
ETH Library

Accelerated Point-wise Maximum
Approach to Approximate Dynamic
Programming

Journal Article

Author(s):
Beuchat, Paul N. ; Warrington, Joseph; Lygeros, John

Publication date:
2022-01

Permanent link:
https://doi.org/10.3929/ethz-b-000463046

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
IEEE Transactions on Automatic Control 67(1), https://doi.org/10.1109/TAC.2021.3050440

Funding acknowledgement:
787845 - Optimal control at large (EC)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-1044-3994
https://orcid.org/0000-0002-6159-1962
https://doi.org/10.3929/ethz-b-000463046
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1109/TAC.2021.3050440
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

1

Accelerated Point-wise Maximum Approach to

Approximate Dynamic Programming

Paul N. Beuchat1, Member, IEEE, Joseph Warrington1, Member, IEEE, and John Lygeros1, Fellow, IEEE

Abstract—We describe an approximate dynamic programming
approach to compute lower bounds on the optimal value function
for a discrete time, continuous space, infinite horizon setting.
The approach iteratively constructs a family of lower bounding
approximate value functions by using the so-called Bellman
inequality. The novelty of our approach is that, at each iteration,
we aim to compute an approximate value function that maximizes
the point-wise maximum taken with the family of approximate
value functions computed thus far. This leads to a non-convex
objective, and we propose a gradient ascent algorithm to find
stationary points by solving a sequence of convex optimization
problems. We provide convergence guarantees for our algorithm
and an interpretation for how the gradient computation relates to
the state-relevance weighting parameter appearing in related ap-
proximate dynamic programming approaches. We demonstrate
through numerical examples that, when compared to existing
approaches, the algorithm we propose computes tighter sub-
optimality bounds with comparable computation time.

I. INTRODUCTION

A. Motivation

Many important challenges in science and engineering

can be cast in the problem formulation of infinite horizon

stochastic optimal control (SOC), from climate control of

a building [1] to control of cell populations [2]. The goal

of such problems is to find a state feedback policy that

minimizes an infinite-horizon discounted cost function. For a

general SOC problem instance, the solution, i.e., the optimal

policy, is typically characterized by the theory of dynamic

programming (DP) [3]–[5]. However, in all but a few special

cases, solving the SOC directly or applying the DP theory

is intractable due to the so-called curse of dimensionality.

As such, an extensive body of literature has proposed ap-

proximation techniques for computing sub-optimal solutions to

infinite horizon SOC problems, ranging from model-free and

simulation-based algorithms [6], to model-based approaches

[7]–[9]. Many simulation-based algorithms first select a policy

parametrization, for example neural networks, and then search

for parameters with the best performance, [6], [10], [11].

A range of model-based approaches instead address a finite

horizon SOC counterpart, many of which use optimization-

based policies to approximate the finite horizon SOC [12]–

[14]. Any technique based on DP theory falls in the category of

Approximate DP (ADP), see [11], [15], [16] for an overview.

Although the optimal policy is intractable to compute, tech-

niques have been developed to bound the sub-optimality of

This work was supported by the European Research Council under the
project OCAL, grant number 787845.

1 The authors are with the Automatic Control Laboratory at ETH Zürich,
Switzerland, jlygeros@ethz.ch

an approximate policy. Such bounds provide the designer with

valuable information about the potential benefit of synthesizing

and evaluating alternative policies. In this paper we consider

infinite horizon SOC and propose approaches that provide sub-

optimality bounds based on the so-called Linear Programming

(LP) approach to ADP [17].

B. Prior Work

The LP approach to ADP provides sub-optimality bounds

by computing approximations that are lower bounds of the so-

called value function, i.e., the solution of the Bellman equation

for DP [3]. The LP approach parameterizes approximate value

functions as a linear combination of fixed basis functions and

uses the so-called Bellman inequality to restrict consideration

to only those linear combinations that are point-wise lower

bounds of the value function. The appropriate approximation

steps for ensuring that the Bellman inequality is satisfied

depends on the problem class. Previous works developed such

approximation steps for a variety of problem classes [18]–

[24]. To compute an approximate value function the designer

specifies the regions of the state space that are of interest via

the state-relevance weighting distribution, and then solves an

optimization problem to find a linear combination of basis

functions that maximizes the integral with respect to this

weighting. An open question for the LP approach is how

to choose the state-relevance weighting distribution so that

the resulting approximate value function provides the tightest

lower bound on the optimal value function, and hence the

tightest sub-optimality bound for any policy.

The LP approach was first proposed for finite state and

input spaces in [18], and equipped with theoretical guarantees

in [19]. The authors of [19] also provide a discussion on

the importance and difficulty of choosing the state-relevance

weighting to give the lower bound and policy performance.

