Accelerated Landweber iteration in Banach spaces

Torsten Hein

CHEMNITZ UNIVERSITY
OF TECHNOLOGY
Chemnitz University of Technology Department of Mathematics 09107 Chemnitz, Germany

Warsaw, February 2010
torsten.hein@mathematik.tu-chemnitz.de

Outline

(1) Introduction
(2) The general scheme
(3) Choice of the step size

- Bregman distances
- Variant I
- Variant II
- Convergence results

4 Numerical example
(5) Summary

The situation

- \mathcal{X} and \mathcal{Y} denote real Banach spaces with dual spaces \mathcal{X}^{*} and \mathcal{Y}^{*}, corresponding norms $\|\cdot\|$ and duality products $\langle\cdot, \cdot\rangle$.
- \mathcal{X} is supposed to be reflexive.
- The linear and bounded operator $A: \mathcal{X} \longrightarrow \mathcal{Y}$ has non-closed range, i.e. $\overline{\mathcal{R}(A)} \neq \mathcal{R}(A)$.
- We consider the ill-posed operator equation

$$
A x=y, \quad x \in \mathcal{X}, y \in \mathcal{Y}
$$

- given: only noisy data y^{δ} with $\left\|y-y^{\delta}\right\| \leq \delta$
- There exists a solution x^{\dagger} for given exact data, i.e. $A x^{\dagger}=y$ holds.

Tikhonov-like regularization approach:

- choose $1<p, s<\infty$,
- define Tikhonov functional with norm penalty term

$$
T_{\alpha, y^{\delta}}(x):=\frac{1}{p}\left\|A x-y^{\delta}\right\|^{p}+\frac{\alpha}{s}\|x\|^{s}
$$

for given regularization parameter $\alpha>0$ and

- calculate

$$
x_{\alpha}^{\delta}:=\operatorname{argmin}\left\{T_{\alpha, y^{\delta}}(x): x \in \mathcal{X}\right\}
$$

as regularized approximate solution of equation $A x=y$.
For 'optimal' choice of parameter α :

- have to solve the minimization problem several times for different regularization parameter α
\Rightarrow numerically ineffective
- instead of Tikhonov regularization we deal with iterative approaches for solving the minimization problem

$$
\Phi(x):=\frac{1}{p}\left\|A x-y^{\delta}\right\|^{p} \rightarrow \text { min }
$$

- regularization: early termination of the iteration (stopping criterion)
- Minimization: gradient type method
- classical Landweber iteration (in Hilbert spaces): constant step size
- acceleration: control of the step size in each iteration
- still slow convergence expected, but:

The stopping criterion often terminates the iteration before convergence becomes too slow!

Outline

(1) Introduction
(2) The general scheme
(3) Choice of the step size

- Bregman distances
- Variant I
- Variant II
- Convergence results

4. Numerical example
(5) Summary

Duality mappings

In order to iterate in the correct space we need duality mappings:

Definition

Let $1<p<\infty$.

- The duality mapping $J_{p}: \mathcal{X} \longrightarrow 2^{\mathcal{X}^{*}}$ with gauge function $t \mapsto t^{p-1}$ is defined as

$$
J_{p}(x):=\left\{x^{*} \in \mathcal{X}^{*}:\left\langle x^{*}, x\right\rangle=\left\|x^{*}\right\|\|x\|,\left\|x^{*}\right\|=\|x\|^{p-1}\right\} .
$$

- The Banach space \mathcal{X} is called smooth if duality mappings are always single valued.

Example

Assume $\mathcal{X}=L^{r}(0,1), 1<r<\infty$. Then $J_{p}(x)=\|x\|^{p-r}|x|^{r-1} \operatorname{sgn}(x)$, $x \neq 0$.

The parameter p is just a scaling factor. It is more important to choose the space \mathcal{X} (and \mathcal{Y}) suitably!

