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Abstract 
We describe a set of novel, batch-mode algorithms we 
developed recently as one key component in scalable, 
deep neural network based speech recognition. The 
essence of these algorithms is to structure the single-
hidden-layer neural network so that the upper-layer’s 
weights can be written as a deterministic function of the 
lower-layer’s weights. This structure is effectively 
exploited during training by plugging in the 
deterministic function to the least square error objective 
function while calculating the gradients. Accelerating 
techniques are further exploited to make the weight 
updates move along the most promising directions. The 
experiments on TIMIT frame-level phone and phone-
state classification show strong results. In particular, the 
error rate is strictly monotonically dropping as the mini-
batch size increases. This demonstrates the potential for 
the proposed batch-mode algorithms in large scale 
speech recognition since they are easily parallelizable 
across computers.  

 
Index Terms: neural network, scalability, structure, 
constraints, FISTA acceleration, optimization, pseudo-
inverse, weighted LSE, phone state classification, 
speech recognition, deep learning 

1. Introduction 
Deep learning is a promising direction for automatic 
speech recognition (ASR) and other areas of 
information processing, as recently surveyed in [1] and 
demonstrated on large vocabulary and other ASR tasks 
[2][3][4][5][6]. For example, on the 309-hour 
switchboard task, we achieved greater than 30% relative 
word error rate (WER) reduction over the 
discriminatively trained Gaussian mixture model 
(GMM) hidden Markov models (HMMs) using our 
recently proposed context-dependent deep-neural-
network HMM (CD-DNN-HMM) [6]. Unfortunately, 
scaling CD-DNN-HMMs further to thousands of hours 
of speech is difficult since the prevailing learning 
algorithm is inherently sequential and performs best and 
converges fastest if the mini-batch size is in the range of 
100-1000. This prevents meaningful parallelization 
across different computers and GPGPUs are typically 
exploited to accelerate the learning process. The work 
presented in this paper offers a potential solution to the 
scalability problem of learning neural networks. 

The core of this paper is a set of accelerated batch-
mode algorithms that exploit structures of single-
hidden-layer neural networks (SHLNNs). These 
SHLNNs can be stacked to form a deep neural network 
[12]. The batch-mode nature of our proposed algorithms 
enables easy parallelization across many machines since 
as demonstrated in the experiments that better accuracy 
is achieved consistently as the mini-batch size is 
increased. 

The organization of this paper is as follows. In 
Section 2, we present the basic neural network model 
with a single hidden layer and a linear output layer. We 
develop learning algorithms for this model by taking 
advantage of the structural constraints among the neural 
network weights, as described in detail in Section 3. 
Enhancement of the algorithms is made by using two 
accelerating techniques, as presented in Section 4. In 
Section 5 we provide the results from a series of 
experiments to demonstrate the characteristics of the 
enhanced algorithms. 

2. Basic Model 
Given the set of input vectors � = [��, ⋯ , ��, ⋯ , ��], in 
which each vector �� = �	��, ⋯ , 	
�, ⋯ , 	���



, where � 

is the dimension of the input vector and � is the total 
number of training samples. Denote �  the number of 
hidden units and � the dimension of the output vector, 
the output of the SHLNN is �� = �
��,  where �� =
�(�
��)  is the hidden layer output, �  is an � × � 
weight matrix at the upper layer, � is a � × � weight 
matrix at the lower layer, and �(	) = 1 (1 + ���)⁄  is 
the sigmoid function. Note that the bias terms are 
implicitly represented in the above formulation if �� and 
��  are augmented with 1’s. 

Given the target vectors � = [��, ⋯ , ��, ⋯ , ��] , 
where each target �� = ����, ⋯ , �
�, ⋯ , ����



, the 

parameters � and � are learned to minimize the square 
error 

E = ‖� − �‖ = Tr[(� − �)(� − �)!], (1)
where � = [��, ⋯ , ��, ⋯ , ��]. Note that once the lower 
layer weights "  are fixed, the hidden layer values 
# = [��, ⋯ , ��, ⋯ , ��]  are also determined uniquely.  
And subsequently, the upper layer weights �  can be 
determined by setting the gradient 

∂%
∂�

=
∂Tr[(�!# − �)(�!# − �)!]

