
Accelerated Occlusion Culling using Shadow Frusta *

T. Hudson D. Manocha J. Cohen M. Lint K. Hoff H. Zhang
Department of Computer Science

University of North Carolina
Chapel Hill, NC 27599-3175

{hudson ,manocha,cohenj ,lin,hoff,zhangh }@cs. unc.ed u

Abstract:
Many applications in computer graphics and virtual environ

ments need to render datasets with large numbers of primitives
and high depth complexity at interactive rates. However, stan
dard techniques like view frustum culling and a hardware z-buffer
are unable to display datasets composed of hundred of thousands
of polygons at interactive frame rates on current high-end graph
ics systems. We add a "conservative'' visibility culling stage to the
rendering pipeline, attempting to identify and avoid processing of
occluded polygons. Given a moving viewpoint, the algorithm dy
namically chooses a set of occluder3. Each occluder is used to
compute a 3h.adow frustum, and all primitives contained within
this frustum are culled. The algorithm hierarchically traverses the
model, culling out parts not visible from the current viewpoint
using efficient, robust, and in some cases specialized interference
detection algorithms. The algorithm's performance varies with
the location of the viewpoint and the depth complexity of the
model. In the worst case it is linear in the input size with a small
constant. In this paper, we demonstrate its performance on a
city model composed of 500,000 polygons and possessing varying
depth complexity. We are able to cull an average of 55% of the
polygons that would not be culled by view-frustum culling and
obtain a commensurate improvement in frame rate. The overall
approach is ejJecti11e and •calable, is applicable to all polygonal
models, and can be easily implemented on top of view-frustum
culling.

1 Introduction

Interactive display of extremely large and complex geometric data
sets has long been an important problem in computer graphics.
Although throughput of graphics systems has improved consid
erably over the years, the size and complexity of models has
grown even faster. In many walkthrough and virtual environment
applications, models commonly consist of millions of primitives.
Rendering such models at interactive rates is a major challenge.
There is a great body of literature in computer graphics and com
putational geometry using techniques based on visibility culling

*Supported in part by a Sloan fellowship, ARO Contract P-
34982-MA, NSF grant CCR-9:119957, NSF grant CCR-9625217,
ONR Young Investigator Award, DARPA contract DABT63-93-
C-0048, NSF/ ARPA Science and Technology Center for Com
puter Graphics & Scientific Visualization NSF Prime contract
No. 8920219.

t Also with U.S. Army Research Office

1\:-nni:-....;ion to mak..: digtl.d h;trd l'I)JHI..'" Dl. :Ill nr p:1rtnl tiJi, maiL·n;d I;H

pcrsnnal nr ~.:Ja.,..._rnnm ll'-'1..' ~~ gr;t•lh.·d \\ 1lhnu1 k · phn tlh.·d til<ll tlh.' ldflh ... ' '

arl! nnt lll.:H_f~ t)f di..;trihut ... ·d !t1r prnlit 11r ,:dlllllh.T .. :t;d ;ilh·antag~..·. th~..· .. ·,~p~
right nnti~.·c. lih.' I ilk nl.tlk· puhl1•.::111o11 ;nlll tl~ d.tk :tpp .. :.!r .111d nott .. :~..· i.-.
gi\l..'!li!J;lll.'l)p~T~~)}Ji:-; h~ Jh..'l'llli';,,Jtlll tli'\JJ~..• \l'.\1. illL' ltl L'tljl\ tlllh.'r\\l't.:'.

Ill r~..·puhltsh. hl pt)S\ t)!l '>1..'1'\~,·r... t .. r \•) r..:di~ltthuk \t) Jj,j, r .. :quJJ.._., ·'Pl'L'Il'IL

r.:-nni:-..:-..ion and 1 ~)J' 1(-~.,·

('o/1/fJ/iluf/orud (;,'Oill<'ffT 1)- \h.\.' h·.m,: .. :
C<lfl\<ighl 1'1'>7 ,\C\1 11-~'i7'JI-~7X-'J '!7111• \1_,11

1

and model simplification to render such large models. In this
paper, we address visibility culling.

Given a large model and a viewpoint, the goal of visibility
culling and hidden surface removal algorithms is to determine
the set of primitives visible from that viewpoint. No general pur
pose, interactive algorithms are known for exact visibility deter
mination on large models composed of hundred of thousands of
polygons. Current graphics hardware provides support for visi
bility computations on a per-pixel basis with a z-buffer. However,
high-end systems are only able to render a few tens of thousands
of polygons at reasonable frame rates, due to bottlenecks in their
hardware before the per-pixel analyses can be carried out. As
a result, many applications use the following high-level software
techniques to cull away a subset of the polygons which are not
visible from the current viewpoint before they are needlessly sent
to the rendering hardware:

• View-Frustum Culling: View-frustum culling uses a traver
sal of spatial data structures to cull out portions of the
model not lying in the current view frustum. The viewing
volume is represented as a frustum of six planes (near plane,
far plane, and four sides). At runtime the display algorithm
checks whether each node of the spatial structure overlaps
this frustum; only nodes partially or completely contained
within the frustum are rendered.

• Occlusion Culling: Hidden-surface removal algorithms
and occlusion culling techniques are commonly used for
models with high depth complexity to further reject the
portion of geometry obscured by other objects in the scene.
Some of the existing techniques are based on backface culling,
binary space partition trees, or partitioning the models into
cells and portals.