Duality mappings

Properties:

- If $J_{p}(x)$ is single-valued (i.e. if \mathcal{X} is smooth) then

$$
J_{p}(x)=\left(\frac{1}{p}\|x\|^{p}\right)^{\prime} \in \mathcal{X}^{*} .
$$

- J_{2} is linear if and only if \mathcal{X} is a Hilbert space.
- \mathcal{X} reflexive and $\mathcal{X}, \mathcal{X}^{*}$ are smooth then $J_{\rho}^{-1}=J_{\rho^{*}}^{*}: \mathcal{X}^{*} \longrightarrow \mathcal{X}$ with $\left(p^{*}\right)^{-1}+p^{-1}=1$.
In the following we assume $\mathcal{X}, \mathcal{X}^{*}$ and \mathcal{Y} to be smooth.

Algorithm

Notation: duality mappings $J_{p}: \mathcal{Y} \longrightarrow \mathcal{Y}^{*}$ and $J_{s^{*}}^{*}: \mathcal{X}^{*} \longrightarrow \mathcal{X}$ with $\left(s^{*}\right)^{-1}+s^{-1}=1, A^{\star}: \mathcal{Y}^{*} \longrightarrow \mathcal{X}^{*}$ adjoint of A.

Algorithm - general scheme

(S0) Init. Choose $1<p, s<\infty, x_{0}^{*} \in \mathcal{X}^{*}, x_{0}^{\delta}:=J_{s^{*}}^{*}\left(x_{0}^{*}\right)$. Choose upper bound $\bar{\mu} \in(0, \infty]$ for the step size and define parameter $\tau>1$. Set $n:=0$.
(S1) STOP, if for $\delta>0$ the discrepancy criterion $\left\|A x_{n}^{\delta}-y^{\delta}\right\| \leq \tau \delta$ is fulfilled or we have $A x_{n}^{\delta}=y$ for $\delta=0$.
(S2) Calculate $\psi_{n}^{*}:=\Phi^{\prime}\left(x_{n}^{\delta}\right)=A^{\star} J_{p}\left(A x_{n}^{\delta}-y^{\delta}\right)$ and determine the step size $\mu_{n}>0$.
(S3) Calculate the new iterate

$$
x_{n+1}^{*}:=x_{n}^{*}-\mu_{n} \psi_{n}^{*}, \quad x_{n+1}^{\delta}:=J_{s^{*}}^{*}\left(x_{n+1}^{*}\right) .
$$

Set $n:=n+1$ and go to step (S1).

Outline

(1) Introduction

(2) The general scheme
(3) Choice of the step size

- Bregman distances
- Variant I
- Variant II
- Convergence results

4 Numerical example
(5) Summary

Bregman distances

Bregman distance of the functional $x \mapsto \frac{1}{s}\|x\|^{s}$:

$$
\begin{aligned}
\Delta_{s}(\tilde{x}, x) & :=\frac{1}{s}\|\tilde{x}\|^{s}-\frac{1}{s}\|x\|^{s}-\left\langle J_{s}(x), \tilde{x}-x\right\rangle \\
& =\frac{1}{s}\|\tilde{x}\|^{s}+\frac{1}{s^{*}}\|x\|^{s}-\left\langle J_{s}(x), \tilde{x}\right\rangle \\
& =\frac{1}{s}\|\tilde{x}\|^{s}+\frac{1}{s^{*}}\left\|J_{s}(x)\right\|^{s^{*}}-\left\langle J_{s}(x), \tilde{x}\right\rangle
\end{aligned}
$$

From convexity: $\Delta_{s}(\tilde{x}, x) \geq 0$ for all $\tilde{x}, x \in \mathcal{X}$, but

- no symmetry and
- no transitivity.

