by features,
is built for training and testing ML model. With that, feature
engineering is needed in the first place to remove redundant
features and establish a structure-property relationship. Once the
input feature set is fixed, the best hyper-parameters will be
selected using grid searching technique and five-cross-validation

procedures (the selection details are given in Methods)29. After
that, we apply the trained ML model to the prediction dataset.
Finally, DFT calculations are performed to study the thermal and
environmental stabilities and electronic properties of HOIPs
candidates screened out from ML simulations.

Dataset. The input data for this study, containing 346 HOIPs, is
obtained from previous high throughput first-principles calcula-
tions30,31. For data consistency and accuracy of ML predictions,
we only select orthorhombic-like crystal structures with bandgap
calculated using the Perdew-Burke-Ernzerh (PBE) functional.
Therefore, 212 selected HOIP compounds are included in this
engine, which completely belong to the family of perovskites of
chemical formula ABX3, as explicitly shown in Fig. 2a. In this
structure, the halogen atoms X (X= F, Cl, Br, I) occupy the
vertices of regular corner-sharing BX6 octahedron, while 32 dif-
ferent divalent metal cations B2+ sit at the center of the octahe-
dron, and 11 kinds of monovalent cations A+ fill in the cavity
formed by the adjacent octahedrons. In the flow chart, we con-
struct a dataset visualized in the form of plots between tolerance
factor and bandgap EPBE

g of HOIPs, in which they are divided into
a training dataset (80%) and a test dataset (20%) after one
thousand test (see Fig. 2b and Supplementary Fig. 1). As we can
see from the data distribution, the input HOIPs dataset is made
up of three parts: metals (zero bandgap), semiconductors
(bandgap between 0 and 3.5 eV) and insulators (bandgap larger
than 3.5 eV).

In fact, there are plenty of choices for the sites A and B in a
HOIP. For A-site, we collect other 21 kinds of organic molecular
cations A+, all of which have been considered in the
literature20,32,33 (see Supplementary Fig. 2). Meanwhile, we
substitute the B-site with 43 divalent cations across the Periodic
Table. Consequently, 5504 different possible HOIP compounds
(32 A-site cations, 43 B-site cations and 4 X-site anions) are
obtained. Considering that 346 HOIPs have been studied, we
explore the rest 5158 potential candidates in this work.

Feature engineering. For any ML method that targets toward a
prespecified material property, it usually depends on a certain
amount of features (descriptors). The features not only uniquely
define each material in input dataset, but also relate to its desired
physical and chemical properties. Although there may be many
factors that affect the targeted property of materials, the number
of features must be reasonable. The best strategy is to choose
features that perfectly represent the materials’ property and the
number of features should be far less than the number of mate-
rials in input dataset to avoid the curse of dimensionality34.

In this work, 30 initial features (the total features are in
Supplementary Table. 1 and their sources are given in
Supplementary Note. 1) such as ionic radii, tolerance factor and
electronegativity are chosen to describe HOIPs in the chemical
space collectively. In order to understand the relationship
between features and targeted property, we evaluate the initial
features via the gradient boosting regression (GBR) algorithm35.
Furthermore, we incorporate a “last-place elimination” into the
GBR algorithm to efficiently exclude the features that have less
impact on the bandgap (the computational details are given in
Methods). A detailed description of the feature selection
procedure is given in and Supplementary Fig. 3 and Supplemen-
tary Note. 2. Finally, 14 most important features are sorted out
and constitute as an optimal feature set. The new feature set
contains structural features (tolerance factor Tf, octahedral factor
Of) as well as the elemental properties of A-, B- and X-site ions
(total number of ionic charge ICB, p orbital electron Xp-electron,
ionization energy IEB, electronegativity χB, electron affinity EAB,
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ionic polarizability (PB, PA), sum of the s and p orbital radii rs+p
B, iron radii (rB, rA), the highest occupied molecular orbital and
the lowest unoccupied molecular orbital of A site cations
(HOMOA, LUMOA).

As shown in Fig. 3a, the tolerance factor Tf plays the most
important role to HOIPs’ bandgap, followed by the total number
of ionic charge ICB and the octahedral factor Of. Interestingly, the
properties of B-site elements such as ionization energy IEB,
electronegativity χB and electron affinity EAB show greater
influence on the bandgap of HOIPs than those of A- and X-site
ions. Pearson correlation coefficient matrices are calculated to
identify the positive and negative correlations between pairs of
features (Fig. 3b). The low linear correlations for most of features
indicate that we have successfully removed redundant and
irrelevant features, which will significantly improve the perfor-
mance of the ML model.