Desiderata: In designing algorithms for occlusion culling, we
recognize the importance of generality and robu•tness. We make
no assumptions about the structure of our input models - they
may be arbitrary sets of polygons with no other topological in
formation, also known as "polygon soup". The problem of 30
occlusion culling involves the computation of some geometric re
lationship between two or more objects. In our case, we reduce
the problem to performing overlap tests between convex objects in
20 or 30. Based on our experience in developing two interference
detection systems, I-COLLIDE [CLMP95] and RAPID [GLM96],
as well as that of other authors in implementing algorithms for
interference detection [HKM95, BCG+96] and intersection com
putation for solid modeling [For96, HHK89], we have realized ro
bustness is an important issue in the design and implementation
of interference detection algorithms. Our goal is to develop al
gorithms which are relatively simple, efficient, and not prone to
geometric degeneracies.

In this paper, we present object-space techniques for occlu
sion culling. This involves computation of a set of polygons that
are within the view frustum but are not visible from the current
viewpoint. We add this conservative visibility culling stage to the

rendering pipeline in order to r.educe the number of polygons sent
to the graphics hardware.

As the viewpoint changes, the algorithm dynamically chooses
a set of occluders. Each occluder is a convex polytope or a union
of convex polytopes. For each occluder the algorithm computes
a shadow frustum and uses fast interference detection and a hier
archical representation to find those portions of the model within
the shadow frustum. The idea of shadow volumes was first intro
duced by Crow (Cro77) to generate shadows by creating for each
object a shadow volume that the object blocks from the light
source.

Main contribution: We present geometric algorithms for

1. Occluder selection using off-line and on-line techniques

2. Robust and efficient occlusion culling based on specialized
interference detection algorithms, given the occluders and a
hierarchical decomposition of scene geometry into bounding
volumes.

The resulting algorithms have been implemented and we re
port their performance on a large model.

Organization: The rest of the paper is organized in the following
manner. We survey related work in Section 2 and give an overview
of the algorithm in Section 3. The occluder selection algorithm
is presented in Section 4 and visibility culling based on occluders
is described in Section 5. We present implementation details and
the performance in Section 6 and analyse its complexity in Section
7.

2 Related Work

There has been significant amount of research on visibility and
hidden surface removal in the fields of computer graphics and
computational geometry. Many asymptotically efficient algorithms
have been proposed for exact visibility and hidden surface removal
(SSS74, Mul89, BDEG94, McK87). (Dor94) provides a recent sur
vey of object-space hidden surface removal algorithms. McKenna
and Seidel (MS85) have presented an algorithm for computing
optimal shadows of a convex polytope. For static models, it is
possible to precompute the visibility from all the viewpoints in
space based on aspect graphs (GCS91J. In the worst case, for
input models composed of n polygons, this algorithm can decom
pose the space into O(n9) regions, making it impractical for large
models. The utility of all these algorithms for complex models is
currently unclear.

In the last few years a number of techniques have been pro
posed for efficiently computing conservative visibility. These can
be classified into two categories, object-space and image-space
algorithms. More details on this classification are presented in
(SSS74]. In object space, (Cla76] proposed view-frustum culling
of a hierarchy of bounding volumes. Garlick et al. (GBW90) pro
posed using octree-based spatial subdivision to render polygons
contained in the viewing frustum.

Several recent algorithms structure the database into cells
or regions, and use a combination of off-line and on-line algo
rithms for cell-to-cell visibility and the conservative computa
tion of the potentially visible set (PVS) of polygons (ARB90,
TS91, LG95j. Such approaches have been successfully used in
architectural walkthrough systems, where the division of a build
ing into discrete rooms lends itself to a natural division of the
database into cells. It is not apparent that cell-based approaches
can be generalized to an arbitrary model, which may come with
no structure information. Decomposing an arbitrary polygonal
model into appropriate cells is rather difficult. Other algorithms
for densely-occluded but somewhat less-structured models have
been proposed by Yagel and Ray (YR96). They use regular spa
tial subdivision to partition the model into cells and describe a
2D implementation. Some algorithms are based on binary space
partition trees (FKN80, Nay92).

The hierarchical Z-buffer algorithm operates in both object
space and image-space (GKM93]. It combines spatial and tempo
ral coherence with hierarchical structures. The algorithm exploits

2

coherence by performing visibility queries on the Z-buffer. Cur
rently, most graphics systems do not support this capability in
hardware, and simulating the hierarchical Z-buffer in software is
relatively expensive.

The work most directly related to our approach is that of
Coorg and Teller (CT96, CT97]. Given two convex objects (an
occluder and occludee), their early work required the construction
and maintenance of a linearized portion of an aspect graph. They
use this structure to track the viewpoint and determine whether
one convex polytope occludes the other from a given viewpoint.
This involves enumeration of all visual events and data struc
tures for dynamic plane maintenance. In the worst case, the
number of planes used to form a cell of the arrangement can be
O(m2), where m is the number of vertices of the convex poly
topes, though dynamic and hierarchical data structures are used
in (CT96] to speed-up the computation of relevant planes. Each
arrangement cell classifies all polytopes as completely, partially,
or un- occluded. This approach is similar to earlier shadow com
putation algorithms which, given a light source and an occluder,
decompose space into penumbra and umbra volumes. In their
newer work they reduce the amount of coherence used and sim
plify the structure of the arrangement. This yields a considerable
speedup, eliminating the overhead cost of maintaining complex
data structures.

3 Algorithm Overview

Occlusion culling can be divided into two subproblems. First, for
a given viewpoint we must select a small set of good occluders to
use. Second, given good occluders, we must use them to cull away
occluded portions of the model. These two problems are partially
independent, and so we treat them separately in this paper.

