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Summary

A transformed Bernstein polynomial that is centered at standard parametric families, such as 

Weibull or log-logistic, is proposed for use in the accelerated hazards model. This class provides a 

convenient way towards creating a Bayesian non-parametric prior for smooth densities, blending 

the merits of parametric and non-parametric methods, that is amenable to standard estimation 

approaches. For example optimization methods in SAS or R can yield the posterior mode and 

asymptotic covariance matrix. This novel nonparametric prior is employed in the accelerated 

hazards model, which is further generalized to time-dependent covariates. The proposed approach 

fares considerably better than previous approaches in simulations; data on the effectiveness of 

biodegradable carmustine polymers on recurrent brain malignant gliomas is investigated.
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1. Introduction

As an alternative to proportional hazards (Cox, 1972) and accelerated failure time (e.g. Cox 

and Oakes, 1984) models, the accelerated hazards (AH) model (Chen and Wang, 2000) was 

proposed for its ability to capture the gradual effects of a treatment; this lag period often 

exists before a treatment is fully effective (e.g., Zucker and Lakatos, 1990). Denote hx(·) as 

the hazard for an individual with covariate vector x and h0(·) the baseline hazard for an 

individual with x = 0. The proportional hazards (PH) model can be written as hx(t) = 

h0(t)eβ′x, the accelerated failure time (AFT) model is expressed as hx(t) = h0(teβ′x)eβ′x, and 

the AH model is
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(1)

implying density and survival functions

(2)

where β is a vector of unknown regression parameters. The exponentiated jth regression 

effect e−βj is interpreted as a factor of how much more (or less) time is required to reach the 

same failure risk when the jth predictor xj is increased by one.

One of the main differences among these three models is the risk effect at the initial time t = 

0. It is easily seen that the PH and AFT models assume that, in general, hx(0) ≠ hz(0) for x ≠ 

z, implying an immediate treatment effect, whereas hx(0) = hz(0) under AH, allowing the 

treatment to take effect gradually. Note that this ‘gradual effect’ may not be appropriate for 

other non-treatment covariates such as cancer stage, e.g. stage IV versus II at diagnosis 

could substantially impact the hazard immediately; here the PH model may be more 

appropriate.

The limited application of the AH model is due to the lack of efficient and reliable 

estimation methods. Chen and Wang (2000) estimate the regression effects β via non-

smooth rank-type estimating equations, and Chen (2001) improved the rank-based variance 

estimation procedure. Zhang et al. (2011) proposed an efficient semiparametric estimation 

method for the AH model based on a kernel-smoothed approximation of the profile 

likelihood function. However, profile likelihood methods may have convergence issues and 

often underestimate the variance when the sample size is small, or even moderate; we find 

this to be true in simulations in Section 5.

Historically, much of Bayesian survival analysis has considered variants of the PH model 

built from independent increments priors on the baseline (e.g. Kalbfleisch, 1978; Ibrahim, 

Chen, and Sinha, 2001). This paper develops a Bayesian semiparametric AH model and 

novel generalization to allow time-dependent covariates, built on a suitably transformed 

Bernstein polynomial. Inference is straightforward to obtain using standard maximization 

routines; we make several recommendations for obtaining inference in R, and make code 

available to interested users in an online appendix.

Bernstein (1912) gave a constructive proof of the Weierstrauss theorem using what are now 

termed ‘Bernstein polynomials’. The Bernstein polynomial is a type of Bézier curve, and 

more generally a special case of a B-spline with certain restrictions on the B-spline knots. A 

statistician recognises a Bernstein polynomial basis function as a beta density with integer 

parameters. We use Bernstein polynomials as a means to easily add flexibility to existing 

parametric families, in this paper the Weibull and log-logistic distributions. Random 

probability measures G that have a Polya tree prior (Lavine, 1992) are centered at a 

distribution G0 in the sense that E{G(A)} = G0(A) for any measurable A. However, the Polya 

tree posterior joint density is not continuous, often making inference challenging. 
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Furthermore, Polya tree densities, like histograms, have discontinuities; some find this 

troubling. We seek to build a flexible nonparametric prior that is centered at a given 

parametric family, but with a smooth likelihood, allowing for the use of standard 

maximization techniques and asymptotic inference via normal approximations.

