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Accelerated Overrelaxation Method

By Apostólos Hadjidimos

Abstract.   This paper describes a method for the numerical solution of linear systems

of equations.   The method is a two-parameter generalization of the Successive Over-

relaxation (SOR) method such that when the two parameters involved are equal it co-

incides with the SOR method.   Finally, a numerical example is given to show the su-

periority of the new method.

1. Introduction.  For the numerical solution of linear systems, numerous direct

as well as indirect methods exist.  Among the indirect or iterative methods the Succes-

sive Overrelaxation (SOR) and related methods play a very important role and are the

most popular ones.  These methods are fully covered in the excellent books by Varga

[1], by Wachspress [2] and in the most recent one by Young [3].

The purpose of this paper is to present a two-parameter generalization of the

SOR method and also the first basic results concerning this method which has been

called Accelerated Overrelaxation (AOR) method. As will be seen, the well-known

methods of Jacobi, of Gauss-Seidel, of Simultaneous Overrelaxation and of Successive

Overrelaxation can be derived, as special cases, from the AOR method.  Finally a

characteristic numerical example, which we give in a special case, shows the superiority

of the AOR method.

2. Derivation of the AOR Method.  We consider a system of N linear equations

with N unknowns written in matrix form

(2.1) Ax = b,

where the matrix A has nonvanishing diagonal elements.  We also consider the follow-

ing splitting of A

(2.2) A=D-AL-AU,

where D is a diagonal matrix and AL and Av are strictly lower and upper triangular

matrices, respectively.

For the numerical solution of Eq. (2.1) we propose to use the most general lin-

ear stationary iterative scheme whose matrix coefficients are linear functions of the

components of A and the coefficient of the new iterate is an at most lower triangular

matrix.  This scheme must be of the form

(axD + a2AL)x^n+x> = (a3D + a4AL + a5A,><"> + a6b |n = 0, 1, 2, . . . ,
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150 APOSTÓLOS HADJIDIMOS

where a¡ \i = 1(1)6 are constants to be determined (ax =£ 0) and x^ an arbitrary

initial approximation to the solution x of (2.1).  By dividing through by ax we obtain

(2.3) (D + a'2AL)x(n + xï = (a'3D + a'4AL + tty.^") + a'6b\n = 0, 1, 2, ... ,

where we have set o¡¡ = ai/ax\i = 2(1)6.  Sufficient conditions for scheme (2.3) to

be consistent with Eq. (2.1) are

(2.4) (1 - a'3)D + (a'2 - a'4)AL ' <*\A v = a'6A, «; * 0.

In view of (2.2), the first relationship of (2.4) gives

1 ~ «3 = a6>     a2 - tt4 = _0¡6      and     ~a's " _a6-

The above set of equations has the following two-parameter solution

a2 = -r,    a3 = 1 - co,    a'4 = cj - r,    a's = co   and   a6 = co,

where r and co # 0 are any two fixed parameters.  Consequently, (2.3) becomes

(2.5) H-rL)x(n + x) = [(1 - coy + (w - r)Z, + coU]x^n) + coc\n = 0, 1, 2, . . . ,

where we have set

(2.6) L = D~XAL,    U = D-xArj,    c = D~xb

and / the identity matrix of order N. Method (2.5) is what is called from now on

Accelerated Overrelaxation (AOR) method or Mr w -method. We observe that for

specific values of the parameters r and co, the Mr u -method reduces to well-known

methods.  Thus

M0 j-method is the Jacobi method,

Mx x -method is the Gauss-Seidel method,

MQ w-method is the Simultaneous Overrelaxation method, and

M^^-method is the Successive Overrelaxation method.

From now on we shall call r the acceleration parameter and co the overrelaxation

parameter and shall use the notations Lr u for the iterative matrix of scheme (2.5)

given by

L,iW = (/ - rLTx [(1 - co)/ + (co - r)L + cot/]

and p(Lr w) for the spectral radius of Lr w.

