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Abstract

Automated vehicles (AVs) must be thoroughly evaluated before their release and deployment. A 

widely used evaluation approach is the Naturalistic-Field Operational Test (N-FOT), which tests 

prototype vehicles directly on the public roads. Due to the low exposure to safety-critical 

scenarios, N-FOTs are time consuming and expensive to conduct. In this paper, we propose an 

accelerated evaluation approach for AVs. The results can be used to generate motions of the other 

primary vehicles to accelerate the verification of AVs in simulations and controlled experiments. 

Frontal collision due to unsafe cut-ins is the target crash type of this paper. Human-controlled 

vehicles making unsafe lane changes are modeled as the primary disturbance to AVs based on data 

collected by the University of Michigan Safety Pilot Model Deployment Program. The cut-in 

scenarios are generated based on skewed statistics of collected human driver behaviors, which 

generate risky testing scenarios while preserving the statistical information so that the safety 

benefits of AVs in nonaccelerated cases can be accurately estimated. The cross-entropy method is 

used to recursively search for the optimal skewing parameters. The frequencies of the occurrences 

of conflicts, crashes, and injuries are estimated for a modeled AV, and the achieved accelerated 

rate is around 2000 to 20 000. In other words, in the accelerated simulations, driving for 1000 
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miles will expose the AV with challenging scenarios that will take about 2 to 20 million miles of 

real-world driving to encounter. This technique thus has the potential to greatly reduce the 

development and validation time for AVs.

Keywords

Active safety systems; automated vehicles (AVs); autonomous emergency braking (AEB); crash 
avoidance; importance sampling (IS); lane change

I. Introduction

Automated Vehicle (AV) technologies are actively studied by many companies because of 

their potential to save fuel, reduce crashes, ease traffic congestion, and provide better 

mobility, especially to those who cannot drive [1]. Currently, almost all major automakers 

have research and development programs on AVs. By 2030, it is estimated that the sales of 

AVs may reach $87 billion dollars [2].

National Highway Traffic Safety Administration defines five levels of AV automation [3]. 

AVs are quickly being developed from level 0 automation, which conducts no driving tasks 

and up, possibly all the way to level 4 automation, which monitors the driving environment 

performs all dynamic driving duties. As the level of automation goes up, AVs need to deal 

with many uncertainties/disturbances in the real world, including imperfect human driver 

behaviors. AVs are projected to penetrate the market gradually and will co-exist with 

human-controlled vehicles (HVs) for decades [4]. During this transitional period, AVs will 

interact primarily with HVs. It is estimated that 70–90% of motor vehicle crashes are due to 

human errors [5], [6]. However, AVs can have their own crash modes. A practical and 

effective evaluation of the safety performance of AVs should consider their interactions with 

HVs.

Approaches for AV evaluation can be summarized into four categories as shown in Fig. 1. 

One approach to studying the interactions between AVs and HVs is through Naturalistic 

Field Operational Tests (N-FOT) [7]. In an N-FOT, data is collected from a number of 

equipped vehicles driven under naturalistic conditions over an extended period of time [8]. 

Several N-FOT projects [9]–[16] have been conducted in the U.S. and Europe. Conducting 

an N-FOT to evaluate an AV function typically involves non-intrusive conditions, i.e., the 

test drivers were told to drive as they normally do on public roads. This test approach suffers 

from several limitations. An obvious problem is the time needed. Under naturalistic 

conditions, the level of exposure to dangerous events is very low. In the U.S., there were 5.7 

million police-reported motor vehicle crashes and 30 057 fatal crashes in 2013, while the 

vehicles traveled a total of 2.99 trillion miles [17]. This translates to approximately 0.53 

million miles for a police-reported crash and 99 million miles for a fatal crash. Since the 

average mileage driven annually by licensed drivers is 14 012 miles [17], one needs to drive 

on average 38 years to experience a police-reported crash and 6877 years for a fatal crash. 

Because of this low exposure rate, the N-FOT projects need a large number of vehicles, long 

test duration, and a large budget. According to Akamatsu et al. [18], an N-FOT “cannot be 
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conducted with less than $10 000 000.” A more efficient approach for AV evaluation is 

needed.

