
Accelerated Parallelizable Neural Network Learning Algorithm for Speech
Recognition

Dong Yu and Li Deng

 Microsoft Research, Redmond, WA, 98052, USA
{dongyu, deng}@microsoft.com

Abstract
We describe a set of novel, batch-mode algorithms we
developed recently as one key component in scalable,
deep neural network based speech recognition. The
essence of these algorithms is to structure the single-
hidden-layer neural network so that the upper-layer’s
weights can be written as a deterministic function of the
lower-layer’s weights. This structure is effectively
exploited during training by plugging in the
deterministic function to the least square error objective
function while calculating the gradients. Accelerating
techniques are further exploited to make the weight
updates move along the most promising directions. The
experiments on TIMIT frame-level phone and phone-
state classification show strong results. In particular, the
error rate is strictly monotonically dropping as the mini-
batch size increases. This demonstrates the potential for
the proposed batch-mode algorithms in large scale
speech recognition since they are easily parallelizable
across computers.

Index Terms: neural network, scalability, structure,
constraints, FISTA acceleration, optimization, pseudo-
inverse, weighted LSE, phone state classification,
speech recognition, deep learning

1. Introduction
Deep learning is a promising direction for automatic
speech recognition (ASR) and other areas of
information processing, as recently surveyed in [1] and
demonstrated on large vocabulary and other ASR tasks
[2][3][4][5][6]. For example, on the 309-hour
switchboard task, we achieved greater than 30% relative
word error rate (WER) reduction over the
discriminatively trained Gaussian mixture model
(GMM) hidden Markov models (HMMs) using our
recently proposed context-dependent deep-neural-
network HMM (CD-DNN-HMM) [6]. Unfortunately,
scaling CD-DNN-HMMs further to thousands of hours
of speech is difficult since the prevailing learning
algorithm is inherently sequential and performs best and
converges fastest if the mini-batch size is in the range of
100-1000. This prevents meaningful parallelization
across different computers and GPGPUs are typically
exploited to accelerate the learning process. The work
presented in this paper offers a potential solution to the
scalability problem of learning neural networks.

The core of this paper is a set of accelerated batch-
mode algorithms that exploit structures of single-
hidden-layer neural networks (SHLNNs). These
SHLNNs can be stacked to form a deep neural network
[12]. The batch-mode nature of our proposed algorithms
enables easy parallelization across many machines since
as demonstrated in the experiments that better accuracy
is achieved consistently as the mini-batch size is
increased.

The organization of this paper is as follows. In
Section 2, we present the basic neural network model
with a single hidden layer and a linear output layer. We
develop learning algorithms for this model by taking
advantage of the structural constraints among the neural
network weights, as described in detail in Section 3.
Enhancement of the algorithms is made by using two
accelerating techniques, as presented in Section 4. In
Section 5 we provide the results from a series of
experiments to demonstrate the characteristics of the
enhanced algorithms.

2. Basic Model
Given the set of input vectors � = [��, ⋯ , ��, ⋯ , ��], in
which each vector �� = �	��, ⋯ , 	
�, ⋯ , 	���

, where �

is the dimension of the input vector and � is the total
number of training samples. Denote � the number of
hidden units and � the dimension of the output vector,
the output of the SHLNN is �� = �
��, where �� =
�(�
��) is the hidden layer output, � is an � × �
weight matrix at the upper layer, � is a � × � weight
matrix at the lower layer, and �() = 1 (1 + ���)⁄ is
the sigmoid function. Note that the bias terms are
implicitly represented in the above formulation if �� and
�� are augmented with 1’s.

Given the target vectors � = [��, ⋯ , ��, ⋯ , ��] ,
where each target �� = ����, ⋯ , �
�, ⋯ , ����

, the

parameters � and � are learned to minimize the square
error

E = ‖� − �‖ = Tr[(� − �)(� − �)!], (1)
where � = [��, ⋯ , ��, ⋯ , ��]. Note that once the lower
layer weights " are fixed, the hidden layer values
= [��, ⋯ , ��, ⋯ , ��] are also determined uniquely.
And subsequently, the upper layer weights � can be
determined by setting the gradient

∂%
∂�

=
∂Tr[(�!# − �)(�!# − �)!]

∂�

= 2#(�!# − �)!
(2)

Copyright © 2011 ISCA 28-31 August 2011, Florence, Italy

INTERSPEECH 2011

2281

to zero, leading to the closed-form solution
� = (##�)�&#��. (5)

Note that (5) defines an implicit constraint between the
two sets of weights, � and � , via the hidden layer
output H, in the SHLNN. This gives rise to a structure
that our new algorithms will exploit in optimizing the
neural network.