It should be noted that, except for the case r = 0, the AOR method is essen-

tially the Extrapolated (E)SOR method with overrelaxation parameter r and extrapo-

lation one s = co/r, for it is easy to show that

Thus if v is an eigenvalue of Lrr(r=£ 0) and X, the corresponding one of Lr    , we

have that

(2.7) X = W + (1 - s).
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In what follows we shall try to find, under various assumptions on the original

matrix A, the restrictions imposed on the parameters r and co so that the M     -method

converges.

3. Irreducible Matrices with Weak Diagonal Dominance. If A is an irreducible

matrix with weak diagonal dominance, then it will be nonsingular with nonvanishing

diagonal elements.  In such a case the following theorem can be proved.

Theorem.   If A is an irreducible matrix with weak diagonal dominance, then

the Mr ^-method converges for all 0 < r < 1 and 0 < co < 1.

Proof.   We assume that for some eigenvalue X of Lr w we have |X| > 1.  For

this eigenvalue the relationship below holds

(3.1) detfl,(U - XI) = 0

or after performing a simple series of transformations

(3.2) det(ß) = 0,

where we have set

(3-3) Q=I_r(X-l)+<i>L_^^_u
X-l+co X-l+co

The coefficients of L and U in (3.3) are less than one in modulus.  To prove this it

is sufficient and necessary to prove that

(3.4) |X-1 +co|> KX-l) + co|   and    IX - 1 + col > |co|.

If X-1 = qe'e where q and 0 are real with 0 < q < 1, then the first inequality in

(3.4) is equivalent to

(1 - r2) + (1 - r2)q2 - (1 - r2)2qcos 0 + (1 - r)2<7cocos0 - (1 - r)2q2u> > 0,

which holds for r = 1 ; otherwise it is equivalent to

(3.5) (1 + r) + (1 + r)q2 - [(1 + r) - u>]2qcos6 - 2q2co > 0.

Since the expression in the brackets above is nonnegative, (3.5) holds for all real 0 if

and only if it holds for cos 0 = 1.  Thus, (3.5) is equivalent to

il - q)[il + r)il - q) + 2qc] >0

which is true.  The second inequality in (3.4) is equivalent to

1 + q2 - 2qil - co)cos0 - 2q2co > 0

which, for the same reason, must be satisfied for cos 0 = 1.   Thus, we have

(1 -í?)i0 _ 0) + 2c7co] > 0 which is also true. Since A has weak diagonal dominance

and is irreducible it is obvious that D~XA =1' - L- U possesses the same properties. The

same is true for the matrix Q since the coefficients of L and U are different from zero

and less than one in modulus.  Thus, Q is nonsingular which contradicts (3.2) and,

consequently, (3.1).  Therefore p(Lr w) < 1.
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Considering now the Mr    -methods corresponding to the pairs (r, co) = (0,1),

(1,1), (0, co) and (co, co) we can obtain,-as a corollary of the previous theorem, the fol-

lowing well-known statement.

Corollary. If A is an irreducible matrix with weak diagonal dominance, then

the methods of Jacobi, of Gauss-Seidel, of Simultaneous Overrelaxation and of Succes-

sive Overrelaxation (the last two methods for 0 < co < 1), converge.

4. ¿-Matrices.  If A is an ¿-matrix that is a matrix whose elements ai} \i, j =

1(1 yN satisfy the relationships

aH > 0 I i = l(iyv   and   aif < 01/ */, i, j - l(l)rV,

then the following theorem concerning the AOR method can be proved.

Theorem.   If A is an L-matrix, then for all r and co such that 0 < r < co < 1

(co ¥= 0) the Mr ^-method converges if and only if the M0 x-method converges.

Proof.   It is obvious that if the Mr ^-method converges so does the MQ x -method.

Assume now that X = piLr w) > 1.  Because of our assumptions we easily get that

(1 - co)/ + (co - r)L + co<7 > 0 and also that (/ - rL)~x = I + rL + r2L2 + - • • +

jjv-i^TV-i ^ q   j^us, for the iterative matrix we have that

lru = a - rL)-x [(1 - coy + (co - r)L + coU] > 0.

Since Lr w is a nonnegative matrix, X is an eigenvalue of Lr    .  If v i= 0 is the cor-

responding eigenvector, we have Lr uu = Xv from which we obtain after some simple

manipulation that

Ujv
(u-r + rX  .  ,  T\       X-l +CO
- L + Ujv =-v.