Some researchers built stochastic models based on the big data obtained from N-FOTs and 

ran Monte Carlo simulations to evaluate AVs. Yang et al. [19] and Lee [20] evaluated 

collision avoidance systems by replaying segments extracted from the Road-Departure 

Crash-Warning (RDCW) FOT and Intelligent Cruise Control (ICC) FOT naturalistic driving 

databases. Woodrooffe et al. [21] generated 1.5 million forward collision scenarios based on 

naturalistic driving conflicts and used them to evaluate collision warning and collision 

mitigation braking technologies on heavy trucks. Reusing the N-FOT data in simulations can 

avoid the large budget for N-FOTs. However, even for computer simulations, low exposure 

to safety critical scenarios is still an issue.

The test matrix approach has been the basis of many test procedures, such as the AEB 

(Autonomous Emergency Braking) test protocol [22] of the Euro New Car Assessment 

Program (Euro-NCAP). Much development work was done to advance this evaluation 

approach including CAMP [23], HASTE [24], AIDE [25], TRACE [26], APROSYS [27] 

and ASSESS [28]. The test scenarios are frequently selected based on national crash 

databases [29], such as GES (General Estimates System) [30], NMVCCS (National Motor 

Vehicle Crash Causation Survey) [31] and EDR (Event Data Recorder databases) [32]. A 

systematic review of this approach can be found in [8]. The main benefits of this test method 

are that it is repeatable, reliable, and can be finished in a reasonable amount of time. 

However, it is not clear how the selected test scenarios correlate with real-world conditions, 

especially when human interaction is involved [8], [33]. Moreover, because all test scenarios 

are fixed and predefined, AVs can be tuned to achieve good performance in these tests, but 

their behaviors under broader conditions are not adequately assessed [34].

Another approach, the Worst-Case Scenario Evaluation (WCSE) methodology, has been 

studied by Ma et al. [35], Ungoren et al. [36] and Kou [37] to identify the most challenging 

scenarios using model-based optimization techniques. While the worst-case evaluation 

method can identify the weakness of a vehicle control system, it does not consider the 

probability of occurrence of the worst-case scenarios. There- fore, the worst case evaluation 

results do not provide sufficient information about the risk in the real world and may not be 

the fairest way to compare different designs.

In a previous work [38], we proposed the accelerated evaluation concept and applied it to the 

car-following scenarios. The crash rate in the real world was estimated based on the national 

crash database. In [39], we introduced the Importance Sampling techniques to improve the 

reliability and accuracy of the estimation, in which the parameters in the accelerated tests 

were tuned by hands. In this paper, we further proposed an automated method to search for 

the best way to morph the original lane change behavior statistics. As shown in Fig. 2, first, 

HVs are modeled based on data extracted from N-FOT databases to represent the human 

driving behaviors. Second, an accelerated model is constructed by modifying the probability 

density functions of the stochastic variables to promote riskier lane change behaviors. Third, 

the optimal parameters of the accelerated model are obtained through an iterative search. 

Finally, the “amplified” results together with the statistics in the accelerated model are used 
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to calculate the performance of the host vehicles in real world driving. The contribution of 

this paper is that we proposed the Accelerated Evaluation of AV procedure which provides 

high accuracy and accelerated evaluation using Importance Sampling theory and the Cross 

Entropy method. To the best of our knowledge, we are the first group to apply these 

techniques to create test scenarios to evaluate AV safety and calculate social benefits. The 

meaningfulness of doing this is not only to accelerate the simulation, but also to provide a 

way to objectively identify critical test scenarios that can be used in other types of evaluation 

platforms such as driving simulator, on-track tests, or hardware-in-the-loop tests.

II. Lane Change Models Based on Naturalistic Driving

The lane change (cut-in) scenario is used as an example to show the benefits of the proposed 

accelerated evaluation approach. Lane change, defined as a vehicle moving from one lane to 

another in the same direction of travel [40], can cause a frontal collision crash for the 

following vehicle when the time gap is too short. Successful completion of a lane change 

requires attention to the vehicles in both the original lane and the adjacent lane [41]. In the 

US, there are between 240 000 and 610 000 reported lane-change crashes, resulting in 60 

000 injuries annually [40]. Few protocols have been published regarding the evaluation of 

AVs (e.g., AEB systems) under lane change scenarios.

