
Accelerated Generative Models for 3D Point Cloud Data

Ben Eckart1,2 Kihwan Kim2 Alejandro Troccoli2 Alonzo Kelly1 Jan Kautz2

1The Robotics Institute, Carnegie Mellon University 2NVIDIA Research

https://research.nvidia.com/publication/accelerated-generative-models

Abstract

Finding meaningful, structured representations of 3D

point cloud data (PCD) has become a core task for spa-

tial perception applications. In this paper we introduce

a method for constructing compact generative representa-

tions of PCD at multiple levels of detail. As opposed to

deterministic structures such as voxel grids or octrees, we

propose probabilistic subdivisions of the data through lo-

cal mixture modeling, and show how these subdivisions can

provide a maximum likelihood segmentation of the data.

The final representation is hierarchical, compact, para-

metric, and statistically derived, facilitating run-time oc-

cupancy calculations through stochastic sampling. Unlike

traditional deterministic spatial subdivision methods, our

technique enables dynamic creation of voxel grids accord-

ing the application’s best needs. In contrast to other gener-

ative models for PCD, we explicitly enforce sparsity among

points and mixtures, a technique which we call expectation

sparsification. This leads to a highly parallel hierarchical

Expectation Maximization (EM) algorithm well-suited for

the GPU and real-time execution. We explore the trade-offs

between model fidelity and model size at various levels of

detail, our tests showing favorable performance when com-

pared to octree and NDT-based methods.

1. Introduction

Given the recent commoditization of different types of

active range sensors (e.g., TOF, Lidar, structured light), spa-

tial processing and visualization of large collections of 3D

point clouds has become one of the most important stages in

3D imaging/vision pipelines [15]. 3D point cloud process-

ing introduces several new challenging problems such as

(1) uneven sampling density, (2) unstructured organization

of the incoming data, (3) level-of-detail processing given

varying speed and memory requirements, and (4) measure-

ment uncertainty from sensor noise. Additionally, modern

depth sensors generate millions of data points per second,

making it difficult to utilize all incoming data effectively in

real-time for devices with limited computational resources.

Many current techniques for processing large amounts

(a) (b) (c)

(d) (e) (f)

Figure 1. Processing PCD with a Hierarchy of Gaussian Mix-

tures: (a) Raw PCD from Stanford Bunny (35k vertices), (b) and

(c) Two levels of detail extracted from the proposed model. Each

color denotes the area of support of a single Gaussian and the el-

lipsoids indicate their one σ extent. Finer grained color patches

therefore indicate higher statistical fidelity but larger model size,

(d) a log-scale heat-map of a PDF from a high fidelity model. (e)

stochastically re-sampled PCD from the model (5k points), (f) oc-

cupancy grid map also derived directly from the model.

of point cloud data (PCD) either simply subsample the data

or apply some sort of discretization, either through dense,

sparse [16] or hierarchical [7] voxelization techniques. Rep-

resenting continuous geometry through voxels creates dis-

cretization artifacts and offers no clear way of handling

noise or data uncertainty. Furthermore, the discrete na-

ture of voxels and sub-sampled point clouds greatly com-

plicate spatial processing procedures that require continu-

ous derivatives or high quality normal estimates.

We address these challenges with a hierarchical and

probabilistic representation of 3D point cloud data (PCD)

in the form of a hierarchy of Gaussian Mixture Models

(GMMs). As a representation of 3D space, a GMM model

has several advantages. First, being a continuous probabil-

ity density function (PDF), the GMM does not require the

discretization of 3D space. Second, the uncertainties of data

measurements are embedded in the covariance matrices of

the GMM, which combined with a special cluster to handle

outliers, provide an effective way of handling noisy mea-

15497

https://research.nvidia.com/publication/accelerated-generative-models

surements. Finally, the storage requirements for a GMM

are much lower than for the original PCD.

Though GMMs have been used before for PCD repre-

sentation [4, 8], we introduce a novel top-down hierarchical

model which confers the following benefits: (1) dynamic al-

location of the number of mixtures, with new clusters being

added in areas of high-frequency detail, (2) efficient par-

allel coarse-to-fine construction by recursively partitioning

the points in the PCD into their most influential mixture/s,

and (3) multiple levels of detail for point cloud re-sampling

and occupancy map creation.

Many applications in 3D vision require grid-based oc-

cupancy estimates of space, including path planning [19],

semantic perception [6], and 3D modeling [11]. We show

how our model may augment these applications by allowing

dynamic run-time estimates of occupancy over sparse grids.

Since the spatial extent and voxel resolution of these esti-

mates can be determined dynamically at run-time, one can

avoid many of the common problems with traditional tech-

niques: constrained extent in large scenes, discretization ar-

tifacts as a result of coarse voxel sizes, or memory bottle-

necks resulting from dense high-resolution voxel grids.

Although a generative or continuous parametric repre-

sentation for PCD can facilitate many important applica-

tions such as registration, surface extraction, semantic seg-

mentation, this is not our focus. Instead, we focus on a more

basic and fundamental problem: how one might efficiently

construct, sample, and integrate over these generative mod-

els. This work therefore can be used to augment all the

aforementioned applications.