3. Basic Learning Algorithms
In this section, we describe two learning algorithms that
exploit the structural constraints indicated by (5) for the
SHLNN described in Section 2.

The first algorithm makes use of the solution (5) but
does not make use of the fact that � can be considered
completely depends on �. Given fixed current � and
�, the algorithm first computes gradient

∂%
∂� =

∂Tr[(��*(���) − �)(��*(���) − �)�]
∂�

= -�[# ∘ (& − #) ∘ (���# − ��)�]
(6)

where ∘ is element-wise product. The algorithm then
updates � using the gradient defined in (6) as

�03� = �0 − 4
∂E
∂�

, (7)

where 4 is the learning rate. The algorithm subsequently
calculates � using the closed-form solution (5).

The second algorithm makes further use of the
deterministic nonlinear relationship between � and � in
computing the gradient 5% 5�⁄ . By treating � a
function of � and plugging (5) into criterion (1) we
obtain the new gradient shown in (3), where

#6 = #�(##�)�& (8)
is the pseudo-inverse of #. In the derivation of (3) we
used the fact that ##! is symmetric and so is (##�)�&.

Since this second version of the algorithm takes
advantage of the effect of � on �, it tends to move W
towards a direction that finds the optimal points faster.
However, due to the more complicated gradient
calculation that involves a pseudo-inverse, each iteration
takes longer time than the first version. Note that we

grouped the products of matrices in (3). This is
necessary to reduce the memory usage when the number
of samples becomes unduly large.

4. Accelerated Algorithms
The algorithms described in the preceding section
updates the neural network weights based on the current
gradient only. However, it has been shown for the
convex problems that the convergence speed can be
improved if the gradient information over the history is
used when updating the weights [7][8]. Although the
speedup may not be guaranteed in theory for our non-
convex problems, we have observed in practice that
such algorithms do converge faster and to a better place.
In this paper, we used the FISTA technique [8] to
accelerate the learning process. More specifically, we
choose �7 and set �8� = �7 and 9� = 1 during
initialization. We then update � and �8 according to

�0 = �80 − 4
∂%
∂�8

, (9)

9:3� =
1
2

;1 + <1 + 49:
 ? , and (10)

�803� = �0 +
9:��

9:3�
(�0 − �0��). (11)

In (3), each sample is weighted the same. However,
we can improve the convergence speed by focusing on
the samples with most errors. Here we define the weight

@�� = A
�
%

‖�B − �B‖ + 1C 2D (12)

for each sample F, where % is the square error over the
whole training set and � is the training set size. The
weights are so chosen that they are positively correlated
to the errors introduced by each sample while being
smoothed to make sure weights assigned to each sample
is at least 0.5. At each step, instead of minimizing %
directly we can minimize the weighted error

%̈ = Tr[(� − �)Λ(� − �)!], (13)
where I = diag[@��, ⋯ , @��, ⋯ , @��] is an � by �
diagonal weight matrix.

∂%
∂�

=
∂Tr[(��# − �)(��# − �)�]

∂�
=

∂Tr[([(##�)�&#��]�# − �)([(##�)�&#��]�# − �)�]
∂�

=
∂Tr[��� − �#�(##�)�&#��]

J�
=

− ∂Tr[(##�)�&#���#�]
∂�

=
− ∂�K[(σ(���)[σ(���)]�)�&σ(���)���[σ(���)]�]

∂�

= -� M#� ∘ (& − #)� ∘ [#6(#��)(�#6) − ��(�#6)]N.

(3)

5%̈
5�

=
∂Tr[(�!# − �)I(�!# − �)!]

∂�

=
∂Tr[([(#I#!)�&#I�!]!# − �)I([(#I#�)�&#I�!]!# − �)!]

∂�

=
∂Tr[�I�� − �I#�(#I#�)�&#I�!]

∂�
=

− ∂Tr[(#I#�)�&#I���I#�]
∂�

= 2�M#� ∘ (& − #)� ∘ [#‡(#I�!)(�#‡) − I�!(�#‡)]N.

(4)

2282

To minimize %̈, once the lower layer weights � are
fixed the upper layer weights � can be determined by
setting the gradient

∂%̈
∂�

=
∂Tr[(� − �)I(� − �)!]

∂�

= 2#I(�!# − �)!
(14)

to zero, which has the closed-form solution
� = (#I#!)��#I�!. (15)

By plugging (15) into (13) and using similar derivation
steps used to derive OP

O�8
 in (3), we obtain the gradient

shown in (4), where
#‡ = I#!(#I#!)��. (16)
Note that since we re-estimate the weights after each

iteration, the algorithm will try to move the weights with
a larger step toward the direction where the error can be
most effectively reduced. Once the error for a sample is
reduced, the weight for that sample becomes smaller in
the next iteration. This not only speeds up the
convergence but also makes the training less likely to be
trapped into local optima.