Human drivers’ lane change behaviors have been analyzed and modeled for more than half a 

century. Early studies based on controlled experiments usually have short test horizons and 

limited control settings [42]. More recently, researchers started to use large scale N-FOT 

databases to model the lane change behaviors. Lee et al. [42] examined steering, turn signal 

and brake pedal usage, eye glance patterns, and safety envelope of 500 lane changes. The 

100-Car Naturalistic Driving Study analyzed lane change events leading to rear-end crashes 

and near-crashes [40]. Zhao et al. [43] analyzed the safety critical variables in mandatory 

and discretionary lane changes for heavy trucks [12]. Most of these studies are based on 

hundreds of lane changes. We use the data collected in the Safety Pilot Model Deployment 

(SPMD) project, which contains more than 400 000 lane changes.

A. Identification of the Lane Change Events

In this research, we developed a lane change statistical model and demonstrated its use for 

accelerated evaluation of a frontal collision avoidance algorithm. The data used is from the 

Safety Pilot Model Deployment database [44]. The SPMD program aims to demonstrate 

connected vehicle technologies in a real-world environment. It recorded naturalistic driving 

of 2842 equipped vehicles in Ann Arbor, Michigan for more than two years. As of April 

2015, 34.9 million miles were logged, making SPMD one of the largest public N-FOT 

databases ever.

As shown in Fig. 3, a lane change was detected and recorded by an SPMD vehicle when the 

Lane Change Vehicle (LCV) crosses the lane markers. In the SPMD program, 98 sedans are 

equipped with Data Acquisition System and MobilEye [45], which provides: a) relative 

position to the lane change vehicle (range), and b) lane tracking measures pertaining to the 

lane delineation both from the painted boundary lines and road edge characteristics. The 

error of range measurement is around 10% at 90 m and 5% at 45 m [46].
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To ensure consistency of the used dataset, the following criteria were applied:

(1)

where tLC is the time when the center line of the LCV crosses the lane markers; υL and υ are 

the velocities of the LCV and the SPMD vehicle; RL is the range defined as the distance 

between the rear edge of the LCV and the front edge of the SPMD vehicle. 403 581 lane 

changes were detected in total. Fig. 4 shows the locations of the identified lane changes.

B. Lane Change Models

A lane change can be divided into three phases: the decision to initiate a lane change, gap 

(range) acceptance, and lane change execution [42]. In this research, we focus on the effects 

of gap acceptance, which is mainly captured by three variables: υL(tLC), RL(tLC) and Time 

To Collision (TTC) of AVs, defined as

(2)

where ṘL is the derivative of RL. In the following, unless mentioned specifically, υL, RL and 

TTCL are the variables at tLC.

The distribution of υL is shown in Fig. 5. The division of highways and local roads is 

embodied by the bimodal shape of the histogram. υL is assumed to remain constant during 

the lane change. Only the events with a negative range rate are used to build the lane change 

model. Out of 403 581 lane change events, 173 692 are with negative range rate.

Larger RL and TTCL indicate the scenario is safer which are the majority cases in 

naturalistic driving, while Smaller RL and TTCL indicate the scenario is less safe and rarer. 

Therefore, we define the variables of interest as reciprocal of RL and TTCL to put the rare 

events in the tail of the distribution to naturally fit the naturalistic driving statistics. To 

capture the influence of vehicle speed on range and TTC, we divided lane change events into 

low, medium. and high velocity conditions. Fig. 6 shows that υL has little influence on the 

distribution of . We use a standard Matlab package [47] to search for a proper 

distribution to fit , which examines 17 different types of distributions and examine 

goodness-of-fit by using Bayesian Information Criterion [48]. Fig. 7 illustrates the fitting of 

 using a Pareto distribution defined as
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(3)

where the shape parameter , the scale parameter , and the threshold parameter 

are all positive. Note that, due to the physical limitations mentioned in (1), the Pareto 

distribution in (3) is in fact truncated at 1/0.1 m−1 and 1/75 m−1. For the sake of conciseness, 

we show the untruncated version throughout this paper. The same holds for all other fitted 

distributions in this paper.

The histograms of  for different velocity intervals are shown in Fig. 8. As the vehicle 

speed increases, the mean of  decreases. Based on the analysis using MATLAB 

fitting package [47],  can be approximated by both Pareto distribution and 

exponential distribution with 0.23% relative difference in BIC. We used the exponential 

distribution

(4)

for simplicity, where the scaling factor  varies with the speed of the LCV. Here we 

define  as the mean value instead of the rate of the exponential distribution, because 

mean value has more intuitive physical meaning.

The dependence of  on vehicle speed is shown in Fig. 9. As the vehicle speed 

increases,  decreases. The blue circles represent  at the center points of υL 

intervals. We use linear interpolation and extrapolation to create smooth  for all 

vehicle speeds.