Starting with a parametric family as an initial ‘washed canvas’ then adding detail though the 

Bernstein polynomial has two advantages. First, there may be sound theoretical reasons why 

a particular family is approximately appropriate. For example, the Weibull distribution is 

derived as the asymptotic distribution of the first failure in a series of independent 

components; when the first component fails, the whole system fails. Second, there is 

existing, well-tested software for fitting parametric models, and this software can serve as a 

source of initial values, and customized sequential fitting procedures for the nonparametric 

extension – this is our approach.

The purpose of this paper is three-fold. First, we introduce a generalization of existing 

parametric families that does not immediately “take the leap” into infinite-dimensional in 

Section 2; second, we apply this novel approach to a neglected survival model: the AH 

model in Section 3. Finally, we suggest an approach to extend the AH model to time-

dependent covariates that are step-functions in Section 4. Sections 5 and 6 provide evidence 

that the procedure works in simulated and real data situations, including data on the 

effectiveness of biodegradable carmustine polymers on recurrent brain malignant gliomas. 

Section 7 concludes the paper.

2. Transformed Bernstein Polynomial Priors

2.1 Bernstein Polynomial Prior

Petrone (1999a,b) is the first to give a comprehensive treatment to using Bernstein 

polynomials for Bayesian density estimation. Define the beta density with parameters a and 

b as

with IA(·) the usual indicator function for the set A and Γ(·) the usual gamma function. A 

Bernstein polynomial with J components is given by

(3)

is used, where wJ = (wJ1, …, wJJ)′ is a vector of weights summing to unity such that 0 < wj 

< 1 for j = 1, …, J.

Integrating (3) gives
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(4)

A natural way to obtain a random cumulative distribution function (cdf), F(x), on [0, 1] is to 

assign a joint distribution to (J, wJ). The (marginal) prior probability for J is denoted p(J). 

For a given J, the vector of weights wJ conditionally follows a Dirichlet distribution, written 

as

(5)

Most papers utilizing a finite mixture of continuous components assume the weights wJ are 

Dirichlet. An exception is Petrone (1999a) who instead chooses wJj = F(j/J) − F((j−1)/J) for 

j = 1, …, J and takes F ~ DP(MF0), a Dirichlet process with precision M centered at F0, 

typically F0 = U (0, 1).

Bernstein polynomials have been used for density estimation on bounded domains, typically 

by transforming data to lie in the interval [0, 1]. We now consider an approach to estimating 

a suitable transformation from the data automatically, including transformations for data that 

lie on unbounded domains. A useful property of Bernstein polynomials (and more generally 

B-splines) is that if the weights are identical, w1 = · · · = wJ = J−1, then fwJ(x) = 1 and FwJ(x) 

= x for x ∈ [0, 1]; so by linearity if E(wj) = J−1, for all j ∈ (1, 2, …, J), then E{fwJ(x)} = 1 

and E{FwJ(x)} = x. Consider a standard parametric family of survival densities {Sθ(·) : θ ∈ 

Θ}; we use the Weibull Sθ(t) = exp(−θ2tθ1) and log-logistic  families in 

applications. Define a random survival function S0(·) for a baseline group with all covariates 

set equal to zero as

(6)

Clearly, under (5), if αJ = M1J, where 1J is a vector of J one’s and M > 0, E{S0(t)} = Sθ(t) 

for all t > 0. For notational simplicity, we suppress the dependence of S0(t) on (J, wJ) and θ, 

e.g. S0(t) = S0(t|J, wJ, θ). The prior acts somewhat like a B-spline, but where knot locations 

are more dense in areas of higher mass under the parametric family Gθ; also the basis 

functions do not have finite support unless Gθ does. So the prior automatically picks knot 

locations guided by an overall parametric Gθ, but then allows substantial deviations from Gθ 

through the additional parameters wJ.

We say that the random S0(·) in (6) has a transformed Bernstein polynomial prior (TBPP). 