In general, any primitive in the model to be rendered or any
combinations of such primitives can be used as an occluder. In
this paper, we restrict occluders to be either convex objects or
those which can be expressed as union of two convex objects.

3.1 Data Structures

To perform occlusion culling, we require that the model be rep
resented both in a spatial partition and in a spatial hierarchy.
The spatial partitioning structure is constructed as part of pre
processing and used for occluder selection, while the spatial hier
archy is used for fast culling of occluded geometry. These may be
separate data structures, or may be united into a single structure,
based on the implementation.

The spatial partition is a discrete structure that spans space,
mapping every point in the space of the model onto one of a finite
number of partition region1. H the space of the model has volume
v, and no region is a volume larger than vr, we have at least ...!L

regions in the partition. vr

The hierarchy is not a data structure concerned with the space
of the model, but rather with the geometry of the model. Every
piece of geometry is mapped to exactly one leaf volume of the
hierarchy, and every volume of the hierarchy encloses all the ge
ometry mapped to it or its children. Let the entire model consist
of n pieces of geometry, and let each leaf volume contain no more
than nc geometry elements. Then, if we want a binary hierar
chy (each non-leaf volume having two children), we need at least
2"[!;- 1 volumes in the hierarchy.

3.2 Occluder Selection

Finding good occluders in real time for an arbitrary model is a
difficult task. Among all of those objects in the database which
we might use, we must select the few which will occlude the most
geometry from the current viewpoint with the least computational
overhead. We make this task feasible by using a preprocess to
discard all occluders which are not likely to be good when viewed
from a given set of viewpoints. Then, at runtime, the results of
this preprocess give us a list of occluders that are good over the
local region of space, and we further reduce this to select those
occluders that are best from the current viewpoint.

3.3 Visibility Culling

Once we have selected a few good occluders, they can be used by
our culling algorithm. For each occluder we construct a shadow
frustum: a frustum with its apex at the viewpoint, near plane de
termined by the occluder, and sides determined by the occluder's
silhouette (as shown in Fig. 1). The space contained within this
frustum is that which is not visible from the viewpoint due to
the occluder. The pixels rendered for objects in this space would
be discarded during depth comparison by the hardware z-buffer.
Thus, model geometry which is completely contained within any
of these shadow frusta (as is object A) need not be rendered.

Shadow Volume

Figure 1: Relationship of bounding volumes to frusta.

4 Occluder Selection

Finding good occluders from a given viewpoint in a general un
structured model is a hard problem. By definition, a good oc
cluder should occlude a large fraction of the geometry in the view
frustum. For many viewpoints in the scene, no such good occlud
ers may exist. In the worst case, computation of good occlud
ers may correspond to computing the visible surface from that
viewpoint using hidden surface removal algorithms. Some theo
retically efficient algorithms of 0(n log n + q) complexity, where q
is the number of edges in the visibility map, have been proposed
by (Mul89]. However, not much is known about their practical
performance.

The other alternative is to preprocess the entire model to de
termine a set of useful occluders at every viewpoint. However,
the computation of such global visibility information is more dif
ficult than hidden surface removal from a particular viewpoint.
The fastest known algorithms known for computing the effects
on global visibility due to a single polyhedron with m vertices
requires O(m6 logm) time (GCS91).

Given the overall complexity of finding good occluders, we
propose an approximation algorithm to find good occluders using
a combination of online and offline techniques. Our algorithms
work reasonably well in practice, but are not guaranteed to find
good occluders all the time.

We pose occluder selection as an an optimization problem.
Our goal is to use as few occluders as possible to keep CPU over
head down, but to occlude as many polygons as possible to keep
the graphics pipeline lightly loaded. We take advantage of the em
pirical observation that for the data sets we are interested in, a
few occluders cause most of the occlusion from most viewpoints,
and using other occluders contributes little additional benefit 1•

1 We performed experiments to confirm this. A typical result
is shown in Figure 4. When we graph the fraction of polygons
culled as a function of the number of occluders used, the optimum
number of occluders is near the knee of the graph; in this case,
approximately 8.

3

We use the following guiding principles in defining the optimiza
tion function to select good occluders:

1. Solid Angle: The viewed solid angle of a convex object is
easily computable and measures the fraction of the visual
field that it occupies. If we assume that the geometry of the
scene is uniformly distributed about the viewpoint in all di
rections, the viewed solid angle is also directly proportional
to the amount of geometry occluded.

2. Depth Complexity: We want to use occluders which oc
clude the maximum amount of geometry. In addition to
using solid angle at runtime, we estimate the actual value
of any occluder in the preprocess by random sampling. The
algorithm selects some random viewpoints each partition
region, constructs a shadow frustum from that viewpoint
through each potentially good occluder, and determines the
number of objects contained in the frustum. The average
of several samples is a direct estimate of the value of the
occluder.

3. Coherence: An occluder that does well or poorly at oc
cluding for some frame will likely perform similarly for the
next few frames. Similarly, objects that lie near a good oc
cluder in screen space are themselves likely to be good oc
cluders. The algorithm keeps track of the geometry culled
by each occluder at each frame.

These criteria are integrated into our algorithm for both the
online and offline processing of the geometry database. Rather
than consider every polygon in the model as a potential occluder
from every viewpoint, we use auxiliary data structures to quickly
reduce the set of potential occluders to a manageable quantity.
We can then further refine this set of potentially good occluders
based on the exact viewing parameters of a particular frame.