An iterated version of the Bellman inequality was proposed

in [20] and used to compute tighter lower bounds, however,

the topic of choosing the state-relevance weighting is not

addressed. The subsequent works [25], [26] avoid the need

for a state-relevance weighting by focusing on the design of

policies. In both of these works the authors propose using

the iterated Bellman inequality as a constraint in the policy

and choose the state-relevance weighting as a Dirac function

located at the current state measurement. Thus the lower

bound, which results from solving the policy, is expected

to be the tightest in the vicinity of the state measurement

and may not generalize well to other regions of the state

space. Moreover, the approximate value functions computed

from previous solves of the policy are discarded when solv-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TAC.2021.3050440

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

ing the policy for the current state measurement. In [21]

the authors use sum-of-squares programming techniques to

compute high-order polynomial approximate value functions

using the iterated Bellman inequality. The use of high-order

polynomials would reduce the difficulty of choosing the state-

relevance weighting, however, the optimization problem to

solve becomes formidable.

Given a family of lower bounding approximate value func-

tions, computed via the LP approach to ADP, taking a point-

wise maximum over the family will yield the same or better

approximation of the value function. The benefit of a point-

wise maximum combination is empirically demonstrated in

[20] for a simple example, with the set of state-relevance

weighting parameters hand-picked using problem-specific in-

sight. In our previous work [27], we proposed a problem

formulation with the point-wise maximum combination used

in the Bellman inequality. The formulation was used to de-

velop an iterative algorithm for computing lower bounding

approximate value functions, however, the quality of the

approximation, comparable with that of [20], still relies on the

designer choosing a sequence of state-relevance weightings.

The algorithm proposed in [28] also uses the point-wise

maximum combination in the Bellman inequality, and the

authors propose an algorithm that computes the sequence of

state-relevance weightings based on simulating the evolution

of the system in a so-called forward pass. They consider a

finite horizon setting and it is not clear how to extend the

algorithm to an infinite horizon setting. A variety of other

ADP algorithms compute lower bounds using theoretical tools

different from the Bellman inequality, for example [29]–[31],

each with its advantages and disadvantages, and none of which

are similar to the algorithms we propose.

C. Contributions and Outline

In this paper, we propose a formulation that explicitly aims

to maximize a point-wise maximum combination of multi-

ple lower bounding approximate value functions, integrated

with respect to the state-relevance weighting, which we refer

to throughout as the point-wise maximum objective. Using

this point-wise maximum objective leads to a non-convex

optimization problem, in contrast to the existing methods

discussed above that all maximize an objective function that

is linear in the coefficients of the approximate value function.

The motivation for the point-wise maximum objective is that

a single choice of state-relevance weighting can be used to

compute the entire family of approximate value functions.

To see this consider that an approximate value function only

contributes to the point-wise maximum objective if in some

region of the state space it is greater than all the other

functions in the family. This is in contrast to existing methods

that require the designer to choose a separate weighting for

computing each member of the family.

We propose using a gradient ascent algorithm to address the

non-convex point-wise maximum objective, and combine this

with the algorithm proposed in [27] for computing a family

of approximate value function whose point-wise maximum

combination satisfies the Bellman inequality. The benefits of

gradient ascent in this setting are two fold:

1) At each iteration of the gradient ascent algorithm the

objective function is linear in the coefficients of the

approximate value function and hence the computation

requirements are comparable with existing methods;

2) The computation of a gradient direction has the inter-

pretation of reducing the support of the state-relevance

weighting distribution to a region of the state space that

is relevant for the current iteration. Thus the algorithm

only requires selecting a single state-relevance weighting

that places mass over the whole state space.

We refer to our proposed approach as the accelerated point-

wise maximum approach to ADP because, compared to [27],

on the numerical examples considered it requires comparable

computation times, lower state-relevance weighting selection

effort, and computes tighter lower bounds. In summary, the

contributions of the paper are:

• We introduce the infinite dimensional point-wise maxi-

mum formulation of DP and prove under standard as-

sumptions for SOC that it is equivalent to the infinite

dimensional linear programming formulation of DP.

• To address the non-convex point-wise maximum objec-

tive, we propose a gradient ascent algorithm for finding

approximate solutions, and we prove convergence prop-

erties of the algorithm.

The remainder of the paper is structured as follows. Sec-

tion II presents the infinite dimensional point-wise maximum

DP formulation. Section III introduces the approximation

methods and our proposed algorithms. Section IV provides

numerical results to demonstrate the sub-optimality bounds

achieved and computation time required.

II. DYNAMIC PROGRAMMING (DP) FORMULATION

A. Stochastic Optimal Control Formulation and Assumptions

We consider discrete time, infinite horizon, discounted cost,

stochastic optimal control problems over continuous state

and action spaces. The state of the system at time t is

denoted by xt∈X ⊆ R
nx . The system state is influenced

by the control decisions ut∈U ⊆ R
nu , and by the stochas-

tic exogenous disturbance ξt∈Ξ ⊆ R
nξ . In this setting, the

states evolves according to the function g : X×U×Ξ→ X as

xt+1 = g (xt, ut, ξt), incurring the stage cost γt l (xt, ut) at

each time step, where γ∈ [0, 1) is the discount factor, and γt

means exponentiation by the discrete time step t. By Π we

denote the set of all feasible deterministic Markov policies,

defined as {π(·)|π(x)∈U , ∀x∈X}. The goal is to find a

policy xt 7→ π (xt) that minimizes the cumulative cost over

an infinite horizon, with initial condition x0∈X ,

V ∗(x0) := inf
π∈Π

E

[∑∞

t=0
γt l(xt, π(xt))

]

(1)

where xt+1 = g (xt, π(xt), ξt) for all t ≥ 0, which together

with π ∈ Π ensures that xt ∈ X and π(xt) ∈ U for all t ≥ 0.