Model inference. In ML method, an appropriate ML algorithm is
important. Currently, several supervised ML regression algo-
rithms have been successfully used in material science, such as
GBR32, artificial neural network36,37, and kernel ridge regression

(KRR)38. These regression algorithms provide both material
property prediction with DFT accuracy and atomic level chemical
insights. In this work, we employ six different ML regression
algorithms, i.e., GBR, KRR, support vector regression, gaussian
process regression, decision trees regression, and multilayer per-
ceptron regression. Each training model is based on a subset of
the whole data, known as training data, and the model will be
used to predict other new data after training. To evaluate the
performance of each ML model, three indexes are chosen to
estimate the prediction errors: coefficient of determination (R2),
Pearson coefficient (r), and mean square error (MSE) (the com-
putational details are given in Supplementary Methods). By
comparing the three indexes, GBR algorithm reproduces best
agreement to the true bandgap values (see details in Supple-
mentary Fig. 4 and 5). Then, we perform a statistical test on R2

values from 10,000 executions of each model at the 95% con-
fidence level (see details in Supplementary Table. 2 and 3). Evi-
dent differences are observed between GBR and other five
algorithms. Furthermore, we put standard deviations on the R2

and MSE values. It is found that GBR algorithm presents more
reliable results than other five algorithms (see details in Supple-
mentary Fig. 6 and Supplementary Note. 3). Additionally, the
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Fig. 1 Lead-free HOIPs design framework. The material design framework combined with ML and DFT to efficiently search for stable Pb-free HOIPs with

proper bandgap. The blue boxes represent the material screening process based on the ML algorithm generated from historical HOIP data. Then electronic

properties and stability evaluation of these selected candidates are further calculated using DFT, which are shown in the green boxes

B-site divalent metals

X-site halide elements
A-site organic cations

C3H5N2
+(CH3)4N

+

CH3CH2NH3
+ (CH3)2CHNH3

+

(CH3)2NH2
+

CH3C(NH2)2
+

HC(NH2)2
+

NH2NH3
+CH3NH3

+

(CH3)3NH
+C(NH2)3

+

0.8

0

1

2

3

4

5

6

B
a
n
d
g
a
p
 E

g
P

B
E
 (

e
V

)

0.9 1.0 1.1 1.2 1.3 1.4 1.5

Tolerance factor

a b

Metal

Semiconductor

Insulator

Train set

Test set

Mg Si P Ca Sc Ti NiV

Mo

BaSbSnInCdAgPdRh

Hf Ta

F CI Br I

W Re Au Ti Pb Bi

NbZrYSrCu Ge As

Fig. 2 HOIPs input dataset for training and testing. a 212 high throughput HOIP structures. The combination of 11 small organic molecular species (A-site)

and 32 divalent metals (B-site) constitutes the input samples of our ML model. X is a typical halide. b Data visualization in training (blue dots) and test (red

dots) of tolerance factor and bandgap EPBEg of HOIPs. The entire dataset consists of metals, semiconductors, and insulators

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05761-w ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:3405 | DOI: 10.1038/s41467-018-05761-w | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


GBR algorithm evolves from the combination of boosting
methods and regression trees, which makes it suitable for effec-
tively mining features and feature engineering39. Therefore, GBR
is chosen to establish a nonlinear mapping between the input
features and bandgaps and subsequently predicts bandgaps of
unexplored HOIPs.

The test results of the GBR model are presented in Fig. 4a. The
subplot clearly shows that the training/test set deviance declines
gradually with the increase of the boosting iteration numbers.
Eventually, R2, r, and MSE of test data is 97.0%, 98.5%, and 0.086,
respectively, witnessing the outstanding performance of our GBR
model. Then, the trained GBR model is applied to the 5158
HOIPs to predict their bandgaps, and the prediction results (dark
gray dots) are illustrated in Fig. 4b, together with train dataset
(blue dots) and test dataset (red dots). We notice that the
distribution of post predicted bandgaps is very close to the
original input dataset. This proves the reasonability and reliability
of our ML model, providing guarantee for further analysis.