Unlike Polya tree priors (Lavine, 1992), the random densities

Chen et al. Page 4

Biometrics. Author manuscript; available in PMC 2015 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(7)

are quite smooth, and therefore amenable to standard estimation approaches involving 

asymptotic normal approximations; also note that E{f0(t)} = fθ(t) when αJ = M1J. Inference 

is easy and relatively quick to obtain in contrast to Markov chain Monte Carlo (MCMC) 

algorithms, which require iteratively sampling the posterior. However, like Polya trees, S0 is 

centered at a given parametric family, yielding more efficient estimation when the 

parametric model approximately holds, but conveying substantial robustness when data 

deviate markedly from the parametric family. Furthermore, a fit of the parametric model 

provides excellent starting values for the estimation routine; this is especially so for the AH 

model with a Weibull centering distribution.

2.2 Prior specification

The number of basis functions J provides scale or resolution for possible departures of S0 

from Sθ, and the parameter M governs how stochastically “pliable” S0 is relative to Sθ. We 

fix M at a reasonable value and leave polynomial order J to be estimated from the data. As 

mentioned in the previous section, several authors have used small, fixed values, e.g. J = 3 

or J = 5. Others have considered a prior on J, including Mallick and Walker (2003); Chang 

et al. (2005); and Petrone (1999a,b), who implements very clever Gibbs sampling stratgies 

by introducing latent variables. These first two use reversible jump (Green, 1995) to sample 

J in a trans-dimensional Gibbs sampler. Walker and Mallick (2003) use a Poisson prior for J 

with mean 4 truncated to J ≤ 16; Chang et al. (2005) consider J ≤10 and J ≤ 20 in 

simulations and examples. We also consider a prior J ~ p(J) with an upper bound J ≤ K, and 

choose K = 15 based on simulations and the discussion in the online appendix. Table 1 in the 

online appendix gives the mean L1 distance of (7) from the centering uniform distribution 

for some values of M and J. When J = 15, M = 1 and M = 2 give average L1 distances of 

0.29 and 0.21, respectively, a priori routinely allowing 20% or 30% of the mass to be 

moved away from Sθ.

For the sample sizes used in this paper, J ≤ 15 has worked very well. In general, however, 

simulations indicate that K should be mildly increased with the sample size n to 

accommodate greater resolution. In such cases, a joint prior on J and M would be ideal, 

perhaps one that fixes the mean and variance of the L1 distance ||fwJ − 1||1. Under mild 

conditions, Theorem 4 in Petrone and Wasserman (2002) shows that the posterior density 

converges (as n → ∞) to the fK̃ that minimizes the Kullback-Leibler divergence to the true 

density for a fixed J.

Note that J = 15 introduces 14 additional free parameters to the overall shape given by θ. 

For the TBPP, capping J off at J ≤ K ≈ n/10 implies that roughly 10 observations inform 

each weight in wK if S0 approximately follows Sθ. We have found simply setting K = 15 to 

give good results for the sample sizes considered in this paper. For much higher sample 

sizes, Petrone (1999a,b) considered higher values of K, e.g. K = 100.
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Although we consider a at prior p(θ, β) ∝ 1 in the rest of the paper, it is possible to 

incorporate some prior information for (θ, β) through the centering Weibull model. When wJ 

= 1J/J, i.e. wJ is fixed at its prior mean, the Weibull regression model is obtained. Thus any 

prior specification approach for Weibull regression would reasonably work, for example the 

conditional median approach of Bedrick, Christensen, and Johnson (2000).

3. Accelerated Hazards Model

Denote the lifetime of patient i as  with right-censoring time c = (c1, …, cn)′. The observed 

event time is ; take the collection of all n event times to be t = (t1, t2, …, tn)′ 

The censoring indicator for the ith subject is δi = 0 if , otherwise δi = 1. The covariates 

for the ith subject is defined as xi = (xi1, …, xip)′ of dimension p. The whole of the observed 

data are included in the set .

Fix J. Momentarily dropping the subscript on (wJ, θJ, βJ), the conditional likelihood 

function for the AH model is written:

(8)

with S0(·) and f0(·) defined in (6) and (7) respectively. Assuming independent priors p(θ), 

p(β), and p(w), the posterior distribution of (w, θ, β) given J is

(9)

We assume the improper prior p(θ, β) ∝; 1 independent of w ~ Dirichlet(M1J); here we take 

M = 1 or M = 2 following the discussion in Section 2. Let  be all of the 

model parameters. The posterior mean ψ̂
J of parameters ψJ is directly obtained from 

maximizing (9). Since the Sθ(t) are assumed to be sufficiently smooth in θ and t, standard 

asymptotic theory requires that (ψJ|J, ) approximately follows a multivariate normal 

distribution with an approximate covariance matrix which is the inverse of the Hessian 

matrix evaluated at ψ̂
J, i.e.

