
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 4, APRIL 2009 1563

Accelerated Distributed Average Consensus via
Localized Node State Prediction
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Abstract—This paper proposes an approach to accelerate local,
linear iterative network algorithms asymptotically achieving dis-
tributed average consensus. We focus on the class of algorithms
in which each node initializes its “state value” to the local mea-
surement and then at each iteration of the algorithm, updates this
state value by adding a weighted sum of its own and its neighbors’
state values. Provided the weight matrix satisfies certain conver-
gence conditions, the state values asymptotically converge to the av-
erage of the measurements, but the convergence is generally slow,
impeding the practical application of these algorithms. In order
to improve the rate of convergence, we propose a novel method
where each node employs a linear predictor to predict future node
values. The local update then becomes a convex (weighted) sum of
the original consensus update and the prediction; convergence is
faster because redundant states are bypassed. The method is linear
and poses a small computational burden. For a concrete theoret-
ical analysis, we prove the existence of a convergent solution in
the general case and then focus on one-step prediction based on
the current state, and derive the optimal mixing parameter in the
convex sum for this case. Evaluation of the optimal mixing param-
eter requires knowledge of the eigenvalues of the weight matrix,
so we present a bound on the optimal parameter. Calculation of
this bound requires only local information. We provide simulation
results that demonstrate the validity and effectiveness of the pro-
posed scheme. The results indicate that the incorporation of a mul-
tistep predictor can lead to convergence rates that are much faster
than those achieved by an optimum weight matrix in the standard
consensus framework.

Index Terms—Average consensus, distributed signal processing,
linear prediction.

I. INTRODUCTION

I N both wireless sensor and peer-to-peer networks, there is
interest in simple protocols for computing aggregate sta-

tistics [1]–[4]. Distributed average consensus is the task of
calculating the average of a set of measurements made at dif-
ferent locations through the exchange of local messages. The
goal is to avoid the need for complicated networks with routing
protocols and topologies, but to ensure that the final average
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is available at every node. Distributed average consensus algo-
rithms, which involve computations based only on local infor-
mation, are attractive because they obviate the need for global
communication and complicated routing, and they are robust
to node and link failure. The roots of these algorithms can be
traced back to the seminal work of Tsitsiklis [5], and there has
been renewed interest because of their applicability in sensor
networks [6], [7]. The algorithms can play an important role
in agreement and synchronization tasks in ad hoc networks [8]
and also are good approaches for load balancing (with divis-
ible tasks) in parallel computers [9], [10]. More recently, they
have also been applied in distributed coordination of mobile
autonomous agents [11] and distributed data fusion in sensor
networks [12]–[15].

In this paper, we focus on a particular class of distributed it-
erative algorithms for average consensus: each node initializes
its “state” to the local measurement, and then at each iteration
of the algorithm, updates its state by adding a weighted sum
of the local nodes [5], [12], [13], [16]. The algorithms in this
class are time-independent, and the state values converge to
the average of the measurements asymptotically [6]. The class
is attractive because the algorithms are completely distributed
and the computation at each node is very simple. The major
deficiency is the relatively slow rate of convergence towards
the average; often many iterations are required before the ma-
jority of nodes have a state value close to the average. In this
paper, we address this deficiency, proposing a method that sig-
nificantly improves the rate of convergence without sacrificing
the linearity and simplicity.

A. Related Work

The convergence rate of distributed average consensus algo-
rithms has been studied by several authors [6], [7]. Xiao, Boyd,
and their collaborators have been the main contributors of
methods that strive to accelerate consensus algorithms through
optimization of the weight matrix [6], [12], [17]. They showed
that it is possible to formulate the problem of identifying the
weight matrix that satisfies network topology constraints and
minimizes the (worst-case) asymptotic convergence time as
a convex semidefinite optimization task. This can be solved
using a matrix optimization algorithm. Although elegant, the
approach has two disadvantages. First, the convex optimization
requires substantial computational resources and can impose
delays in configuration of the network. If the network topology
changes over time, this can be of particular concern. Second,
a straightforward implementation of the algorithm requires a
fusion center that is aware of the global network topology.
In particular, in the case of online operation and a dynamic
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network topology, the fusion center needs to recalculate the op-
timal weight matrix every time the network topology changes.
If such a fusion center can be established in this situation,
then the value of a consensus algorithm becomes questionable.
To combat the second problem, Boyd et al. propose the use
of iterative optimization based on the subgradient algorithm.
Calculation of the subgradient requires knowledge of the eigen-
vector corresponding to the second largest eigenvalue of the
weight matrix. In order to make the algorithm distributed, Boyd
et al. employ decentralized orthogonal iterations [17], [18]
for eigenvector calculation. The resulting algorithm, although
distributed, is demanding in terms of time, computation and
communication, because it essentially involves two consensus
procedures.