The function V ∗ : X → R is the value function that represents

the optimal cost-to-go from any state of the system if the

optimal policy is played. The optimal policy π∗ may require

an infinite dimensional parameterization, hence problem (1)

is intractable in general. Approximate policies can be catego-

rized into four meta-classes: policy-, cost-, or value- function

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TAC.2021.3050440

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

approximations, and direct lookahead; see [32] and references

therein for details of these policy meta-classes. The method

presented in this paper approximates V ∗ and hence falls into

the value function approximation category. As some direct

lookahead policies utilise an approximation of V ∗, the method

presented in this paper can potentially be used to improve such

policies, for example [33], [34], [35, Ch. 5].

To ensure that the problem is well posed we work in

that same setting as [5, §6.3], specifically under [5, Assump-

tion 4.2.1(a)] that the stage cost is lower semi-continuous, non-

negative, and inf-compact, and also under [5, Assumptions

4.2.1(b), 4.2.2]. The assumptions ensure the value function is

finite for all x∈X and that from the class of time-varying

stochastic policies, the minimum is attained by a stationary

deterministic policy, see [5, Theorem 4.2.3]. Finally, F(X×U)
and F(X) are defined as the vector spaces of bounded,

real-valued, Borel-measurable functions on X × U and X
respectively, where [5, Definition 6.3.2, 6.3.4] provides the

definitions of boundedness.

B. Linear Programming (LP) Formulation of DP

Solving the stochastic optimal control problem is equivalent

to finding V ∗ as the solution of the Bellman equation [3],

V ∗(x) = inf
u∈U

(TuV
∗)(x,u)

︷ ︸︸ ︷
{

l(x, u) + γ E [V ∗ (g(x, u, ξ))]
}

︸ ︷︷ ︸

(T V ∗)(x)

, ∀x∈X .

(2)

T is known as the Bellman operator, and the Tu operator

represents the cost of making decision u now and then playing

optimally from the next time step forward. The optimal policy

can be defined using V ∗ by,

π∗(x) =

{

argmin
u∈U

l(x, u) + γ E [V ∗ (g(x, u, ξ))]

}

. (3)

The existence of a V ∗ and π∗ that are Borel measurable and

attain the infimum is ensured by [5, Assumptions 4.2.1(a),

4.2.1(b), 4.2.2]. If ν(·) is a finite measure on X that assigns

positive mass to all open subsets of X , then it can be shown

that the solutions of the following linear program,

max
V

∫

X

V (x) ν(dx) (4a)

s.t. V ∈ F(X) (4b)

V (x) ≤ (TuV) (x, u) , ∀x ∈ X , u ∈ U (4c)

satisfy (2) for ν-almost all (ν-a.a.) x∈X , see [5, §6.3].

Constraint (4c) is referred to as the Bellman Inequality. A

key feature of the LP formulation is that any choice of ν(·)
that places mass over the whole state space X leads (4) to

recover a solution of the stochastic optimal control problem.

C. Point-wise Maximum Formulation of DP

Following [27], we introduce additional decision variables

and use a point-wise maximum of value functions in the

objective and the Bellman inequality constraint. It is seemingly

redundant to add additional decision variables because (4)

optimizes over F(X) as the space of bounded, real-valued,

Borel-measurable functions, and hence it already recovers the

optimal value function. However, the reason for considering a

point-wise maximum formulation becomes clear in Section III

when we consider approximating the optimal value function

by restricting the space of decision variables to subspaces

of F(X). As demonstrated in [27], the use of a point-wise

maximum of value functions in the Bellman inequality con-

straint can lead to a tighter approximation in less computation

time. The point-wise maximum formulation is thus stated as

the following infinite dimensional optimization problem,

max
V1,...,VJ

∫

X

VPWM(x) ν(dx) (5a)

s.t. Vj ∈ F(X) , j = 1, . . . , J (5b)

VPWM(x) ≤ (TuVPWM) (x, u), ∀x∈X , u∈U (5c)

VPWM(x) = max
j=1,...,J

Vj(x), ∀x∈X (5d)

where J ∈N specifies the number of value function decision

variables. The Bellman inequality constraint (5c) implies that

feasible decisions for (5) will be point-wise under-estimators

of V ∗, and thus it is natural to combine a family of feasible but

sub-optimal decisions using a point-wise maximum. Hence the

motivation for using the objective (5a) is that, when optimizing

over a subspace of F(X), it assess which combination of

functions provides the tightest approximation with respect to

the chosen measure ν(·). We reiterate that the key difference

from [27] is the use of the point-wise maximum VPWM in

the objective (5a), and that this is central to the algorithms

proposed in Section III. The following lemma establishes

some important properties of (5).