(10)

where Nd is a multivariate normal distribution with dimension d = p + J − 1 + q; q is the 

number of parameters in θ, in this paper q = 2.

The posterior of (J| ) can be evaluated using Bayes’ rule. For any value of ψJ,

(11)

Chen et al. Page 6

Biometrics. Author manuscript; available in PMC 2015 May 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Evaluating the approximation (10) at the posterior mode ψ̂
J simplifies (11) to

(12)

We now describe how to obtain inference for the regression effects β and common 

functionals of survival. We assume an upper bound on the degree of the polynomial J ≤ K, 

so that p(J) = 0 for J > K. To simplify notation, denote p̂(J| ) = p̂J in (12), where J ∈ {1, 2, 

…, K}, and E(β|J, ) = β̂
J and cov(β|J, ) = Σβ̂J, both well-approximated using standard 

asymptotic theory applied to (9); Σβ̂J is a p × p submatrix of Σψ̂J. The posterior mean of β is 

obtained via iterated expectation:

(13)

The posterior covariance is given by iterated covariance:

(14)

where

Credible intervals for regression coefficients are found numerically using a grid search, 

noting that the jth coefficient βj follows a mixture of K normal distributions. Using obvious 

notation, .

Survival function estimates are obtained similarly, by first computing survival conditionally 

on J; then the unconditional survival function estimate will be obtained by averaging with 

respect to the posterior J. The estimated survival function given J is obtained through (2):

and so . Similarly,  and ĥx(t| ) = 

f̂x(t| )/Ŝx(t| ).
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3.1 Computational Issues

Petrone (1999a,b) proposed MCMC procedures for bounded density estimation using 

Bernstein-Dirichlet priors. These algorithms perform well, but are inefficient for large 

sample sizes, as they require the updating a latent component indicator for each datum. 

Furthermore, Petrone’s data-augmentation schemes will not immediately work in this 

regression context as the observations from S0 are not directly observed. Petrone and 

Wasserman (2002) proposed a more efficient estimation method called sieve maximum 

likelihood estimation (SMLE) which can also handle the parameter space dimension 

changing with J. This method applies maximum likelihood to each model with fixed J, then 

averages conditional estimates with respect to model-based weights computed either from 

AIC or BIC. Our estimation method is similar to the SMLE in Petrone and Wasserman 

(2002), but within the context of a full regression model on an unbounded domain, rather 

than just density estimation, and we apply a true Bayesian approach to estimating the 

weights P(J| ). Specifically, we consider the prior p(J) ∝ νJ−1 where ν ∈ (0, 1), penalizing 

for more complexity in the form of larger J. We have found this prior to work very well in 

simulations and real data analyses. Alternatively, one might rather consider just picking one 

J (e.g. J = 15 or J = 20) enriching the baseline parametric model indexed by θ with (e.g. 14 

or 19) additional parameters to add detail to the overall shape provided by Sθ. Picking one 

largish J could be justified because Bernstein polynomials have a very important and 

fascinating property: all Bernstein polynomials of degree 1, 2, 3, …, J −1 are included in the 

Bernstein polynomial of degree J; i.e. lower degrees are formally nested within larger. In 

simulations and the data analysis in Sections 5 and 6.1 we use model averaging with J ≤ 15; 

in the data analysis of Section 6.2 we simply pick J = 15.

To obtain the posterior mode ψ̂
J and accompanying Hessian matrix, there are canned 

functions in most statistical software. We tried several packages in R and found the ucminf 

function in the ucminf library (written by Hans B. Nielsen, Stig B. Mortensen, and Douglas 

Bates) to be the most stable.