Xiao and Boyd [6] also identify a suboptimal approach
that leads to a much less demanding algorithm. In this ap-
proach, neighboring edge weights are set to a constant, and
the constant is optimized. The optimal constant is inversely
proportional to the sum of the largest and the second smallest
eigenvalues of the Laplacian spectrum. The calculation thus
still requires knowledge of the connectivity pattern. The resul-
tant weight matrix is called the “best constant” weight matrix
in [6]. The suboptimality of the best constant weight matrix
stems from the fact that all the edge weights are constrained
to be the same.

Also related to our proposed approach is the methodology
proposed by Sundaram and Hadjicostis in [19]. Their algo-
rithm achieves consensus in a finite number of time steps, and
constitutes an optimal acceleration for some topologies. The
disadvantage of the approach is that each node must know the
complete weight matrix (and its powers), retain a history of
all state values, and then solve a system of linear equations.
Again, this disadvantage is most consequential in the scenario
where nodes discover the network online and the topology
is dynamic, so that the initialization operation must be per-
formed frequently. However, even in the simpler case of a static
topology, the overhead of distributing the required initializa-
tion information can diminish the benefits of the consensus
algorithm unless it is performed many times. In contrast, our
proposal maintains the local, sequential and linear properties
of the standard consensus approach. Cao et al. propose an
acceleration framework for gossip algorithms observing their
similarity to the power method [20]. Their framework is based
on the use of the weighted sum of shift registers storing the
values of local gossip iterations. Although this framework is
close to the one proposed in this paper, there are a number of
points that make our proposal valuable. First, the approach
in [20] utilizes the weight vector, but authors do not provide
any solutions or directions for the weight vector design or
optimization. Our approach, in its simplest form, optimizes a
single parameter and we demonstrate the optimal analytical
solution for this parameter and the advantages our approach
brings over the ones proposed in the literature. Second, the
authors theoretically prove that if their algorithm converges
then it converges to the true consensus value [20]. We provide
a stronger theoretical guarantee: We prove that there always
exists a set of algorithm parameters that leads to convergence to

consensus. The idea of using higher order eigenvalue shaping
filters has also appeared in [15], but the optimal choice of the
filter parameters is still an open question.

B. Summary of Contributions

In this paper, we propose accelerating the convergence rate
of a distributed average consensus algorithms by changing the
state update to a convex combination of the standard consensus
iteration and a linear prediction. We present a general frame-
work and prove the existence of a solution, but focus on the
special case of one-step prediction based only on the current
state to gain further insight. For this case, we derive the optimal
convex combination parameter, i.e., the parameter which max-
imizes the worst-case asymptotic convergence rate. Since op-
timization of the parameter requires knowledge of the second
largest and smallest eigenvalues of the weight matrix, we derive
a suboptimal setting that requires much less information and is
more readily implementable in a distributed setting. In the more
general case of multistep predictors, we generate bounds on the
convex combination parameter that guarantee convergence of
the consensus algorithm, but note that these are tighter than nec-
essary. We report simulation results evaluating the behavior of
the optimal and suboptimal approaches. It also emerges that the
proposed approach, when employing a multistep predictor, has
the potential to significantly outperform the standard consensus
approach using the optimal weight matrix.

C. Paper Organization

The remainder of this paper is organized as follows. Section II
introduces the distributed average consensus problem and for-
mulates the proposed framework to improve the rate of conver-
gence. Section III describes the proposed algorithm and derives
sufficient conditions on the mixing parameter for convergence
to consensus. Section IV focuses on the special case of one-step
prediction based only on the current state and provides an ex-
pression for the optimal mixing parameter. It also explores the
improvement that is achieved in the convergence rate and de-
scribes a suboptimal, but effective and practical, approach for
setting the mixing parameter. We report the results of numerical
examples testing the proposed algorithms in Section V. Finally,
Section VI concludes the paper.

II. PROBLEM FORMULATION

This section formulates the distributed average consensus
task and briefly reviews the standard algorithms, as described
in [5] and [6]. We define a graph as a 2-tuple,
consisting of a set with vertices, where denotes
the cardinality, and a set with edges. We denote an edge
between vertices and as an unordered pair . The
presence of an edge between two vertices indicates that they
can establish bidirectional noise-free communication with each
other. We assume that transmissions are always successful and
that the topology is fixed. We assume also connected network
topologies; the connectivity pattern of the graph is given by the

adjacency matrix , where

if
otherwise.