Lemma 2.1: Problems (4) and (5) are equivalent in the sense

that there exist mappings between the feasible solutions and

the optimal solutions of the two problems. Moreover, objective

(5a) is jointly convex in the decision variables Vj , j=1, . . . , J .

Proof: Under the assumptions and definitions of Sec-

tion II-A, one can easily see there is a mapping between

feasible solutions since the space F(X) is closed under the

maximum operation, i.e., Vj = V for all x ∈ X , j=1, . . . , J
in one direction, and V =VPWM for all x∈X in the other di-

rection. This gives equivalent objective value by construction,

and thus
∫
V ∗dν is the optimal value for both (4) and (5).

The function VPWM is convex in Vj , j=1, . . . , J by defi-

nition of the max function over a finite number of elements.

Thus (5a) is convex as integration is a linear operation, see

for example [36, Lemma 2.1].

Computing a solution of problem (5) poses the following

difficulties

(D1) F(X) is an infinite dimensional space;

(D2) Objective (5a) involves a multidimensional integral over

X ;

(D3) The Tu-operator involves a multidimensional integral

over Ξ;

(D4) Constraint (5c) involves an infinite number of con-

straints;

(D5) Constraint (5c) is non-convex in the decision variables;

(D6) The objective (5a) involves the maximization of a convex

function;

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TAC.2021.3050440

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

Difficulties (D1-D4) apply also to problem (4) and a variety

of approaches have been proposed to address them, see for ex-

ample [23], [37]–[40]. In Section III we take inspiration from

previous approaches to propose an approximation algorithm

that additionally overcomes difficulties (D5-D6).

III. APPROXIMATE DYNAMIC PROGRAMMING (ADP)

This section proposes an algorithm for computing an ap-

proximate value function that is feasible for problem (5) at

every iteration and analyzes its convergence.

A. Approaches Adopted for Difficulties (D1), (D3) and (D4)

To overcome difficulty (D1), as suggested in [17], we

restrict the value functions candidates to the span of a fi-

nite family of Borel-measurable basis functions φk :X →R,

k=1, . . . ,K. We parameterize the restricted function space

as,

F̂(X) =
{
α⊺ φ(x)

∣
∣α ∈ R

K
}
, with φ(x) =






φ1(x)
...

φK(x)




 . (6)

The benefit of this parameterization is that it is linear in the α

parameter. Each approximate value function V̂j is parameter-

ized by its own vector that we denote αj , i.e., V̂j(x)=α
⊺

j φ(x)
for all x∈X . For the numerical examples in Section IV we

use the space of polynomial functions up to a certain degree

by choosing the φk to be each of the monomials up to that

degree.

To overcome difficulty (D3) we first use Jensen’s inequal-

ity to switch the order of expectation and maximisation in

the TuVPWM term, thus providing a sufficient condition for

constraint (5c). We then require that for each basis function

E [φ (g(x, u, ξ))] has an analytic expression. In the case of

polynomial basis functions and polynomial dynamics, this

requires knowledge of the moments of the distribution of

ξ up to the maximum degree of ξ in φ (g(x, u, ξ)). If the

required moments are not analytically available, then the

Monte Carlo sampling can be used to approximate them, and,

as the distribution is stationary, this only needs to be computed

once.

To overcome difficulty (D4), a variety of convex sufficient

conditions techniques are proposed in the literature for approx-

imating (5c) with a finite number of constraints, for example

[20]–[22]. The applicable reformulation depends on the prob-

lem data and basis functions, and the algorithm we propose in

the sequel applies for all such convex inner approximations.

When all problem data is polynomial and polynomial basis

functions are used, then constraint (5c) can be inner approxi-

mated using the sum-of-squares (SOS) S-procedure [21], [22].

A reformulation of the Bellman inequality to compute piece-

wise constant lower bounds of the optimal value function is

given in [23], [24].

B. Proposed Approach for Difficulties (D2), (D5) and (D6)

The inclusion of the point-wise maximum value function

in the objective (5a) is pivotal in the algorithm we propose,

however, it precludes using previous approaches for evaluating

the integral in the objective. To overcome difficulty (D2) we

replace ν by a finitely supported distribution denoted c. Specif-

ically, we choose c as a finite sum of N Dirac pulses located

at {zi}
N
i=1 ⊂ X . This violates the hypothesis for equivalence

between (2) and (4), but reduces the multidimensional integral

in (5a) to a sum over the locations of the Dirac pulses.

For clarity of presentation, we consider now an auxiliary

problem that highlights our proposed approach for overcoming

difficulties (D5) and (D6). We consider a family of functions

defined by a finite set A⊂R
K , parameterized by ᾱ∈A, and

used in both a point-wise maximum objective and a point-wise

maximum constraint. We then define,

V̄ (x) = max
ᾱ∈A

ᾱ⊺φ(x) , ∀x∈X , (7a)

and assume that A has been selected such that V̄ ≤V ∗ for

all x∈X . Additionally, we introduce fpwm : RK → R as

the point-wise maximum objective function when adding an

additional function α⊺φ(x)∈F̂(X) to the function V̄ , i.e.,

fpwm (α) =
1

N

N∑

i=1

max
{
α⊺φ(zi), V̄ (zi)

}
, (8)

where zi are the points selected to overcome difficulty (D2).