∂�
 

= 2#(�!# − �)! 
(2) 
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to zero, leading to the closed-form solution 
� = (##�)�&#��. (5) 

Note that (5) defines an implicit constraint between the 
two sets of weights,  �  and � , via the hidden layer 
output H, in the SHLNN. This gives rise to a structure 
that our new algorithms will exploit in optimizing the 
neural network. 

3. Basic Learning Algorithms 
In this section, we describe two learning algorithms that 
exploit the structural constraints indicated by (5) for the 
SHLNN described in Section 2. 

The first algorithm makes use of the solution (5) but 
does not make use of the fact that � can be considered 
completely depends on �. Given fixed current �  and 
�,  the algorithm first  computes gradient 

∂%
∂� =

∂Tr[(��*(���) − �)(��*(���) − �)�]
∂�  

= -�[# ∘ (& − #) ∘ (���# − ��)�] 
(6) 

where ∘  is element-wise product. The algorithm then 
updates � using the gradient defined in (6) as 

�03� = �0 − 4
∂E
∂�

, (7) 

where 4 is the learning rate. The algorithm subsequently 
calculates � using the closed-form solution (5).  

The second algorithm makes further use of the 
deterministic nonlinear relationship between � and � in 
computing the gradient  5% 5�⁄ . By treating �  a 
function of �  and plugging (5) into criterion (1) we 
obtain the new gradient shown in (3), where  

#6 = #�(##�)�& (8) 
is the pseudo-inverse of #. In the derivation of (3) we 
used the fact that ##! is symmetric and so is (##�)�&. 

Since this second version of the algorithm takes 
advantage of the effect of � on �, it tends to move W 
towards a direction that finds the optimal points faster. 
However, due to the more complicated gradient 
calculation that involves a pseudo-inverse, each iteration 
takes longer time than the first version. Note that we 

grouped the products of matrices in (3). This is 
necessary to reduce the memory usage when the number 
of samples becomes unduly large.  

4. Accelerated Algorithms  
The algorithms described in the preceding section 
updates the neural network weights based on the current 
gradient only. However, it has been shown for the 
convex problems that the convergence speed can be 
improved if the gradient information over the history is 
used when updating the weights [7][8]. Although the 
speedup may not be guaranteed in theory for our non-
convex problems, we have observed in practice that 
such algorithms do converge faster and to a better place. 
In this paper, we used the FISTA technique [8] to 
accelerate the learning process. More specifically, we 
choose �7  and set �8� = �7  and 9� = 1  during 
initialization. We then update � and �8  according to 

�0 = �80 − 4
∂%
∂�8

, (9)

9:3� =
1
2

;1 + <1 + 49:
 ? , and (10)

�803� = �0 +
9:��

9:3�
(�0 − �0��). (11)

In (3), each sample is weighted the same. However, 
we can improve the convergence speed by focusing on 
the samples with most errors. Here we define the weight  

@�� = A
�
%

‖�B − �B‖ + 1C 2D  (12)

for each sample F, where % is the square error over the 
whole training set and �  is the training set size. The 
weights are so chosen that they are positively correlated 
to the errors introduced by each sample while being 
smoothed to make sure weights assigned to each sample 
is at least 0.5. At each step, instead of minimizing % 
directly we can minimize the weighted error 

%̈ = Tr[(� − �)Λ(� − �)!], (13) 
where I = diag[@��, ⋯ , @��, ⋯ , @��]  is an �  by � 
diagonal weight matrix. 

∂%
∂�

=
∂Tr[(��# − �)(��# − �)�]

∂�
=

∂Tr[([(##�)�&#��]�# − �)([(##�)�&#��]�# − �)�]
∂�

 

=
∂Tr[��� − �#�(##�)�&#��]

J�
=

− ∂Tr[(##�)�&#���#�]
∂�

 

=
− ∂�K[(σ(���)[σ(���)]�)�&σ(���)���[σ(���)]�]

∂�
 

= -� M#� ∘ (& − #)� ∘ [#6(#��)(�#6) − ��(�#6)]N. 