(1)
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Denote the neighborhood of node by

, and the degree of node by .
We consider the set of nodes of a network (vertices of the

graph), each with an initial real valued scalar , where
. Let denote the vector of ones. The goal is to de-

velop a distributed iterative algorithm that computes, at every
node in the network, the value . In this paper
we focus on a particular class of iterative algorithms for dis-
tributed average consensus. In this class, each node updates its
state by adding a weighted sum of the local nodes, i.e.,

(2)

for and . Here is a weight asso-
ciated with the edge and is the total number of nodes.
These weights are algorithm parameters [12], [13]. Moreover,
setting whenever , the distributed iterative
process reduces to the following recursion:

(3)

where denotes the state vector. The weight matrix needs
to satisfy the following necessary and sufficient conditions to
ensure asymptotic average consensus [16]:

(4)

where is the averaging matrix

(5)

and denotes the spectral radius of a matrix

(6)

Here, denote the eigenvalues of . Algorithms have
been identified for generating weight matrices that satisfy the
required convergence conditions if the underlying graph is
connected, e.g., maximum-degree and Metropolis weights [12],
[16].

In the next section, we describe our approach to accelerate
the consensus algorithm. The approach is based on the observa-
tion that in the standard consensus procedure [6] the individual
node state values converge in a smooth fashion. This suggests
that it is possible to predict with good accuracy a future local
node state based on past and current values. Combining such a
prediction with the consensus operation thus has the potential
to drive the overall system state closer to the true average at a
faster rate than the standard consensus algorithm. Effectively,
the procedure bypasses redundant states.

III. ACCELERATING DISTRIBUTED AVERAGE CONSENSUS FOR

AN ARBITRARY WEIGHT MATRIX

This section describes the acceleration methodology. We
first discuss the general form of the acceleration method. The
primary parameter in the algorithm is the mixing parameter
which determines how much weight is given to the predictor

and how much to the consensus operator. For the general case,
we derive sufficient conditions on this parameter to ensure
convergence to the average.

A. Predictor-Based Distributed Average Consensus

Computational resources available at the nodes are often
scarce, and it is desirable that the algorithms designed for
distributed signal processing are computationally inexpensive.
We are therefore motivated to use a linear predictor, thereby
retaining the linear nature of the consensus algorithm.

In the proposed acceleration, we modify the state-update
equations at a node to become a convex summation of the
predictor and the value derived by application of the consensus
weight matrix

(7a)

(7b)

(7c)

Here, is the vector of predictor coeffi-
cients.

The network-wide equations can then be expressed in matrix
form by defining

(8)

(9)

where is the identity matrix of the appropriate size and

(10)

Here, all the components of the block matrix are . We
adopt the convention that for , . The update
equation is then simply .

We adopt a time-invariant extrapolation procedure. The ad-
vantage of this approach is that the coefficients can be com-
puted off-line as they do not depend on the data. We employ the
best linear least-squares -step predictor that extrapolates cur-
rent state of the th node time steps forward. Choosing
higher implies a more aggressive prediction component to the
algorithm. The prediction coefficients become (see the detailed
derivation in Appendix A)

(11)

where

(12)
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and is the Moore–Penrose pseudoinverse of
. Appendix A provides general expressions for the parameters

.
It can be seen from (11) that is a linear combination

of previous local consensus values. Thus, the consensus ac-
celeration mechanism outlined in (7a)–(7c) is fully local if it is
possible to find an optimum value of in (7a) that does not re-
quire any global knowledge.

B. Convergence of Predictor-Based Consensus

In this section we provide a result that characterizes a range of
values that achieve convergence to the consensus for arbitrary,

finite, values of . Let denote the th ranked eigenvalue.
The main result is the following theorem.

Theorem 1: If is symmetric, satisfies the conditions for
asymptotic consensus (4), , and

(13)

then the general accelerated consensus algorithm achieves
asymptotic convergence.

Proof: See Appendix B.
The first condition of the theorem is satisfied by the choice

of predictor weights we have outlined, and the second condi-
tion specifies the bounds on the mixing parameter . This is
only a sufficient condition for convergence, but it does indicate
that there is a range of values of for every that leads to
asymptotic convergence. Significant improvements in the rate
of convergence are generally achieved by values outside the
identified range due to the conservative nature of the proof.

IV. ONE-STEP PREDICTOR BASED DISTRIBUTED

AVERAGE CONSENSUS

In order to better understand the algorithm, we analyze the
important case when the algorithm (7) is based only on the
current node states. For this case, we derive, in this section,
the mixing parameter that leads to the optimal improvement
of worst-case asymptotic convergence rate, and we characterize
this improvement. Evaluating the optimal value requires knowl-
edge of the second-largest and smallest eigenvalues, which can
be difficult to determine. We therefore derive a bound on the op-
timal value which requires less information; setting to this
bound results in close-to-optimal performance.

The predictor under consideration is a one-step extrapolator
based on the current node state and the result of the standard
consensus operator, i.e., and . In this case

, so can be expressed as follows:

(14)

We can estimate the gradient of the state with respect to time as
. Thus, (14) can be rewritten as

(15)

The one-step predictor hence updates the current state in the
gradient direction, to within estimation error.