The auxiliary problem for maximizing fpwm in the presence

of V̄ is,

max
α∈RK

fpwm (α) (9a)

s.t. α⊺φ(x) ≤
(
TuV̄

)
(x, u) , ∀x∈X , u∈U . (9b)

With V̄ as fixed parameters in (9) the constraint is convex

in the decision variable α, thus overcoming difficulty (D5).

Moreover, if V̄ satisfies the Bellman inequality, then (9b) im-

plies that max
{
α⊺φ, V̄

}
also satisfies the Bellman inequality.

The steps to show convexity of constraint (9b), first presented

in [27], are provided in Appendix A for completeness. In

Section III-D we present the proposed algorithm for iteratively

adding elements to A in a greedy fashion, where the difference

compared to [27] is the choice of objective weighting. To

simplify the presentation, we introduce the notation,

α ∈ S(A) ⊆ R
K ⇒ α satisfies (9b) , (10)

to represent the convex sufficient condition for the Bell-

man inequality constraint (9b). The algorithm we propose is

applicable for the convex sufficient conditions discussed in

Section III-A for overcoming difficulty (D4). Methods that use

sampling to address the infinite number of constraints in (9b),

for example [38], [39], [41], [42], are not applicable because

they do not guarantee that (9b) is satisfied.

Despite the convexified constraint, (9) is still a non-convex

problem due to (D6). In general, problem (9) will have

multiple distinct local maxima and stationary points. The

convexity of the objective means that given an element of

the sub-differential, constructed at a particular point in the

decision variable space α, it parameterizes a hyperplane that

is a point-wise lower-bound on the objective function. Thus we

propose to iteratively maximize along sub-gradient directions

to overcome difficulty (D6), and in Section III-C we introduce

the algorithm and its convergence properties.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TAC.2021.3050440

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

C. First-order method for the point-wise maximum objective

We propose Algorithm 1 to improve fpwm from a given fea-

sible initial condition α(0) using only first-order information

of the objective function. The objective fpwm is in general

non-smooth as it is a maximum of functions, thus in line

4 we use the upper sub-differential for selecting gradient

ascent directions, denoted as ∂+fpwm and defined in Appendix

B-A; an upper sub-differential is considered because (9) is a

maximization problem. Given a non-zero element from the

upper sub-differential, i.e., an upper sub-gradient, in line 8

we update the decision variable by maximizing along the sub-

gradient direction within the feasible region. The algorithm

terminates when the change in objective value between two

subsequent iterations is less than a pre-specified tolerance.

To compute an element from the upper sub-differential of

fpwm, to be used in line 4 of Algorithm 1, we introduce the

following assumption on the basis functions.

Assumption 3.1: The basis functions in the set {φk}
K
k=1 are

finite for all x∈X and include the constant function.

Without loss of generality we take φ1(x) = 1 for all x∈X .

The finite part of Assumption 3.1 is required to ensure that the

objective function (9a), fpwm(α), is a proper function in the

sense required for the necessary optimality condition used for

Theorem 3.3, i.e., that fpwm(α)>−∞ for at least one α∈RK ,

and fpwm(α)<+∞ for all α∈RK . For a general choice of

basis functions φk it is difficult to characterize the upper sub-

differential set at non-smooth points. Instead, we work with

a particular element from the upper sub-differential of fpwm

that is readily computable at α under Assumption 3.1,

∂+fpwm (α) ∋
1

N

N∑

i=1

{

φ(zi) ifα⊺φ(zi) ≥ V̄ (zi)

0 ifα⊺φ(zi) < V̄ (zi)
, (11)

where the term inside the sum is an element from the upper

sub-differential of max
{
α⊺φ(x), V̄ (x)

}
. Given the element

d̄ ∈ ∂+fpwm (ᾱ) computed as per (11) at a point ᾱ∈RK , the

hyperplane (α− ᾱ)
⊺
d̄+ f (ᾱ) is a supporting hyperplane of

the convex function fpwm. However, we note that for maxi-

mization of a convex function not all supporting hyperplanes

are in the upper sub-differential. In the proof of Theorem 3.3

we show that (11) is indeed an element of the upper sub-

differential.

Algorithm 1 can be seen as a method that iteratively adjusts

the objective of line 8 along sub-gradient directions of prob-

lem (9). To ensure that an element from the argmax can always

be computed in line 8, we introduce the following assumption

on the choice of basis functions and inner approximation set.

Assumption 3.2: The basis function set {φk}
K
k=1, Bellman

inequality inner approximation set S(A), and problem data

are such that the following optimization problem,

max
α∈RK

{α⊺φ(zi) ; α ∈ S(A) } (12)

attains its maximum for all {zi}
N
i=1.