On the other hand: if \mathcal{X} is uniformly convex (i.e. $\mathcal{X}=L^{r}, 1<r<\infty$) then

$$
\Delta_{s}(\tilde{x}, x) \rightarrow 0 \Leftrightarrow\|\tilde{x}-x\| \rightarrow 0
$$

Convergence analysis

For proving convergence of the algorithm in Banach spaces we observe the following:

- \mathcal{X} Hilbert space:

$$
\frac{1}{2}\|\tilde{x}-x\|^{2}=\frac{1}{2}\|\tilde{x}\|^{2}-\frac{1}{2}\|x\|^{2}-\langle x, \tilde{x}-x\rangle_{\mathcal{X}, \mathcal{X}}
$$

- \mathcal{X} Banach space:

$$
\Delta_{s}(\tilde{x}, x)=\frac{1}{s}\|\tilde{X}\|^{s}-\frac{1}{s}\|x\|^{s}-\left\langle J_{s}(x), \tilde{x}-x\right\rangle_{\mathcal{X}^{*}, \mathcal{X}}
$$

Therefore: replace $\left\|x_{n}^{\delta}-x^{\dagger}\right\|^{2}$ by $\Delta_{s}\left(x^{\dagger}, x_{n}^{\delta}\right)\left(\right.$ or $\left.\Delta_{s}\left(x_{n}^{\delta}, x^{\dagger}\right)\right)$!

Choice of the step size

Remember

$$
x_{n+1}^{\delta}:=J_{s^{*}}^{*}\left(x_{n}^{\delta}-\mu_{n} \psi_{n}^{*}\right)
$$

Keep $\mu>0$ variable we derive

$$
\begin{aligned}
& \Delta_{s}\left(x^{\dagger}, J_{s^{*}}^{*}\left(x_{n}^{*}-\mu \psi_{n}^{*}\right)\right)-\Delta_{s}\left(x^{\dagger}, x_{n}^{\delta}\right) \\
& \quad=\frac{1}{s^{*}}\left\|x_{n}^{*}-\mu \psi_{n}^{*}\right\|^{s^{*}}-\frac{1}{s^{*}}\left\|x_{n}^{*}\right\|^{s^{*}}+\mu\left\langle\psi_{n}^{*}, x^{\dagger}\right\rangle \\
& =\frac{1}{s^{*}}\left\|x_{n}^{*}-\mu \psi_{n}^{*}\right\|^{s^{*}}-\frac{1}{s^{*}}\left\|x_{n}^{*}\right\|^{s^{*}}+\mu\left\langle\psi_{n}^{*}, x_{n}^{\delta}\right\rangle \\
& \left.\quad+\mu\left\langle J_{p}\left(A x_{n}^{\delta}-y^{\delta}\right), A x^{\dagger}-y^{\delta}+y^{\delta}-A x_{n}^{\delta}\right)\right\rangle \\
& \leq \frac{1}{s^{*}}\left\|x_{n}^{*}-\mu \psi_{n}^{*}\right\|^{s^{*}}-\frac{1}{s^{*}}\left\|x_{n}^{*}\right\|^{s^{*}}+\mu\left\langle\psi_{n}^{*}, x_{n}^{\delta}\right\rangle \\
& \quad-\mu\left(\left\|A x_{n}^{\delta}-y^{\delta}\right\|^{p^{*}}-\delta\left\|A x_{n}^{\delta}-y^{\delta}\right\|^{p-1}\right)
\end{aligned}
$$

- $\delta=0, \mathcal{X}, \mathcal{Y}$ are Hilbert spaces: This is the method of minimal error!

Choice of the step size

Set

$$
c_{n}^{\delta}:=\left\|A x_{n}^{\delta}-y^{\delta}\right\|^{p}-\delta\left\|A x_{n}^{\delta}-y^{\delta}\right\|^{p-1}
$$

and

$$
f(\mu):=\frac{1}{s^{*}}\left\|x_{n}^{*}-\mu \psi_{n}^{*}\right\|^{s^{*}}+\mu\left\langle\psi_{n}^{*}, x_{n}^{\delta}\right\rangle-\mu c_{n}^{\delta}
$$

Lemma

Assume $\psi_{n}^{*} \neq 0$. Then the minimization problem

$$
f(\mu) \rightarrow \min \quad \text { subject to } \quad \mu>0
$$

has a unique solution $\mu^{*}>0$ as long as $c_{n}^{\delta}>0$.
We have

$$
f^{\prime}(\mu)=-\left\langle\psi_{n}^{*}, J_{s^{*}}^{*}\left(x_{n}^{*}-\mu \psi_{n}^{*}\right)+x_{n}^{\delta}\right\rangle-c_{n}^{\delta}
$$

which is continuous and strictly increasing with $f^{\prime}(0)=-c_{n}^{\delta}<0$.

