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Abstract 

Objectives: Intensified repetitive transcranial magnetic stimulation (rTMS) applied to the left 

dorsolateral prefrontal cortex (DLPFC) may result in fast clinical responses in treatment 

resistant depression (TRD). In these kinds of patients, subgenual anterior cingulate cortex 

(sgACC) functional connectivity (FC) seems to be consistently disturbed. So far, no de novo 

data on the relationship between sgACC FC changes and clinical efficacy of accelerated 

rTMS were available. 

Methods: Twenty unipolar TRD patients, all at least stage III treatment resistant, were 

recruited in a randomized sham-controlled crossover high-frequency (HF)-rTMS treatment 

study. Resting-state (rs) functional MRI scans were collected at baseline and at the end of 

treatment.  

Results: HF-rTMS responders showed significantly stronger resting-state functional 

connectivity (rsFC) anti-correlation between the sgACC and parts of the left superior medial 

prefrontal cortex. After successful treatment an inverted relative strength of the anti-

correlations was observed in the perigenual prefrontal cortex (pgPFC). No effects on sgACC 

rsFC were observed in non-responders.  

Conclusions: Strong rsFC anti-correlation between the sgACC and parts of the left prefrontal 

cortex could be indicative of a beneficial outcome. Accelerated HF-rTMS treatment designs 

have the potential to acutely adjust deregulated sgACC neuronal networks in TRD patients.  

 

Key words: HF-rTMS, major depression, treatment-resistance, subgenual anterior cingulate 

cortex, functional connectivity 
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1. Introduction 

Major depression is a severe mental health problem affecting millions worldwide 

(Nemeroff 2007a). Unfortunately, many depressed patients do not respond to the 

available pharmacological treatment. This is referred to as treatment-resistant depression 

(TRD) (Fava 2003; Nemeroff 2007b). When challenged with clinical non-response, 

treatment options are limited (Shelton et al. 2010; Ward and Irazoqui 2010). In the last 

two decades, repetitive transcranial magnetic stimulation (rTMS) has been used to treat 

depressed patients, including those who do not benefit from the pharmacological 

approaches (Padberg and George 2009; George and Post 2011). Classically, the left 

dorsolateral prefrontal cortex (DLPFC) is targeted with high-frequency (HF) rTMS, a 

protocol found to frequently result in beneficial outcomes (Schutter 2009; Fitzgerald and 

Daskalakis 2012). Of note, other neurostimulation techniques, such as transcranial direct 

current stimulation (tDCS), have also shown beneficial effects in the treatment of 

depression (Brunoni et al., 2013). The rationale for using (predominantly) the left DLPFC 

as the rTMS target area originates from brain-imaging research, which has indicated that 

unipolar depressed patients show decreased neuronal activity in this prefrontal region 

(Mayberg 2003; George et al. 2003; Drevets et al. 2008a). After rTMS application, 

neuronal changes are not only observed in the area under the stimulation coil, but also in 

areas synaptically connected to the targeted region, ipsi- as well as contralateral (Paus et 

al. 2001; Paus and Barrett 2004). These neuronal rTMS effects are found both in healthy 

subjects and patients suffering from major depression (Knoch et al. 2006; Baeken et al. 

2009; Kito et al. 2012).  

In contrast to hypo-activities in the DLPFC and rostral anterior cingulate cortical 

(rACC) areas, increased metabolic activity in the ventromedial prefrontal cortex (vmPFC) 

is often observed in the depressive state (Price and Drevets 2012). The subgenual anterior 



4 

 

cingulate cortex (sgACC: Brodmann area (BA) 25) has consistently been shown to be 

metabolically hyperactive during (treatment resistant) depressive episodes (Drevets et al. 

1997, 2008b; Mayberg et al. 2005). The sgACC is part of distributed corticolimbic 

neurocircuits implicated in ‘visceromotor’ functions and in modulating affect, such as 

sadness and ruminative thought patterns (Disner et al. 2011; Smith et al. 2011; Davey et 

al. 2012a). In general, successful pharmacotherapy attenuates this sgACC metabolic 

hyperactivity (Mayberg 2003). Additionally, non-pharmacological strategies for the 

treatment of refractory depression, such as deep brain stimulation (DBS) and anterior 

cingulotomy, specifically target the sgACC with the intention to interrupt this overactive 

limbic region (Dougherty et al. 2003; Mayberg et al. 2005; Johansen-Berg et al. 2008; 

Steele et al. 2008). The clinical efficacy of nervus vagus stimulation (VNS) therapy, 

electroconvulsive therapy (ECT) and rTMS in TRD seems to correlate with decreases in 

sgACC activity (Nobler et al. 2001; Mottaghy et al. 2002; Zobel et al. 2005). 

Accordingly, it has been proposed that sgACC hyperactivity could be a potential 

neurobiological marker for TRD (Greicius et al. 2007; Guinjoan et al. 2010; Holtzheimer 

and Mayberg 2011).    