Intuitively speaking Assumption 3.2 ensures a finite α(k+1)

for any d(k) because the objectives of (12) and Algorithm 1

line 8 are linear in α, and d(k) is a linear combination of the

φ(zi) vectors. Thus each solution of (12) defines a supporting

hyperplane for the constraint set α ∈ S(A), and this is used in

the proof of Theorem 3.3 to show that a relaxation of line 8

attains its maximum and that this implies the attainment of

line 8. This assumption is not overly restrictive as it can

be ensured for any general problem instance by placing an

upper bound on a norm of α, see [43] for example. For a

particular problem instance the assumption can be verified by,

for example, showing the existence of a strictly feasible point

in the dual of (12) [44, Theorem 3.1] [45, Corollary 30.5.2].

Theorem 3.3: Under Assumptions 3.1 and 3.2, for any initial

condition α(0)∈S(A) and any ǫ>0, Algorithm 1 generates

a non-decreasing sequence fpwm

(
α(k)

)
and terminates af-

ter a finite number of iterations. With ǫ=0, the sequence

fpwm

(
α(k)

)
, converges to a finite value, and the sequences

α(k), d(k), satisfy the following necessary optimality condition

for maxα∈RK {fpwm(α); α∈S(A)} in the limit,

lim
k→∞

(

max
α∈S(A)

(

α− α(k)
)⊺

d(k)
)

= 0 . (13)

Proof: see Appendix B-D.

Theorem 3.3 guarantees that if the initial condition α(0)

strictly improves on fpwm(0), then fpwm(α
(k)) returned also

strictly improves on fpwm(0). The convergence in finite itera-

tions ensures that the algorithm is practical to implement, and

the limiting behaviour suggests that the α(k) returned could be

close to a local maxima. Although Theorem 3.3 provides no

insight into the rate of convergence, the numerical examples in

Section IV demonstrate that significant improvement in fpwm

can be achieved with only a handful of iterations.

Algorithm 1 is a so-called Minorize Maximize algorithm

for maximizing a convex function, and we now contrast with

generic algorithms that exist in the literature for this same

purpose. In the case where fpwm is differentiable, then line 4 of

Algorithm 1 becomes d(k) ← ∇fpwm(α
(k)) and is a special-

case of the so-called convex-concave procedure introduced in

[46], and for which convergence guarantees are given in [47,

Theorem 4]. Algorithms applicable for non-smooth problems

like (9) are presented together with convergence guarantees

in [48, Theorem 3] and [49, Proposition 1]. Applying the

algorithm from [48] or [49] to problem (9) would require using

the lower sub-differential of fpwm in line 4 of Algorithm 1.

For a non-smooth convex function the lower sub-differential

contains the upper sub-differential, thus allowing more flexibil-

ity on line 4 of Algorithm 1. However, [48] and [49] use the

lower sub-differential also for defining necessary optimality

conditions. This means that, compared to Algorithm 1, the

algorithms from [48] and [49] may have additional points in

their convergence set that are not local maxima of the non-

smooth convex maximization problem.

One could consider solving problem (9) directly using

opimization software appropriate for the non-convexity. For

example, objective (9a) can be exactly reformulated by in-

troducing a binary decision variable for the N points in the

summation. For a problem with linear dynamics and quadratic

stage cost, such a reformulation leads to a convex mixed-

integer semi-definite program (MISDP) for which optimization

software exists or can be adapted, for example [50]–[52].

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TAC.2021.3050440

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

Algorithm 1 Find points satisfying necessary optimality con-

ditions of problem (9) with c as a sum of Dirac pulses

1: procedure INNERPROBLEM(α(0) , A, ǫ)

2: k ← 0
3: repeat

4: d(k) ← an element from ∂+fpwm

(
α(k)

)

5: if
(
d(k) = 0

)
then

6: α(k+1) ← α(k)

7: else

8: α(k+1) ← argmax
{
α⊺ d(k) ; α∈S(A)

}

9: end if

10: k ← k + 1
11: until

(

fpwm

(
α(k)

)
− fpwm

(
α(k−1)

))

< ǫ.

12: return α(k)

13: end procedure

This reformulation requires N binary the decision variables,

and our testing indicates that, for the problems considered,

N ≥ O(105) is required to achieve a reasonable approxima-

tion quality. We do not consider such a reformulation in this

work because the computation times are prohibitive.

D. Point-wise Maximum ADP Algorithm

In this section we propose Algorithm 2, which iteratively

updates the value function estimate used in the objective and

constraints of problem (9), i.e., V̄ . At each iteration of lines 7–

11, a candidate approximate value function α(0) is generated

by solving (12) with zi as one of the Dirac pulse locations from

c(·). Algorithm 1 refines this candidate before it is added to the

collection A. This process of generating, refining, and adding

is repeated for all zi, i = 1, . . . , N . The algorithm terminates

when the improvement in V̄ is below some pre-specified

threshold. The following theorem formalises the convergence

properties of Algorithm 2.