Substituting (14) into (7a) we obtain the following expression
for :

(16)

(17)

This can be written in matrix form as

(18)

where is the weight matrix (as a function of )

(19)

It is obvious from the previous equation that the predictor based
weight matrix has the same eigenvectors as and its
eigenvalues are related to the eigenvalues of the original matrix

via the relationship

(20)

The following proposition describes some properties of the
weight matrix . We show that if the original weight matrix

satisfies the conditions necessary for asymptotical conver-
gence, then also guarantees asymptotical convergence to
consensus under some mild conditions.

Proposition 1: Suppose satisfies the necessary conditions
for the convergence of the standard consensus algorithm. More-
over, let denote the eigenvalues as-
sociated with eigenvectors and let
denote the ranked eigenvalues of . Then satisfies
the required convergence conditions if

(21)

Proof: See Appendix C.
Proposition 1 implies that the eigenvalues of the predictor

based weight matrix experience a left shift with respect
to the eigenvalues of the original weight matrix when .
Moreover, it is easy to show that the ordering of the eigenvalues
does not change during the shift:

(22)

for all , where and are associated with some
eigenvectors , of . The second largest and the smallest
eigenvalues of matrix always correspond to the second
largest and the smallest eigenvalues of matrix , and their
values are always smaller. Using this property, together with
the definition of spectral radius (6), it is possible to formulate
the problem of optimizing the mixing parameter to achieve the
fastest asymptotic worst-case convergence rate as a convex op-
timization problem. In the following subsection, we outline this
formulation and provide the closed-form solution.
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A. Optimization of the Mixing Parameter

Recall that is the mixing parameter that determines the rel-
ative influences of the standard consensus iteration and the pre-
dictor in (7a). In the following, we consider optimization of to
achieve the fastest possible worst-case asymptotic convergence
rate for the , case of the accelerated consensus
algorithm.

The spectral radius defines the worst-case mea-
sure of asymptotic convergence rate [16]. In fact, the spectral
radius is directly related to the asymptotic convergence rate as
defined in [6]

(23)

Thus, the minimization of the spectral radius leads
to the maximization of the convergence rate, or equivalently, to
the minimization of the asymptotic convergence time

(24)

Theorem 2: The , case of the proposed acceler-
ated consensus algorithm has the fastest asymptotic worst-case
convergence rate if the value of the mixing parameter equals
the following optimum value:

(25)

where denotes the eigenvalues of the weight matrix .
Proof: See Appendix D.

As expected, the optimal mixing parameter satisfies the
following:

(26)

(27)

where both the first and second lines follow from the fact that
, respectively. We can conclude that the op-

timal mixing parameter satisfies the required convergence con-
ditions for all cases. Algebraic manipulations lead to the fol-
lowing equality:

(28)

The optimal mixing parameter thus induces a shift in the eigen-
values so that the magnitudes of the second-largest and smallest
eigenvalues of are balanced. A similar effect is observed
in the optimization conducted in [6]. It should be noted however,
that even with the optimal choice of the proposed algorithm
for case cannot outperform global optimization pro-
posed in [6].

B. Convergence Rate Analysis

To see to what extent the proposed one-step extrapolation al-
gorithm yields performance improvement over the conventional

consensus procedure, we consider the ratio of the spectral radius
of the corresponding matrices. This ratio gives the lower bound
on performance improvement :

(29)

The following proposition considers the provided convergence
rate improvement over the standard consensus algorithm when
the optimal mixing parameter is utilized.

Proposition 2: In the optimal case, i.e., when , the
performance improvement factor is given by

(30)

Proof: Substituting into (29) and taking into account
the fact that , after some algebraic manip-
ulations, yield the expression for .

Although (25) provides an expression for the optimum
mixing factor resulting in the fastest asymptotic convergence
rate, the calculation of this optimum value requires knowledge
of the second and the last eigenvalues of matrix . This
in turn either requires knowledge of or some centralized
mechanism for calculation and distribution of the eigenvalues
of . In many practical situations such information may not
be available. Therefore, it is of interest to derive a suboptimum
setting for that results in less performance gain but requires
considerably less information at each node.

Proposition 3: The predictor based distributed average con-
sensus has asymptotic worst-case convergence rate faster than
that of conventional consensus if the value of mixing parameter
is in the following range:

(31)

Proof: The asymptotic worst-case convergence rate of al-
gorithm (7) is faster than that of conventional consensus algo-
rithm if and only if .
We can rewrite this condition in the following form:

(32)

indicating that

(33)

Observing that , dividing the first part of (33) by
and subtracting the same expression from the denomi-

nator of the second part, we obtain the tightened version of (33):

(34)

Finally, noting that the right-hand side of this expression is equal
to concludes the proof.

We strive to identify a setting for that guarantees an im-
provement in the convergence rate but does not require global
knowledge of the weight matrix. Based on Proposition 3, if we
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lower-bound , then setting to this lower-bound will guar-
antee improvement in convergence rate. In order to lower-bound

, we need to lower-bound . The next proposition
provides such a bound in terms of the trace of the weight ma-
trix .