The effect of range on TTC is very limited, as can be seen in Fig. 10. This indicates that RL 

and TTCL can be modeled independently given the same υL. ṘL can then be calculated from 

(5)

(5)

Finally, the velocity of the host vehicle υ can be calculated from
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(6)

In summary, the lane change events are generated in the following order: a) generate υL 

based on the empirical distributions shown in Fig. 5; b) generate  using Fig. 7; c) 

generate  using the Exponential distribution with parameters shown in Fig. 9; and 

finally d) calculate υ using (5) and (6).

III. Accelerated Evaluation

Monte Carlo techniques can be used to simulate driving conditions using a stochastic model, 

but a naïve implementation will take a long time to execute. The key of accelerated 

evaluation is to skew the statistics of the Monte Carlo samples but still be able to maintain 

statistical correctness and accuracy. In this section, we first show the limitation of the 

“crude” Monte Carlo (CMC) in simulating events with small probability (rare events). We 

then introduce the Importance Sampling (IS) concept. Thirdly, we show how to apply IS to 

evaluate AVs in lane change scenarios. Finally, we introduce the Cross Entropy method to 

optimize the use of IS.

A. Monte Carlo Estimation

Monte Carlo method [49] typically aims to generate unbiased statistical samples to estimate 

the expected value of a stochastic process. Let Ω be the sample space for all possible events, 

and ℇ ⊂ Ω be the rare events of interest, e.g., the occurrence of a crash. Let x be a random 

vector describing the motions of the lane change vehicle. The indicator function of the event 

ℇ is defined as

(7)

Our goal is to estimate the probability of ℇ happening, i.e.,

(8)

The CMC approach generates independent and identically distributed samples x1, x2, …, xn 

of x, and then calculate the sample average

(9)

We state some statistical properties of CMC. First, under mild conditions, the Strong Law of 

Large Numbers [49] holds, i.e.,
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(10)

Moreover, the Central Limit Theorem [49] implies that, when n is large, γn̂ follows 

approximately the normal distribution (E(γ̂
n), σ2(γ̂n)) with the mean

(11)

and variance

(12)

The accuracy of the estimation is represented by the relative half-width, which is the half-

width of the confidence interval relative to the probability to be estimated. With the 

Confidence Level at 100 (1 − α)%, the relative half-width of γ̂
n is defined as

(13)

where lα is the half-width given by

(14)

and zα is defined as

(15)

where Φ−1 is the inverse cumulative distribution function of (0,1). To ensure lr is smaller 

than a constant β, we need

(16)

In other words
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(17)

Equation (17) reveals that when ℇ is rare, i.e., γ0, the required test number n goes to 

infinity. This means that a huge test number is required to maintain a satisfactory half-width 

relative to the magnitude of a rare event probability γ. This is the reason why CMC is slow.

B. Importance Sampling (IS)

IS is a so-called variance reduction technique that is effective in handling rare events. IS has 

been successfully applied to evaluate critical events in reliability [50], finance [51], 

insurance [52], and telecommunication networks [53]. General overviews about IS can be 

found in [54]–[56].

To explain the concept of IS, we denote f(x) as the original joint density function of the 

random vector x. The core idea of IS is to replace f(x) with a new density f*(x) that has a 

higher likelihood for the rare events to happen. Using a different distribution, however, leads 

to biased samples, and the key of IS is to provide a mechanism to compensate for this bias 

and compute correct crash rate at the end.

We describe this mechanism as follows. First, we define the likelihood ratio L (Radon-

Nikodym derivative [57]) as

(18)

The probability of E satisfies

(19)

One required condition for (19) to hold is that f*(x) must be absolutely continuous with 

respect to f(x) within ℇ, i.e.,

(20)

which guarantees the validity of L in (18). The IS sample is Iℇ(xi)L(xi) where xi is generated 

under f*(x), which is an unbiased estimator for γ. The overall IS estimator for test number n 
is then

(21)
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Note that although a continuous model is used in this paper, similar approaches can be 

applied to the discrete model as well.

Now consider the relative half-width of CI constructed by IS

(22)

The required minimum test number is then

(23)

When f*(x) is properly chosen,  can be close to γ2, resulting in a smaller 

number of tests (i.e., the evaluation is accelerated).