4.1 Preprocess

The goal of the preprocess is to associate a set of potentially good
occluders with every viewpoint in the model. We begin by con
structing a spatial partition which divides the model into regions.
Each region will store a list of potentially good occluders. At run
time, we determine which region contains the current viewpoint
and use this region's associated list as a set of potentially good oc
cluders. Thus, the region sizes control the granularity with which
we sample the model's geometry for occlusion properties. Using
small regions in our partition may shorten the list of potentially
good occluders at each region, but this increases the number of
regions in the data structure, thereby increasing its total memory
usage.

Having constructed our spatial partition, we consider every
potential occluder in the model2 • For each potential occluder, we
compute the set of viewpoints from which its viewed solid angle
exceeds the threshold (} (a user-defined value). We use (} as the
cutoff for consideration as an occluder. Objects whose viewed
solid angles are less than the threshold cover only a small amount
of screen space and, under the assumption that geometry is evenly
distributed, are unlikely to occlude much geometry. For a single
sided ellipse, this set of viewpoints forms an ellipsoid and for a
sphere, a concentric sphere. More complex occluders will have
significantly more complex sets, which we approximate with the
above. Each region of the partition which intersects this set of
viewpoints adds the potential occluder to its list of potentially
good occluders.

This solid-angle approximation is the first criterion of the run
time analysis we detail later. It is an indirect measure of the effec
tiveness of the occluder. We also pre-sample the second criterion,
the actual amount of geometry behind the occluder, during the
preprocess and store it in the region with the reference to the
potentially good occluder. To do this, we choose a small num
ber of viewpoints in the region and calculate the shadow frustum

2 A separate preprocess may filter out small objects or simplify
highly detailed objects to equivalently-occluding versions. Thus,
the set of potential occluders need not be the same as the set of
objects to be rendered.

cast by the occluder from each viewpoint. If we determine what
fraction of the model geometry is actually occluded from each
of these viewpoints and average our results together over all the
viewpoints sampled, we have a direct estimate of the occluder's
efficacy. Our selection of sample viewpoints be either random
or guided by results on choosing optimal sampling patterns for
antialiasing.

4.2 Runtime Computation

At every frame, we find the region of the spatial partition which
contains the viewpoint. That region has an associated list of po
tentially good occluders obtained from the preprocess. The list is
first narrowed by performing preliminary view-frustum culling to
determine which potential occluders lie within the field of view.
These potential occluders are then sorted based on our optimiza
tion function. The nocc occluders which produce the highest value
of the function are used as that particular frame's occluders.

Throughout the process wt· exploit coherence. The algorithm
exploits temporal coherence of occlusion. When the viewpoint
only moves a little between frames, the value of a given occluder
only changes a little. Using coherence, we improve our expected
sorting performance to linear time. Similarly, due to spatial co
herence and the fact we use convex occluders, the algorithm easily
tracks the silhouette of each occluder during the overlap tests.

5 Visibility Culling Using Occluders

In order to use occluders, we must have constructed a hierarchy of
bounding volume! that contains the entire model. Having selected
nocc good occluders, we now proceed to perform occlusion culling
with them. The critical requirement is to do so efficiently.

We begin by constructing a shadow frustum for each occluder.
Taking the viewpoint as the apex of a frustum, we define the near
plane of the frustum as a plane passing through the farthest point
of the occluder's silhouette and whose normal points in the di
rection from that point towards the viewpoint. Each side of the
frustum is a plane containing the viewpoint and an edge (two ad
jacent vertices) of the object's silhouette. This frustum contains
the space which the occluder occludes from the viewpoint. Any
geometry completely contained in the frustum is occluded and
need not be rendered.

Using these shadow frusta requires an inorder traversal of the
hierarchy. In fact, we incorporate view-frustum culling, shadow
frustum culling, and rendering into a single traversal of the hier
archy. We begin by marking all shadow frusta as active. As we
encounter each volume during our traversal of the hierarchy, we
first test for interference with the view frustum. If the volume is
outside the view frustum, we are done with that sub-tree. Other
wise, we test for interference with all of the active shadow frusta.
If the volume is entirely within any active frustum, the algorithm
stops the current branch of the traversal without rendering any
of the geometry in the volume. If the volume does not intersect
any active frustum, we stop the current branch of the traversal
and render all the geometry contained in the volume. Only if
the volume partially overlaps some of the active frusta need we
continue the traversal with that volume's children.

5.1 Overlap Tests

The algorithm determines the portions of the model occluded
by a shadow frustum using interference tests with the bounding
volume hierarchy. As the algorithm traverses the hierarchy, the
intersection test between each bounding volume and the shadow
frustum becomes a time-critical operation which directly influ
ences the overall performance of occlusion culling. As shown in
Figure I, we need to quickly decide if a bounding volume is: (A)
completely inside the shadow frustum, (B) partially overlapping
the shadow frustum, or (C) completely outside the shadow frus
tum.

Consider the case when the occluder is a convex polytope.
The shadow frustum must therefore be a convex volume. A num
ber of efficient algorithms have been proposed in geometry and

4

robotics literature for collision detection between convex poly
topes. These are based on Minkowski sums (GJK88), closest fea
tures computation based on external Voronoi regions [LC91] and
linear programming (Sei90). All of them have been implemented
and work reasonably well in practice. However, these algorithms
are not directly applicable to our requirements for two reasons:

• Limitation: All these algorithms only check whether or
not two objects are overlapping. They can not differentiate
between partial overlap of two objects and complete con
tainment of one object inside another, which is required for
our algorithm.

• Robustness: Although the basic idea in all these algo
rithms is simple, their practical implementation are prone
to robustness problems due to floating point arithmetic and
geometric degeneracies.

In the geometry literature, other linear time algorithms have
been proposed to compute intersections between convex polytopes
(Cha89]. Unlike collision detection algorithms, they can unam
biguously distinguish the three distinct cases shown in Figure I.
However, not much is known about their performance on real
world models.