This implies that (X - 1 + co)/co is an eigenvalue of ((co - r + rX)/u>)L + U.   There-

fore,

(4.1) *-l+"<p("-r + r*L + u).

CO \ CO /

It is obvious that (co - r + rX)/co > 1 so that

"~r + r* L + U<"-r + rXiL + U) = <^-+Ä
CO CO ' CO

(4.2)       0<<±71±±J±L + u<"-r + rK co-r + rX
/.. / % , . 0,1

Relationships (4.1) and (4.2) imply that X-l +co<(co-r + rX)piL0 x) from

which we can easily obtain that p(¿01) > 1.   Since we have proved that if X > 1,

then PÍL0 x) > 1, we can readily obtain that p(¿01) < 1 implies X < 1 so that if the

M0 x-method converges then so does the Mf ^-method.

5.  Consistently Ordered Matrices.  In this section we assume that matrix A is

a consistently ordered one, that is, a matrix for which the expression

det(ovlL + cTxAu - ßD) is independent of a for a ¥= 0 and for all ß.  As can be eas-

ily found out, the analysis of this section also applies in the case where A is a matrix

which has property A.
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Before we begin our analysis we give three lemmas which will be very useful in

the sequel.

Lemma 1.   If A is a consistently ordered matrix with nonvanishing diagonal

elements, and if p =£ 0 is an eigenvalue of LQ x of multiplicity p, then -p is also an

eigenvalue of L0 x of multiplicity p.

Proof.   See Theorems 3.4 and 2.2 on pages 147 and 142, respectively, of Young

[3].
Lemma 2.   If A is a consistently ordered matrix with nonvanishing diagonal

elements, and if p is an eigenvalue of LQ x and v satisfies

(5.1) (p-l+rf-rVi',

then v is an eigenvalue of Lr r and vice versa.

Proof.   See the same Theorems as in Lemma 1.

Lemma 3.   // ß and y are real, then both roots of the quadratic equation X2 -

ßX + y = 0 are less than one in modulus if and only if

(5.2) l7l<l,    I0K1+7-

Proof.   See Lemma 2.1, p. 171 of Young [3].

Having stated the three lemmas above, we give in the sequel three theorems con-

cerning the AOR method.

Theorem 1. If A is a consistently ordered matrix with nonvanishing diagonal

elements, and if p is an eigenvalue of LQ x and X satisfies

(5.3) (X - 1 + co)2 = co/i2 [riX - 1) + co],

then X is an eigenvalue of Lr w and vice versa.

Proof.   Since the requirements of Lemma 2 are fulfilled, for r =£ 0, we substi-

tute the value of v in terms of X from (2.7) into (5.1) and its equivalent relationship

(5.3) follows.   For r = 0 it is easy to show that, by virtue of Lemma 1, X satisfies

(5.3) and vice versa.

Theorem 2. // A is a consistently ordered matrix with nonvanishing diagonal

elements and if LQ x has real eigenvalues p¡ \i = l(iyv, with p = min¡\p¡\ and p =

max(.|/i(.|, then the Mr ^-method converges if and only if the M0 x-method converges

and the parameters co and r take values from the intervals 1^ and Ir, respectively, de-

fined as follows

forp±0:   IOJ=i-2/il-p2)xl2,0)   and   Ir = ißQi2), a(p2))   or

/w=(0,2]    and   Ir = ia(p2),ßip2))   or

Iu = [2, 2/(1 - p2)112)   and   Ir = (a(p2), ß(p2))   while

forp = 0:   /w=(0,2)   and   Ir = (a(p2), ß(p2)),

where
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aiz) = — ^co2z - I co2 + 2co - 2J     and   ß(z) = j(coz - co + 2).

Proof.   Since matrix A fulfills the requirements of Theorem 1, the eigenvalues

X of Lr w satisfy relationship (5.3) with p being any eigenvalue of LQ x.  Equation

(5.3) can be written as

(5.4) X2 - [2(1 - co) + rco/i2]X + (co - l)2 + (r - co)co/u2 = 0.

