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Abstract
We propose a new cure model for survival data with a surviving or cure fraction. The new model is
a mixture cure model where the covariate effects on the proportion of cure and the distribution of
the failure time of uncured patients are separately modeled. Unlike the existing mixture cure models,
the new model allows covariate effects on the failure time distribution of uncured patients to be
negligible at time zero and to increase as time goes by. Such a model is particularly useful in some
cancer treatments when the treat effect increases gradually from zero, and the existing models usually
cannot handle this situation properly. We develop a rank based semiparametric estimation method
to obtain the maximum likelihood estimates of the parameters in the model. We compare it with
existing models and methods via a simulation study, and apply the model to a breast cancer data set.
The numerical studies show that the new model provides a useful addition to the cure model literature.

1 Introduction
Statistical models for survival data with a surviving or cure fraction, often called cure models,
have received a great deal of attention in the last decade. There are a variety of cure models
proposed in the literature based on different assumptions or different perspectives of the cure
mechanism. In this paper, we focus on the popular mixture cure models where the population
is considered as a mixture of cured patients and uncured patients. Let Y be the indicator variable
for an uncured patient with Y = 1 if the patient is uncured and 0 if cured, T be the failure time
of a patient. Define π = P(Y = 1), S(t) = P(T > t) and Su(t) = P(T > t|Y = 1). That is, π is the
probability of being uncured, and S(t) and Su(t) are the survival functions of the failure time
of a patient and the failure time of an uncured patient respectively. The mixture cure model is
given by

(1)

where x and z are two sets of covariates that have effects on π and Su(t). The use of the mixture
cure model dates back to Berkson and Gage [1]. The advantage of the mixture cure model is
that the proportion of cured patients and the survival distribution of uncured patients are
modeled separately and the interpretation of the parameters of x and z in the model is
straightforward.

The most common method to specify the effects of z on π is via a logit link function:
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(2)

where γ is a vector of unknown parameters. Other link functions may be considered, such as
the complementary log-log and the probit link functions in the generalized linear models for
binary data. In this paper, we will use the logit link function only because of its simplicity and
popularity.

Similar to the classical survival models, there are a number of methods to specify the effects
of x on Su(t). Let Su0(t) be an arbitrary baseline survival function. Similar to the proportional
hazards model in survival analysis, one can assume

or equivalently

(3)

where hu(t) and hu0(t) are the corresponding hazard functions of Su(t) and Su0(t). This model
is referred to as the proportional hazards mixture cure (PHMC) model. The model can be easily
estimated if the baseline survival function Su0(t) is specified up to a few unknown parameters.
However, verifying a parametric assumption for the baseline distribution can be a challenging
task. A semiparametric estimation method based on the partial likelihood approach becomes
a well accepted method after the work of Kuk and Chen [2]; Peng and Dear [3]; Sy and Taylor
[4]. Large sample properties of estimators from the semiparametric PH mixture cure model
were investigated in Fang et al. [5].

An alternative to the proportional hazards assumption (3) is the accelerated failure time (AFT)
assumption to model the effects of x on Su(t). That is

or equivalently

(4)

This model is referred to as the accelerated failure time mixture cure (AFTMC) model. A
parametric distribution with a few unknown parameters is often assumed for the baseline
distribution and the parameters in the model is estimated by the maximum likelihood approach
([6,7,8]). Recently several authors investigated semiparametric estimation methods. Li and
Taylor [9] employed the M-estimation method [10] to estimate the unknown parameters in the
AFTMC model. Zhang and Peng [11] further adapted a rank estimation method [12] to improve
the semiparametric estimation method for the AFTMC model.