From a clinical neuroscience perspective, the combination of rTMS treatment 

algorithms with brain imaging techniques holds potential for elucidating the 

neurobiological effects of neurostimulation on the human ‘depressed brain’. Major 

depression can be conceptualized as a neural-network-level disease, involving functional 

connectivity deregulation in the prefrontal and limbic areas (Sheline et al. 2010; 

Carballedo et al. 2011). Recent research (Fox and Greicius 2010; Veer et al. 2010; 

Marchetti et al. 2012; Fox et al. 2012 a, b; Cisler et al. 2013) has focused on this 

deregulated FC. The combination of rTMS and functional connectivity MRI (fcMRI) 

may significantly contribute to the diagnosis and treatment of psychiatric illnesses with 
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deregulated network pathologies such as major depression (Fox et al. 2012 b). Moreover, 

the combination of these techniques may increase our neurobiological understanding of 

clinical response and the phenomenon of non-response, potentially accelerating the 

translation of both techniques into the clinical realm. Fox et al. (2012 a), for instance, 

have evaluated the resting state FC (rsFC) of different regions within the left DLPFC 

with the sgACC as seed, in view of the selection of optimal rTMS target sites. They 

showed that target sites with the best rTMS antidepressant efficacy exhibited the 

strongest anti-correlated rsFC in the sgACC. These sites were localized in the more 

anterior parts of the left DLPFC. One aspect of this important work was the use of 

existing information on the responsiveness of the depressed subjects (no de novo 

information acquisition as part of the experimental set-up). 

Another avenue for improving treatment effects in depressed patients, has involved 

the use of more potent rTMS stimulation (e.g. suprathreshold sessions with the delivery 

of a higher number of pulses) and of neuronavigation techniques for identifying the 

DLPFC target (Gershon et al. 2003; Fitzgerald et al. 2009). In an effort to acutely affect 

mood in TRD patients, recent research designs have further intensified treatment by 

delivering the HF-rTMS sessions in a few days instead of spreading them over several 

weeks (Holtzheimer et al. 2010; Hadley et al. 2011; Zeeuws et al. 2011).  

Although a number of fcMRI studies have focused on non-refractory major 

depression (for an overview, see Wang et al. 2012), no studies have so far investigated 

the influence of intensified HF-rTMS treatment on FC in TRD. Also, combined de novo 

data on the effect of rTMS on FC and clinical efficacy have so far been lacking. 

Consequently, in this sham-controlled HF-rTMS study of a group of at least stage III 

unipolar TRD patients, we investigate in the impact of accelerated rTMS treatment on 

functional connectivity and depression status. In view of the well documented sgACC 
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abnormalities in major depression, we focused on this region as seed area for the fcMRI. 

Assuming the clinical effects of HF-rTMS to be related to the existence of rsFC anti-

correlation between the stimulated area and the sgACC (Fox et al. 2012a), we expected 

that, at baseline, responders would display stronger anti-correlation patterns between 

sgACC and the prefrontal cortical areas than non-responders. In addition, we 

hypothesized that in responders the anti-correlation between the sgACC and the left 

prefrontal cortex would decrease after treatment, while we did not anticipate comparable 

FC changes in non-responders. 
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2. Materials and Methods 

This study was part of a larger project investigating the influence of HF-rTMS on 

various neurocognitive markers. It was approved by the local ethics committee of the 

UZBrussel and all subjects gave written informed consent.  

2.1  Subjects 

 The study group consisted of twenty antidepressant-free, unipolar severely depressed 

patients (HDRS: 25.65 ± 6.13; age: 48.80 years ± 12.76; 13 females), selected using the 

Mini-International Neuropsychiatric Interview (MINI; Sheehan et al., 1998). All were 

right-handed (Van Strien and Van Beek 2000) and at least stage III treatment- resistant, 

as described by Rush et al. (2003): they had received a minimum of two unsuccessful 

treatment trials with serotonin reuptake inhibitors/ noradrenaline and/or serotonin 

reuptake inhibitors (SSRI/NSRI) and one failed clinical trial with a tricyclic 

antidepressant (TCA). Exclusion criteria were a current or past history of epilepsy, 

neurosurgical interventions, having a pacemaker, metallic or magnetic objects in the 

brain, alcohol dependence and any suicide attempts within 6 months before the start of 

the study. Because concomitant antidepressant treatment can confound outcome results, 

all patients went through a medication washout period before entering the study 

supervised by their physician, guaranteeing that all TRD patients were free from any 

antidepressant (AD), neuroleptic and mood stabilizer. All TRD patients were at least two 

weeks free from these agents (three weeks when on fluoxetine) before entering the HF-

rTMS treatment protocol. Only habitual benzodiazepine agents were allowed. The 

maximum allowed dose of benzodiazepines was the equivalent of 20 mg diazepam. These 

benzodiazepines equivalent doses are described by the British National Formulary (No. 