To facilitate model fitting we transformed all parameters to lie in ℝ = (−∞, ∞). In both 

Weibull and log-logistic families, the elements of θ = (θ1, θ2)′ are positive; we work with the 

natural log of these parameters instead. Relaxing the restriction on wJ is a bit more 

complicated. Borrowing from the multivariate logistic normal distribution (Aitchison and 

Shen, 1980), we instead work with vJ = (v1, …, vJ−1)′ through

(15)

defining vJ = 0. Under wJ ~ Dirichlet(M1J), the induced prior on vJ is:

(16)
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Note that this is the only part of the posterior density inolving M; placing a prior on M 

would yield a full conditional distribution of (16) times the prior p(M). Working with ψ̂
J = 

(β, log θ1, log θ2, v1, …, vJ−1)′ enhances the asymptotic normality approximation for the 

posterior of ψJ̃ used in (12).

Optimization routines require good starting values to be efficient. In our simulations and 

data analysis in Sections 5 and 6.1, we center the TBPP at the Weibull distribution Sθ(t) = 

e−λtα; for J = 1, the baseline survival function S0 is then reduced to this centering 

distribution. Under the accelerated hazard model with Weibull baseline Sθ, 

. Note under ordinary Weibull regression, we have 

Sx(t) = e−ex′β*λ*tα*, therefore we can obtain the initial values of (β*, α*, λ*) from a 

maximum likelihood fit of the Weibull model; e.g. proc lifereg in SAS or survreg in R. 

Specifically, let (β*, λ*, α*) be estimated under the Weibull regression, then solving α* = α, 

λ* = λ, and β* = β(α−1) gives the initial values for the AH model parameters (β, α, λ) at J = 

1, the simple parametric Weibull distribution.

For J > 1, an iterative procedure is used to obtain starting values for maximization of the 

posterior conditional on a value of J. We can recursively use the values from the fitted 

model at J 1 to be the initial values for the model at J using the “nesting” property of 

Bernstein polynomials, namely

see Sauer (1999, Proposition 2.3). Some algebra reveals that the initial values for the next J 

is recursively obtained by

(17)

The previous posterior modes θĴ−1 and β̂
J−1 are used as starting values for θJ and βJ. In this 

manner, the centering distribution Sθ, regression parameters β, and “adjustments” to S0 

encapsulated in wJ are iteratively refined as J increases. Depending on the level of spatial 

inhomogeneity in the true S0, the (conditional on J) posterior means S0 and β “converge” in 

the sense that they change very little after a certain J. In our experience over several data 

sets, this is usually a small number, less than K = 15. Instead of model averaging, as we 

pursue in this paper, one could look at the L1 distance in successive S0 and stop after L1 < ε 

for some small ε. Sample R code for fitting the model and obtaining common loci of 

inference such as regression coefficients, surivival and hazard curves are available in the 

online appendix.
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3.2 Broad assessment of model fit

Cox-Snell residual plots (Nelson, 1972) provide an overall visual assessment of model fit. 

The ith Cox-Snell residual is ri = −log Ŝxi(ti), the log-estimated survival function for the ith 

subject evaluated at their event time. This residual is a by-product of evaluating the 

likelihood for all models considered here, and thus provides a means for the relative 

comparison of model fit. If the model is correct the pairs  are approximately a 

censored random sample from an exp(1) distribution, and the estimated integrated hazard 

plot should be approximately straight with slope one.

A Bayesian approach to fitting via MCMC allows the computation of the log pseudo 

marginal likelihood (LPML, Geisser and Eddy, 1979), a leave-one-out cross validated 

measure of a model’s ability to predict the observed data. The ith conditional predictive 

ordinate CPOi is the predictive density (δi = 1) or survival function (δi = 0) evaluated at ti, 

but based on the observed data leaving out  = (ti, δi, xi), denoted  = { : j ≠ i}: CPOi = 

fxi(ti| )δiSxi(ti| )1−δi. The LPML is the log of the product of these, 

. Exponentiated differences in LPML lead to a so called “pseudo 

Bayes factor” giving evidence in favor of one model over another much like traditional 

Bayes factors. The LPML is straightforward to compute for censored data using an approach 

described in Section 10.1 of Chen, Shao, and Ibrahim (2000).