Our main contribution is a highly efficient and paral-

lelizable method for hierarchical top-down GMM cluster-

ing that, as opposed to previous GMM-based techniques,

applies sparse constraints on point to cluster assignments,

thus enabling construction time logarithmic with respect to

the overall model size. In addition, we present a novel im-

portance sampling technique that allows for efficient inte-

gration of the PDF over a discretized volume of space that

can be used to construct arbitrarily sized probabilistic occu-

pancy maps.

2. Related Work

In most spatial processing applications that rely on point

cloud data, using the raw points directly can be nearly in-

tractable. Thus, most common operations one might want

to perform: nearest neighbor queries, denoising, geometric

or semantic inference, etc., stand to benefit from imposing

some type of structure to the raw data. Table 1 summarizes

typical data structures used for point cloud data.

Voxelization and occupancy grids [6, 19] have been es-

tablished as a popular method to discretize raw PCD over

a dense grid, but memory problems emerge when needing

fine resolution or large grids. Especially in cases of 3D

Data Structure Hierarchical Generative

Voxel

Free

Construction

Complexity

Voxel Hash List [17] N

Octree [11] X N logN
3D-NDT [1] X N

3D-NDT-Octree [14] X X N logN
GMM [4] X X NJ

Hierarchical GMM [10] X X X N2

Proposed Method X X X N log J

Table 1. A Comparison of 3D Point Cloud Data Structures

Hierarchical: Hierarchical methods compress free space and are

therefore more compact than dense grids. Generative: Generative

models add parametric structure to PCD, facilitating statistical in-

ference, maximum likelihood, or continuous optimization meth-

ods. Voxel Free: The lack of voxelization present in the model

avoids discretization errors, allowing higher fidelity at smaller

model sizes. Construction complexity: N is the number of points

in the PCD, and J the number of mixtures in a GMM, with J ≪ N

for most typical applications.

points, many voxels may be unoccupied, leading to inef-

ficient memory usage. Octrees and kd-trees can be much

more space efficient [11], as the construction of a reg-

ularly subdivided hierarchy effectively compresses empty

space. These structures incur additional overhead compared

to dense grids, however, requiring superlinear construction

time with respect to the size of the PCD.

Whereas voxels and octrees rely on discretization to ob-

tain structure from PCD, another class of algorithms instead

model the data as a set of independent samples from some

unknown distribution. These algorithms use the principle of

maximum data likelihood to optimize a set of latent param-

eters that describe the original PCD. Known as generative

models, these models can by construction provide robust

probabilistic inference. Their trade-off, however, is the po-

tentially high construction or inference cost and need for a

priori knowledge.

For modeling 3D PCD, the most common generative

model used in the literature is the Gaussian Mixture Model

(GMM). Typically, GMMs are used to facilitate robust point

cloud registration techniques [1, 4, 5, 12, 8]. The work of

Jian and Vemuri [12], for example, convert a point cloud

into a GMM by placing a covariance around each point.

Though this minimizes the setup cost, inference then be-

comes very slow as the GMM is larger than the original raw

points. Others, such as Eckart et al. [4, 5] perform a max-

imum data likelihood optimization during the construction

of the model in order to reduce its size, but this construc-

tion does not scale well when large amounts of mixtures are

needed. In contrast to these methods, our proposed tech-

nique is exponentially faster with respect to the size of the

model. A “flat” version must iterate linearly O(J) through

all J mixtures, whereas our method is O(log J). Further-

more, we do not need to specify the number of mixtures a

priori. Our coarse-to-fine construction allows us to both fil-

5498

ter out low-frequency details quickly (floors and walls) and

drill down to deeper levels for high-frequency details.

The Normal Distributions Transform (NDT) [1, 18] is a

widely used and elegant technique that attempts to merge

the concepts of a voxel grid or octree with a GMM by sim-

ply recording the mean and covariance of all points that fall

into each voxel. The GMM can then be constructed as a

weighted sum of the voxel’s respective Gaussian parame-

ters. Though the construction of such a data structure is

very efficient, the requirement to voxelize at the beginning

can cause a loss of fidelity.

Other work has experimented with hierarchical forms of

GMMs for applications like 2D image segmentation [9].

Typically, these methods operate bottom-up, repeatedly

grouping together like clusters of points using divergence

measures to split and merge the data. For example, Gold-

berger et al. [10] construct an iterative EM-like algorithm

using KL-Divergence in order to repeatedly merge candi-

date clusters. In contrast, we adopt a top-down hierarchical

approach, motivated by the need to keep the calculation of

point-mixture correspondences sparse for 3D point cluster-

ing. As such, our approach is more amenable to parallel

hardware and is much more computationally efficient (see

Table 1). Another similar top-down construction is that of

Kalaiah et al. [13], though this method is not generative.

3. Method Overview

Our model uses overlapping basis functions (anisotropic

Gaussian mixtures) for representing 3D geometry. These

functions are recursively applied in a top-down fashion

to create a hierarchy of overlapping patches that approxi-

mate the original 3D PCD. The creation of this model is

cast as the solution to a Maximum Likelihood Estimation

(MLE) hierarchical Gaussian Mixture segmentation prob-

lem that can be solved by recursively employing the Ex-

pectation Maximization (EM) algorithm over increasingly

smaller partitions of the point data.

3.1. Model Definition

Our world model is composed of J overlapping proba-

bilistic mixtures Θj plus a (J+1)th noise distribution. We

choose our J mixtures to be weighted 3-dimensional mul-

tivariate Gaussians, Θj = {πj ,µj ,Σj}, with πj being the

weight and µj and Σj being the mean and covariance, re-

spectively. Our noise distribution is chosen to be a uniform

distribution over the bounding box of the point data. To-

gether, these basis distributions produce a mixture model,

which is itself a valid probability distribution.