64. London: British Medical Association and Royal Pharmaceutical Society of Great 

Britain; September 2012, p212-220). During this psychotropic-free two week period, 



8 

 

besides steady doses of benzodiazepine, no withdrawal symptoms were recorded. Any 

psychopharmacological changes during the protocol were considered valid reasons for 

exclusion from the study.  

 

 

2.2 Protocol 

 We used a sham-controlled, cross-over experimental design covering two weeks 

(Figure 1). Half of the patients were selected at random to receive in the first week real 

HF-rTMS delivered to the left DLPFC, the other half undergoing sham treatment during 

that week. These roles were reversed in the second week. At the start of the first week 

(time T0), the depression severity of each subject was assessed by a certified psychiatrist 

unrelated to the actual HF-rTMS treatment of the patient, using the 17-item Hamilton 

Depression Rating Scale (HDRS; Hamilton 1967). The patients were re-assessed in the 

same way at the end of this week (T1) and at the end of the second week (T2) of the 

stimulation protocol. At times T0,  T1 and T2, the patients underwent fcMRI.  

 

2.3 HF-rTMS Stimulation 

 

The treatment protocol of 20 HF-rTMS sessions was spread over 4 days of each 

week, yielding a total of 31200 stimuli. See also Figure 1. On each stimulation day, 

usually in the afternoon between 2:00 pm and 6:00 pm, the patient received 5 sessions 

with an intersession delay of 15 to 20 minutes. Patients were kept unaware of the type of 

stimulation; they wore earplugs and were blindfolded. For the application of HF-rTMS 

we used a Super Rapid Magstim high-speed magnetic stimulator (Magstim Company 

Limited, Wales, UK), connected to a 70 mm figure-of-eight-shaped coil. Before each 
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session, the resting motor threshold (RMT) of each individual was determined using 

electromyography. Single pulse TMS in combination with motor evoked potentials 

(MEP), measured with surface electromyography (EMG) registration determined the 

optimal muscular response (right abductor pollicis brevis muscle).  We adjusted stimulus 

intensity until positive MEP responses were recorded and clear thumb muscular 

abduction was observed. Before the selected part of the cortex was accepted as the motor 

cortex related to the contralateral abductor pollicis brevis (APB) muscle, positive MEP 

responses of at least 50 µV (peak-to-peak amplitude) had to be produced in at least five 

out of ten consecutive trials. A stimulation intensity of 110 % of the subject’s RMT of the 

right APB muscle was used. In order to accurately target the left DLPFC, the precise 

stimulation site was determined using three-dimensional Magnetic Resonance Imaging 

(3D-MRI) (see also Peleman et al. 2010). In the sham condition, the coil was held at an 

angle of 90°, only resting on the scalp with one lateral edge. In each high-frequency 

(20Hz) stimulation session, subjects received forty trains of 1.9 seconds duration, 

separated by an intertrain interval of 12 seconds (1560 pulses per session). The rTMS 

parameters were in each separate HF-rTMS session are in agreement with current safety 

guidelines (Wassermann et al. 1998; Rossi et al. 2009).  
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2.4 Brain imaging 

 

To obtain individual anatomical information, all subjects underwent a T1-

weighted MRI (3D-TFE,voxel size 1 1 1 mm) of the brain using a 3T Achieva MR 

scanner (Philips, Best, The Netherlands). All post processing was done on a ViewForum 

console (Philips). We located the left DLPFC visually on the 3D surface rendering of the 

brain based on the known gyral morphology and marked the centre part of the 

midprefrontal gyrus as the the left DLPFC target (Brodmann 9/46; MNI coordinates: x= 

−45, y= 30, z= 31). The corresponding coil position was found by determining the 

perpendicular projection of this point on the scalp (see also Peleman et al., 2010 for an 

extensive description). 

During the resting-state measurements, which involved exactly five minutes of 

scanning, the participants were asked to stay awake with their eyes closed. To reduce 

sensory confounds as much as possible, the light in the room was dimmed during 

scanning. After the scan, we certified that they had been awake throughout the scan and 

had complied with the instructions. All resting-state fMRI scans were performed on a 

Monday afternoon between 3:00 pm and 6:00 pm. 

 The scans were performed on a 3T Philips Achieva MRI system (Philips, Best, 

The Netherlands) with an eight channel SENSE head coil. The fMRI measurement was 

done using a SE-EPI sequence (TR/TE=3000/70ms; flip angle=90°; FOV=230x230mm²; 

resolution=1.80x1.80mm²; slice thickness/gap=4.00/1.00mm; number of slices=24; 

number of dynamics=100; time resolution=3000ms). After the fMRI scan, a 3D 

anatomical scan was taken for use as anatomical underlay for the results using a 3D T1 

TFE sequence (TR/TE=12.00/3.71; flip angle=10°; FOV=240x240x200mm³; 

resolution=1.00x1.00x2.00mm³; number of slices=100). 
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2.5 Data analysis 
 

2.5.1 Behavioral data 

 

All behavioral data were analyzed using SPSS 19 (IBM, Statistical Package for the 

Social Sciences, Chicago). Clinical response was defined as a 50% reduction of the 

baseline HDRS score after each treatment condition for one week. See also Table 1 and 

Figure 1. To evaluate the differences between responders and non-responders, we applied 

independent T or X2
 tests where appropriate. The significance level was set at p< 0.05 for 

all analyses.  