4. Accelerated Hazards with Time-Dependent Covariates

One strength of PH is that the model is easily extended to handle covariates that change in 

time, such as blood pressure, cholesterol, age, et cetera; the AH model can be similarly 

generalized. For each individual i, assume xi(t) = (xi1(t), …, xip(t))′ is a step function that 

changes at the mi ordered times ri = (ri1, … rimi)′

where ri1 = 0 and rmi+1 = ∞ (Hanson et al., 2009). The survival time ti ≥ rm. As in the fixed 

covariates case, we assume a baseline survival function S0. This distribution corresponds to 

the situation where x(t) = 0 for all t ≥ 0. Under the AH model, the hazard function with time-

dependent covariates (TDC) is expressed as

(18)

The cumulative hazard function for the ith individual under the accelerated hazards model 

can be expressed as
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This leads to the survival function

(19)

and density defined through (19)

(20)

Baseline survival S0(·) corresponds to an individual with zero covariates for all time; x(t) ≡ 

0; S0(·) is assigned a TBPP as in the fixed-covariates case. The likelihood is given by

(21)

where Si(ti) and fi(ti) defined in (19) and (20) respectively, and as usual Sθ is a specified 

parametric family.

5. Simulation Study

The performance of the TBPP for survival analysis under the AH model is studied in this 

section. The Weibull family, Sθ(t) = e−θ2tθ1, centers S0; the priors are p(θ, β) ∝ 1 

independent of wJ|J ~ Dirichlet(2J). Two sample sizes are considered, n = 300 and n = 500. 

The degree J is capped at K = 15 with the prior p(J) ∝ 0.8J−1, which dies down to p(15) ≈ 

0.01. The true baseline survival functions S0 encompass several situations: (i) the baseline 

survival function defined in (6), where Sθ(t) = e−e−2t3 and J = 6 components with the 

weights w6 = (0.3, 0.15, 0.05, 0.05, 0.15, 0.3) (this baseline density is bimodal); (ii) a 

Weibull baseline survival function S0 = W eibull(0.5, 0.5); (iii) the log-logistic baseline 

survival function LLogis(2, 1), where the first parameter is the shape parameter and the 

second is the scale parameter; and (iv) the log-normal baseline survival function LN (0, 1). 

Two covariates x = (x1, x2) are considered with x1 generated from standard normal 

distribution and x2 from a Bernoulli distribution with probability 0.5. The true coefficients 

are assigned as β = (1, −1). Censoring rates were fixed at 15% and 30% by simulating ci ~ U 

(0, a) for different values of a. For each setting of baseline S0 and sample size n, 200 

simulated data sets were generated and the posterior mean E(β| ) for each data set obtained 

as described in Section 3. Bias, mean square error (MSE), standard deviation (StDev), and 

coverage probability are given in Table 1, where coverage probability is the proportion of 
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95% credible intervals that contain the true parameter value out of the 200 simulated data 

sets.

For comparison, Table 1 also lists results from the profile likelihood method of Zhang et al. 

(2011) and the Gehan rank-type method of Chen and Wang (2000). For n = 300 the profile 

likelihood method failed to converge for several simulated data sets using either a log-

logistic or a log-normal baseline distribution, hence the “NaN” values in the table. With 

either increasing sample size or smaller censoring rates, all estimation methods are more 

precise as more information is included. In terms of the coverage probability, our proposed 

method is considerably more reliable compared to the other two existing methods for the 

simulation cases we looked at. Across all simulation cases, our method gives mean squared 

errors essentially as good as or better than the two other approaches simply fixing the upper 

bound J ≤ K = 15. Although we fixed K = 15, in general we recommend increasing K with 

the sample size to achieve better resolution.

We also compared the normal approximation to MCMC sampling from this simulation 

scenario for n = 50, 100, 200, and 500. Accurate posterior modes are difficult to obtain from 

MCMC output, so posterior means and medians tend to be used as they are stably estimated. 

Thus we compared posterior modes from the normal approximation to posterior means from 

the MCMC, as well as posterior standard deviations. In terms of estimating the regression 

coefficients β, the two approaches provide regression estimates within 5% of each other at n 

= 50; this drops to 1% at n = 500. However, the normal approximation provides larger 

standard deviation estimates at all four sample sizes, as much as 50% greater, indicating that 

the true posterior density is perhaps lighter tailed than multivariate normal; this is plausible 

as the Weibull distribution has lighter tails than the normal, and the TBPP inherits the tail 

behavior of the centering family.

The estimated centering parameters θ and weights w10 were quite different at smaller sample 

sizes, but do converge, although more slowly than for β, as the sample size is increased. 