A sufficient and necessary condition for the Mr u -method to converge is that p(Lr w)

< 1 or equivalently the roots of (5.4) be less than one in modulus, which according

to Lemma 3, gives

Kco - l)2 +(r- cj)co/x2l < 1,      12(1 - co) 4- rcow2l < 1 + (co - l)2 + (r - a>)ojp2.

After some simple manipulation, the inequalities above are transformed into the equiv-

alent ones below:

a.   -(1 - p2)œ2 + 2co - 2 < rcou2,

(5.5)

b. rup2 <-(l -/i2)co2 +2co,

c. -VÁ1 -p2)oj2 + 2cj-2 <rup2,

d. p2 < 1.

Inequality (5.5d) gives one of the sufficient and necessary conditions for the Mr •

method to converge, namely p < 1 or equivalently the MQ x -method converges. Be-

cause of (5.5d), inequalities (5.5a, b, c) can be written as

(5.6) -14(1 -M2)co2 + 2co - 2 < rœp2 <-(l - p2)u2 + 2co,

which give (1 - p2)cj2 < 4 or equivalently

(5.7) -2/(1 -P2)112 <co#0 <2/(l -p2)x'2.

Having determined in this way all possible values for the overrelaxation parameter co

we now try to find, from (5.6), the corresponding values for r by distinguishing two

cases.

Case I:  pi=0.  If co > 0, then (5.6) can be written as

(5.8) o(z) = — (\ co2z - ^co2 + 2co - 2)  < r < \ (coz - co + 2) = (Hz),
COZ \¿ ¿ I z

where we have set z = p2.  It is obvious that inequalities (5.8) will be satisfied for

all values of r such that

(59) max a(z) < r < min ß(z).
z z

If, on the other hand, co <0, then (5.6) equivalent to ß(z) <r<a(z);and these inequal-

ities will be satisfied for all r such that
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(5.10) max pYz) < r < min a(z).
z z

By studying the sign of the partial derivatives of ojz) and p\z) with respect to z we

can easily construct Table 1 in which the behavior of these functions as z increases

from p2 to p2 and co takes values from the corresponding intervals I   is presented.

Table 1

Iu_cfc)_flfr)

(-2/(1 -p.2)112, 0) decreasing decreasing

(0,2] increasing decreasing

[2, 2/(1 - p ) i ) increasing increasing

Taking now into consideration inequalities (5.9) and (5.10), we can easily obtain

from Table 1 the ranges Ir of the parameter r for the corresponding ranges of co.

These ranges are given in Table 2.

Table 2

I» h

i-2lil-p2)x'2,0) ißiy2),^2))*

(0, 2] (<*;?), ßQ?))

[2,2/(1 -p2)1'2) ioä2),ßiä2))*

2 —2 —2
*Note.   It is obvious that the first and the third cases exist if and only if 0(u ) < a(u ) and a(p )

2 —
< /3(m  ), respectively.

Case II:  p = 0.  Since inequalities (5.6) must be satisfied for both /i = 0 and

p¥= 0 we have to distinguish two subcases.  If p = 0 relationships (5.6) give 0 < co <

2, while if p ¥= 0, the analysis given in Case I is valid and the possible values for co

and r are given in Table 2.  Since in this present case the values of co and r must sat-

isfy (5.6) for all p, we easily conclude that their ranges are, respectively,

/ws(0,2)   and   Ir = (au?), 00?)).

This completes the proof of Theorem 2.

Theorem 3. If A is a consistently ordered matrix with nonvanishing diagonal

elements, and if LQ x has real eigenvalues pi \i = lilyN such that 0 < p = p =

min,. \p¡\ =p = iruuíj \p,\ < l,thenforir, co) = (2(l +(1 -p2)x'2)/p2,-1/il -p2)1'2)

or (2/(1 + (1 - p2)x'2), 1/(1 - p2)1'2), piLrJ = 0.

Proof.  By virtue of Lemma 1 p will be an eigenvalue of L0 x.  Since p2 assumes

one and only one fixed value we can derive values for r # 0 so that (5.1) has a double
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root.  These values are

(5.11) r, =2(1 +(l-M2)1/2)/M2,      r2=2/(l+(l-p2)x'2)

and the double root for v will be given by

(5.12) ^(2(l-r) + rV)/2.