 

2.5.2 Imaging data 

 

The fMRI data were analyzed using the SPM8 software (Wellcome Department of 

Cognitive Neurology, London, UK). The images were realigned to the first volume to 

correct for head movements. After the realignment step, a slice-time correction was 

performed to correct for small differences in the time-offset of consecutively measured 

slices. Subsequently, all brain volumes were normalized to the EPI MNI template, then 

resampled to 3-mm isotropic voxels. The anatomical scans were normalized to the T1 

MNI template.  

Several additional processing steps were preceding the analysis of the voxel-based 

correlations. The data were linearly detrended and band-pass filtered (0.01-0.08Hz). 

Several spurious or nonspecific sources of variance were removed from the data through 

linear regression: 1) the six head-motion parameters obtained in the realignment step, 2) 

the signal from a region in the cerebrospinal fluid, 3) the signal from a region centered in 

the white matter, 4) the whole-brain signal. Correlation maps were then obtained by 
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extracting the BOLD time course from the seed region and computing the correlation 

coefficients between that time course and the time courses in all other brain voxels. In our 

case the seed region was a 6-mm-diameter sphere centered on a point with MNI 

coordinates (x= 1, y= 25, z= -11), designed to encompass the sgACC. These MNI 

coordinates were selected following the recent paper of Cisler et al. (2013), defining 

centroids of nodes comprising an affective cognitive network. To combine results across 

subjects and compute statistical significance, Fisher’s r-to-Z transformation was used to 

convert these correlation maps into Z-maps characterizing the rsFC of the seed region in 

each point. 

These rsFC maps were submitted in SPM8 to a random-effects two-way ANOVA, 

containing Age as covariate, Response (positive, negative) as between-subject factor and 

Time (baseline, post-treatment) as within-subject factor. Because at T1 only two patients 

could be identified as clinical responders, the ANOVA with the rsFC maps of the scan at 

T1 could not be performed. Hence, Response was defined as a 50% reduction of the 

baseline HDRS score at T0 compared to the HDRS score at the end of the entire 

experimental protocol at T2.  The F-test for investigating the presence of an interaction 

effect between Response at T2 and Time was thresholded using the Alphasim correction 

as implemented in the SPM REST toolbox (restfmri.net/forum/) at p < 0.05 (cluster size: 

389 voxels). Two-sample T-tests were performed post hoc to further investigate the 

characteristics of the interaction, comparing responders and non-responders. These 

analyses were constrained to the region of significant Response x Time interaction, 

thresholded at a cluster extent (K) of 25 voxels and a voxel significance level of 0.05 

according to the Alphasim correction. 
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3. Results 

 

3.1 Behavioral results 

The results of the behavioral data analysis are summarized in Table 1. Ten 

subjects received real HF-rTMS treatment in the first week and sham in the second week; 

10 followed the reverse order. A total of seven subjects (35% of the total) were identified 

as responders at the end of the two-week study protocol. All responders were identified 

after real HF-rTMS. However, the two responders that were identified at the end of the 

first week remained responders after their sham sessions in week two. Five subjects 

responded in the second week after receiving their real HF-rTMS treatment during that 

week, after not having responded to sham treatment in their first week (for the full 

outcome results, see Baeken et al., in press). Of note, the participants in the current study 

are not exactly the same as no rsFMRI data could be collected from one patient with a 

nervus vagus stimulator (VNS) implanted for a previous depressive episode. Baseline 

HDRS measurements were not significantly different between responders and non-

responders (t(18)=0.51, p=0.79 at T0).   

On the demographics side, we noted no difference between responders and non-

responders in gender (X2
(1)=0.20, p=0.66), but a marginal difference in age (t(18)=2.00, 

p=0.06).  
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3.2 Functional connectivity results 

These results are summarized in Table 2 and Figures 2 and 3. Due to the 

unavailability of the scanner at T2 only 12 second scans (fcMRI end) could be performed 

(7 non-responders and 5 responders). Although before entering the HF-rTMS treatment 

protocol the baseline scan could be programmed for every TRD patient, because our MRI 

scan is mainly used for clinical purposes, it was not always possible to perform the T2 

scan within the set time period of two weeks. Because we did not want to perform this 

fMRI three or four weeks after the initiation of the treatment protocol, introducing too 

much variability into our rsFC data, these post-treatment fMRI scans were not performed. 