Choice of the step size

We now can specify step (S2) in the general algorithm

Algorithm I

(S2) Calculate $\psi_{n}^{*}=A^{\star} J_{p}\left(A x_{n}^{\delta}-\boldsymbol{y}^{\delta}\right)$. Find the solution μ^{*} of the equation

$$
f^{\prime}(\mu)=0, \quad \mu \geq 0
$$

Set $\mu_{n}:=\min \left\{\mu^{*}, \bar{\mu}\left\|\boldsymbol{A} \boldsymbol{x}_{n}^{\delta}-\boldsymbol{y}^{\delta}\right\|^{s-p}\right\}$.

- we observe

$$
c_{n}^{\delta}>0 \Leftrightarrow\left\|A x_{n}^{\delta}-y^{\delta}\right\|>\delta
$$

- consequence: can choose $\tau>1$ arbitrary close to 1
- The estimate ensures $\Delta_{s}\left(x^{\dagger}, x_{n+1}^{\delta}\right)<\Delta_{s}\left(x^{\dagger}, x_{n}^{\delta}\right)$

Choice of the step size - second approach

We need some further condition on the space \mathcal{X}.

Assumption (Xu/Roach inequality I)

The space \mathcal{X} is supposed to be s-convex for some $2 \leq s<\infty$, i.e. there exists a constant C_{s} such that

$$
\frac{1}{s}\|\tilde{x}\|^{s}-\frac{1}{s}\|x\|^{s}-\left\langle J_{s}(x), \tilde{x}-x\right\rangle \geq \frac{C_{s}}{s}\|\tilde{x}-x\|^{s}
$$

holds for all $\tilde{x}, x \in \mathcal{X}$.

- Choice of s in the algorithm is determined by the space \mathcal{X}.
- s-convexity implies reflexivity and smoothness of \mathcal{X}^{*}.

Choice of the step size - second approach

What we really need is the following:

Corollary (Xu/Roach inequality II)

Assume \mathcal{X} to be s-convex for some $2 \leq s<\infty$. Then the dual space \mathcal{X}^{*} is s^{*}-smooth, $\left(s^{*}\right)^{-1}+s^{-1}=1$, i.e. there exists a constant $G_{s^{*}}^{*}$ such that

$$
\frac{1}{s^{*}}\left\|\tilde{x}^{*}\right\|^{s^{*}}-\frac{1}{s^{*}}\left\|x^{*}\right\|^{s^{*}}-\left\langle J_{s^{*}}^{*}\left(x^{*}\right), \tilde{x}^{*}-x^{*}\right\rangle \leq \frac{G_{S^{*}}^{*}}{s^{*}}\left\|\tilde{x}^{*}-x^{*}\right\|^{s^{*}}
$$

holds for all $\tilde{x}^{*}, x^{*} \in \mathcal{X}^{*}$.

Example

Assume $\mathcal{X}^{*}=L^{r}, 1<r<\infty$. Then \mathcal{X}^{*} is $\min \{r, 2\}$-smooth and $\max \{r, 2\}$-convex. Moreover we have

$$
G_{\min \{r, 2\}}^{*}:= \begin{cases}2^{2-r} & r \leq 2 \\ r-1 & r \geq 2 .\end{cases}
$$

Choice of the step size - second approach

We recall

$$
\begin{aligned}
& \Delta_{s}\left(x^{\dagger}, J_{s^{*}}^{*}\left(x_{n}^{*}-\mu \psi_{n}^{*}\right)\right)-\Delta_{s}\left(x^{\dagger}, x_{n}^{\delta}\right) \\
& \quad=\frac{1}{s^{*}}\left\|x_{n}^{*}-\mu \psi_{n}^{*}\right\|^{s^{*}}-\frac{1}{s^{*}}\left\|x_{n}^{*}\right\|^{s^{*}}+\mu\left\langle\psi_{n}^{*}, x^{\dagger}\right\rangle
\end{aligned}
$$