Posterior densities for the elements of w10 all show some degree of left skew, even at higher 

sample sizes. Although β and w10 can differ somewhat, the posterior mean baseline survival 

densities f0(·) are quite similar across the sample sizes. This would seem to indicate, much 

like mixtures of Polya trees, there is “weak identifiability” in the sense that similar baseline 

survival shapes can be obtained from different settings of θ and wJ.

6. Real Data Illustrations

6.1 Brain Tumor Study

Brem et al. (1995) conducted a randomized, placebo-controlled clinical trial to evaluate the 

effectiveness of biodegradable carmustine (BCNU) polymers on recurrent brain malignant 

gliomas. In total, 110 of 222 participants were randomized to the BCNU polymer treatment 

group, and 112 were randomized to the placebo polymer control group. After the tumor was 

removed, a BCNU or placebo polymer was placed into the cavity. The BCNU polymer 

gradually releases BCNU for three weeks following placement; due to the gradual effect of 

treatment, the AH model is a plausible fit to these data.
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Chen and Wang (2000) considered only the treatment effect in the first 52 weeks when 

BCNU polymer was applied; survival times larger than 52 weeks are right-censored. We fit 

the TBPP AH model to these data with M = 1 and K = 15 as well as the TBPP PH model; 

integrated Cox-Snell residual plots show marked lack of fit for both models (not shown). 

Following Chen (2001) and Zhang et al. (2011), we thus include covariates age and 

resect75, which indicates ≥ 75% tumor resection. The estimated β and corresponding 95% 

credible intervals (CI) are in Table 2 as profile likelihood results (Zhang et al., 2011), the 

Gehan rank-type method (Chen and Wang, 2000), and the PH model fit through partial 

likelihood. Estimated survival and hazard functions for the treatment and control groups are 

plotted in Figure 1 for age = 48 and resect75 = 1.

Overall, the treatment group exhibits lower hazard risk than the control group. However, 

since our estimated 95% CI for β1 includes 0, we do not have a significant difference 

between two groups, in contrast to the approaches of Chen and Wang (2000) and Zhang et 

al. (2011). We also fit a Bayesian TBPP AH model fixing M = 1 and J = 15 via MCMC, as 

well as a Bayesian TBPP PH model, and the AH model of Zhang et al. (2011), and obtained 

the integrated Cox-Snell residual plots for all three in Figure 2. All three models show no 

gross lack of fit, although the PH model shows some deviations from the line y = x in the 

tail. The LPML is −783 for the TBPP AH model and −790 for the TBPP PH model, giving a 

pseudo Bayes factor of about e7 ≈ 1000 in favor of the AH model. Although none of the 

models show any gross lack of fit, the AH model provides significantly better out of sample 

prediction than the PH model for these data. The estimated value of eβ̂1 ≈ 0.7 for the AH 

treatment coefficient implies that the risk of individuals in the treatment group at time t is 

equal to the risk of those in the control group at time 0.7t; note that the baseline hazard is 

increasing. Put another way, since e−β̂1 ≈ 1.4, the treatment group will take 40% more time 

to achieve the same (arbitrary) elevated risk as the control group.

6.2 Stanford Heart Transplant Study

Crowley and Hu (1977) first analyzed the well-known Stanford heart transplant data using 

the Cox model with TDC. Recently, Hanson et al. (2009) considered Bayesian 

semiparametric models for analyzing the data using the Cox model with TDC and two 

generalizations of the AFT model; they called those three models CTD (Cox, 1972), PKTD 

(Prentice and Kalbfleisch, 1979), and COTD (Cox and Oakes, 1984) respectively. Each of 

the three models was fit with a mixture of Polya trees (MPT) prior assigned to the baseline 

survival function S0. Here we will fit this data to the AH model with TDC using the TBPP 

assigned to the baseline survival function. To compare with their fitting results, we consider 

the same covariates: transplant indicator, patient baseline age, and mismatch scores. Those 

patients who entered in the transplant program but did not receive a heart transplant before 

they died serve as a control group; they have xi(t) = (xi1(t), xi2(t), xi3(t)) = (0, 0, 0) for all t > 

0. For patients receiving a heart transplant, let si when the transplant occurred. These 

individuals have
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where zi1 = 1, zi2 = age − 35, and zi3 = mismatch − 0.5. Since Hanson et al. (2009) centered 

S0 at the log-logistic family, we follow suit, specifically, .