The two-way ANOVA yielded a significant Response x Time interaction cluster located 

in the superior medial frontal gyrus (k= 435; MNI coordinates: x= 0, y= 60, z= 21; see 

Figure 2). The post hoc analysis restricted to this region showed that, at baseline, the 

(anti-correlated) sgACC rsFC was significantly stronger in responders than in non-

responders in two clusters: the central part of the medial superior frontal gyrus (BA 10; 

k= 108; MNI coordinates: x= 0, y= 48, z= 30) and the left superior frontal gyrus (BA 10; 

k= 47; MNI coordinates: x= -24, y= 51, z= 27). The post-hoc analysis also showed that, 

after the HF-rTMS treatment, compared to non-responders the responders displayed 

significantly stronger sgACC rsFC correlation between the perigenual anterior cingulate 

(pgACC)/superior medial frontal gyrus (BA 32/10; k= 298; MNI coordinates: x= 6, y= 

45, z= 9). These midprefrontal areas are part of the perigenual prefrontal cortex (pgPFC) 

(Price and Drevets, 2012).  

In particular to verify whether HF-rTMS treatment did affect sgACC rsFC in clinical 

non-responders, we extracted the individual time courses out Response x Time 

interaction cluster in MarsBaR (Brett et al. 2002) for responders and non-responders, 

before and after treatment, age corrected.   
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 For the rsFC based on these time courses a two-way ANOVA, Response (positive, 

negative) as between-subject factor and Time (baseline, post-treatment) as within-subject 

factor showed a significant main effect of Time (F (1,10)= 11.25, p<.01) but not for 

Response (F (1,10)= 0.1, p=.92). However, the interaction effect between Response and 

Time was highly significant (F (1,10)= 36.86, p<.01). See also Figure 4. Wilcoxon paired 

T-tests confirmed that successful HF-rTMS treatment resulted in an inverse correlation 

effect between sgACC rsFC and the superior medial frontal gyrus interaction cluster 

(mean baseline = -1.0 (.15), mean after HF-rTMS= .14 (.12): z= -2.02, N (ties)=5, p= 

.04). No significant changes were observed for non-responders (mean baseline = -0.03 

(.07), mean after HF-rTMS= -.03 (.02): z= -1.69, N (ties)=7, p= .09). 
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4. Discussion 

To our knowledge, this is the first study in which the effect of accelerated HF-

rTMS on functional connectivity and de novo measured depression status was evaluated. 

A sample of at least stage III treatment-resistant depressed patients was investigated. The 

rTMS targeted the center of the left DLPFC (BA 46/9) under MRI guidance. At the 

behavioral level (depression severity symptoms as measured by the HDRS) we could not 

discriminate responders from non-responders at baseline, but at the end of the treatment 

period the group of responders was distinguished from the non-responders by a 

significantly lower HDRS score. See Figure 4 (left). Our rsFC results corroborated the 

importance of the sgACC as key structure involved in clinical response to rTMS in TRD. 

At baseline, the HF-rTMS responders showed stronger anti-correlated sgACC rsFC than 

non-responders in parts of the prefrontal cortex (BA 10), predominantly on the left. After 

treatment, a reversal of the relative strengths of the anti-correlated rsFc in responders vs 

non-responders was found, covering parts of the pgPFC (BA 32/10). See Figure 4 (right). 

Our rsFC results support the recent observations of Fox and colleagues (2012 a), 

in which a stronger anti-correlation at baseline between the sgACC and specific 

stimulation sites in the (dorsolateral) prefrontal cortex was reported to have a more 

beneficial clinical outcome for rTMS. In line with this reasoning one could speculate that 

only TRD patients displaying such anti-correlation pattern may be susceptible to these 

intensified HF-rTMS treatment algorithms, as HF-rTMS specifically influences this anti-

correlation. This is confirmed here (Figure 4 (right)): at baseline the responsive subjects 

in our sample exhibit strong anti-correlation, while the non-responsive ones on average 

show a slightly positive correlation. After successful treatment, the roles are inverted: the 

anti-correlation has become slightly positive in responders, while in non-responders the 

correlation has become slightly negative, although not significant.  
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Because the interpretation of anti-correlations between functional networks has 

not been clarified yet (Fox and Greicius 2010; Fox et al. 2012 b), at this point one can 

speculate that this observed anti-correlation reflects a consistent neurobiological datum in 

major depression: that is hyperactivity in the sgACC and hypo-activity in the left 

(dorsolateral and medial) prefrontal cortical areas (Mayberg 2003; Drevets et al. 2008a). 

Of course this assumption is based on other neuroimaging techniques not necessarily 

measuring the same neuronal processes. Nevertheless, the stronger FC observed after 

successful HF-rTMS treatment between the sgACC and parts of the left superior frontal 

gyrus (BA 10) suggests a reversal of neuronal activity within these networks. This 

reversal pattern has also been reported after successful psychopharmacotherapy and 

neurostimulation techniques such as DBS and rTMS (Mayberg et al. 2005; Drevets et al. 