Since v has only one value it is easy to determine s (i.e. co) from (2.7) so that X = 0.

For this we must have

(5.13) co = r/(l-v).

Thus from (5.11), (5.12) and (5.13) we finally obtain

(5.14) co, =-l/(l-/i2)1/2,      co2 = l/(l-M2)1/2.

The pairs (rx, coj) and (r2, co2) give p(Lr to) = 0 as is easily checked. Note. Since,

as we have just seen, when p = p, p(Lr    ) can be made zero, a value far better than

the corresponding one is found for the optimum SOR which is p(L^    ) =

(p/(l + (1 ~ p2)xl2))2 ,it is strongly suggested that because of the continuity and at least

in cases where p^ is very close to p we shall be able to find an optimum AOR method

which will be better than the corresponding optimum SOR one.

Numerical Example.   Let the following system (5.15) of two equations with two

unknowns be given

(5.15)

We have

3xx -4x2 =-1,      2x,-3x2=-l.

-E -:]• -[::]• >=H
and, therefore, by (2.2)

-E 'J ¿L = :J 0     4

0     0

Consequently, by using (2.7) we obtain

L »i0       °1,       U-\°     H      C = [-"31    a„d    Lo,-\°,       4,31
[2/3      Oj [O       Oj L 1/3 J 0>1      |_2/3      OJ

whose eigenvalues are ±2\j2/3.   The 2x2 matrix A is obviously a consistently or-

dered one, and the requirements of Theorem 3 are fulfilled.   Since p = 2\j2/3 the

optimum pairs (r, co) are found from (5.11) and (5.14) to be (3, -3) and (3/2, 3).

The optimum AOR method corresponding to the first pair (3,-3) is

(5.16) (/-3¿)x("+1> = (4/-6¿-3l7>:(">-3c|/í = 0, 1,2,...,
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while the one which corresponds to the pair (3/2, 3) is

(5.17) (/-|z,)jc(n + 1>= (-2I + ^L + 3U\x(-n) +3c|n = 0, 1,2, . ..   .

For both methods (5.16) and (5.17) p(Lr w) = Oas is easily checked. The optimum

SOR method corresponds to co = 2/(1 + (1 -p2)x/2) = 3/2 and is, therefore,

(5.18) (/-|i)x(" + 1)= (-i + |cv)^")+|c|« = 0, 1,2, ...   .

For method (5.18) we can find p(L^    ) = 1/2. Using as the initial approximation to

the solution* of(5.15) the vector x(0) = [00]T, we obtain from (5.16) x(x) = [1 l]r

andx^ = [1 1] T. That is the exact solution after two iterations. By using (5.17) with

x(0>= [0 0] T we obtain x(1> = [-1 0] r,x(2) = [1 1] andx(3) = [1 1 ] T, that is, the

exact solution after three iterations. In the same way for method (5.18) we obtain at2 6^

= [0.9999988 0.9999993] T andx(27> = [0.9999992 0.9999995]T, that is, the solution

x = [0.999999 1.000000] T correct to six decimal places after 27 iterations. In either

scheme (5.16) or (5.17) we can find that we perform five multiplications and five addi-

tions and subtractions per iteration, while in scheme (5.18) we perform four multiplica-

tions and four additions and subtractions per iteration. Despite, however, the extra

arithmetic per iteration needed in applying either scheme (5.16) or (5.17), the total

number of calculations required to find the solution of system (5.15) correct to six deci-

mal places by using the optimum AOR method is (5 x 2)/(4 x 27) x 100% * 9.3% and

(5 x 3)/(4 x 27) x 100% « 13.9%, respectively, of the corresponding total number of

calculations required when using the optimum SOR method.

6. Final Remarks. As has been seen, the AOR or ESOR (for r =£ 0) method can be

proved to be a very simple and powerful technique for solving linear systems of equa-

tions. Its powerfulness compared with the other well-known methods (e.g. the SOR

method) lies in the fact that two parameters instead of usually at most one, are present.

Full exploitation of the presence of these two parameters will provide us with methods

which will converge faster than any other method of the same type. The determination

of optimum acceleration and overrelaxation parameters is a matter which needs further

investigation.
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