Theorem 3.4: For any set A such that V̄ is a point-wise

under-estimator of V ∗, and for any ǫIN, ǫOUT > 0, Algorithm

2 terminates after a finite number of iterations.

Proof: By Theorem 3.3 we have that line 9 of Algorithm

2 terminates after finite iterations for all ǫIN>0. The sequence

f (m) is non-decreasing by definition as a point-wise maximum

of functions and because elements are never removed from

A. The same reasoning as Appendix B-D establishes that

max{ᾱ∈A} ᾱ⊺φ(zi) is bounded above for all {zi}
N
i=1 at all

iterations of Algorithm 2. Hence f (m) is bounded above and is

thus a convergent sequence. Therefore, for all ǫOUT>0 there

exists an m≥1 such that the condition on line 14 triggers.

Convergence of Algorithm 2 is guaranteed even without

the refinement steps of Algorithm 1. However, the numerical

results in Section IV show that convergence tends to be

much slower and that significant improvements are achieved

with only a few iterations of Algorithm 1. For this reason

we refer to the combination of Algorithms 1 and 2 as the

accelerated point-wise maximum approach to ADP, and in the

numerical examples we highlight the acceleration achieved by

the refinement steps of Algorithm 1.

Algorithm 2 Maximise the value of
∫
V̄ dc

1: procedure OUTERPROBLEM

2: Select A , {zi}
N
i=1 according to §III-F

3: Select ǫIN, ǫOUT < 0
4: m← 0
5: repeat

6: f (m) ← 1
N

∑N
i=1 (maxᾱ∈A ᾱ⊺φ(zi))

7: for all {zi}
N
i=1 do

8: α(0) ← argmax {α⊺φ(zi);α∈S(A)}
9: α̂← INNERPROBLEM(α(0),A, ǫIN)

10: A ← α̂ ∪ A
11: end for

12: m← m+ 1

13: f (m) ← 1
N

∑N
i=1 (maxᾱ∈A ᾱ⊺φ(zi))

14: until
(
f (m) − f (m−1)

)
< ǫOUT,

15: return A
16: end procedure

The objective α⊺φ(zi) in line 8 of Algorithm 2 is chosen

so that the α(0) passed to Algorithm 1 has a non-zero sub-

gradient d(0) (line 4 of Algorithm 1). To see this, note that the

sub-gradient in (11) is non-zero if α⊺φ(zi) weakly dominates

V̄ (zi) for at least one i = 1, . . . , N . Thus, by Assumption

3.2, line 8 of Algorithm 2 computes an α(0) that weakly

dominates V̄ at the chosen point zi if such a solution exists

in the feasible set α∈S(A). Different objectives for line 8 of

Algorithm 2 can be considered and still enjoy the convergence

guarantee of Theorem 3.4. However, this would introduce a

tuning parameter and empirical testing has shown no benefit

when hand-tuning the objective.

E. Comparison with existing methods

As described in Section III-B, the approach for reformu-

lating the Bellman inequality to overcome difficulty (D5) is

inspired by our previous work [27], and in that paper we

provide a comprehensive discussion for how it relates to [20],

[26]. In [25] the authors propose the so-called min-max ADP

policy, which, for a given state measurement x, is stated as,

argmin
u∈U

{

sup
α∈RK

l(x, u) + γ E [α⊺φ(g(x, u, ξ))]

}

, (14)

subject to the constraint on α that α⊺φ satisfies the iterated

Bellman inequality, i.e., α⊺φ(x) ≤ T Mα⊺φ(x) for all x∈X ,

with M ∈ N specifying the number of Bellman inequality

iterations. Although this policy encodes a supremum over all

approximate value functions that satisfy the iterated Bellman

inequality, the policy uses only a single approximate value

function, α⊺φ, for each x and u. In contrast, the approach we

propose uses a point-wise maximum of multiple approximate

value functions, i.e., the term α⊺φ(g(x, u, ξ)) in (14) would

be replaced by, max{α⊺φ(g(x, u, ξ)), V̄ (g(x, u, ξ))}. We do

not pursue this further because the remaining approximation

steps from [25] use the fact that (14) is affine in α, whereas

the point-wise maximum is generally not affine in α.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TAC.2021.3050440

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

F. Discussion and extensions

As stated in Section II-B, the infinite dimensional optimiza-

tion problems (4) and (5) compute the optimal value function,

V ∗, for any choice of the measure ν that assigns positive mass

to all open subsets of the state space. If we fix a specific

such ν, this defines
∫
V ∗dν as the optimal value of the SOC

problem. For any choice of the finitely supported distribution

c, and hence the samples {zi}
N
i=1, the family of approximate

value functions computed by Algorithm 2 provides the lower

bound
∫
V̄ dν on the optimal value. Thus the obvious choice

for c is to draw samples from ν, however, sampling c in

different ways may tighten the lower bound
∫
V̄ dν, and for

this reason c is the state-relevance weighting distribution of

our proposed method.