Using s^{*}-smoothness of \mathcal{X}^{*} we derive

$$
\begin{aligned}
& \frac{1}{s^{*}}\left\|x_{n}^{*}-\mu \psi_{n}^{*}\right\|^{s^{*}}-\frac{1}{s^{*}}\left\|x_{n}^{*}\right\|^{s^{*}} \\
& \quad \leq\left\langle J_{s^{*}}^{*}\left(x_{n}^{*}\right),-\mu \psi_{n}^{*}\right\rangle+\frac{G_{s^{*}}^{*}}{s^{*}}\left\|\mu \psi_{n}^{*}\right\|^{s^{*}} \\
& \quad=-\mu\left\langle x_{n}^{\delta}, \psi_{n}^{*}\right\rangle+\frac{G_{s^{*}}^{*}}{s^{*}} \mu^{s^{*}}\left\|\psi_{n}^{*}\right\|^{s^{*}}
\end{aligned}
$$

and hence

$$
\begin{aligned}
& \Delta_{s}\left(x^{\dagger}, J_{s^{*}}^{*}\left(x_{n}^{*}-\mu \psi_{n}^{*}\right)\right)-\Delta_{s}\left(x^{\dagger}, x_{n}^{\delta}\right) \\
& \quad \leq-\mu\left(\left\|A x_{n}^{\delta}-y^{\delta}\right\|^{p}-\delta\left\|A x_{n}^{\delta}-y^{\delta}\right\|^{p-1}\right)+\frac{G_{s^{*}}^{*}}{s^{*}}\left\|\psi_{n}^{*}\right\|^{s^{*}} \mu^{s^{*}} \\
& \quad=-c_{n}^{\delta} \mu+\frac{G_{s^{*}}^{*}}{s^{*}}\left\|\psi_{n}^{*}\right\|^{s^{*}} \mu^{s^{*}} .
\end{aligned}
$$

Choice of the step size - second approach

We observe:

- minimizer μ^{*} of the right hand side can be calculated explicitly:

$$
\mu^{*}:=\left(\frac{c_{n}^{\delta}}{G_{s^{*}}^{*}\left\|\psi_{n}^{*}\right\| \|^{s^{*}}}\right)^{\frac{1}{s^{*}-1}}>0 \quad \Leftrightarrow \quad c_{n}^{\delta}>0
$$

(and hence $\psi_{n}^{*} \neq 0$).

- price: less optimality than the first approach
- but: use this variant as auxiliary problem for proving convergence of the first algorithm

Choice of the step size - second approach

We now can specify step (S2) in the general algorithm again

Algorithm II

(S2) Calculate $\psi_{n}^{*}=A^{\star} J_{p}\left(A x_{n}^{\delta}-y^{\delta}\right)$ and

$$
\mu^{*}:=\left(\frac{\left\|A x_{n}^{\delta}-y^{\delta}\right\|^{p}-\delta\left\|A x_{n}^{\delta}-y^{\delta}\right\|^{p-1}}{G_{s^{*}}^{*}\left\|\psi_{n}^{*}\right\|^{s^{*}}}\right)^{\frac{1}{s^{*}-1}}
$$

Set $\mu_{n}:=\min \left\{\mu^{*}, \bar{\mu}\left\|A x_{n}^{\delta}-y^{\delta}\right\|^{s-p}\right\}$.
Choice of μ_{n} : techniqual reason by observing

$$
\mu^{*} \geq \underline{\mu}_{\tau}\left\|A x_{n}^{\delta}-y^{\delta}\right\|^{s-p}
$$

for some constant $\underline{\mu}_{\tau}$ which depends neither on x_{n}^{δ} nor on y^{δ}.