Given a point cloud Z of size N , its probability of be-

ing generated by our model, given that each point is an iid

sample of the world, is:

p(Z|Θ) =
N
∏

i=1

p(zi|Θ) =
N
∏

i=1

J+1
∑

j=1

πjp(zi|Θj), (1)

p(zi|Θj) =

{

N (zi|Θj), for 1 ≤ j ≤ J,
1
η
, for j = J + 1,

(2)

where η is the size of the volume for which the noise cluster

is active.

To find the basis functions to best fit the point cloud data

we employ the EM algorithm [2], which has been estab-

lished as a way to iteratively maximize data likelihood when

there is no closed form solution to the maximizer, yet there

is a way of finding a maximum of joint data likelihood of

the data and a set of associated latent variables. We define

a set C of latent variables cij that represents the binary as-

sociations between points zi ∈ Z and mixtures Θj . In the

E-Step, we calculate the posterior for all cij ∈ C given Θ:

E[cij] =
πjp(zi|Θj)

∑J+1
j′=1 πj′p(zi|Θj′)

(3)

In the M-Step, we maximize the expected log-likelihood

with respect to Θ, using our current E[cij]
def

= γij :

max
Θ

∑

ij

γij{lnπj + ln p(zi|Θj)} (4)

Given a fixed set of expectations, one can solve for the op-

timal parameters in closed form at iteration k:

µ
k+1
j =

∑

i γijzi
∑

i γij
(5)

Σ
k+1
j =

∑

i γijziz
T
i

∑

i γij
− µ

k+1
j µ

k+1
j

T
(6)

πk+1
j =

∑

i

γij
N

(7)

3.2. Expectation Sparsity

Given the above definitions and a sufficiently high num-

ber of mixtures J , the posterior over correspondences will

be sparse due to the nature of 3D geometry. We can see this

fact intuitively: Consider that in an indoor scene, for exam-

ple, the geometric structure of a light fixture will not be sta-

tistically informative to a point sampled on a couch beneath

it. Thus, given a point cloud of size N , if we naively try to

calculate all NJ point-subsurface expectations (γij), most

will be zero or near-zero and not contribute meaningfully to

the calculation. Therefore, one could save vast amounts of

computation when trying to calculate γij by restricting the

summation to only those {zi,Θj} tuples that are known to

have sufficiently non-zero conditional probability. We show

in the next section how to solve this problem by construct-

ing a top-down hierarchy of GMMs.

3.3. A Top­Down Hierarchy of Mixtures

We can formally define our hierarchical Gaussian Mix-

ture Model recursively by looking at the probabilistic form

5499

for a point zi ∈ R
3. At the root of our tree, level 1 (l = 1),

our model consists of a Gaussian Mixture of size Ĵ , with a

Ĵ + 1th noise cluster:

p(zi|Θ
l=1) =

Ĵ+1
∑

j=1

πl=1
j p(zi|Θ

l=1
j) (8)

Each Θl=1
j can then be refined as another Gaussian Mixture,

using its correspondence variable:

p(zi|c
l=1
i ,Θl=2) =

Ĵ+1
∑

k=1

π
l=2|1
k p(zi|Θ

l=2|1
k), (9)

where the superscript indicates the selection of Gaussian

parameters at level 2 given the parent node at level 1.

The above is a proper Gaussian Mixture that satisfies
∑Ĵ+1

k=1 π
l=2|1
k = 1. Our model is then fully defined by the

set of all Θl
k and πl

k.

If we begin with a coarse decomposition into Ĵ ≪ J
mixtures, after convergence, the posterior over correspon-

dences gives us a natural maximum likelihood partitioning

of data into Ĵ coherent geometric regions. We can then use

this posterior as a partitioning function over our data, and

reduce our problem into Ĵ subproblems of roughly 1/Ĵ th

the size. Recursing this process multiple times generates

a tree of GMMs, requiring many small EM algorithms of

size Ĵ . The number of levels in the hierarchy would be

l = logĴ(J), where each level produces Ĵ l−1 EM problems

of size Ĵ . Thus, we would need O(J−1
Ĵ−1

) EM algorithms of

size O(NlĴ), where Nl ≈
N

J∗l−1 . The entire procedure will

be logarithmic in the number of mixtures and linear in the

number of points, O(N logĴ(J)).
In order to maintain a valid global GMM, however, we

need to share context between parents and children. Math-

ematically, we can derive this relation by assigning causal

relationships to a set of l latent correspondence variables,

Cl, as depicted in Fig. 2. Using the model, we can calculate

the probability of our observed variable by marginalizing

over the latent variables. In the two layer case,

p(zi|Θ
l=2) =

∑

Cl=1

∑

Cl=2

p(zi, c
l=1
i , cl=2

i |Θl=2)

=
∑

Cl=1

∑

Cl=2

p(zi|Θ
l=2, cl=2

i)p(cl=2
i |cl=1

i)p(cl=1
i)

=
Ĵ+1
∑

j′=1

Ĵ+1
∑

j=1

πl=1
j′ π

l=2|1
j p(zi|Θ

l=2|1
j) (10)

We can clearly see that for multiple levels, the correct

mixing value must be propagated down the tree to the leaf

node, forming a multiplicative chain.