5.2 General Algorithm

We project the silhouette of the occluder and the occludee onto
the image plane. Each projection is a convex polygon and we refer
to them as the occluder polygon (A) and the occludee polygon
(B). Based on this projection, we reduce the problem to a 20
overlap test between two convex polygons. To check whether B
is totally or partially contained inside A, the algorithm initially
checks whether they are overlapping or not. Our algorithm uses a
modified Cyrus-Beck clipping algorithm [FDHFOO), which quickly
determines if two polygons intersect and robustly computes an
edge and a common point (call it 0) contained in the intersection
of two polygons if they are overlapping. There are also other
robust implementations available for computing the intersection
of two planar polygons.

To check whether B is totally contained inside A or not, we
need to check whether any of their edges intersect. Given 0, we
use a sweep-line approach to check whether or not B is totally
contained inside A. Therefore, the number of edge pairs we need
to test for overlap is linear in the number of edges of the two
polygons. In terms of robustness, this algorithm only requires a
robust edge-edge overlap test.

5.3 Specialized Overlap Tests

Although the hierarchy of volumes may consist of arbitrarily
shaped convex volumes, this is rarely the case. Our work is a
companion algorithm to view frustum culling, which normally
uses hierarchies based on octrees, k-d trees, sphere-trees, OBB
Trees, R-trees etc. In all of these each node of the hierarchy
is a sphere or a rectangular box. The rectangular box may be
axis-aligned (an axis-aligned bounding box, or AABB) or bear
bitrarily oriented (OBB).

In this section, we present robust and specialized overlap tests
between a shadow frustum and an AABB or a OBB. Their overall
running time is linear in the number of faces of the shadow frus
tum. However, we have also optimized the constant terms and
overall operation count. The performance of the occlusion culling
algorithm is dominated by these overlap tests.

The naive approach to exact interference detection requires an
enormous amount of computation in the worst case: 54 "inside
outside" half-plane tests and 108 edge-face intersection tests (see
Table 1). In the best case, it trivially rejects a box in 8 half
plane tests (dot products). We would like to maintain an exact
test while drastically reducing the worst case cost and improving
the best case cost. Our approach combines improved box-plane
overlap tests and a fast edge-box intersection test using a parallel
slabs representation for the bounding volume[Gre94, KK86].

Our box-plane overlap test uses the box polygon's normal to
quickly find the box vertices which are closest to and farthest

Interference Test Dot Scalar-Vector Vector Cross
Products Mult/Divide Add/Sub Products

Naive with far plane 270 \~1 216 \0) 1080 ,~o) 432 \0)
Naive without far plane 216 (8) 168 (0) 600 (0) 336 (0)
Specialized with far plane 294 (4) 144 (0) 144 (0) 0 (0)
Specialized without far plane 240 (4) 144 (0) 132 (0) 0 (0)

Table 1: Worst (and Best) case computational cost for the overlap tests

from the frustum's plane. Using these extremal points we need
to check each plane against no more than two vertices, rather
than eight. Oriented bounding boxes impose an overhead of only
three additional dot products per plane tested at this stage.

We improve the worst case dramatically by speeding up ex
pensive edge intersection tests. We can easily speed up the twelve
tests between the frustum's edges and a box by representing our
bounding volumes as three sets of slabs. This lets us avoid the
edge-face test against each face individually by performing only
a single edge- "solid" intersection test. Previously we required six
expensive edge-face tests to test an edge against an entire box,
but now we require only three edge-slab tests that completely
eliminate the more expensive cross-product calculations.

Improving the twelve box-edge/frustum intersection tests pro
ceeds similarly, using techniques from the ray-tracing literature.
We represent the frustum as a set of planes forming a convex poly
hedron and perform the edge test against the entire frustum at
once. This also removes the expensive cross-product calculations
entirely since we only have to perform six edge-plane intersection
tests.

We further improve the performance by removing the far
plane; this avoids having to perform the far-plane edge/box inter
section tests and the view-frustum containment tests entirely (an
infinite frustum never be contained in the bounding box). The
improvements resulting from the new overlap test are shown in
Table 1. Far planes are useful for view frusta, but are undesirable
for shadow frusta.

6 Implementation and Performance

6.1 Data Structures

We have implemented the algorithms described in this paper.
They scale well (efficiently and robustly) to large models. Our im
plementation has been interfaced within an unoptimized graphics
viewer written using OpenGL. The viewer runs on top of UNC's
view-frustum culling library and uses either exact or conservative
versions of our specialized interference detection algorithm. We
assume that any large model viewer will use view-frustum culling;
results reported ignoring it are meaningless.

In our implementations, we also used the area-angle approxi
mation presented by Coorg and Teller[CT96]. This is

aN-V
-~

where a is the area of the polygon (in object space), N the poly

gon's normal vector, and V the vector from the viewpoint to the
center of the polygon. This gives a good approximation of the
subtended solid angle of the polygon.

The results reported in this paper were obtained using area
angle as a goodness criterion; we have seen better results using
the full three-part goodness criterion (solid angle, preprocess es
timation, and coherence), but have not yet tested it on the large
model.

We use a uniform division of the bounding box of the en
tire database into rectangular voxels as our spatial partition for
occluder selection, and a tree of axis-aligned or oriented bound
ing boxes as our hierarchy for view-frustum culling and occlu
sion culling. We could alternatively use an octree, BSP tree, or

5

other hierarchical spatial partition to contain the polygons of the
model, thus using a single data structure to serve both purposes.
However, in our experience that approach has two drawbacks:

1. Most spatial partition algorithms subdivide the polygons
(or other primitives), such that each polygon lies in exactly
one region. Polygon count is typically increased by a factor
of two by this type of subdivision. Any increase in poly
gon count can be expected to slow rendering, which is the
process we are fundamentally trying to speed up.