Proposition 4: If the weight matrix satisfies the conver-
gence conditions and its eigenspectrum is a convex function of
the eigenvalue index, namely,

(35)

then

(36)

where denotes the trace of its argument.
Proof: Recall that the sum of eigenvalues of a matrix is

equal to its trace:

(37)

Noting that and rearranging the summation give

(38)

Since, by assumption, the eigenspectrum is a convex function
of the eigenvalue index, we have

(39)

Substituting (38) into (39) results in the desired bound.
Proposition 4 leads to an upper bound for a setting of the

mixing parameter in order to achieve convergence at an im-
proved rate:

(40)

The advantage of this setting is that it is much simpler to cal-
culate the trace in a distributed fashion than derive all
of the eigenvalues, as required for determining the optimum
mixing parameter. The lower bound depends linearly on the
average of the diagonal terms of the matrix , which can be
calculated using a standard consensus procedure. Although the
result is useful and leads to a simpler mechanism for setting
the mixing parameter, the convexity assumption is strong and
is probably unnecessary for many topologies.

C. Random Geometric Graphs: Choice of the Mixing
Parameter

We now consider the special, but important, case of random
geometric graphs, which can act as good topological models
of wireless sensor networks, one of the promising application
domains for consensus algorithms. For this case, we show that
there exists an asymptotic upper bound for that can
be calculated off-line. The random geometric graph is defined
as follows: nodes (vertices) are distributed in an area

according to a point process with known spatial distribution
. Two nodes and are connected, i.e., ,

if the Euclidean distance between them is less then some
predefined connectivity radius . The indicator function

whenever holds.
We consider weight matrices constructed according to a

rule of the following form:

(41)

where is some function of the local connectivity de-
grees and of nodes and satisfying

(42)

Let us introduce random variables defined by

(43)

Assume that is chosen so that these variables are iden-
tically distributed with mean and covariance
structure satisfying

(44)

where and are defined as follows:

(45)

(46)

For such a graph and weight matrix, the following theorem pro-
vides an asymptotic upper bound on the value of mixing param-
eter in terms of the expectation .

Theorem 3: Let be the weight matrix con-
structed according to (41). Suppose is chosen so
that the random variables defined by (43) are identically
distributed with finite mean and covariance structure
satisfying (44). Then the lower bound on given by
Proposition 4 almost surely converges to

(47)

and defines an asymptotic upper bound on as given
by the following expression:

(48)

Proof: See Appendix E.
The above result relies on the assumption that sat-

isfies the conditions discussed above. The following proposi-
tion states that this assumption holds for the popular max-degree
weight design scheme [12], [16]. The max-degree weights are
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Fig. 1. Asymptotic convergence time versus the number of nodes in the network. In (a), the standard and accelerated consensus algorithms are derived from
the maximum-degree weight matrix; in (b) they are derived from the Metropolis–Hastings weight matrix. (a) The convergence times for algorithms based on
maximum-degree weight matrices as a function of the number of nodes in the network. Following algorithms were simulated. Standard consensus (MD): �;
accelerated consensus with optimal � (MD-O2): �; accelerated consensus with suboptimal � (MD-S2):�; accelerated consensus with asymptotic suboptimal �
(MD-SA2): �; best constant [6] (BC): ; and optimal weight matrix [6] (OPT): ; (b) the convergence times for algorithms based on Metropolis–Hastings weight
matrices as a function of the number of nodes in the network. The following algorithms were simulated: standard consensus (MH):�; accelerated consensus with
optimal � (MH-O2): �; accelerated consensus with suboptimal � (MH-S2): �; best constant [6] (BC): ; and optimal weight matrix [6] (OPT):

very simple to compute and are well suited for distributed im-
plementation. In order to determine the weights, the nodes need
no information beyond their number of neighbors.

Proposition 5: If the weights in the weight matrix are de-
termined using the max-degree weight approach, then assump-
tions of Theorem 3 hold and the asymptotic bound on

satisfies

(49)

and

(50)

where is the probability that two arbitrary nodes in a network
are connected.

Proof: See Appendix F for the proof.
We note that can be analytically derived for a given con-

nectivity radius if the spatial distribution of the nodes is uni-
form [21]. Proposition 5 implies that for a random geometric
graph with max-degree weights should be chosen to satisfy

. This result indicates that for highly connected
graphs, which have a large value of , a small is desirable.
For these graphs, standard consensus achieves fast mixing, so
the prediction becomes less important and should be assigned
less weight. In the case of a sparsely connected graph (small

), a large is desirable. For these graphs, the convergence of
standard consensus is slow because there are few connections,
so the prediction component of the accelerated algorithm should
receive more weight.