3.4. Sparsification: Hard and Soft Partitioning

When we recurse into a new tree level, we utilize the

set of posteriors γij of the parent level to obtain a parti-

N

Θ
l=3

π
l=2

π
l=3

c
l=1
i

π
l=1

c
l=3
i

zic
l=2
i

Figure 2. Graphical model of hierarchical GMM An example

of a three-level hierarchy, where a series of causally linked latent

variables are used to identify salient geometric regions of influence

for each observed point zi.

tion of our PCD. We call this process expectation sparsifi-

cation. One possible partitioning strategy is to simply as-

sign a point to the mixture for which its parent expectation

was the highest. We will refer to this as hard partitioning.

However, though this method retains mixture overlap inside

every group of Ĵ children, we will have no such overlap

among groups of children from different parents.

We can use a soft partitioning scheme to constrain the

amount of geometric context sharing among children of dif-

ferent parents while still maintaining logarithmic efficiency

with respect to the number of mixtures. To do this, we in-

troduce a parameter, λp, that relaxes the hard partitioning

constraint but still keeps γij sparse. Alg.1 describes the pro-

cedure in detail. To avoid double-counting observed points

in the final GMM, we introduce a per-point weighting factor

into the E-Step, called pi. The total collection of all weights

is denoted P . ξ is a normalization constant such that pi

ξ
over

all active partitions sums to 1.0.

Algorithm 1 Expectation Sparsification Algorithm

1: procedure PARTITION(Z , P , Θ, Ĵ , λp)

2: for zi, pi ∈ {Z,P} in parallel do

3: calculate γij , ∀j ∈ Ĵ

4: for γij ≥ λp do

5: add zi to partition j as {zi,
piγij

ξ
}

6: end for

7: end for

8: return partitionsj , ∀j ∈ Ĵ

9: end procedure

In this formulation, a point can now contribute to mul-

tiple partitions, but an additional piece of information, pi,
needs to be recorded such that the observed point in a given

partition contributes exactly
∑

Ĵ γij = pi. In this way, we

can use λp to control the amount of context sharing among

children of different parents. Given that λp is sufficiently

large, the algorithm will remain both highly efficient and

parallelizable as only a small amount of “border points” will

need to be counted multiple times in different partitions.

3.5. Parallel Construction

Additionally, we can further accelerate the calculation

of expectations by parallelization on the GPU. Inspecting

Equations 5-7 reveals that one only needs to keep track of J
zeroth, first and second moments, weighted by their expec-

5500

tations,

{T 0
j , T

1
j , T

2
j }

def

= {
∑

i

γij ,
∑

i

γijzi,
∑

i

γijziz
T
i } (11)

These constitute sufficient statistics for the GMM. For

the purposes of parallelization, the calculation of the above

three quantities can be done in two steps: (1) Calculation of

each γij and (2) a weighted sum over all zeroth, first, and

second moments. The former requires information about

all J clusters but no information needs to be shared among

points. The latter requires information about all N points

but no information is needed from the J clusters once γij
are calculated. This allows for point-level parallelism in

calculating γij and an efficient point-level reduction sum

when calculating the weighted moments.

4. Implementation Details

We first review the implementation of our hierarchical

EM algorithm using hard partitions, and then in Sec. 4.1

discuss a generalization to soft partitioning.

Algorithm 2 shows the pseudocode for implementing the

hard partitioned variant.

Algorithm 2 Hierarchical EM with Hard Partitions

1: procedure HIERARCHICAL EM(Z, L, λs, λd)

2: Init: parentIdx← {−1}N ; Θ← Θinit

3: for l = 0 . . . L− 1 do

4: while !Converged(λs) do

5: {T 0, T 1, T 2, currIdx} ← E step(Z , Θ, parentIdx)

6: Θ←M step(T 0, T 1, T 2, l, λd)

7: end while

8: parentIdx← currIdx

9: end for

10: end procedure

11: procedure E STEP(Z , Θ, parentIdx)

12: for i ∈ size(Z) in parallel do

13: for j ∈ Children(parentIdx[i]) do

14: γij ∝ πjN (zi|Θj)
15: {T 0

j , T
1

j , T
2

j } ←Accumulate(T 0

j , T
1

j , T
2

j , γij , zi)
16: end for

17: currIdx[i]← j s.t. max(γi) = γij
18: end for

19: return {T 0, T 1, T 2, currIdx}
20: end procedure

21: procedure M STEP(T 0, T 1, T 2, l)

22: for j ∈ Level(l) in parallel do

23: Θj ←ML Estimator(T 0

j , T
1

j , T
2

j)

24: if !Supported(T 0

j , λd) then πj ← 0
25: end for

26: return Θ

27: end procedure

HIERARCHICAL EM: The algorithm takes as an input a

point cloud Z , the maximum number of levels of recur-

sion, L, and two convergence parameters λs, λd. The first

convergence parameter controls the stopping condition for

a given set of EM steps, and the second convergence pa-

rameter controls the degree of geometric complexity of the

final output by dropping clusters with insufficient support.