Furthermore, data analysis and visualization are performed to
unravel hidden trends and periodicities within the HOIPs data.
We divide the predicted dataset into four parts according to
the X-site elements, i.e., F, Cl, Br, and I in Fig. 4c-f. As seen from
the figure, the bandgap of HOIPs tends to increase as the X-site
halogen radius reduces and the bandgaps of F- and Cl- HOIPs are
too large for photovoltaics applications. Therefore, HOIPs
containing Br and I (ABBr3 and ABI3) with promising prospect
for photovoltaic applications are mainly focused in the following
discussion. Considering the structural stability for HOIPs, the
given features should be restricted in certain ranges. Specifically,
tolerance factor Tf, which has been used extensively to predict the
stability of the perovskite structure, should be between 0.8 and 1.2
(Fig. 4c). In terms of the octahedral factor Of, the appropriate
range for solar cells is between 0.2 and 0.7 (Fig. 4d). However, the
octahedral factor should not be too small for structural stability,
so the values are better ranging from 0.4 to 0.733,40,41. Moreover,
in order to design HOIPs with proper bandgap, we should select
weak polarized organic molecules and the polarization PA varies
between 1 × 10−40 and 5 × 10−40 Cm2V−1 (see Fig. 4e). Finally,
the electronegativity of B-site also plays important roles on the
bandgap and it needs to be within the range from 1.4 to 2.2
(Fig. 4f). We also analyze the mapping between other eight
features with the bandgaps of HOIPs and less obvious correla-
tions are observed (see Supplementary Fig. 7).

Model validation. We have predicted bandgaps Eg for all the
possible HOIP structures in the search space via ML technology.

To discover stable HOIPs, further screening of the predicted
dataset is necessary. 1669 HOIPs are first screened out from the
total 5158 HOIPs with ML predicted bandgaps according to the
structural stability (Tf between 0.8 and 1.2, Of between 0.4 and
0.7). These 1669 HOIPs are likely stable and have different
potential applications in light of their bandgap values. For
examples, HOIPs with small bandgaps (less than 0.9 eV) can be
used in infrared sensors42,43 and large gap HOIPs (larger than 3
eV) may serve as good insulating materials44,45. For solar cells,
HOIPs with bandgap between 0.9 and 1.6 eV are ideal candi-
dates46,47. Therefore, 218 HOIPs with proper bandgap are
selected (see full list in Supplementary Table. 4). Since the Br-
based HOIPs are more accessible in experiment19, 22 Br-based
HOIPs (i.e., ABBr3) are further selected. Additionally, toxicity of
HOIPs will block widespread commercial application and the
compounds containing toxic metal elements are excluded as well.
To the end, six orthorhombic HOIPs stand out and further
thermal and environmental stability evaluation and electronic
property exploration are performed by first-principle calculations.
The step-by-step screening process are shown in Supplementary
Fig. 8 and Supplementary Note 4.

A comparison between ML-predicted and DFT-calculated
results of six selected HOIPs is presented in Fig. 5a, with relevant
statistics summarized in Table 2. Excellent agreement (ΔEg no
larger than 0.1 eV) is found between the ML predicted and DFT
calculated bandgap values, verifying the great superiority of the
current ML technology. It takes only a few seconds for all the
5158 HOIPs’ bandgaps to be predicted by the ML method.
However, if the DFT calculation is adopted, it will take a few days
for each HOIP structure. Therefore, we conclude that our current
ML scheme provides a possibility of achieving DFT accuracy in a
flash and has great priority in complex systems like HOIPs.

Electronic structures of six selected HOIPs. DFT optimizations
show that all these six HOIPs hold typical perovskite structures,
and corresponding lattice constants are listed in Table 1. The
nonbonding electrons of B-site ions lower the coordination
symmetry around the cations and lead to the slightly distorted
BX6 octahedral. Sorted by B site metal, the six candidates can be
divided into two groups: four AInBr3 and two ASnBr3. Further
electronic band structures show that the four indium HOIPs have
indirect bandgap between Γ and M/R point in the Brillouin zone
(Supplementary Fig. 9 and 10), while the other two tin HOIPs
have direct bandgap at Γ point (Fig. 5c). Additionally, the spin-
orbital-coupling (SOC) effect is considered for the six selected
HOIPs (see details in Supplementary Fig. 11 and Supplementary
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Note 5) and the influence to the band structure is not
pronounced.