Assume $\delta=0$ and suppose $\left\|A x_{n}^{0}-y\right\| \rightarrow 0$ as $n \rightarrow \infty$.
Consequence:

- $\mu_{n} \rightarrow \infty$ for $s<p$ and
- $\mu_{n} \rightarrow 0$ for $s>p$ and $\bar{\mu}<\infty$.

This might be one reason why a constant step size $\mu_{n} \equiv \mu$ does not provide linear convergence ($s<p$) or we even cannot prove convergence ($s>p$).

We summarize the assumptions:

Assumptions

(A1) The space \mathcal{X} is smooth and s-convex for some $2 \leq s<\infty$.
(A2) The space \mathcal{Y} is smooth.
(A3) There exists an element $x^{\dagger} \in \mathcal{X}$ satisfying $A x^{\dagger}=y$.

Convergence - Algorithm II

Theorem I (noiseless data)

Assume (A1)-(A3), $\delta=0$ and let $\left\{x_{n}^{0}\right\}$ be generated by Algorithm II. Then the algorithm stops either after a finite number N of iterations with $x_{N}^{0}=\tilde{x}$ or we have convergence $x_{n}^{0} \rightarrow \tilde{x}$ as $n \rightarrow \infty$. In both cases \tilde{x} satisfies $A \tilde{x}=y$.

Theorem II (noisy data)

Assume (A1)-(A3), $\delta>0$ and let $\left\{x_{n}^{\delta}\right\}$ be generated by Algorithm II. Then the algorithm stops after a finite number $N\left(\delta, y^{\delta}\right)$ of iterations. If, additionally, J_{p} is continuous then we have convergence $x_{N\left(\delta, y^{\delta}\right)}^{\delta} \rightarrow \tilde{x}$ with $A \tilde{x}=y$ as $\delta \rightarrow 0$.

Corollary

$$
\begin{aligned}
& \text { If } N\left(\delta, y^{\delta}\right) \rightarrow \infty \text { as } \delta \rightarrow 0 \text { we have } x_{N\left(\delta, y^{\delta}\right)}^{\delta} \rightarrow x^{\dagger} \text { with } \\
& \qquad \Delta_{s}\left(x^{\dagger}, x_{0}^{\delta}\right):=\operatorname{argmin}\left\{\Delta_{s}\left(x, x_{0}^{\delta}\right): A x=y\right\}
\end{aligned}
$$

Convergence - Algorithm I

Theorem III

Assume (A1)-(A3) and let the sequence $\left\{x_{n}^{\delta}\right\}$ be generated by Algorithm I. Then the results of Theorem I and II remain true as long as $\bar{\mu}<\infty$.

Outline

(1) Introduction
2) The general scheme
(3) Choice of the step size

- Bregman distances
- Variant I
- Variant II
- Convergence results

4 Numerical example
(5) Summary

Example

Example (Numerical example)

- $\mathcal{Y}=L^{2}(0,1), \mathcal{X}=L^{1.1}(0,1)$ and

$$
[A x](t):=\int_{0}^{t} x(\tau) d \tau, \quad \tau \in[0,1]
$$

- two different types of exact solutions:

$$
x_{1}^{\dagger}(t):=3(t-0.5)^{2}+0.2
$$

and

$$
x_{2}^{\dagger}(t):=\left\{\begin{array}{rc}
5, & t \in[0.25,0.27] \\
-3, & t \in[0.4,0.45] \\
4, & t \in[0.7,0.73] \\
0, & \text { else }
\end{array}\right.
$$

- $x_{0} \equiv 0, s=p=2, \tau:=1.2$
- discretization: $k=1000$ DoF

Example

Figure: Regularized solutions for x_{2}^{\dagger} with $\mathcal{X}=L^{2}$ (left plot) and $\mathcal{X}=L^{1.1}$ (right plot), $\delta_{\text {rel }}=0.01$