To initialize Θ, we set our means to be the corners of the

unit cube centered around zero. Note that during the exe-

cution of our algorithm we implicitly and recursively scale

and offset the data to fit within the unit cube. The mixing

weights are initially equal. Since these values are the same

regardless of the recursion level for every new set of Ĵ mix-

tures, we only need to set these once at the very beginning

of the algorithm. Likewise, we need to initialize an integer

array parentIdx of size N to the value of −1, which will

give us the correct child indices when l = 0 ([0 . . . 7]) to

iterate over inside the first level’s E step. After initialization

is complete, we then iterate through L levels of the EM al-

gorithm. After a given level has converged, we update our

parentIdx array to point to the Maximum Likelihood esti-

mates of subsurface expectation, recorded in currIdx during

each iteration of the E step.

E STEP: The E step calculates expectations over the child

mixtures given the ML expectation of every point to the set

of parent mixtures. The weighted moments {T 0, T 1, T 2}
(Eq. 11) can be calculated efficiently and in parallel using

sum reductions or CUDA’s atomicAdd functionality.

M STEP: While the E step parallelizes over points, the M

step parallelizes over subsurfaces (see Section 3.5). The

ML Estimator updates the model according to the stan-

dard MLE equations for GMM-based EM (cf. Eq. 5-7).

Tikhonov regularization is done on the covariances to pre-

vent numerical instability. Finally, clusters are dropped with

insufficient support.

Note that if we implicitly encode the Gaussian Mix-

ture tree in a large flat statically allocated array, the index-

ing functions Children and Level can be calculated in con-

stant time: Children(i) = [(i + 1)Ĵ . . . (i + 2)Ĵ − 1] and

Level(l) = [Ĵ(Ĵ
l−1)

Ĵ−1
. . . Ĵ(Ĵl+1−1)

Ĵ−1
− 1].

Algorithm 3 E Step with Soft Partitions

1: procedure E STEP({Z , P}K , Θ)

2: for zi, pik ∈ {Z , P}k, ∀k = 1 . . .K in parallel do

3: for j ∈ Children(k) do

4: γij ∝ πjN (zi|Θj)
5: {T 0

j , T
1

j , T
2

j } ←Accumulate(T 0

j , T
1

j , T
2

j , pikγij , zi)
6: end for

7: end for

8: return {T 0, T 1, T 2}
9: end procedure

By looking at the construction of the algorithm and not-

ing that L = logĴ(J) and J ≪ N , we can see that the algo-

rithm will run in O(k logĴ(J)(ĴN)), where k is the num-

ber of EM iterations until convergence. The normal “flat”

EM algorithm would execute in O(kNJ). Thus, we have

produced an algorithm that speeds up model creation expo-

nentially with respect to J , the total number of mixtures in

the model. Furthermore, we have liberated J as a parame-

ter that must be set a priori, instead letting the convergence

5501

criterion λs and low support threshold λd determine when

the point cloud has been sufficiently segmented.

4.1. Soft Partitioning

For hard partitions, updating the pointer parentIdx after

EM convergence is all that is necessary for hierarchical con-

struction since in the subsequent level we can then use the

updated parentIdx in conjunction with the Children function

as our index array into the tree.

To generalize the algorithm presented in Alg.2 to soft

partitions, however, we need to record a few more pieces of

data. Instead of a single parentIdx array, we need to record

all expectations that fall above λp, as per the partitioning

function outlined in Alg.1. Thus, we need to store both the

index of partitioned points and their respective soft parti-

tioning weights,
piγij

ξ
. To do this, we modify line 8 of Alg.2

to instead call the Partition function from Alg. 1. The E step

is then modified according to Alg.3. The only other change

is that now inside ML Estimator of the M Step: the new mix

value must now be normalized using
∑N

i pi and not the nor-

mal N (cf. Eq.5-7). With the modifications, a point in mul-

tiple subsurfaces will get distributed recursively throughout

the hierarchy to all branches containing those subsurfaces in

such a way that its expected contribution still sums to one

among them. This important bookkeeping operation keeps

consistency among the different paths down the tree.

5. PCD Processing with Generative Models

Our work in this paper focuses on the basic and fun-

damental problem of how one might efficiently construct,

sample, and integrate over a generative model for PCD. We

have so far explained how one might efficiently construct

the model (Sec 3), but once the model is obtained, it is not

trivial to see how one might sample and integrate over it,

two operations that are fundamental for spatial processing

applications. In this section, we describe two algorithms to

efficiently perform sampling and integration, which we ap-

ply to point cloud reconstruction and occupancy grid gen-

eration, respectively. Our contribution is a novel impor-

tance sampling algorithm for GMMs that allows us to sig-

nificantly reduce the number of samples required during in-

tegration by Monte Carlo sampling. Because these algo-

rithms are not specific to hierarchical GMMs, we simplify

the notation to the PDF as defined in Equation 1.

5.1. Point Cloud Reconstruction

To regenerate a set of N points we sample the distribu-

tion defined by the GMM as shown in algorithm 4. First

we determine how many samples Hj to generate from each

cluster j in [1, J] according to the mixture weights πj . Then

we generate the Hj for each cluster according to the nor-

mal distribution defined by Θj . Details on this technique,

known as ancestral sampling, can be found in Bishop et

al. [2]. We present it here for completeness as this is an

important operation on our model. Refer to Figure 1e for a

graphical example of this result.