Instead of normal approximations, MCMC is instead used here; MCMC allows us to easily 

compute the LPML to compare to other approaches. The random quantities based on (21) 

are θ, wJ, and β. Again we assume (θ, β) has an improper flat prior and wJ ~ Dirichlet(1J). 

To relax boundary restrictions on wJ, we take the transformation (15) and fit to vJ − 1. A 

block-updated version of the adaptive random walk Metropolis-Hastings algorithm of 

Haario et al. (2005) is applied to (θ, β|vJ − 1, ) and (vJ − 1|θ, β, ) in turn.

We fit two models with J = 1 (parametric log-logistic model) and J = 15; we call them 

AHTD and AHTD-TBPP respectively. The results are displayed in Table 3.

Based on the LPML, the two models predict similarly; in fact, the parametric model with a 

log-logistic baseline fits slightly better than the semiparametric model. Both models imply a 

significant difference in survival between patients with and without heart transplants. For 

comparison purposes, consider two individuals who have the same covariates (age 35 and 

mis-match score 0.5, so z = (1, 0, 0)), except for one does not receive a heart transplant and 

the other has one at s = 6 months. Under this setup, eβ1 reflects how the hazard of death is 

re-scaled when the patient receives a heart transplant. Based on the AHTD, a 95% credible 

interval for eβ1 is (1.99, 25.53) with posterior median of 6.96. Although the hazard for death 

is decreasing for both groups (see Figure 6 in the online appendix), a given risk of dying 

takes about 7 times longer to achieve for those not receiving the heart transplant. Hanson et 

al. (2009) found LPML values of −468.0, −467.0, and −464.1 for the PKTD, COTD, and 

Cox models respectively; the AHTD model fares better than all of these.

7. Discussion

The approach in this paper enriches a given class of densities by adding detail to an overall 

parametric shape; we apply the method to the underused AH model. Specifically, we 

advocate estimating a transformation of a Bernstein polynomial by centering S0 at the 

parametric distribution Gθ; posterior inference averages over θ. Our approach uses standard 

maximization routines an adaptive MCMC algorithm to obtain inference. The AH model is 

further generalized to accommodate time-dependent covariates.

Although the AH model is tailored for use with covariates that take effect gradually, it may 

not be appropriate for factors such as cancer stage that have an immediate impact on the 

hazard; here the PH model could provide superior fit. Etezadi-Amoli and Ciampi (1987), 

and later Chen and Jewell (2001) consider a natural extension of AH, PH, and AFT models 

hx(t) = ex′βh0{ex′γt}. Under this model, setting elements of β or γ to zero allows a covariate 

to have a conditionally AH or PH effect on the hazard, respectively; setting the same 

element of β and γ to be equal implies an AFT effect. We have begun exploring approaches 

to fitting this general model and implementing Bayes factors for testing the types of effect 

each covariate might have on the hazard, i.e. AH, PH, AFT, or extended. The more general 

model could, for example, accommodate an AH effect for treatment but a PH effect for 

cancer stage.
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Figure 1. 
Estimated survival and hazard functions for M = 1 and K = 15; age is set to 48 years and 

Resect75 is one.
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Figure 2. 
Integrated Cox-Snell residual plots for TBPP AH, TBPP PH, and the AH model of Zhang et 

al. (2011).
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Table 2

Estimated β and 95% CI for brain tumor data; * significance at the 5% level.

TBPP Zhang, Peng, and Zhao Chen and Wang PH

Treatment −0.341 (0.238) −0.648* (0.134) −0.672* (0.272) −0.232 (0.151)

Age 0.040* (0.010) 0.053* (0.008) 0.011* (0.004) 0.025* (0.006)

Resect75 −1.078* (0.281) −0.967* (0.223) −0.368 (0.357) −0.6502* (0.166)
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Table 3

Inference for Stanford heart transplant data

Models AHTD AHTD-TBPP

LPML −463.0 −463.9

Status 1.94 (0.69,3.24) 1.74 (0.39,3.18)

Age-35 −0.100 (−0.173, −0.032) −0.090(−0.166, −0.029)

Mismatch-0.5 −0.91 (−1.93,0.04) −0.86(−1.88,0.06)
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