An unstated assumption of the two models is that the covariate effects on the hazard rate of
uncured patients are immediate. Considering a case with a single covariate equal to 1 if a new
treatment is used and 0 if a standard treatment is used for a cancer study, the covariate is
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considered in both x and z in the mixture cure model (1), and the hazard of patients in the
standard treatment group satisfies hu0(0) > 0. For uncured patients, it is obvious to see that in
the PHMC model (3) the hazard ratio of patients in the new treatment group versus that in the
standard treatment group is eβTx at t = 0 and it remains the same for any t > 0. In the AFTMC
model (4), even though the hazard ratio is no longer constant over time, it still starts with
eβTx at t = 0. This immediate effect assumption may not be desirable in some cancer studies
when a treatment effect increases gradually over time from zero. For example, in testing
antidepression drugs, it is sometimes not practical to assume that the drug is effective at the
early stage of the treatment but rather to assume no effect at t = 0 and a gradual effect at the
later stage of the treatment.

To model a gradual treatment effect for data without a cure fraction, Chen and Wang [13] and
Chen [14] proposed an accelerated hazard (AH) model

(5)

For the binary treatment covariate defined above, it is easy to see that the hazard functions of
the new and the standard treatments are hu0(teβ) and hu0(t) respectively, and the difference of
the two hazard functions starts at 0 when t = 0. Thus the AH model assumes that the hazard
does not change at time 0 and then change gradually with time. Unless hu0(t) ≡ constant or
limt→0+ hu0(t) = 0, the AH model provides a useful way to model the gradual effect of a
treatment that other existing models cannot handle properly.

To better demonstrate the differences, we plot the hazard curves based on the three models in
Figure 1. We consider two groups with x = 0 for the control (baseline) group and x = 1 for the
treatment group. The baseline hazard function is a U-shape function, which is often employed
in health research. The value of β is set to −0.8. Comparing the hazard curves from the two
groups, we can see that the PH model implies that the treatment decreases the hazard rate by
e−0.8 = 0.45 for the whole period. In the AFT model, the relationship of hazard rates in the two
groups is more complicated: the treatment has a smaller hazard rate at beginning, larger hazard
rate in the middle and then smaller hazard rate after the two periods. The AH model, on the
other hand, provides a simple scenario: the treatment starts at the same hazard rate as the control
group, it has a higher hazard rate than the control group at the early period due to, say, the
toxicity of the treatment. However, after certain time point, the positive effect of the treatment
is demonstrated with a smaller hazard rate than the control group.

Chen and Wang [13] proposed estimating equations to estimate the parameters
semiparametrically in the AH model (5). When there is a cure fraction in the data, the model
(5) is clearly not appropriate. It is unclear whether the model and the semiparametrically
estimation method can be easily adapted to incorporate the cure fraction. This motivates the
work in this paper on a cure model that allows a gradual effect of covariates on the hazard of
uncured patients. In this paper, we propose a new mixture cure model that employs a AH model
to model the effects of x on Su(t) in the mixture cure model (1). A semiparametrically method
is proposed to estimate the parameters in the cure model. We demonstrate the performance of
the proposed model and estimation method via simulation and apply the model and estimation
method to a data set from Surveillance, Epidemiology, and End Results (SEER) Program of
the National Cancer Institute [15].

The remaining paper is organized as follows. Section 2 presents an accelerated hazard mixture
cure model. A semiparametric estimation method for the proposed model is also discussed in
this section. Section 3 reports a simulation study to investigate the performance of proposed
model and estimation method. Section 4 describes an application of the model to the breast
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cancer data set of Polk, Iowa from SEER. Finally conclusions and some discussions are given
in Section 5.

2 Accelerated Hazard Mixture Cure Model
To allow a gradual effect of covariates on the failure time of uncured patients, we propose to
model Su(t) in the mixture cure model (1) by the AH model proposed by Chen [14]. That is,

or

(6)

where hu0(t) is an arbitrary unspecified baseline hazard function and Su0(t) is the corresponding
survival function. We refer to the model specified by equation (1), (2), and (6) as the AH
mixture cure (AHMC) model.