Algorithm 4 Point Cloud Reconstruction

1: procedure PCD RECONSTRUCT(Θ, J , N)

2: calculate Πj =
∑j

i=1
πi, ∀j ∈ J

3: S ← N random uniform samples in [0, 1)
4: H ← histogram(S, Π) , Π provides bins extents

5: for j = 1 . . . J do

6: Pj ← Hj points sampled fromN (µj |Σj)
7: end for

8: return Pj , ∀j ∈ J

9: end procedure

5.2. Occupancy Grid Generation

To construct an occupancy grid we can stochastically

sample points directly from the model to perform a Monte

Carlo estimation of the probability that a given region of

space is occupied. More formally, to build a discrete oc-

cupancy voxel grid we would like to spatially integrate our

PDF over each voxel to obtain its probability estimate,

p(Vk|Θ) =

∫

Vk

J+1
∑

j=1

πjp(v|Θj)dv, (12)

where Vk is a particular indexed cube or voxel.

Since there is no analytical solution to this integral, we

resort to Monte Carlo sampling. However, uniform sam-

pling the PDF over the space of the voxel grid will likely

yield estimates with very high variance since the previ-

ously discussed sparsity will render many areas to essen-

tially zero probability. Thus, we employ the use of impor-

tance sampling. To see how importance sampling is quite

efficient in this context, we need to re-interpret the GMM

as a weighted sum of zero-mean isotropic Gaussians that

have been skewed and shifted through 3D space. To do this,

we perform a Cholesky decomposition on the covariances,

Σj = U
T
j Uj . Then the multivariate normal equation is,

N (xi|Θj) = ξ−1
j e−

1
2
(xi−µj)

TUT
j Uj(xi−µj) (13)

= ξ−1
j e−

1
2
‖Ajxi−bj‖

2

, (14)

where Aj = Uj and bj = Ujµj , and ξj is a normalization

factor. Thus, we can interpret each input xi as undergoing

an affine transformation before being evaluated through a

zero-mean Gaussian function with identity covariance. To

efficiently sample from the GMM therefore we first sample

uniformly over [0, 1] in 3 dimensions and then transform

the values through the Φ−1 (probit) function. Our derived

affine transformations of the samples X ∼ N (0|I) for each

of J subsurfaces place them in the GMM space. Further-

more, since the GMM is simply a linear combination of

many Gaussians, once we have a collection of transformed

samples, one only needs to keep track of what proportion

5502

(a) Input PCD (1.6 mil pts) [21] (b) Occupancy grid map

Figure 3. Occupancy estimates: Left: Raw PCD. Right: an ex-

ample high resolution occupancy map obtained by sampling a hi-

erarchical GMM (max depth 5) produced from the points.

of these samples, per cluster, fall into a particular voxel and

then multiply this ratio by the appropriate mixing parame-

ter. Thus,

p(Vk|Θ) ≈
J+1
∑

j=1

πj

N

i=N
∑

i=1

IVk
(xi) (15)

where xi ∼ N (µj |Σj) and I is an indicator function for

whether xi falls within the bounds of Vk.

Since the sampling function matches the underlying PDF

(up to a multiplicative constant), these calculations yield

unbiased estimates of the voxel probabilities and have low

variance for even a fairly small number of samples. Fur-

thermore, we precalculate all the samples X before recon-

struction so that the entire process amounts to simply bin-

ning (voxelizing) the results of J different affine transfor-

mations over a relatively small static set of random or pseu-

dorandom points. Since the model itself contains no vox-

els, as opposed to voxel-based or NDT methods, we are

free to dynamically choose the extent and resolution of

the occupancy grid at run-time, according to any number

of application-specific constraints, arbitrarily defined axes,

frustum culling, or locus of attention.

Figure 3 demonstrates this process for a large scene.

Once we create a model from the points (in this case, a hi-

erarchical GMM with a max depth of 5), we no longer need

the raw PCD, and instead can at runtime produce a high

quality occupancy map using the model only (Figure 3b).

6. Model Evaluation

We evaluate our model with respect to reconstruction fi-

delity and construction execution time. We used for test-

ing the Stanford Bunny (∼36k points) and the Stanford 3D

scene dataset, containing scenes with approximately ∼1-3

million points [20, 21]. On all these experiments, we stati-

cally set Ĵ = 8 and our sparsity constraint, λp = 0.1.

6.1. Reconstruction Fidelity

The reconstruction fidelity provides a measure of how

well our model can re-create the original point cloud. For

this purpose, we use a PSNR (Peak Signal to Noise Ra-

tio) metric derived from the Hausdorff distance as suggested

L2: 45.7 PSNR, 2.5kB

170x less data

L3: 48.7 PSNR, 20kB

21x less data

L4: 50.7 PSNR, 159kB

2.6x less data

Figure 4. Levels of Fidelity: The colors in each heatmap shows

the accumulated PDF values projected onto the screen space.

PSNR, model size, and the reduced storage size are shown for each

level. We vary the level of detail (L2 to L4) to show the trade-off

between storage size and fidelity. The original PCD is 421 kB.

by [3]. Specifically, given a reference a point cloud of size

N , we stochastically generate an equivalent N amount of

points from our model as described in section 5.1. Then, for

every point in the original point cloud, we find the nearest

neighbor in the reconstructed cloud. The logarithm of the

inverse root mean squared error for all points relative to the

bounding box size around the point cloud gives our PSNR

metric. Note that the PSNR is on a logarithmic scale. Thus,

linear increases in PSNR correspond to exponential reduc-

tions in average point-to-point recreation error. By comput-

ing the PSNR at different levels of details of our model we

can provide an insight on the trade-off between model size

and fidelity and fairly compare these trade-offs against other

generative techniques.