C. Accelerated Evaluation of Automated Vehicles in Lane Change Scenarios

When a slower lane changing vehicle cut in front of the AV, the events of interest are defined 

as

(24)

where TLC represents duration of the lane change event; Rℇ is the critical range. Equation 

(24) means that if the minimum range is smaller than Rℇ anytime during the lane change 

event, this lane change belongs to the ℇ set.

The random vector x consists of three random variables . υL is generated 

using the empirical distributions shown in Fig. 5. The IS approach considers the modified 

probability density functions of  and  denoted by  and . The 

likelihood ratio is then

(25)

From (19), the probability of ℇ can be estimated as
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(26)

The only task left is then to construct proper  and  to accelerate the 

evaluation procedure.

D. Searching for Optimal IS Distributions With the Cross Entropy Approach

The choice of IS distribution is critical to the success of the IS method. The Cross Entropy 

(CE) method, first proposed by Rubinstein [58], is an iterative search procedure to find good 

IS distribution within a prescribed parametric family.

To understand how CE works, we first point out an important observation: the theoretical 

optimal IS distribution is always the conditional distribution given that the rare event of 

interest happens, namely

(27)

With , any sampled x leads to a rare event so that the indicator function Iℇ (x) 

constantly equals to one. The likelihood ratio

(28)

The probability of the rare events is calculated by

(29)

In other words, γn̂ equals to γ for all n. The distribution  is optimal in the sense that 

any sample generated from it has zero variance, and hence the required test number to 

construct confidence level to any precision is 1; thus it is also known as the zero variance IS 

distribution [56]. Unfortunately, this distribution cannot be implemented directly because it 

requires the knowledge of γ, which is exactly what we want to estimate. However, it 

provides a benchmark to get good IS distributions: A good IS distribution should be close to 

the zero-variance distribution.

To describe how CE works, we define the Kullback-Leibler (KL) divergence
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(30)

as a measure of the difference between fϑ̃ (x) and . The idea of CE is to find an IS 

distribution over the family of distributions f̃ϑ(x) (controlled by ϑ) that has the minimum 

KL divergence with , i.e.,

(31)

Substituting (30) into (31), we have

(32)

Note the first term inside the integration is independent of ϑ (32) can be simplified to

(33)

Substituting (27) into (33), we have

(34)

The CE method is an iterative scheme to sequentially improve the IS distribution and 

optimize ϑ* using (33). At the ith iteration, we use f ̃ϑi(x) as the IS distribution to run the 

Monte Carlo. Then, letting Lϑ̃i(x) = f(x)/ (fϑ̃i (x), from (34), ϑi+1 can be derived as

(35)

where Iℇ(x) are samples in the previous iteration and Êfϑ̃i
 [·] denotes the empirical average.
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There are many possible choices for the family of f̃ϑ(x). Here we use a popular class named 

the Exponential Change of Measure (ECM) for .

Recall that . ECM considers the family

(36)

parametrized by , where  is the logarithmic moment generation function of 

, i.e.,

(37)

It can be derived that

(38)

where  and . To make  have the same scale as , we 

apply a nonlinear mapping by letting

(39)

with . Substitute (39) into (38), we have

(40)

 follows a (truncated) Pareto distribution, i.e.,

(41)
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We apply an ECM of the exponential distribution as our family of IS distributions, where we 

first construct an exponential distribution

(42)

with , which gives (42) the smallest least square error to (41). With similar procedure, 

we have

(43)

Using this approximate ECM instead of an ECM applied to a truncated Pareto reduces the 

computation complexity in the optimization step since a closed form can be obtained in each 

Cross Entropy iteration.

The overall likelihood ratio is

(44)

For low-velocity conditions, i.e.,

we simulate N tests with initial condition

where υL follows the low velocity portion (5 m/s~15 m/s) of the empirical distribution 

shown in Fig. 5.  and  follows  and . Apply (38) and (43) to 

(35). The optimal parameter  and  can be derived analytically

(45)
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(46)

where j is the index for each simulation. The newly obtained  and  can be used in 

the next iteration.

The same procedure can be used to obtain optimal parameters in medium and high-velocity 

conditions.

IV. Simulation Analysis

An AV model was designed to demonstrate the proposed accelerated evaluation approach in 

the lane change scenarios.