V. NUMERICAL EXAMPLES

In our simulation experiments, we consider a set of nodes
uniformly distributed on the unit square. The nodes establish
bidirectional links to each other if the Euclidean distance be-
tween them is smaller than the connectivity radius, .

Initial node measurements are generated as where
and is Gaussian distributed with . Then, we reg-

ularize the data such that the average of all the values, , equals
to 1. All simulation results are generated based on 500 trials (a
different random graph is generated for each trial).

First, we compare the asymptotic convergence time (24) re-
sults of the algorithm we propose for the theoretically analyzed

and case, against the algorithms presented in [6].
Fig. 1 compares the convergence times of the algorithms for the

and case as a function of the number of nodes in
the network. In Fig. 1(a), the maximum-degree weight matrix
is used as the consensus operator for the standard and acceler-
ated consensus algorithms; in Fig. 1(b), the Metropolis–Hast-
ings weight matrix acts as the consensus operator. It is clear
from Fig. 1 that although our algorithm is extremely simple
and does not require any global optimization, it achieves perfor-
mance improvements approaching those of the optimum algo-
rithm from [6]. It outperforms the best constant algorithm when
used in conjunction with the Metropolis–Hastings weight ma-
trix. When max-degree is utilized in the proposed algorithm, its
asymptotic convergence time is very similar to that of the op-
timized best constant approach from [6] for the optimal choice
of . Fig. 1(a) also suggests that the asymptotic upper bound on

derived for a random geometric graph with maximum-degree
weight matrix is applicable when is as low as 20. The two
curves corresponding to the bound based on the trace of weight
matrix (40) (represented by ) and the asymptotic upper bound
developed in Proposition 5, (48) (represented by ) are almost
indistinguishable.

Since the performance of all algorithms is superior when the
Metropolis–Hastings weight matrix is employed, the remainder
of our simulations focus on this case. Fig. 2 shows the mean-
square-error (MSE) as a function of time for the standard, ac-
celerated, best-constant and optimal weight matrix consensus
algorithms. Three versions of the accelerated algorithm are de-
picted, including the , case with optimal and sub-
optimal , and the , case. The number of nodes
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Fig. 2. Mean-square-error (MSE) versus time step for the proposed and standard consensus algorithm. The upper panel depicts the results when the number of
nodes in the network � � ��, and the lower panel depicts the results when � � ��. The following algorithms were simulated. Standard consensus (MH): �;
accelerated consensus, � � � with optimal � (MH-O2): �; accelerated consensus � � � with suboptimal � (MH-S2): �; accelerated consensus � � �

(MH-O3): �; best constant (BC): ; and optimal weight matrix (OPT): . (a) MSE as a function of time step when the number of nodes � � ��; (b) MSE as a
function of time step when the number of nodes � � ��.

Fig. 3. Mean-squared error (MSE) at (a) iteration number 50, and (b) iteration number 100, as a function of the number of samples � used in the predictor.
Results are depicted for one-, two-, and three-step predictors (� � 1 ,2, 3). (a) Number of iterations is 50, number of nodes is 50; (b) number of iterations is 100,
number of nodes is 50.

is 25 in Fig. 2(a) and 50 in Fig. 2(b). Since we have not devel-
oped a methodology for choosing an optimal setting for when

, we adopted the following procedure to choose for the
and case. For each trial, we evaluated the MSE

for each value of ranging from 0 to 1 at intervals of 0.1. We
then chose the that resulted in the lowest MSE for each trial at
time step 50. This represents a practically unachievable oracle

, so we stress that the purpose of the experiment is to illustrate
the potential of the acceleration procedure. We do, however, ob-
serve that the random generation of the data has very little influ-
ence on the value that is selected; it is the random graph and
hence the initial matrix that governs the optimal value of .
This suggests that it is possible to develop a data-independent
procedure to choose an optimal (or close-to-optimal) value.
Fig. 2 indicates that the accelerated consensus algorithm with

and achieves step-wise MSE decay that is close
to that obtained using the optimal weight matrix developed in
[6]. The accelerated algorithm with and signif-
icantly outperforms the optimal weight matrix [6] in terms of
step-wise MSE decay. The case permits much more ac-
curate prediction, which leads to the significant improvement in
performance.