If hu0(t) is specified up to a few unknown parameters in the AHMC model, the parameters in
the model can be estimated by the maximum likelihood approach. We will skip details of this
parametric approach in this paper and focus on a semiparametric estimation approach where
hu0(t) is not parametrically specified. This approach is more attractive in application because
it does not rely on a parametric assumption that may be difficult to verify.

Chen [14] proposed a semiparametric method to estimate the parameters in the AH model (5).
Due to the presence of cured patients, their method is no longer applicable in this situation and
a new estimation method is required. We propose a semiparametric method to estimate the
parameters in the AHMC model based on the EM algorithm.

Let (ti, δi, zi, xi) denote the observed data for the ith individual i = 1,…, n, where ti is the
observed survival time of T for the ith patient (may be censored), δi is a censoring indicator
with δi = 1 for uncensored ti and δi = 0 for censored ti, and zi, xi are observed values of z and
x for the ith patient. The value of Y for the ith patient is denoted as yi with yi = 1 if the ith
individual is not cured and yi = 0 if cured. Clearly for a censored patient, Y is a latent variable
and its value is not observable. Denote y = (y1,…,yn). The complete log likelihood in the EM
algorithm when assuming all values of y are available is given by l(β, hu0(t), γ; y) = lc1(γ; y) +
lc2(β, hu0(t); y), where

The E-step computes E[lc(γ, β, hu0(t); y)|Θ(m)], the conditional expectation of the complete log-

likelihood with respect to y, given the current estimates . It is not
difficult to see that
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(7)

Let . Then

The M-step maximizes lc1(γ;w(m)) and lc2(β, hu0(t);w(m)) with respect to the unknown
parameters γ, β and hu0(t). Maximizing lc1(γ;w(m)) with respect to γ can be easily carried out
using the Newton-Raphson algorithm. Maximizing lc2(β, hu0(t);w(m)) with respect to β and
hu0(t) is a challenge task. We propose a rank-like estimation method to update β and hu0(t).

Since δi log  can be written as

which can be treated as the log-likelihood function of the AH model considered by Chen

[14] with the hazard function . Following Chen [14] and Zhang and Peng [11],
a rank-type estimation equation of β can be written as

where k(·) is a general (predictable) weight function. We choose a Gehan type weight

(8)

and the corresponding estimating equation can be written as

(9)

The advantage of using the Gehan type weight function (8) is that the estimating equation (9)
is a discontinuous but monotone function of β. Other weight functions may be considered for
k(·). However, the corresponding estimating equation Ψ(β; k(·)) may not be a monotone
function of β, and finding its root may be difficult.

Given β(m+1), the updated estimate of β, a nonparametric estimate of Hu0(t) can be obtained
based on the residuals tieβ(m+1)Txi [16,17]. For example, let τ1 < τ2 < … < τk be the distinct
uncensored residuals, dτj denote the number of uncensored residuals equal to τj, and R(τj)
denote the risk set at τj. An estimate of Hu0(t) in the current M-step is
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and  and 0 if tieβ
(m+1)Txi > τk. With β(m+1) and

, wi in the E-step (7) can be updated and the EM algorithm will proceed until
convergence.

Obtaining the variances of the estimated parameters in the proposed AHMC model is not
straightforward because the complete log-likelihood function corresponding to (9) is not
available. The standard methods proposed for the EM algorithm [18,19] cannot be used to
obtain estimates of the variances. A bootstrap method can be used to estimate the variances of
the estimates in the model before a computationally light method is available.

3 Simulation Study
To evaluate the performance of the proposed method, we conduct a simulation study. The study
will show the bias and variation of the parameter estimates under small samples and how they
change when the sample size increases. The semiparametric estimation method is compared
to a parametric estimation method when the baseline distribution is assumed to be from a
parametric distribution family. The study also demonstrates the validity of bootstrap method
in estimating the variance of parameter estimates.