2. The two data structures capture two different properties of
the model which may not be spatially similar. The spatial
partition $hould be dense, i.e. have the smallest volumes,
in regions of the model where the best set of occluders to
change frequently. The bounding volume hierarchy needs to
capture the geometry of the model as closely as possible for
best results in culling. Occlusion culling as a field would
benefit from further investigation of the tradeoffs in the
number of spatial data structures used by algorithms.

6.2 Comparison with Other Algorithms

Our specialized shadow frustum/bounding box interference test
has been compared against efficient algorithms and implementa
tions for collision detection between convex polytopes [CLMP95,
GJK88]. Our overlap test is at least two times faster and more
robust than efficient implementations of these algorithms. Notice
that some of the earlier algorithms for collision detection between
convex polytopes utilize temporal and spatial coherence. Since
the shadow frusta may change between frames, our algorithm
uses no coherence in performing the overlap tests.

6.3 Performance on a Large Model

To test our algorithm in environments of varying high depth
complexity, we built a composite model of more than 500,000
polygons by fusing together a model of central London, a model
of the Aztec ceremonial center at Tenochtitlan, and a partially
developed region of hills in England. See plates I - IV at the
end of the paper. The input model came to us as a collection
of polygons with no adjacency or any other structure. We used
uniform grids for occluder computation and a bounding volume
hierarchy based on axis-aligned bounding boxes for view frusta
and occlusion culling.

On our SGI Onyx RealityEngine 2, along a 2748-frame path
through the central regions of this model we saw up to 80% of the
model that passed view-frustum culling occluded (with roughly
40% of total polygons occluded on average). Our measured aver
age speedup in rendering was 55%. (The theoretical maximum is
65%, with the discrepancy due to the overhead of managing the
occluders and their shadow frusta.)

Occlusion culling is fundamentally a viewpoint-dependent op
timization; Figures 2 and 3 show the frame time and rendered
polygon count for each frame in our long path through the city
model. On some frames occlusion culling gives extremely good
results, while on others it does not obtain significant culling, de
pending on the depth complexity.

Occlusion culling yields good results with surprisingly few oc
cluders. We rapidly see decreasing returns beyond five or six
occluders active. Figure 4 shows the results of one experiment

Method Polygons Time per Frames
per Frame Frame (us) per Second

View-Frustum Culling 49196 276 3.6
View-Frustum plus Occlusion Culling 29749 178 5.6

Table 2: Comparison of average statistics over 2748-frame path down streets of the 500,000-polygon city model. Our imple
mentation improves average frame rate by 55%.

Frame time, in microseconds
~--------.-------.---~--.-------.-------.---,

250000

' '

f

q
li ri.J.J..
~. '
" ' ~ l

~~

View-Frustum Culling Only -
Occlusion Culling ----·

oot~-------~~--------1~~---------1~500~-------2=~~-------=2~==--~
Frame number

Figure 2: Time per frame. in microseconds, for each frame in the 2748-~rame path ~hro~gh the lar_ge city model. Some
viewpoints are good for occlusion culling, and at many of these points our implementatiOn 1s seen to y1eld speedup.

with the city model, and we have seen similar results for other
paths and other models.

6.4 Generality and Robustness

Generality and robustness have been main concerns in the design
a.nd implementation of our algorithm. The algorithm and imple
mentation are applicable to all unstructured polygonal models.
The algorithm requires no adjacency or connectivity information
between the polygons. Only the silhouette tracking algorithm
used for shadow frusta computation requires connectivity infor
mation. On unstructured models, we treat each convex polygon
as a separate occluder.

Our specialized algorithms for overlap tests between the shadow
frusta and bounding boxes are robust and not prone to degenera
cies. They do not need to check for non-generic conditions such
as parallel faces or edges. These are not special cases for the test
and do not need to be handled separately. As a series of compar
isons between linear combinations, the test is numerically stable.
Our current implementation uses IEEE 64-bit floating point arith
metic instead of exact arithmetic for these overlap tests. Speed
is an important concern in our system. We realize that floating
point arithmetic can be a potential source of problem (though
we have not experienced any so far), especially when one face of
the box is just touching the shadow frusta. Many recent papers
by Fortune, van Wijk, Clarkson, Boissonnat et al, have demon
strated that clever use of floating point arithmetic can yield very
effective and yet correct implementations of geometric primitives.
Many libraries like LEDA [MN95] have implementations of such
algorithms for line segment intersections. As a result, it should be
possible to have fast correct implementations of our specialized
overlap test. For the general algorithm, we reduce the problem
to 20 overlap tests between two convex polygons and use robust

6

public domain implementations (available in Graphics Gems).

7 Algorithm Analysis

The overall asymptotic running time of the algorithm is at most
linear in n, where n is the total number of polygon in the model.
The worst-case running times for the various phases of the algo
rithm are:

Occluder Selection: We select the nocc active occluders by
sorting a list of npot potentially good occluders. In practice, no.;c
is typically a small constant (between five and ten), and npot IS

a small fraction of the input primitives. The total complexity of
this phase is O(noccnpot) or O(npotlog(npot)).

Shadow Frusta Computation: Constructing shadow frusta
based on silhouette tracking for these occluders requires time lin
ear in the number of edges per occluder, which is a small constant
k, for a phase complexity of O(knocc).