A. Design of Test Automated Vehicle

The AV is designed to be equipped with both Adaptive Cruise Control (ACC) [59] and 

Autonomous Emergency Braking (AEB). When the driving is perceived to be safe (TTCL ≥ 

TTCAEB), it is controlled by the ACC. The ACC is approximated by a discrete Proportional-

Integral (PI) controller [59] to achieve a desired time headway . Use the time headway 

error  as the controller input

(47)

where tHW is the current time headway, defined as

(48)

The discrete PI controller can be described in the discrete-time domain as

(49)

where Ad and  are the Z transformation of the command acceleration ad and ; Ts is 

the sampling time; gains  and  are calculated using the Matlab Control Toolbox 

using the following requirements: a) Loop bandwidth = 10 rad/s, and b) Phase margin = 60 

degree. The control power of ACC system is saturated to a constant acceleration , i.e., 

. To implement the PI controller in the time domain, taking the inverse Z 
transformation of (49), we get
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(50)

The AEB model was extracted from a 2011 Volvo V60, based on a test conducted by ADAC 

(Allgemeiner Deutscher Automobil-Club e.V.) [60] (see Fig. 11). It is analyzed using test 

track data, owner’s manuals, European New Car Assessment Program (Euro NCAP) 

information, and videos during vehicle operation [61]. The AEB algorithm becomes active 

when TTCL < TTCAEB, where TTCAEB depends on the vehicle speed as shown in Fig. 12. 

Once triggered, AEB aims to achieve acceleration aAEB. In [61] aAEB was assumed to be 

−10 m/s2 on high friction roads. The build-up of deceleration is subject to a rate limit rAEB 

as shown in Fig. 13. It should be noted that the AEB modeled here is an approximation but 

not necessarily a good representation of the actual AEB system on production vehicles.

A first order lag with a time constant τAV is used to model the transfer function from the 

commanded acceleration to the actual acceleration for simplicity. The proposed accelerated 

evaluation process can be applied on other vehicle models such as CarSim [62], if more 

accurate simulations are desired.

The simulation parameters are listed in Table I.

B. Simulation Analysis

Three kinds of events were analyzed in this study:

• Conflict.

• Crash.

• Injury.

A conflict event happens when an AV appears in the proximity zone of the LCV between 

time tLC and tLC + TLC. As shown in Fig. 14, the proximity zone is the area in the adjacent 

lane from 4 feet in front of the bumper of the LCV to 30 feet behind the rear bumper of the 

LCV [42, p. ix]. This area generally includes the blind spot and the area beside and behind 

the vehicle in which another vehicle is likely to travel.

The Cross Entropy is used to find optimal  and . The values of  and 

in the tenth iteration are used in the simulations to estimate the probability of conflicts 

(conflict rate) in a lane change scenario. 100 lane changes are simulated in each iteration. As 

shown in Fig. 15, three sets of  and  are obtained with low, medium and high 

velocities. All  converge to about −0.12, whereas values of  float around zero. As 

the conflict events are defined based on RL, RL has a direct impact on the occurrence of the 

event. Therefore f̃ϑ (x) is largely affected by , and  converges to zero 

.
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Both accelerated evaluation and the non-accelerated simulations (based on CMC) were 

conducted to demonstrate the performance and credibility of the proposed approach. Fig. 16 

shows that the accelerated test is unbiased as the conflict rate converges to the one estimated 

in the non-accelerated simulation.

The convergence is reached when the relative half-width lr is below β = 0.2 with 80% 

confidence. Fig. 17 shows that the accelerated evaluation achieves this confidence level after 

Nacc = 364 simulations, while the naturalistic simulations take Nnature = 5.90e3 simulations.

In the SPMD database, during 1 325 964 miles naturalistic driving, 173 592 lane changes 

were identified with negative range rates. The frequency of lane change can be estimated as

(51)

The driving distance needed in naturalistic test is thus

(52)

The test distance in accelerated evaluation

(53)

where υ(n)(t) represents the velocity of AV at time t in the nth test and the termination time

(54)

The accelerated rate is defined as

(55)

The acceleration is achieved from both the modeling of lane change scenarios and the 

application of Importance Sampling and Cross Entropy techniques.

A crash happens when the range RL becomes negative, i.e., Rℇ = 0 in (24). Similar to the 

conflict events analysis, another Cross Entropy analysis is conducted to find optimal 

and  for crash events. Because crashes are rarer than the conflict events, 500 lane 

changes are simulated in each iteration. As shown in Fig. 18, three different values of 
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were obtained from the iterative search for different velocity intervals, whereas 

converges to values close to zero. It can be explained that in the crash analysis, the safety 

critical function (AEB) on AV is mainly affected by TTC. Therefore  has a larger 

impact on the occurrence of the crash. The estimation of the crash rate under accelerated and 

naturalistic conditions are shown in Fig. 19. The convergence is reached with 80% 

confidence level and β = 0.2 as shown in Fig. 20.