2008 b; Baeken et al. 2009). These brain imaging data could indicate that this reversal 

pattern is essential for depression improvement, regardless of the used intervention. 

However, this was measured with different imaging techniques making it difficult for 

direct comparison. Further, our data do not imply that HF-rTMS non-responders display 

no similar anti-correlation pattern, only that HF-rTMS responders have stronger FC anti-

correlations between these two areas at baseline. Nevertheless, a reversal of FC between 

sgACC and similar parts of the PFC could be essential for clinical response and remission 

in depressed patients, explaining to some extent the lack of significant FC changes 

between these areas in HF-rTMS non-responders. Whether this anti-correlation is due to 

the combination of specific neuronal dysfunctions between the two regions or there is a 

compensatory effect of one area over the other remains to be clarified (Fox et al. 2012 b). 

Albeit we targeted the center of the left DLPFC (BA 46/9), we did not observe the anti-

correlation within this area and the sgACC suggested by Fox et al. (2012 a). However, in 

our TRD sample we did find a significant anti-correlation pattern between the sgACC and 
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parts of the left superior medial frontal gyrus (BA 10), anterior to our stimulation target 

area. Our current results imply that to effectively treat TRD patients even more anterior 

located stimulation areas could be targeted. Whereas Fox et al. (2012 a) evaluated 

classical rTMS paradigms in healthy as well as in depressed patients, we used a novel 

intensified HF-rTMS paradigm in a sample of TRD patients, which makes it difficult to 

compare. Furthermore, although we corrected for age in our FC analyses, HF-rTMS 

responders were globally younger than non-responders. On the one hand, it has been 

documented that age differences may influence anti-correlation analyses (Koch et al. 

2010; Wu et al. 2011). The observed stronger anti-correlation between the sgACC and 

parts of the (left) prefrontal cortex in responders may to some extent explain as to why 

relatively younger depressed patients could benefit from this form of treatment.   

Our whole brain analyses revealed that the FC between the sgACC and parts in 

the pgPFC became stronger in clinical HF-rTMS responders. Ventral-rostral portions of 

the ACC and parts of the vmPFC have a regulatory role with respect to limbic regions 

involved in generating emotional responses (Etkin et al. 2011). The pgPFC is implicated 

in mechanisms of consciousness and emotional awareness (Amting et al. 2010). Given 

the role of the pgPFC in emotion-regulative processes (Ochsner and Gross 2005) the 

observed enhanced functional connectivity between sgACC and pgPFC could be essential 

for the suppression of depressive symptoms. In addition, it has been reported that AD 

responders show higher pgACC metabolic states and electrophysiological activity than 

AD nonresponsive patients (Mayberg et al. 1997; Pizzagalli et al. 2001). Of note, in an 

open 
18

FDG-PET study examining a different but similar sample of at least stage III TRD 

patients and stimulating exactly the same anatomical coordinates within the left DLPFC, 

we found that a positive clinical response was associated with increases in both 

(dorsolateral) prefrontal and pgACC (BA 32) metabolic activities (Baeken et al. 2009). 
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Similar pgACC increases in neuronal activity after effective add-on left-sided HF-rTMS 

treatments were reported in TRD patients (Kito et al. 2008, 2012). Of interest, in contrast 

to the sgACC, these ventral parts of the ACC are synaptically interconnected with the 

DLPFC (BA 9/46) (Paus and Barrrett, 2004) and the increased FC in the pgACC could be 

indicative for the improved cognitive regulation of affect (Davey et al., 2012 b). Further, 

we found that successful stimulation resulted in stronger FC between the sgACC seed and 

parts of the left superior frontal gyrus (BA 10). Being part of a resting state or default 

mode network (DMN), these areas are activated when individuals make self-relevant 

affective decisions (Wendelken et al. 2008; Andrews-Hanna et al. 2010). These rostral 

parts of the medial prefrontal cortex are associated with emotion regulation, sustained 

attention, memory, and mentalizing processes (Ramnani and Owen 2004; Amodio and 

Frith 2006; Burgess et al. 2007a, b). Left and not right BA 10 has been related to adaptive 

changes of attentional resource allocation, in the absence of awareness and learned 

contingencies (Pollmann and Manginelli 2009). Altogether, the stronger FC between the 

sgACC and the two areas in the pgPFC, related to clinical response, could imply that 

firstly, the pgACC area regains better emotional control over the unrestricted arousing 

responses found in the overactive sgACC during depressive episodes; secondly, there is 

improvement on the cognitive level, influencing attention, memory and empathy 

processes. The lack of FC change during non-response is in line with the paper of 

Hamilton and colleagues (2011) where continuous activities in the ventral parts of the 

ACC and the medial prefrontal cortex were mutually reinforcing major depressive 

symptoms. 