(3)

5%̈
5�

=
∂Tr[(�!# − �)I(�!# − �)!]

∂�
 

=
∂Tr[([(#I#!)�&#I�!]!# − �)I([(#I#�)�&#I�!]!# − �)!]

∂�
 

=
∂Tr[�I�� − �I#�(#I#�)�&#I�!]

∂�
=

− ∂Tr[(#I#�)�&#I���I#�]
∂�

 

= 2�M#� ∘ (& − #)� ∘ [#‡(#I�!)(�#‡) − I�!(�#‡)]N. 

(4)
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To minimize %̈, once the lower layer weights � are 
fixed the upper layer weights � can be determined by 
setting the gradient 

∂%̈
∂�

=
∂Tr[(� − �)I(� − �)!]

∂�
 

= 2#I(�!# − �)! 
(14) 

to zero, which has the closed-form solution 
� = (#I#!)��#I�!. (15) 

By plugging (15) into (13) and using similar derivation 
steps used to derive OP

O�8
 in (3), we obtain the gradient 

shown in (4), where  
#‡ = I#!(#I#!)��. (16) 
Note that since we re-estimate the weights after each 

iteration, the algorithm will try to move the weights with 
a larger step toward the direction where the error can be 
most effectively reduced. Once the error for a sample is 
reduced, the weight for that sample becomes smaller in 
the next iteration. This not only speeds up the 
convergence but also makes the training less likely to be 
trapped into local optima. 

5. Experimental Evaluation  
Over the past year, we have conducted comprehensive 
experiments to evaluate the set of four learning 
algorithms described in this paper on the MNIST 
database of binary images of handwritten digits [9]. All 
algorithms perform significantly better than the baseline 
algorithm. The weighted accelerated algorithm performs 
the best, achieving recognition accuracy of 98.9% when 
the deep belief network (DBN) pretraining algorithm is 
used to initialize the lower-level neural network weights 
[13]. This is slightly better than the 98.8% accuracy of 
the DBN reported in [10] but with a small fraction of the 
training time. The DBN pretraining helped here since 
the objective function is non-convex w.r.t. the weights 
and good initialization is still important. However, with 
the same initialization point, our proposed weighted 
accelerated algorithm tends to find a better local 
optimum and find it faster. 

In this paper, we focus on our more recent 
experiments in applying the weighted accelerated 
learning algorithm to the TIMIT database. The speech 
data was analyzed using a 25-ms Hamming window 
with a 10-ms fixed frame rate. We represented the 
speech using first- to 12th-order Mel frequency cepstral 
coefficients (MFCCs) and energy, along with their first 
and second temporal derivatives. The data were 
normalized to have zero mean and unit variance 
dimension-wise. All experiments used a context window 
of 11 frames. This gives rise to a total of 39*11=429 
elements in each feature vector, or a super-frame, as the 
input to the single-hidden-layer neural network. For the 
neural network output, we used 183 target class labels 
(i.e., three states for each of the 61 phones), coded in 
binary zero or one, which we call phone states.   

The standard training set of TIMIT consisting of 462 
speakers was used, with all SA sentences removed, for 

training the SHLNN consisting of linear input and 
output units and sigmoid hidden units. The total number 
of super-frames in the training data is about 1.2 million. 
The standard development set of 50 speakers, with a 
total of 122,488 super-frames, was used for cross 
validation. Results are reported using the standard 24-
speaker core test set consisting of 192 sentences with 
7,333 phone tokens and 57,920 super-frames. 

The algorithms presented in this paper all are batch-
mode based, since the pseudo-inverse is carried out 
necessarily involving the full training set. However, in 
our experiments where the full training set is 
represented by a very large 429 by 1.2M matrix and the 
hidden layer outputs are represented by an � × 1.2Q 
matrix with the number of hidden layer units � ranges 
from 3000 to 6000, the various batch-mode matrix 
multiplications required by the algorithms easily cause a 
single computer to be out of memory (we have not 
implemented our algorithms over parallel machines 
while carrying out the reported experiments). To avoid 
the memory overflow problem we organize the training 
data into a number of mini-batches, and use mini-batch 
training instead of full batch training. We re-estimate 
the upper-layer weights using pseudo-inverse over the 
whole training set after each epoch (i.e. a full sweep of 
full 1.2M super-frames).  