Finally, we compare the performance of our algorithm in
terms of MSE decay for different values of and . The
results of the simulation are shown in Fig. 3. At this point,
we do not have expressions for the optimum value of in the
more general case when . We use the same procedure
as outlined in the previous experiment, evaluating the MSE
for each possible value of from 0 to 1 at intervals of 0.1
and selecting the one that achieves the minimum MSE. Fig. 3
implies that, in our setting where parameters are given by
formula (60), the best performance is obtained if is used
and the performance difference is significant. Our choice of
predictor exerts a significant influence here. We employ a linear
parameterization that becomes less accurate as the number of
samples employed in the predictor increases beyond 3. Note,
however, that all of the depicted values of achieve
better performance than the optimal weight matrix. Although
one might anticipate that there is an optimal for each that
maximizes the convergence rate, our simulation experiments
indicate that the value of has little or no effect on convergence
(see Fig. 3). Indeed, for the case , we can show analyt-
ically that the spectral radius of the equivalent weight matrix,
which dictates the convergence rate, is independent of [21].
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VI. CONCLUDING REMARKS

We have presented a general, predictor-based framework
to improve the rate of convergence of distributed average
consensus algorithms. In contrast to previous acceleration
approaches, the proposed algorithm is simple, fully linear, and
parameters can be calculated offline. To gain further insight
into the proposed algorithm, we focused on the special case of
prediction based only on the current state, presenting theoretical
and simulation results. In its most simple form, the proposed
algorithm outperforms the optimal best constant algorithm
from [6] and performs almost as well as the worst-case-optimal
design algorithm of [6]. Simulation studies show that the pro-
posed algorithm has the potential to outperform significantly
the worst-case-optimal algorithm, if a suitable setting for the
mixing parameter can be identified. In future work, we plan
to formulate the choice of for the general case as an opti-
mization problem, and examine the behavior of the solutions.
We hope that this will lead to practical schemes for setting

that guarantee convergence and achieve a convergence rate
acceleration close to optimal.

APPENDIX A
GENERAL EXPRESSIONS FOR PREDICTOR WEIGHTS FOR

ARBITRARY AND

In this appendix, we present the expressions for the predictor
weights in (11) as a function of algorithm parameters and
previous states for the case of arbitrary and .

First, we present the rationale behind the design of weights
. As shown in Fig. 4, given the set of previous values

at some time instant and node ,

we would like to design the best linear least squares approxi-
mation to the model generating the available data. Then using
the approximate model we would like to extrapolate the current
state time steps forward. The easiest way to do this is to note
that the approximate model of the form with
and being the parameters of the linear model can be rewritten
in the matrix form for the set of available data:

(51)

Here

and

(52)
Using the standard least squares technique, we define the cost
function

(53)

(54)

Fig. 4. Linear approximation to the model generating available data comprising
linear predictor.

and find the optimal approximate linear model as the global
minimizer of the cost function

(55)

Taking into account the convexity of the cost function and
equating the derivative of with respect to to zero, we
get the solution

(56)

Now, given the linear approximation of the model generating
current data, we extrapolate the current state steps forward
using

(57)

Finally, noting the time invariance of predictor weights
, that is , , we substitute

and by their time-invariant analogs and
as defined in (11) and (12).

Second, we need an expression for the pseudoinverse .
From the definition of in (12), we can derive the inverse of

in closed form

(58)

The expression for the pseudoinverse follows immediately:

(59)
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This results in the following expression for predictor weights:

...

(60)

APPENDIX B
PROOF OF THEOREM 1: EXISTENCE OF A CONVERGENT

SOLUTION IN THE GENERAL CASE

This appendix presents a proof of Theorem 1. We commence
by introducing an operator :

(61)

Denoting , we can write the first component of net-
work-wide state recursion as

(62)

where we set for any . Let us denote
and

. Here, as before, denotes the averaging operator.
The following lemma provides the platform for the proof of the
theorem, identifying sufficient conditions on that guarantee

.
Lemma 1: If is symmetric, satisfies the conditions for

asymptotic consensus (4), , and

(63)

then .
Proof: Using the triangle inequality and the definitions of

and , we can formulate a bound on :

(64)

(65)

Thus, if we ensure that this last expression is less than one, we
guarantee that . We can reformulate this inequality using

the symmetry of , , and and the definition of the spectral
radius of a matrix

(66)

Again applying the triangle inequality, we see that this relation-
ship is satisfied if

(67)

Upon expansion of the modulus , and with algebraic
manipulation, we arrive at

(68)

Now, let us examine the properties of the upper bound
in (68). After some algebraic manipulations the deriva-

tive of for the two cases and takes
the following form:

(69)

Taking into account the fact that , we can make
the following conclusion:

(70)

Thus, is nondecreasing when and nonin-
creasing when . Hence, if for any , , and
satisfying and , there exists an
such that

(71)

then and (13) follows. To ensure that such
always exists for any and we note that
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, . This follows because .
Moreover

(72)

(73)

We now present the proof of Theorem 1.
Theorem 1: We first show that if the conditions of the theorem

hold, then the average is preserved at each time step. To do this,
it is necessary and sufficient to show that

and
. We have

(74)

(75)

The proof of the condition
is analogous and omitted.

We now show that converges to the average . Our
method of proof is induction. We show that

where . Lemma
1 implies that if the assumptions of the theorem are satisfied
then , so the limit as and consequently approaches
infinity is 0. Initially, we show that the result holds for ,
or equivalently, . We have, using the triangle
inequality and employing the result :

(76)

(77)

(78)

Similarly

(79)

(80)

(81)

(82)

where to obtain the last inequality we use the fact that .
Using the same observations we can show the following for any

such that :

(83)

(84)

(85)

(86)

(87)

(88)

(89)

By almost identical manipulations, we can show that if the
result holds for and

, then it holds for and
.