Injuries are also important indicators of the performance of AVs. Here we focus on injuries 

with the Maximum Abbreviated Injury Score equal or larger than 2 (MAIS2+), representing 

moderate-to-fatal injuries. The probability of injury is related to the relative velocity at the 

crash time tcrash

(56)

The probability of moderate-to-fatal injuries for the AV passengers is estimated by a 

nonlinear model

(57)

which was proposed by Kusano and Gabler [63] shown in Fig.21 with parameters β0 = 

−6.068, β1 = 0.1, and β2 = −0.6234. The injury rate E(Pinj(Δυ)) is calculated as

(58)

where L is the likelihood and xn represents the random variables  in the 

nth simulation. The modified statistics used in crash events (shown in Fig. 18) are used to 

calculate the injury rate. The estimation results and convergence are shown in Figs. 22 and 

23.

The accelerated rates of conflict, crash and injury events are summarized in Table II. The 

accelerated rates of crashes and injuries are higher than that of conflicts. This is because 

crashes and injuries occur with much lower probabilities than conflicts. The IS techniques 

generally have better performance when target events are rarer.

V. Conclusion

This paper proposes a new approach to evaluate the performance of AVs in an accelerated 

fashion. A lane change model was established based on a large naturalistic driving database

—the Safety Pilot Model Deployment database. Lane change conflict, crash, and injury rates 

of a given AV model were estimated accurately but 2 000 to 20 000 times faster than the 

Zhao et al. Page 18

IEEE trans Intell Transp Syst. Author manuscript; available in PMC 2017 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



naturalistic driving tests in simulation. This technique thus has the potential to reduce greatly 

the development and validation time for AVs by providing both statistical conclusion and 

critical scenarios selected objectively.

In the future study, more comprehensive human-controlled model may be obtained as more 

data are collect in the Safety Pilot Model Deploy project and other projects. Other forms of 

IS distribution families other than ECM-based will be analyzed to potentially increase the 

evaluation efficiency to an even higher rate. The proposed accelerated evaluation approach 

can also be extended to other scenarios, such as car-following, lane departure or pedestrian 

avoidance and other testing platforms in addition to pure simulations, such that hardware-in-

the-loop tests, driving simulator tests, or on-track tests.
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Fig. 1. 

Summary of evaluation approaches for AVs.
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Fig. 2. 

Procedure of the accelerated evaluation method.
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Fig. 3. 

Lane-change scenarios that may cause frontal crashes.
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Fig. 4. 

Recorded lane-change events from the SPMD database.
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Fig. 5. 

Distributions of υL(tLC) of lane-change events used in our model.
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Fig. 6. 

Distributions of  at different vehicle forward speeds.
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Fig. 7. 

Fitting results of  using the Pareto distribution.
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Fig. 8. 

Distribution of  at different lane-change vehicle speeds.
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Fig. 9. 

Model parameters for TTCL(tLC).
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Fig. 10. 

Distribution of TTCL(tLC) at different range intervals.
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Fig. 11. 

Layout of the AV model.
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Fig. 12. 

TTCAEB as a function of vehicle speed.
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Fig. 13. 

Modeled AEB algorithm.
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Fig. 14. 

Definition of conflict events.

Zhao et al. Page 38

IEEE trans Intell Transp Syst. Author manuscript; available in PMC 2017 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 15. 

Searching for optimal parameters for conflict events.
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Fig. 16. 

Estimation of the conflict rate.
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Fig. 17. 

Convergence of the conflict rate estimation.
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Fig. 18. 

Searching for optimal parameters for crash events.
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Fig. 19. 

Estimation of the crash rate.
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Fig. 20. 

Convergence of the crash rate estimation.
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Fig. 21. 

Moderate-to-fatal injury model for forward collisions.
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Fig. 22. 

Estimation of the injury rate.
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Fig. 23. 

Convergence of the injury rate estimation.
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TABLE II

Accelerated Rates of Conflicts, Crashes and Injury

Conflict Crash Injury

Dnature [mile] 4.53e4 4.71e7 4.70e7

Dacc [mile] 16.4 4.02e3 2.53e3

racc 2.77e3 1.17e4 1.86e4
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