In the simulation study, we assume a single binary covariate indicating a standard treatment
and a new treatment. The data sets are generated from the AHMC model (1), (2), and (6). The
binary covariate has effects on both Su(t) and π with the corresponding β = log(0.5) and (γ0,
γ1) = (2, −1). These coefficient values indicate that the cure rates are about 12% for the standard
treatment and 27% for the new treatment. For uncured patients, the hazard of a patient at time
t in the new treatment is equal to the hazard of a patient in the standard treatment at time 2t.
The baseline hazard function hu0(t) is assumed to be either 6t2 (the hazard function of the
Weibull distribution) or ϕ(log(t))/[t(1 − Φ(log(t)))] (the hazard function of the lognormal
distribution with mean 1.65 and variance 4.67, where ϕ(·) and Φ(·) denote the density function
and cumulative density function of the standard normal distribution). The censoring time is
generated from a uniform distribution between 0 and a and the value of a is chosen so that the
corresponding censoring rate is about 25%. The sample size is assumed to be 250, 500 and
800.

Under each case above, we generate 1000 data sets and fit each generated data set with the
semiparametric method proposed in the last section and two parametric models assuming
Weibull and lognormal baseline distributions. The biases and variances of results of β̂ and γ̂
from these models/methods are computed and summarized in Table 1 and Table 2. A bootstrap
estimate of the parameter variance is obtained for each data set and the average of the bootstrap
estimates (reported in the column Var* in the table) is compared to the variances of the 1000
estimates (reported in the column Var in the table) to verify the bootstrap method. The coverage
probabilities of 95% confidence intervals based on the bootstrap variance estimates are also
reported in the tables (reported in the column CP).

Comparing to the parametric estimation method, the proposed semiparametric method
produces estimates with reasonable biases and variances. It is obvious that the estimation error
in the estimates from the proposed estimation method decreases when the sample size increases
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from 250 to 800. It demonstrates that the proposed estimators have a good consistency property.
The parametric method works well only when the baseline distribution assumption of the fitted
model agrees with the true model that generated the data sets. When the two do not agree, the
parametric method suffers large biases or variances. The results in the table also demonstrate
that the bootstrap method produces good variance estimates of the estimated parameters in the
model.

We also examined whether the distributions of the proposed estimators can be approximated
well by the normal distribution. Q-Q plots of γ̂0, γ̂1 and β̂ (not shown) under different sample
sizes and different baseline hazard distributions clearly indicate that the larger the sample size
the better the approximation of the normal distribution to the distributions of the estimators.

4 SEER Breast Cancer Data
Breast cancer is the most common non-skin cancer in women and the second most common
cause of cancer-related death in U.S. women. It is estimated that 182,460 women will be
diagnosed with and 40,480 women will die of cancer of the breast in 2008. Therefore, the data
in breast cancer from the SEER program are important for researchers, clinicians, policy
makers, and citizens in understanding this disease. The SEER program has 17 registries
(including San Francisco-Oakland, Connecticut, Detroit, Hawaii, Iowa, New Mexico and Utah
for period 1973–2004, Seattle for period 1974–2004, Atlanta for period 1975–2004, Alaska,
San Jose-Monterey, Los Angeles and Rural Georgia for period 1992–2004, Great California,
Kentucky, Louisiana and New Jersey for period 2000–2004).

As an application of the proposed model and estimation method, we consider a breast cancer
data of Polk, Iowa from the SEER program, which includes 1584 patients diagnosed between
1995–2004. The maximum follow-up is near 10 years. The purpose of our study is to investigate
impact of stage of breast cancer to cancer survival. In SEER data, there has four categories for
stage: local, regional, distant and unstaged. Unstaged means information is not sufficient to
assign a stage for the cancer. Thus, we exclude the unstage cases when we extracted data from
the SEER cancer incidence public-use data base. Observations with missing values on stage
are excluded also in this analysis.