Table 1. Frame-level classification error rates of 
phones (61 classes) and monophone states (183 classes) 
as a function of the training epoch; Mini-batch size is 
50,000; Step size in gradient descent is 0.01; Network 
topology is 429-6000-183; DBN pretraining is used to 
initialize the low-layer network weights. 

Epoch 
Train  
State 
Err % 

Dev. 
State 
Err % 

Test 
Phone 
Err % 

Test  
State 
Err % 

0 34.10 54.61 45.11 55.20 
1 27.19 49.50 39.18 49.83 
2 24.98 48.31 38.07 48.61 
3 23.43 47.50 37.53 47.86 
4 22.62 47.04 36.80 47.24 
5 22.09 46.50 36.53 46.87 
6 21.73 46.24 36.38 46.64 
7 21.45 46.20 36.26 46.48 
8 21.20 46.00 36.12 46.30 
9 21.10 46.03 36.10 46.33 

10 20.92 46.11 36.07 46.40 
 

In Table 1, we show the frame-level phone-state 
(183 in total) and phone (61 in total) classification error 
rates obtained by the weighted accelerated training 
algorithm described in Section 4, as a function of the 
training epoch. To get the results shown in Table 1 the 
mini-batch size is set to 50,000, and the step size in 
gradient descent in Eq. (5) is set to 0.01. The SHLNN 
used has 6,000 hidden units with lower-layer weights 
initialized using DBN pretraining procedure. We have 
found empirically that if weights are initialized 
randomly then the error rate becomes 30% higher than 
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that presented in Table 1 in most cases due to the fact 
that the proposed algorithms cannot solve the local 
optimum problem although better local optimum may be 
found using them. 

There has been very few published work on frame-
level phone or phone-state classification. The closest 
work we have been able to find in [11] reported over 
70% phone state error rate with an easier problem that 
involves only 132 phone-state classes (vs. 183 in our 
case) but with a more difficult speech database. 

We next investigate the effect of the mini-batch size 
on the phone and state classification error rates, as a 
way to verify the benefit of batch-mode nature of our 
developed algorithms. In Table 2, we show such results, 
all with the same number of epochs. As observed, when 
the mini-batch size increases, the error rates continue to 
drop. The size of 100,000 shown in Table 2 is the 
largest that can fit into the memory of the experimental 
machine with the memory as large as 48G. It is expected 
that with more memory or with parallel implementation 
of the algorithm over many computers, the error rate 
would continue to drop until the full batch of 1.2M. This 
is in contrast to the standard minibatch-based stochastic 
descent algorithm of back-propagation for training 
neural networks, which does not have the above 
property.  

Table 2. Frame-level classification error rates of phones 
(61 classes) and states (183 classes) as a function of the 
mini-batch size; 3000, 4000 or 6000 hidden units shown 
in parentheses. 

Mini-Batch 
Size (# of hidden units) 

Dev. 
State 
Err % 

Test 
Phone 
Err % 

Test 
State 
Err % 

10k (3000) 49.10 39.33 49.50 
20k (3000) 48.05 38.35 48.45 
20k (4000) 47.65 37.76 48.06 
30k (4000) 47.44 37.67 47.81 
40k (4000) 47.20 37.65 47.60 
50k (4000) 46.88 37.20 47.21 
50k (6000) 46.24 36.38 46.64 

100k (6000) 45.90 36.13 46.28 

6. Conclusions and Discussions 
We presented our motivation to develop efficient and 
parallelizable learning algorithms for neural networks. 
The weighted accelerated algorithm developed in this 
work exploits the structure of the neural networks, and 
moves the weights along the directions that can reduce 
the errors most. The proposed algorithm is verified in 
both MNIST handwritten digit recognition and TIMIT 
frame-level phone and phone-state classification tasks 
and is a potential solution to the scalability problem for 
training deep networks. One particular way of using the 
proposed algorithm is presented in the companion paper 
[12]. 
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