 Besides the relatively small sample size, some limitations have to be discussed. As no 

long-term effects were examined, the interpretations of this study design are restricted to 

the immediate effects on FC, specifically for TRD patients. In spite of our clear a priori 
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hypothesis on sgACC involvement in TRD, other key regions in major depression, such 

as the orbital frontal cortex, hippocampus, insula and amygdala are often found to be 

deregulated  (Price and Drevets 2010, 2012), but these were not examined here. Another 

major limitation of the study is that we did not include the analyses of an intermediate 

fMRI scan into our analyses because there were not enough responders as measured just 

after the first week. Without the analyses of the intermediate scan the interpretation of the 

current results remains limited to the effects of accelerated HF-rTMS of a treatment 

protocol which includes both real and sham stimulation. However, all patients who did 

not respond after real HF-rTMS in the first week also remained clinical non-responder 

after sham week two, implying the inefficacy of sham  (see Baeken et al., in press). 

Further, based on the meta-analysis of Berlim and colleagues (2013) concerning blinding 

integrity, it has been concluded that commonly used sham rTMS methods appear to 

adequately conceal treatment allocation, leading to acceptable levels of blinding integrity 

at study end. Notwithstanding, as we did not formally evaluate blinding integrity in our 

sample we consider this as a limitation of the study. The fact that in our study all TRD 

patients were 2-week AD-free before scanning should be considered as a major strength 

of this study. Finally, in spite that functional connectivity is a unique powerful tool able 

to increase our knowledge on human brain organization, fcMRI is based on an inherently 

ambiguous measure reflecting constraints both from static anatomical connectivity and 

from poorly understood functional coupling changes that are dynamic; physiological data 

from other sources may be required to confirm and interpret FC findings (Buckner et al., 

2013). 

 In conclusion, our current results confirmed the importance of the sgACC as a key 

structure implicated in TRD. They agree with our a priori hypotheses that an increased 

anti-correlation between the sgACC and the (predominantly left) PFC is indicative for a 
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beneficial clinical outcome of accelerated HF-rTMS. Our findings suggest that the 

stronger anti-correlation between the sgACC and parts of the left prefrontal cortex (BA 

10) could be indicative for beneficial outcome, raising the possibility that baseline rsFC 

scans examining the FC between these regions in particular could be interesting for 

predicting clinical effects. When clinically effective, intensified HF-rTMS yields similar 

effects on FC between the sgACC and parts of the pgPFC cortex as other AD treatment 

algorithms, such as the more invasive neurostimulation techniques. However, the most 

fascinating result to report here is that these neurobiological effects in HF-rTMS 

responders are already present after 4 days of real stimulation. Multimodal brain imaging 

paradigms are needed to substantiate our findings that (accelerated) HF-rTMS treatment 

designs have the potential to acutely adjust deregulated sgACC neuronal networks in 

TRD patients. 
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Demographic data and behavioral results.Demographic data and behavioral results.Demographic data and behavioral results.Demographic data and behavioral results.      

    All All All All 

patientspatientspatientspatients    

RespondersRespondersRespondersResponders    

After week After week After week After week 

oneoneoneone    

(n=2)(n=2)(n=2)(n=2)    

RespondersRespondersRespondersResponders    

After week After week After week After week 

two (n=5)two (n=5)two (n=5)two (n=5)    

Total Total Total Total 

RespondersRespondersRespondersResponders    

(n=7)(n=7)(n=7)(n=7)    

Total NonTotal NonTotal NonTotal Non----

respondersrespondersrespondersresponders    

(n=13)(n=13)(n=13)(n=13)    

pppp----    

values values values values 

****    

Age (years)Age (years)Age (years)Age (years)    49 (13) 42 (13) 41 (16) 42 (14) 53 (11) 0.06 

Gender Gender Gender Gender 

(male:female)(male:female)(male:female)(male:female)    

7:20 0: 2 2: 3 2:5 5:13 0.66 

HDRS THDRS THDRS THDRS T0000    26 (6) 24 (7) 26 (5) 25 (5) 26 (7) 0.78 

HDRS THDRS THDRS THDRS T1111    20 (7) 11 (2) 18 (7)  16 (3) 23 (7) 0.06 

HDRS THDRS THDRS THDRS T2222    18 (9) 7 (1) 8 (2) 7 (2) 23 (5) <0.01 

 

 

 

Table 1.  Mean and SD for the basic demographic quantities Age and Gender and 

the results for the HDRS scores (17- item Hamilton depression rating scale) of the 

subject categories. The p - values report the significance levels reached for the T or 

X
2
 tests (as applicable) comparing responders and non-responders. The 
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significance threshold was set at p< 0.05 for all analyses. * Represents p-values 

only represent differences between the group of responders and non-responders. 