Figure 4 shows a visual representation of the PDF, the

PSNR and model size for three different levels of Bunny

model. Though many different potential GMMs may be ex-

tracted from the hierarchy, we restrict our comparisons to

GMMs consisting of leaf nodes are different max levels.

For example, a “Level 3” GMM would the GMM extracted

from the hierarchy by taking all the leaves of the GMM tree

at a max depth of 3. As seen in Figure 4, the PDF from

Level 2 provides a fairly good approximation while at the

same time using ∼170 less storage than the original PCD.

By level 4, the fidelity is such that points generated from

the model are virtually indistinguishable from the original

PCD. Because model construction using the hierarchical

GMM framework can be viewed as the sparse embedding

of 3D points into a higher dimensional 10D space, we can

save on storage space with respect to the original size of

the PCD, while still retaining a high level of geometric fi-

delity. We don’t claim that we provide a state-of-the-art

compression algorithm, but we note instead that our model

allows for important savings in storage, in addition to its

other properties.

We compare our model against the 3D-NDT represen-

tation [1] and its octree-based variant [14]. We chose the

3D-NDT as it is a widely used state-of-the-art generative

model. To generate the trendlines for 3D-NDT, we calculate

models at increasingly finer voxel resolution, and for the

octree variant, we use increasingly smaller splitting thresh-

olds. As a baseline we compute a subsampled version of the

5503

10-1 100 101 102 103

Size (kB)

42

44

46

48

50

52
Bunny

10-1 100 101 102 103 104 105

62

64

66

68

70

72

P
S
N

R

Burghers

GMM-Tree
Subsampling
3D-NDT

3D-NDT-Octree
Original Point Cloud

10-1 100 101 102 103 104 105
58

60

62

64

66

68

70
Lounge

10-1 100 101 102 103 104 105

Size (kB)

62

64

66

68

70

72

P
S
N

R

Cactus

Figure 5. A comparison of data structure size vs fidelity over sev-

eral standard point cloud datasets. The blue dashed line indicates

the original point cloud size. Note the x-axis is on log scale.

The star markers indicate different levels in the GMM hierarchy.

At similar size models, the hierarchical GMM has much better

PSNR (reconstruction performance) with respect to the original

data when compared against the 3D-NDT, 3D-NDT-Octree, and a

simple subsampling strategy for point cloud reduction.

original point cloud. Randomly subsampling of the PCD

can be seen as a basic way to reduce the data size and is

a common preprocessing technique for many 3D point al-

gorithms. Fig. 5 shows the fidelity reconstruction vs stor-

age size results. In every case but the bunny, we find that

our model performs favorably to both NDT variants. This

is because our optimization procedure yields a more com-

pact representation without the need for voxelization. In

the case of the bunny, however, the original point cloud is

small enough that at higher model sizes we see diminishing

returns over the octree-based NDT. In terms of statistical

downsampling, both the hierarchical GMM and 3D-NDT

are clearly much better choices to downsize the data while

still retaining high geometric fidelity: for example, the level

5 GMM for Burghers achieves 72 PSNR with respect to the

original point cloud, whereas a subsampled point cloud of

equivalent size only yields 60 PSNR. Similarly, the small-

est GMM more than doubles the PSNR over downsampling.

To give another interpretation of this data: the level 3 GMM

for Burghers contains as much reconstruction fidelity as if

the point cloud were subsampled to about a fifth of its size,

however, the level 3 GMM uses about 450x less memory.

6.2. Computational Speed and Scalability

We now take a look at the execution time of the hierar-

chical model construction. We implemented our algorithm

in C++/CUDA and are able to run it on desktop and mobile

platforms. Table 2 shows the construction times for each

level in the hierarchy over different data sets using hard par-

titions. Note that, even on the mobile platform, the PCD

Burghers (D) Bunny (D) Raw depth (M)

307k pts 44k pts 60k pts

L1 32.6ms (31Hz) 2.6ms (385Hz) 10.6ms (95Hz)

L2 57.8ms (17Hz) 4.3ms (233Hz) 15.3ms (65Hz)

L3 72.6ms (14Hz) 7.7ms (130Hz) 22.0ms (45Hz)

L4 92.2ms (11Hz) 11.7ms (85Hz) 31.5ms (32Hz)

Table 2. Hierarchy construction time. L1 to L4 refers to a level

of the hierarchy (i.e., L3 denotes the the process including L1 to

L3). D refers to a desktop computer (i5-3500/GTX660) used for

the computation, and M denotes a Mobile device (NVIDIA Shield

tablet). Raw depth refers to the point cloud directly captured from

Softkinetic DS325 depth camera.

#J Hierarchy Flat Speed-up

8 79.2 ms 61.6 ms 0.78×

64 145.6 ms 166.5 ms 1.14×

512 184.2 ms 1145.4 ms 6.22×

4096 213.8 ms 8750.8 ms 40.93×

32768 251.0 ms 71061.7 ms 283.11×

Table 3. Construction speed-up relative to a flat GMM model.