5. Experimental Evaluation
Over the past year, we have conducted comprehensive
experiments to evaluate the set of four learning
algorithms described in this paper on the MNIST
database of binary images of handwritten digits [9]. All
algorithms perform significantly better than the baseline
algorithm. The weighted accelerated algorithm performs
the best, achieving recognition accuracy of 98.9% when
the deep belief network (DBN) pretraining algorithm is
used to initialize the lower-level neural network weights
[13]. This is slightly better than the 98.8% accuracy of
the DBN reported in [10] but with a small fraction of the
training time. The DBN pretraining helped here since
the objective function is non-convex w.r.t. the weights
and good initialization is still important. However, with
the same initialization point, our proposed weighted
accelerated algorithm tends to find a better local
optimum and find it faster.

In this paper, we focus on our more recent
experiments in applying the weighted accelerated
learning algorithm to the TIMIT database. The speech
data was analyzed using a 25-ms Hamming window
with a 10-ms fixed frame rate. We represented the
speech using first- to 12th-order Mel frequency cepstral
coefficients (MFCCs) and energy, along with their first
and second temporal derivatives. The data were
normalized to have zero mean and unit variance
dimension-wise. All experiments used a context window
of 11 frames. This gives rise to a total of 39*11=429
elements in each feature vector, or a super-frame, as the
input to the single-hidden-layer neural network. For the
neural network output, we used 183 target class labels
(i.e., three states for each of the 61 phones), coded in
binary zero or one, which we call phone states.

The standard training set of TIMIT consisting of 462
speakers was used, with all SA sentences removed, for

training the SHLNN consisting of linear input and
output units and sigmoid hidden units. The total number
of super-frames in the training data is about 1.2 million.
The standard development set of 50 speakers, with a
total of 122,488 super-frames, was used for cross
validation. Results are reported using the standard 24-
speaker core test set consisting of 192 sentences with
7,333 phone tokens and 57,920 super-frames.

The algorithms presented in this paper all are batch-
mode based, since the pseudo-inverse is carried out
necessarily involving the full training set. However, in
our experiments where the full training set is
represented by a very large 429 by 1.2M matrix and the
hidden layer outputs are represented by an � × 1.2Q
matrix with the number of hidden layer units � ranges
from 3000 to 6000, the various batch-mode matrix
multiplications required by the algorithms easily cause a
single computer to be out of memory (we have not
implemented our algorithms over parallel machines
while carrying out the reported experiments). To avoid
the memory overflow problem we organize the training
data into a number of mini-batches, and use mini-batch
training instead of full batch training. We re-estimate
the upper-layer weights using pseudo-inverse over the
whole training set after each epoch (i.e. a full sweep of
full 1.2M super-frames).

Table 1. Frame-level classification error rates of
phones (61 classes) and monophone states (183 classes)
as a function of the training epoch; Mini-batch size is
50,000; Step size in gradient descent is 0.01; Network
topology is 429-6000-183; DBN pretraining is used to
initialize the low-layer network weights.

Epoch
Train
State
Err %

Dev.
State
Err %

Test
Phone
Err %

Test
State
Err %

0 34.10 54.61 45.11 55.20
1 27.19 49.50 39.18 49.83
2 24.98 48.31 38.07 48.61
3 23.43 47.50 37.53 47.86
4 22.62 47.04 36.80 47.24
5 22.09 46.50 36.53 46.87
6 21.73 46.24 36.38 46.64
7 21.45 46.20 36.26 46.48
8 21.20 46.00 36.12 46.30
9 21.10 46.03 36.10 46.33

10 20.92 46.11 36.07 46.40

In Table 1, we show the frame-level phone-state
(183 in total) and phone (61 in total) classification error
rates obtained by the weighted accelerated training
algorithm described in Section 4, as a function of the
training epoch. To get the results shown in Table 1 the
mini-batch size is set to 50,000, and the step size in
gradient descent in Eq. (5) is set to 0.01. The SHLNN
used has 6,000 hidden units with lower-layer weights
initialized using DBN pretraining procedure. We have
found empirically that if weights are initialized
randomly then the error rate becomes 30% higher than

2283

that presented in Table 1 in most cases due to the fact
that the proposed algorithms cannot solve the local
optimum problem although better local optimum may be
found using them.

There has been very few published work on frame-
level phone or phone-state classification. The closest
work we have been able to find in [11] reported over
70% phone state error rate with an easier problem that
involves only 132 phone-state classes (vs. 183 in our
case) but with a more difficult speech database.