Example

Figure: Application of duality mappings on x^{*} (blue) for $\mathcal{X}^{*}=L^{3} \Leftrightarrow \mathcal{X}=L^{1.5}$ (green) and $\mathcal{X}^{*}=L^{10} \Leftrightarrow \mathcal{X}=L^{1.1}$ (red)

	$\mu_{n}=$ const.		Algorithm II		Algorithm I	
$\delta_{\text {rel }}$	$N\left(\delta, y^{\delta}\right)$	time	$N\left(\delta, y^{\delta}\right)$	time	$N\left(\delta, y^{\delta}\right)$	time
0.05	863	0.85	63	0.16	28	0.18
0.01	7530	6.56	335	0.40	93	0.33
10^{-3}	79120	69.01	2065	2.29	451	2.05
10^{-4}	$>10^{6}$	-	24548	26.27	2068	8.69
10^{-5}	-	-	118823	126.81	12479	49.97

Calculation times for sample function x_{1}^{\dagger}

- The reconstruction error is similar to Tikhonov regularization:

$$
x_{\alpha}^{\delta}:=\operatorname{argmin}\left\{\frac{1}{2}\left\|A x-y^{\delta}\right\|_{L^{2}}^{2}+\frac{\alpha}{2}\|x\|_{L^{1,1}}^{2}: x \in \mathcal{X}\right\}
$$

- Matrix-vector multiplications in this example with $\mathcal{O}(k)$ operations

	$\mu_{n}=$ const.		Algorithm II		Algorithm I	
$\delta_{\text {rel }}$	$N\left(\delta, y^{\delta}\right)$	time	$N\left(\delta, y^{\delta}\right)$	time	$N\left(\delta, y^{\delta}\right)$	time
0.05	4023	3.52	253	0.35	104	0.29
0.01	36720	31.98	1520	1.35	358	1.28
10^{-3}	457270	391.40	11022	12.01	963	4.17
10^{-4}	$>10^{6}$	-	94315	101.77	6729	27.10
10^{-5}	-	-	606582	653.37	50890	205.01

Calculation times for sample function x_{2}^{\dagger}

Outline

(1) Introduction

2 The general scheme
(3) Choice of the step size

- Bregman distances
- Variant I
- Variant II
- Convergence results

4. Numerical example
(5) Summary

- We presented an accelerated Landweber-type method for the regularization of linear ill-posed problems
- choice of the step size by solving a (simple) one-dimensional minimization problem
- number of necessary iterations as well as calculation time can be reduced significantly
- generalization to nonlinear equations possible using the η-condition as restriction of the nonlinearity
- open problem: convergence rates
- suppose $F: \mathcal{D}(F) \subseteq \mathcal{X} \longrightarrow \mathcal{Y}$ satisfies

$$
\left\|F(\tilde{x})-F(x)-F^{\prime}(x)(\tilde{x}-x)\right\| \leq L\|F(\tilde{x})-F(x)\|
$$

for some $L<1$. Then we derive

$$
\begin{aligned}
& \Delta_{s}\left(x^{\dagger}, J_{s^{*}}^{*}\left(x_{n}^{*}-\mu \psi_{n}^{*}\right)\right)-\Delta_{s}\left(x^{\dagger}, x_{n}^{\delta}\right) \\
& \quad \leq \frac{1}{s^{*}}\left\|x_{n}^{*}-\mu \psi_{n}^{*}\right\|^{s^{*}}-\frac{1}{s^{*}}\left\|x_{n}^{*}\right\|^{s^{*}}+\mu\left\langle\psi_{n}^{*}, x_{n}^{\delta}\right\rangle \\
& \quad \quad-\mu\left((1-L)\left\|F\left(x_{n}^{\delta}\right)-y^{\delta}\right\|^{p}-(1+L) \delta\left\|F\left(x_{n}^{\delta}\right)-y^{\delta}\right\|^{p-1}\right)
\end{aligned}
$$

- hence: choose $\tau>\frac{1+L}{1-L}$
- further assumptions: $\left\|F^{\prime}(x)\right\| \leq K$ uniformly and $F^{\prime}(x)$ depends continuously on x