 

 

(a)(a)(a)(a) TwoTwoTwoTwo----way ANOVA way ANOVA way ANOVA way ANOVA  

       

 Cluster Cluster Cluster Cluster 

sizesizesizesize 

Anatomical regionAnatomical regionAnatomical regionAnatomical region HemisphereHemisphereHemisphereHemisphere BABABABA FFFF----valuevaluevaluevalue Peak coordinates (x,y,z) Peak coordinates (x,y,z) Peak coordinates (x,y,z) Peak coordinates (x,y,z) 

(mm)(mm)(mm)(mm) 

Interaction Interaction Interaction Interaction 

effectseffectseffectseffects    

      

Cluster     435 Superior Medial Frontal 

Gyrus 

Left / Right - 3.62 (0, 60, 21) 

 

(a)(a)(a)(a) PostPostPostPost----hoc tests comparing hoc tests comparing hoc tests comparing hoc tests comparing responders responders responders responders vs. vs. vs. vs. nonnonnonnon----responders responders responders responders  

       

 Cluster Cluster Cluster Cluster 

sizesizesizesize 

Anatomical regionAnatomical regionAnatomical regionAnatomical region HemisphereHemisphereHemisphereHemisphere BABABABA TTTT----valuevaluevaluevalue Peak coordinates (x,y,z) Peak coordinates (x,y,z) Peak coordinates (x,y,z) Peak coordinates (x,y,z) 

(mm)(mm)(mm)(mm) 

BaselineBaselineBaselineBaseline          

Cluster 1 108 Superior Medial Frontal 

Gyrus 

Left / Right 10 -3.96 (0, 4,8 30) 

Cluster 2 47 Superior Frontal Gyrus Left 10 -3.89 (-24, 51, 27) 

       

After After After After 

treatmenttreatmenttreatmenttreatment    

      

Cluster  298 Anterior Cingulate 

gyrus / Superior Medial 

Frontal Gyrus 

Right 32 / 10 3.98 (6, 45, 9) 
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Table 2. (a) Results of the two-way ANOVA whole brain analysis of the sgACC 

rsFC, showing the areas with significant Response x Treatment interaction. (b) 

Post-hoc comparison of responders vs. non-responders, showing significant T-test 

clusters at baseline and after HF-rTMS treatment. The significance threshold was 

set at p< 0.05 for all analyses. 
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Figure legends 

 

 

Figure 1. Flow chart of the experimental HF-rTMS treatment procedure.  

After a washout period, all TRD (treatment resistant depression) patients are at least two weeks 

antidepressant (AD) free before they undergo the first (baseline) functional connectivity MRI 

(fcMRI) scan at time T0 (on a Monday afternoon). Hereafter patients are randomly divided into 

two groups of 10 to receive 20 sessions of real or sham HF-rTMS treatment respectively. This 

treatment is spread over the four succeeding afternoons (5 daily sessions on Tuesday, 

Wednesday, Thursday and Friday). In the second week, strictly the same treatment schedule is 

followed but with a change of stimulation: line AB= a TRD patient who first received real HF-

rTMS now receives sham; line BA= a patient who first received sham treatment now receives 

real HF-rTMS.  A second fcMRI scan (fcMRI end) is performed exactly 1 week after the first 

week (time T1) and a third scan exactly after 2 weeks (time T2), always on a Monday afternoon. 

At T0, T1 and T2 all patients are assessed using the Hamilton Depression Rating Scale (HDRS). 
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Figure 2. Sagittal glass brain image depicting the significant Response x Treatment 

interaction cluster result. 

The red-shaded areas resulted from a two-way ANOVA whole brain analysis of the sgACC rsFC, 

showing a significant Response x Treatment-interaction region located in the superior medial 

frontal gyrus. 

The red sphere represents the seed region, a 6-mm-diameter sphere centered around MNI 

coordinates: x= 1, y= 25, z= -11, subgenual anterior cingulate cortex (sgACC).  The purple 

sphere is centered on the target area in the dorsolateral prefrontal cortex (DLPFC, BA 46/9, MNI 

coordinates: x= −45, y= 30, z= 31).  
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Figure 3.  Transversal slices depicting the Response x Treatment interaction cluster result  

Results of the post hoc T-tests comparing the sgACC rsFC of responders and non-responders at 

baseline (top row) and after treatment (bottom row). The significant Response x Treatment 

interaction cluster was used as mask.  Blue-shaded regions (predominantly left prefrontal cortex 

(BA 10)) exhibit significantly stronger sgACC rsFC anti-correlation in responders compared to 

non-responders. Red-shaded regions (parts of the perigenual prefrontal cortex (BA 32/10)) 

exhibit significantly weaker sgACC rsFC anti-correlation in responders compared to non-

responders.  
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Figure 4. Graphical representation of the interaction between the two factors Response (positive, 

negative) and Treatment (baseline, post-treatment) of the two-way ANOVA containing age as 

covariate, for the HDRS (Hamilton Depression Rating Scale; on the left) scores and the rsFC 

(resting state functional connectivity; on the right).  

 

 