We next investigate the effect of the mini-batch size
on the phone and state classification error rates, as a
way to verify the benefit of batch-mode nature of our
developed algorithms. In Table 2, we show such results,
all with the same number of epochs. As observed, when
the mini-batch size increases, the error rates continue to
drop. The size of 100,000 shown in Table 2 is the
largest that can fit into the memory of the experimental
machine with the memory as large as 48G. It is expected
that with more memory or with parallel implementation
of the algorithm over many computers, the error rate
would continue to drop until the full batch of 1.2M. This
is in contrast to the standard minibatch-based stochastic
descent algorithm of back-propagation for training
neural networks, which does not have the above
property.

Table 2. Frame-level classification error rates of phones
(61 classes) and states (183 classes) as a function of the
mini-batch size; 3000, 4000 or 6000 hidden units shown
in parentheses.

Mini-Batch
Size (# of hidden units)

Dev.
State
Err %

Test
Phone
Err %

Test
State
Err %

10k (3000) 49.10 39.33 49.50
20k (3000) 48.05 38.35 48.45
20k (4000) 47.65 37.76 48.06
30k (4000) 47.44 37.67 47.81
40k (4000) 47.20 37.65 47.60
50k (4000) 46.88 37.20 47.21
50k (6000) 46.24 36.38 46.64

100k (6000) 45.90 36.13 46.28

6. Conclusions and Discussions
We presented our motivation to develop efficient and
parallelizable learning algorithms for neural networks.
The weighted accelerated algorithm developed in this
work exploits the structure of the neural networks, and
moves the weights along the directions that can reduce
the errors most. The proposed algorithm is verified in
both MNIST handwritten digit recognition and TIMIT
frame-level phone and phone-state classification tasks
and is a potential solution to the scalability problem for
training deep networks. One particular way of using the
proposed algorithm is presented in the companion paper
[12].

7. Acknowledgements
We thank Dr. G.-B. Huang for fruitful discussions on
the baseline SHLNN algorithms, and Dr. A. Acero for
the discussion and encouragement of this work.

8. References
[1] D. Yu and L. Deng. “Deep Learning and its

Applications to Signal and Information
Processing”, IEEE Signal Processing Magazine,
vol. 28, No. 1, pp. 145-154.

[2] G. Dahl, D. Yu, L. Deng, and A. Acero. “Context-
Dependent Pre-trained Deep Neural Networks for
Large Vocabulary Speech Recognition”, IEEE
Transactions on Audio, Speech, and Language
Processing - Special Issue on Deep Learning for
Speech and Language Processing, 2011 (in press).

[3] D. Yu, L. Deng, and G. Dahl, “Roles of Pre-
Training and Fine-Tuning in Context-Dependent
DBN-HMMs for Real-World Speech Recognition,”
in NIPS 2010 workshop on Deep Learning and
Unsupervised Feature Learning, December 2010.

[4] A. Mohamed, D. Yu, and L. Deng, “Investigation
of Full-Sequence Training of Deep Belief Networks
for Speech Recognition,” in Interspeech, September
2010, pp. 2846-2849.

[5] L. Deng, M. Seltzer, D. Yu, A. Acero, A. Mohamed,
and G. Hinton. “Binary Coding of Speech
Spectrograms Using a Deep Auto-encoder,” in
Interspeech, September 2010, pp. 1692-1695.

[6] F. Seide, G. Li, and D. Yu, "Conversational Speech
Transcription Using Context-Dependent Deep
Neural Networks", Interspeech 2011 (to appear).

[7] Y. Nesterov, Introductory Lectures on Convex
Optimization: A Basic Course, Kluwer Academic
Publishers, 2004.

[8] A. Beck, and M. Teboulle, “Gradient-based
methods with application to signal recovery
problems," Convex Optimization in Signal
Processing and Communications, D. Palomar and
Y. Eldar (Eds.), Cambridge University Press, 2010.

[9] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient-Based Learning Applied to Document
Recognition”, Proceedings of the IEEE,
86(11):2278-2324, 1998.

[10] G. E. Hinton, and R. R. Salakhutdinov, “Reducing
the dimensionality of data with neural networks”,
Science, Vol. 313. no. 5786, pp. 504 – 507, 2006.

[11] J. Droppo, M. Seltzer, A. Acero, Y. Chiu. “Towards
a non-parametric acoustic model: An acoustic
decision tree for observation probability
calculation,” Interspeech 2008.

[12] L. Deng and D. Yu. “Deep Convex Network: A
Scalable Architecture for Deep Learning,”
Interspeech 2011, to appear.

[13] D. Yu and L. Deng, “Efficient and Effective
Algorithms for Training Single-Hidden-Layer
Neural Networks”, Pattern Recognition Letters,
submitted.

2284