As typical electronic structures of ASnBr3 and AInBr3, the
valence band maximums are mainly contributed by the p orbital
of the halogen atoms and partly contributed by the s orbital of the
metal atom, while the conduction band minimums are dominated
by p orbitals of the metal atom (Fig. 5d and Supplementary Fig. 9
and 10). In fact, as a result of the indirect bandgap of AInBr3, the
absorption coefficient will be relatively low. Therefore, a relatively
thick absorbent layer is required, which definitely increases the
material costs, especially with the high cost of rare metal indium.
Hence, two ASnBr3 HOIPs are better choices as light-harvesting
materials in photovoltaic devices with suitable direct bandgaps
and relatively low material costs.

Thermal and environmental stabilities of six selected HOIPs.
The thermal and environmental stabilities are important to the
practical application of HOIPs, and most reported structures with
high PCEs suffer from degradation in ambient. We first perform

ab initio molecular dynamics (AIMD) simulations to evaluate the
thermal stability of the six selected HOIPs. As shown in Fig. 5e
and Supplementary Fig. 9 and 10, the time-dependent evolutions
of total energies are oscillating within a very narrow range,
indicating that these HOIPs can maintain their structural integ-
rity at room temperature. In the next step of evaluating the
environmental stabilities, the adsorption energies (ΔEads) of
molecular water and oxygen on (001) surfaces of these six HOIPs
are calculated and listed in Table 2 (the computational details can
be found in Supplementary Fig. 12). Comparing with MAPbI3
whose adsorption energies of water and oxygen are −0.48 and
−0.15 eV, C2H5OInBr3, C2H5OSnBr3, and C2H6NSnBr3 show
better environmental stability against both oxygen and water.
Although the degradation mechanism of HIPO is still under
discussion, it is widely accepted that water acts as the reactive
source for the collapse of the framework. We attribute the sig-
nificant reduction in adsorption energy of the three systems for
water to the weaker polarity of C2H5O+ and C2H6N+ comparing
with MA+ radical, which present strong interaction with water
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c band structures, d projected density of states (PDOS), e total energy during 5 ps AIMD simulations for C2H5OSnBr3 and C2H6NSnBr3 at 300 K. The

subplots in d are the PDOS near the Fermi level

Table 2 Six selected HOIPs with relevant statistics

HOIPs Tf Of EML
g(eV) Eg

PBE

(eV)
ΔEH2Oads
(eV)

ΔEO2 ads
(eV)

C2H5OInBr3 1.04 0.50 0.90 0.91 −0.301 −0.071

C2H6NInBr3 1.04 0.50 0.97 1.07 −0.630 −0.152

NH3NH2InBr3 0.99 0.50 1.06 1.09 −0.497 −0.110

C2H5OSnBr3 0.99 0.57 1.10 1.05 −0.163 −0.071

NH4InBr3 0.82 0.50 1.18 1.13 −0.566 −0.090

C2H6NSnBr3 0.99 0.57 1.22 1.14 −0.134 −0.093

Tf and Of is tolerance factor and octahedral factor respectively. Eg
MLand Eg

PBE are ML-predicted

and DFT-calculated results respectively. ΔEg is the absolute value of the difference between Eg
ML

and Eg
PBE. ΔEH2

O ads and ΔEO2
ads is the adsorption energy of H2O and O2, respectively

Table 1 Lattice constants of six selected HOIPs

HOIPs a (Å) b (Å) c (Å) α (°) β (°) γ (°)

C2H5OInBr3 8.44 11.46 8.48 91.63 91.76 91.58

C2H6NInBr3 8.50 11.7 8.12 92.17 90.35 88.52

NH3NH2InBr3 8.33 11.68 7.67 88.71 89.73 88.69

C2H5OSnBr3 8.52 11.60 8.52 91.32 89.74 89.88

NH4InBr3 7.92 11.53 7.88 90.42 90.00 90.43

C2H6NSnBr3 8.63 11.95 8.26 91.78 89.42 88.58

a, b, and c are lattice length. α, β, and γ are lattice angle
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through hydrogen bond. Therefore, the weak hygroscopicity of
C2H5OInBr3, C2H5OSnBr3, and C2H6NSnBr3 suggests that the
H2O molecules are reductant to aggregate on the surface, and
increase the energy barrier of the H2O penetration process in the
meantime, preventing the hydration degradation effectively.