APPENDIX C
PROOF OF PROPOSITION 1: ASYMPTOTIC CONVERGENCE

CONDITIONS OF THE PREDICTOR BASED WEIGHT MATRIX

Proof: In order to ensure asymptotical convergence, we
need to prove the following properties:

(90)
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It is clear from (19) that has the same eigenvectors as
. Eigenvalues of are connected to the eigenvalues via

(20) and we conclude that . Thus, the two leftmost
equations in (90) hold if satisfies asymptotic convergence
conditions. Now, let us consider the spectral radius of
defined as :

(91)

For , the eigenvalues experience a left shift
since and is
always negative. It is also straightforward to see that

, . This implies that
, so to ensure that , we

just need to make sure that .
Rearrangement leads to , the
condition expressed in (21).

APPENDIX D
PROOF OF THEOREM 2: OPTIMAL MIXING PARAMETER FOR

THE ONE-STEP PREDICTOR MATRIX

Proof: We need to show that is the global min-
imizer of . Hence, we define the following opti-
mization problem:

(92)
However, this problem can be converted into a simpler one:

(93)
since is the smallest and is the largest eigen-
value of . Let us introduce

and . Clearly and
are piecewise linear convex functions, with knots oc-

curring where and . Let these knots be
and . Since

the magnitude of slope of exceeds that of
and . Consider ,

which is also piecewise linear and convex with knots and
occurring where and

respectively. Since is piecewise linear and convex with
and its global minimum occurs

at one of the knots. It follows that the knots of satisfy
. The fact that is decreasing if

implies . Hence, the global minimum
of occurs at . Thus, solving for

gives the solution for .

APPENDIX E
RANDOM GEOMETRIC GRAPHS: PROOF OF THEOREM 3

Proof: By the construction of the weight matrix (41)
we can transform the expression for (36) as follows:

(94)

(95)

(96)

(97)

In order to obtain the last equality we have used the definition
(43). Note that , the probability that two nodes
are connected, is a Bernoulli random variable; denote the prob-
ability by . Note that an analytical
expression for can be derived if the nodes are uniformly dis-
tributed (see [21]); for other distributions, numerical integration
can be employed to determine .

We require that is such that the are identically dis-
tributed with finite mean and (44) holds. It is straightforward to
show that both mean and variance of random variables are
bounded under our assumptions (42) on :

(98)

(99)

The transition involves moving the expectation outside the mod-
ulus, replacing it by a supremum, and then application of the
bounds in (42). Moreover

(100)

(101)

(102)

(103)

Taking into account (98) and (100), we can consider the fol-
lowing centered square integrable random process:

(104)

We note that if the correlation function of this random process
satisfies ergodicity assumptions implied by (44), we can invoke
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the Strong Law of Large Numbers stated by Poznyak [22] (The-
orem 1) to show that

(105)

In its turn, this along with the assumption
implies that according to (104)

(106)

Combining (106) with (97) leads us to the following conclusion:

(107)

(108)

Finally, noting (40) concludes the proof.

APPENDIX F
RANDOM GEOMETRIC GRAPHS WITH MAXIMUM DEGREE

WEIGHTS: PROOF OF PROPOSITION 5

Proof: Recall that the maximum degree weight design
scheme employs the following settings: for

and and . With these choices,
takes the following form:

(109)

Taking the expectation of gives us

(110)

Now, consider the double averaged [22] correlation function
(45) of the random process defined in (104)

(111)

Let us examine the quadruple sum in (111). There are four pos-
sible cases to analyze.

1) and : The number of occurrences of this event
is . The expectation can be evaluated:

(112)

2) and : The number of occurrences of this event
is equal to . It is not necessary to evaluate
the expectation directly. It is sufficient to note that this ex-
pectation corresponds to the probability of three arbitrary
nodes in the network being connected. This probability is
less than or equal to the probability of two arbitrary nodes
being connected. For some such that ,
we have:

(113)

3) and : This case is analogous to the preceding
case.

4) and : The number of occurrences of this event is
equal to . The expectation is easy
to evaluate using the independence of the random variables
involved. The expectation corresponds to the probability of
two independent randomly selected pairs of nodes being
connected:

(114)

The above analysis leads to the following bound on the double
averaged correlation function:

(115)

Now we can use (115) and (100) to show that the series (44)
converges. Indeed

(116)
The series on the right-hand side of (116) converges, which im-
plies the convergence of the series in (44).

Since (44) is satisfied, we can apply Theorem 3 with (110)
to derive (49). The result (50) follows immediately from the
definition of in (40).
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