Visibility Culling: We use the nocc shadow frusta in the
same manner as view frusta; each view-frustum cull is worst-case
linear in the size of the model. The complexity of this phase is
O(noccn).

Since nocc is a small constant, and npot < < n, our algo
rithm is in the worst case linear: O(n). The spatial hierarchy
constructed for occluder use keeps the constant in this term very
small. We also use spatial and temporal coherence in resorting
the list of potentially good occluders by using insertion sort. Since
the ordering of this list only changes slightly between frames, that
phase has an expected time linear in the number of potentially
good occluders npot.

Number of polygons
100~ r----------.----------~---------.-----------,----------r----.

80000

60000

40000

20000

View-Frustum Culling Only
Occlusion Culling

500 1~ 1500 2000 2500
Frame number

Figure 3: Polygons rendered per frame along a 2748-frame path through the large city model. Some viewpoints are good for
occlusion culling, and at many of these points our implementation is seen to reduce the number of polygons rendered, which
translates into less bus bandwidth consumed.

7.1 Main Features

Our main goals in developing these algorithms and systems have
been robustness, applicability to large unstructured models, and
scalability. None of the earlier conservative visibility algorithms
has been applied to large and unstructured models composed of
hundred of thousands of polygons. As a result, it is somewhat
difficult to make exact comparisons in terms of robustness and
efficiency.

Some of the main features of our approach are:

• Robustness: Since we use specialized interference detec
tion algorithms for determining occluder-occludee relation
ships, our algorithm is not prone to robustness problems
and geometric degeneracies.

• Efficiency: The additional CPU overhead due to occlusion
culling varies with the viewpoint and is a linear function of
the num~r of occluders chosen at that particular frame.
In most cases, we use five to ten occluders. We use effi
cient and specialized algorithms for overlap tests between
a shadow frustum and a hierarchy of bounding volumes.
As a result, our algorithm performs interactively on large
models composed of hundreds of thousands of polygons.

• Generality: The algorithm is applicable to all polygonal
and unstructured models. In many CAD applications, the
input models come as "polygon soup," with no structure or
adjacency information available for constructing winged
edge or similar data structures. The presence of structure
increases the effectiveness of our approach, but the results
reported herein were obtained on unstructured data sets.

• Ease of Implementation: The implementation requires
only simple data structures plus a general view frustum
culling library. Since the occlusion culling algorithm sees
the model as composed of simple bounding volumes (like
spheres, rectangular boxes etc.), we use simple and easily
specialized overlap tests.

7.2 Ongoing Work

Often geometry is not occluded by any single convex occluder,
but is occluded by the combination of several occluders. This
is made more difficult to take advantage of in an object-space

7

solution by the fact that the union of several convex occluders is
not necessarily convex. We have developed and are implementing
extensions to our interference detection algorithms to combine
occluders in object space.

In [ZMHH97], Zhang et al. have successfully used the graph
ics pipeline to merge these occluders in the image space and form
occlusion maps. Based on that they have proposed a two-pass al
gorithm. In the first pass, the algorithm constructs an occlusion
map hierarchy and in the second pass used to cull away portions of
the model not visible from the current viewpoint. This algorithm
is able to cull away a higher percentage of the model than our
object space approaches, but requires a high performance graph
ics pipeline. On the other hand, the algorithm presented in this
paper does not use the graphics pipeline for visibility culling and
should thus be useful for low-end hardware or personal comput
ers.

8 Acknowledgements

Some of the models used in this work were originally constructed
by:

• Dr. Vasitis Bourdakos of the Centre for Advanced Studies
in Architecture, Bath University.

• Bob Galbraith Computer Graphics, East Longmeadow, MA.

References

[ARB90] J. Airey, J. Rohlf, and F. Brooks. Towards image re
alism with interactive update rates in complex virtual
building environments. In Sympo6ium on Interactive
9D Graphic6, pages 41-50, 1990.

[BCG+96] G. Barequet, B. Chazelle, L. Guibas, J. Mitchell, and
A. Tal. Boxtree: A hierarchical representation of sur
faces in 3d. In Proc. of Eurographic6 '96, 1996.

[BDEG94] M. Bern, D. Dobkin, D. Eppstein, and R. Grossman.
Visibility with a moving point of view. Algorithmica,
11:360-78, 1994.

[Cha89] B. Chazelle. An optimal algorithm for intersect
ing three-dimensional convex polyhedra. Proc. 90th
Annu. IEEE Sympo6. Found. Comput. Sci., pages
586-591, 1989.

Percent occlusion as a function of number of occluders

45

40

35

30

25

20

15

10

5

0 ~----------~----------~----------~----------~----------~
0 5 10 15 20 25

Average number of occluders used per frame

Figure 4: Average percentage of polygons within view frustum culled by occlusion culling as a function of average number
of occluders active, along a 2748-frame path through the large city model. This supports the observation that for any given
viewpoint a small number of occluders provide most of the occlusion.

[Cia76] J.H. Clark. Hierarchical geometric models for visi
ble surface algorithms. Communications of the A CM,
19(10):547-554, 1976.

[Cla88] K. L. Clarkson. Applications of random sampling in
computational geometry, II. In Proc. 4th Annu. ACM
Sympos. Comput. Geom., pages 1-11, 1988.

[CLMP95] J. Cohen, M. Lin, D. Manocha, and M. Ponamgi. I
collide: An interactive and exact collision detection
system for large-scale environments. In Proc. of A CM
Interactive 3D Graphics Conference, pages 189-196,
1995.