Discussion
Combining with ML technology and DFT calculations, we have
developed an extremely fast target-driven method to discover
HOIPs. Three stable Pb-free HOIPs with proper bandgaps and
excellent thermal and environmental stabilities have been suc-
cessfully selected out from 5158 HIOPs for solar cells. More
importantly, a close structure-property map of HOIPs has been
well established from the ML predicted big dataset and four
stringent conditions in terms of tolerance factor, octahedral fac-
tor, electronegativity of metal ions, and polarizability of organic
molecules are defined to be ideal HOIP-based solar cells.

Differently from those high-throughput screening methods
which the whole chemical space should be searched at DFT level,
the current ML and DFT combined scheme only needs to com-
pute the most promising HOIPs at DFT level, which greatly saves
the computational resources. Note that the screenings described
above are very strict, and in fact, the screening conditions can be
adjusted according to targeted goal to find suitable candidates for
experimental synthesis. The target-driven method we developed
here overcomes a major obstruction in traditional trial-error
method. Meanwhile, as this ML technology employs a “last-place
elimination” feature selection procedure based on GBR algorithm,
it can not only achieve DFT accuracy in a flash (even faster than
the popular neural network algorithm), but also works with a
small dataset. This means we can achieve accurate prediction with
a relatively small training data. Here we only apply this intelligent
method to accurately predict the bandgaps of thousands of
HOIPs and get over the problem of toxicity and poor environ-
mental stability in HOIPs. In fact, it is applicable to other func-
tional material design and discovery, if the computational or
experimental material data are enough to train the ML model.

Methods
Gradient boosted regression. GBR35,48, a flexible non-parametric statistical
machine leaning algorithm in the open-source scikit-learn package49, is imple-
mented to predict bandgaps of undiscovered HOIPs. The learning principle of this
method is to improve the accuracy of the final regression results by gradually
reducing the algorithm generated by the training process. The final regression
algorithm is the weighted sum of several weak regression algorithms obtained by
each training, as

FM xð Þ ¼
XM

m¼1

T x; θmð Þ; ð1Þ

where m is the times of training, x is the input data, and θm is the distribution
weight vector. The model is trained M times, and each time it produces a weak
regression function T. The loss function of every weak classifier, is defined as

θ̂m ¼ arg min
θm

XN

i¼1

L yi; Fm�1 xið Þ þ T xi; θmð Þð Þ; ð2Þ

where Fm-1(xi) is the current model, and GBR determines the parameters of the
next weak classifier through empirical risk minimization. This work uses ML to
analyze a small dataset based on DFT calculation to construct a predictive model.

Hyper-parameters selection. In the ML algorithm, the hyper-parameter is the
parameter set before the learning process, rather than that obtained through
training model. In general, it is necessary to select a set of optimal hyper-
parameters for the learning machine to improve the efficiency and generalization
performance of the model. Here, six hyper-parameters in the GBR model are
optimized by grid searching method: loss function (least squares), learning rate
(0.2), maximum depth of the individual regression estimators (12), the number of
features to consider when looking for the best split (0.7), the minimum number of
samples required to be at a leaf node (3) and the number of boosting stages to

perform (100). The values in parentheses represent the best results for each hyper-
parameter.

Last-place elimination feature selection procedure. We employ a “last-place
elimination” feature selection procedure into GBR algorithm to optimize the most
relevant features. Thirty initial features, which are commonly employed in ML
algorithm or structure features of HOIPs, are considered and first ranked by GBR
algorithm according to the relative importance. Then we remove the least
important feature (i.e., the 30th feature) out of the feature set and the rest 29
features constitute a new dataset for the next step feature selection. After that, we
rank the remaining features again and repeat the above step. Finally, we train the
ML model using different datasets for twenty-nine times (see workflow in Sup-
plementary Fig. 3). We record the model score (R2) of each trained model and the
ML model performs best when the feature set only includes fourteen features.

Density functional theory. All DFT calculations for selected HOIPs are carried
out using the projector-augmented wave method with the generalized gradient
approximation, implemented in the Vienna Ab initio Simulation Package pack-
age50. The exchange-correlation functional is described by PBE51 functional con-
sidering it reproduces more consistent results with the experiments for HOIPs due
to fortuitous error–error offset52,53. DFT-D3 method is adopted for the van der
Waals correction54. AIMD simulations are performed at room temperature by
using the Nosé-Hoover method55,56 to verify the thermal stability of selected
materials. The environmental stability of selected HOIPs are further evaluated by
the adsorption energy calculations. More DFT calculation details can be found in
Supplementary Methods.

Data availability. The datasets generated during and/or analyzed during the
current study are available from the corresponding author on reasonable request.
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