We consider the AHMC model to assess the effect of the stage on the cure rate and the survival
probability of uncured breast cancer patients. Stage is classified by two dummy indicators,
denoted by z1 and z2, where z1 = 1 indicates the distant stage and 0 otherwise; z2 = 1 represents
the regional stage and 0 otherwise. Same definition for x1 and x2. We fit the model with the
proposed semiparametric estimation method and estimate the variances of the parameters via
500 replications. The results of the model fitting are listed in Table 3. As a comparison, we
also fit the data with the PHMC model [3].

The two models lead to different results. In the AHMC model, the stage has significant effects
both on the hazard rate of uncured patients and on the cure rates. The estimated cure rate are
0.700 for localized stage, 0.602 for regional stage and 0.304 for distant stage from the proposed
method, while they are 0.741, 0.584, 0.079 from the PHMC model. For illustration, we
calculated the marginal survival probability Ŝ(t|x, z) and plotted them in Figure 2 for the AHMC
model and in Figure 3 for the PHMC model along with the Kaplan-Meier survival curve. It
can be seen that the estimated survival curves from the AHMC model are closer to those from
the Kaplan-Meier survival estimator than the PHMC model. It provides further evidence that
the AHMC model is an appropriate choice for analyzing the data.
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5 Conclusions and Discussions
In this paper, we proposed an accelerated hazard mixture cure model. It is an extension of the
accelerated hazard model to allow a fraction of cured patients. It extends the existing cure
models by allowing a treatment to have no effect at time t = 0 and a gradual effect at t > 0 on
the hazard function of uncured patients. To estimate the parameters in the model, we developed
a semiparametric estimation method based on the EM algorithm and rank like estimating
equation. The finite sample performance of the estimation method was examined via a
simulation study. We observed that the proposed semiparametric estimation method is
comparable to the parametric estimation method with correctly specified baseline distribution.
When the baseline distribution in the parametric estimation method is misspecified, the
semiparametric estimation method outperforms the parametric estimation method.

A limitation of the estimation method is that the variances of the estimated parameters in the
model have to be estimated via the bootstrap method. Despite its validity, the bootstrap method
is computationally intensive method and may not be desired in practice. Further study is still
needed to develop a simple method to estimate the variances of the estimated parameters.

Comparing to the PHMC model, the AHMC model allows nonproportionality in hazard
functions. There are other approaches in the literature to accommodate non-proportionality of
hazard functions. However, the AH assumption in the AHMC model is conceptually simple.
It may be easier to justify than other approaches, which makes it attractive to practitioners.
Together with the proposed semiparametric estimated method, the AHMC model provides a
viable alternative way to model survival data with a cure fraction and nonproportional treatment
effects.

One referee pointed out that the Gehan-type weight function in (8) is essentially a predictable
version of the estimated baseline survival function and it is usually more efficient when used
in a model with converging hazard functions, such as the proportional odds model. The referee
wonders whether such a weight function will result in efficiency loss when used in a model
with diverging hazard functions, such as the AHMC model. We investigated this issue via
simulation. In the simulation study, we compared the parameter estimates with the Gehan-type
weight function and the estimates with a simple weight function k(u) ≡ 1 when data are
generated from the AHMC model. We did not notice any obvious efficiency loss with the
Gehan-type weight function. However, using k(u) ≡ 1 did increase the computing burden as
we expected.
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Figure 1.
Hazard curves from the PH model, AFT model, and AH model
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Figure 2.
Estimated survival curves for three stages based on the proposed method and the Kaplan-Meier
survival estimator
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Figure 3.
Estimated survival curves for three stages based on the PHMC model and the Kaplan-Meier
survival estimator
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Table 3

Estimates and variances of β̂1, γ̂0, γ̂1 for breast cancer data set from the AHMC model. The estimated variances
are from bootstrap method with 500 replications.

AHMC PHMC

Estimate Variance Estimate Variance

γ̂0 −0.831 0.028 −0.903 0.217

γ̂1 1.671 0.461 3.036 1.405

γ̂2 0.431 0.086 0.722 1.212

β̂1 1.212 0.057 0.382 0.298

β̂2 0.412 0.104 0.006 0.116
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