[Cro77] F. C. Crow. Shadow algorithms for computer graph
ics. ACM Computer Graphics, 11(3):242-248, 1977.

[CT96] S. Coorg and S. Teller. Temporally coherent conser
vative visibility. In Proc. of 12th A CM Symposium
on Computational Geometry, 1996.

(CT97) S. Coorg and S. Teller. Real-time occlusion culling
for models with large occluders. In Proc. of ACM
Symposium on Interactive SD Graphics, 1997.

[Dor94] S. E. Dorward. A survey of object-space hidden sur
face removal. Internat. J. Comput. Geom. Appl.,
4:325-362, 1994.

(FDHF90] J. Foley, A. Van Dam, J. Hughes, and S. Feiner. Com
puter Graphics: Principles and Practice. Addison
Wesley, Reading, Mass., 1990.

(FKN80] H. Fuchs, Z. Ked em, and B. Naylor. On visible surface
generation by a prio>ri tree structures. Proc. of ACM
Siggraph, 14(3):124-133, 1980.

[For96] S. Fortune. Robustness issues in geometric algo
rithms. In M.G. Lin and D. Manocha, editors, Ap
plied Computational Geometry, pages 9-14. Springer
Verlag, 1996.

(GBW90] B. Garlick, D. Baum, and J. Winget. Interactive view
ing of large geometric databases using multiproces
sor graphics workstations. Siggraph '90 course notes:
Parallel Algorithms and Architectures for SD Image
Generation, 1990.

(GCS91) Z. Gigus, J. Canny, and R. Seidel. Efficiently com
puting and representing aspect graphs of polyhedral
objects. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 13(6):542-551, 1991.

8

(GJK88] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A
fast procedure for computing the distance between
objects in three-dimensional space. IEEE J. Robotics
and Automation, vol RA-4:193-203, 1988.

[GKM93) N. Greene, M. Kass, and G. Miller. Hierarchical z
buffer visibility. In Proc. of ACM Siggraph, pages
231-238, 1993.

[GLM96] S. Gottschalk, M. Lin, and D. Manocha. Obb-tree: A
hierarchical structure for rapid interference detection.
In Proc. of ACM Siggraph'96, pages 171-180, 1996.

[Gre94] N. Greene. Detecting intersection of a rectangular
solid and a convex polyhedron. In Graphics Gems
IV, pages 74-82. Academic Press, 1994.

[HHK89] C. Hoffmann, J. Hopcroft, and M. Karasick. Robust
set operations on polyhedral solids. IEEE Computer
Graphics and Applications, 9(6):5D--59, 1989.

[HKM95] M. Held, J.T. Klosowski, and J.S.B. Mitchell. Evalu
ation of collision detection methods for virtual reality
fly-throughs. In Canadian Conference on Computa
tional Geometry, 1995.

[KK86] T. Kat and J. Kajiya. Ray tracing complex scenes.
Computer Graphics, pages 269-278, 1986.

[LC91) M.G. Lin and John F. Canny. Efficient algorithms for
incremental distance computation. In IEEE Confer
ence on Robotics and Automation, pages 1008-1014,
1991.

[LG95] D. Luebke and C. Georges. Portals and mirrors: Sim
ple, fast evaluation of potentially visible sets. In ACM
Interactive SD Graphics Conference, Monterey, CA,
1995.

[McK87] M. McKenna. Worst-case optimal hidden-surface re
moval. ACM Trans. Graph., 6:19-28, 1987.

[MN95] K. Mehlhorn and S. Niilter. LEDA: a platform for
combinatorial and geometric computing. Commun.
ACM, 38:96-102, 1995.

(MS85] M. McKenna and R. Seidel. Finding the optimal shad
ows of a convex polytope. In Proc. 1st Annu. ACM
Sympos. Comput. Geom., pages 24-28, 1985.

(Mul89] K. Mulmuley. An efficient algorithm for hidden sur
face removal. Computer Graphics, 23(3):379-388,
1989.

[Nay92] B. Naylor. Interactive solid geometry via partitioning
trees. In Proc. of Graphics Interface, pages 11-18,
1992.

[Sei90] R. Seidel. Linear programming and convex hulls made
easy. In Proc. 6th Ann. ACM Conf. on Computa
tional Geometry, pages 211-215, Berkeley, California,
1990.

[SSS74] I. Sutherland, R. Sproull, and R. Schumaker. A char
acterization of ten hidden-surface algorithms. Com
puting Survey,, 6(1}:1-55, 1974.

[TS91] S. Teller and C.H. Sequin. Visibility preprocessing for
interactive walkthroughs. In Proc. of ACM Siggraph,
pages 61-69, 1991.

(YR96] R. Yagel and W. Ray. Visibility computations for
efficient walkthrough of complex environments. Pre•
ence, 5(1):1-16, 1996.

[ZMHH97} H. Zhang, D. Manocha, T. Hudson, and K. Hoff. Visi
bility culling using hierarchical occlusion maps. Tech
nical Report TR97 -004, Department of Computer Sci
ence, University of North Carolina, 1997. To Appear
in Proc. of ACM Siggraph'97.

9

PLATE I

A view from w in the streets of the
London model. Note how all the out
lying portions of the model are
occluded by buildings on streets near
the viewpoint.

PLATE III

A close-up of the Aztec portion
of the composite model, showing
the great range of scales - from
tiny detail polygons to huge
blocks.

10

PLATE II

An overhead view of the same area,
showing the Yiew frustum, the
shadow volumes of the occluders
chosen by our algorithm, and the
regions culled away as a result.

PLATE IV

model used in some of our tests,
built out of London, Tenochtitlan,
and central England.