The table compares the E Step execution time of the hierarchi-

cal GMM compared with a flat GMM having the same number of

mixtures on the full Burghers model (∼4.5M pts). At higher de-

tail levels, the proposed hierarchical GMM is significantly faster

to build than the flat GMM.

from a depth camera can be processed at rates higher than

60FPS for a level 2 decomposition. In addition, we com-

pare the construction time of our hierarchical model against

the flat GMM model. We show in Table 3 that our hierar-

chical method becomes increasingly faster relative to a flat

version with larger numbers of clusters, making our method

more suitable in applications where high fidelity is desired

yet construction times need to remain low.

7. Conclusion and Future Work

We introduced a hierarchical data structure based on

Gaussian mixture models that comprises a compact and

generative representation for 3D point cloud data. Model

creation is accelerated by producing bounds on spatial in-

teractions between the points and model. Thus, hierarchical

model construction is orders of magnitude faster than the

equivalent flat model, which follows as a result of replacing

a large EM problem into multiple smaller ones. We demon-

strated that the PDF can be used to effectively model the

original data at different levels of detail, reconstruct point

clouds of arbitrary sizes, and compute probabilistic occu-

pancy estimates, fundamental components of many spatial

perception and 3D modeling applications. Compared to dis-

crete methods or hybrid approaches such as the NDT, our

model yields higher fidelity results at smaller sizes, with

modest construction time trade-offs even on mobile hard-

ware. Future work will explore techniques for hierarchical

shape-based object recognition, and locally rigid globally

non-rigid surface registration with our generative models.

5504

References

[1] P. Biber and W. Straßer. The normal distributions transform:

A new approach to laser scan matching. In IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems,

volume 3, pages 2743–2748, 2003. 2, 3, 7

[2] C. M. Bishop. Pattern Recognition and Machine Learning.

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

3, 6

[3] P. Cignoni, C. Rocchini, and R. Scopigno. Metro: Measur-

ing error on simplified surfaces. Computer Graphics Forum,

17(2):167–174, 1998. 7

[4] B. Eckart and A. Kelly. REM-Seg: A robust EM algorithm

for parallel segmentation and registration of point clouds. In

IROS, pages 4355–4362, 2013. 2

[5] B. Eckart, K. Kim, A. Troccoli, A. Kelly, and J. Kautz.

Mlmd: Maximum likelihood mixture decoupling for fast and

accurate point cloud registration. In IEEE International Con-

ference on 3D Vision. IEEE, 2015. 2

[6] A. Elfes. Using occupancy grids for mobile robot perception

and navigation. Computer, 22(6):46–57, 1989. 2

[7] J. Elseberg, D. Borrmann, and A. Nüchter. One billion points

in the cloud–an octree for efficient processing of 3d laser

scans. ISPRS Journal of Photogrammetry and Remote Sens-

ing, 76:76–88, 2013. 1

[8] G. D. Evangelidis, D. Kounades-Bastian, R. Horaud, and

E. Z. Psarakis. A generative model for the joint registra-

tion of multiple point sets. In Computer Vision–ECCV 2014,

pages 109–122. Springer, 2014. 2

[9] V. Garcia, F. Nielsen, and R. Nock. Levels of details

for Gaussian Mixture Models. In ACCV, pages 514–525.

Springer, 2010. 3

[10] J. Goldberger and S. T. Roweis. Hierarchical clustering of a

mixture model. In Advances in Neural Information Process-

ing Systems, pages 505–512, 2004. 2, 3

[11] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and

W. Burgard. Octomap: An efficient probabilistic 3d mapping

framework based on octrees. Autonomous Robots, pages

189–206, 2013. 2

[12] B. Jian and B. C. Vemuri. Robust point set registration us-

ing gaussian mixture models. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 33(8):1633–1645, 2011.

2

[13] A. Kalaiah and A. Varshney. Statistical geometry represen-

tation for efficient transmission and rendering. ACM Trans-

actions on Graphics, 24(2):348–373, 2005. 3

[14] M. Magnusson, A. Lilienthal, and T. Duckett. Scan registra-

tion for autonomous mining vehicles using 3d-ndt. Journal

of Field Robotics, pages 803–827, 2007. 2, 7

[15] R. B. Rusu and S. Cousins. 3d is here: Point cloud library

(pcl). In International Conference on Robotics and Automa-

tion, 2011 2011. 1

[16] J. Ryde and H. Hu. 3d mapping with multi-resolution occu-

pied voxel lists. Autonomous Robots, 28(2):169–185, 2010.

1

[17] J. Ryde and H. Hu. 3d mapping with multi-resolution occu-

pied voxel lists. Auton. Robots, 28(2):169–185, 2010. 2

[18] J. Saarinen, H. Andreasson, T. Stoyanov, J. Ala-Luhtala, and

A. J. Lilienthal. Normal distributions transform occupancy

maps: Application to large-scale online 3d mapping. In

Robotics and Automation (ICRA), 2013 IEEE International

Conference on, pages 2233–2238. IEEE, 2013. 3

[19] S. Thrun and A. Bü. Integrating grid-based and topological

maps for mobile robot navigation. In AAAI’96, pages 944–

950, 1996. 2

[20] G. Turk and M. Levoy. Zippered polygon meshes from range

images. In Proceedings of the 21st Annual Conference on

Computer Graphics and Interactive Techniques, pages 311–

318. ACM, 1994. 7

[21] Q.-Y. Zhou and V. Koltun. Dense scene reconstruction

with points of interest. ACM Transactions on Graphics,

32(4):112, 2013. 7

5505