We refer to our propose method as accelerated because the

designer needs only to choose the distribution c, and from that

the objective function used at every iteration of Algorithm 1

line 8 is a sub-gradient and at every iteration of Algorithm 2

line 8 is a single sample on which c is supported. This is in

contrast to the method from [27] where the designer is required

to choose a separate objective function for the computation

of every approximate value function added to the point-wise

maximum family. We note that a linear objective function is

used at every iteration of Algorithm 1, and that the method

from [27] allows any linear objective function to be used at

each iteration. Thus the algorithms we propose in this paper

can be seen as a special case of the method from [27], tailored

towards maximizing the point-wise maximum objective value.

That this specific choice of objective function accelerates the

computation of a tighter lower bound on the optimal value

likely requires that fpwm is a sufficiently good approximation

of
∫
max{α⊺φ, V̄ }dν.

If the goal is to optimize the on-line performance of the

greedy policy, it is again likely that different samples for

c lead to differing on-line performance. Motivated by the

performance bounds provided in [19], a reasonable choice is

to place Algorithm 2 inside another iteration that updates c

as samples from the discounted occupancy measure for the

current greedy policy, computed empirically by simulating the

system evolution using Monte Carlo sampling.

For real-time applications where the greedy policy must be

computed very fast, it is necessary that the cardinality of A is

small, and perhaps even a singleton. For examples with linear

dynamics, quadratic stage costs, polytopic spaces, and using

the space of quadratics for F̂(X), then the greedy policy is

a Quadratically Constrained Quadratic Program (QCQP), with

the number of quadratic constraints equal to the cardinality of

A. In such examples, a low cardinality of A has clear benefits

from an on-line compution perspective. In these cases it is

beneficial to run Algorithm 2 twice. First, Algorithm 2 is run

for as long as practical to achieve a good under-estimate of V ∗,

with a simple initialization, for example A={0}. Second, an

adaptation of Algorithm 2 is used for updating two families

of fixed functions, one family for the point-wise maximum

objective fpwm, denoted Aobj, and a separate family for the

sufficient reformulation of the point-wise constraint, denoted

Acon and hence the constraint is S(Acon). In this adaptation, a

simple initialization is used for Aobj, for example Aobj={0}.
By contrast Acon is initialised with the result from the first

run of Algorithm 2, which could be a family of hundreds or

thousands of functions. This adaptation adds the new element

α̂ to both families, i.e., line 10 of Algorithm 2 becomes

Aobj ← α̂ ∪ Aobj, Acon ← α̂ ∪ Acon. The adaptation of Al-

gorithm 2 thus runs until the cardinality of Aobj reaches that

desired for the online policy. The benefit of this adaptation of

is that the large family of fixed functions Acon used in the

constraint can allow for Aobj to be a tighter approximation

of V ∗. This can in turn improve the online performance of

the policy, as indicated by the performance bounds derived in

[19], [35, Ch. 5], [53].

The approximate value function computed by Algorithm 2

can be used off-line to certify the empirical performance of

alternative policies that do not use the approximate value

function. In this case Algorithm 2 is run for as long as

practical, then the chosen policy is simulated from a particular

initial state, x̂, for a time horizon such that γt has decayed

sufficiently. The approximate value function evaluated at the

initial state is a lower bound on V ∗(x̂) and thus provides a

bound on the sub-optimality of the policy, and hence indicates

the potential benefit of considering further alternatives.

In [27] the value function decision variable was also in-

cluded in the right-hand-side of constraint (9b), i.e.,

α⊺φ(x) ≤
(
Tu
(
max

{
α⊺φ(x), V̄ (x)

}))
(x, u) , (15)

for all x ∈ X and u ∈ U . This results in a bi-linear term in

the constraint, and in that work the authors suggest gridding

the multiplier of the bi-linear term. We do not consider this

extension in the numerical examples because it adds significant

computation time and empirically it provides little or no

benefit for the examples considered.

Algorithm 1 can be extended to fit multiple new lower

bounding functions at the same time. To exemplify, consider

the case of adding two new lower bounding functions. The

non-convex optimization problem then becomes,

max
α,β∈RK

1

N

N∑

i=1

max
{
α⊺φ(zi), β

⊺φ(zi), V̄ (zi)
}

(16a)

s.t. α∈S(A) , β∈S(A) . (16b)

We construct an element from the upper subdifferential in a

similar fashion,

∂+
(
max

{
α⊺φ(x), β⊺φ(x), V̄ (x)

})

=







[

φ(x)⊺, 0
]⊺

ifα⊺φ(x) ≥ max
{
β⊺φ(x), V̄ (x)

}

[

0, φ(x)⊺
]⊺

ifβ⊺φ(x) > max
{
α⊺φ(x), V̄ (x)

}

[

0, 0
]⊺

if V̄ (x) > max {α⊺φ(x), β⊺φ(x)}

.
(17)

As the constraints are separable, once the subdifferential

element is computed, then Algorithm 1 line 8 can be solved

in parallel for α and β, differing only in the objective vector.

IV. NUMERICAL EXAMPLES

In the numerical examples we consider problems with linear

dynamics, quadratic stage costs, hyper-cube constraints on the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TAC.2021.3050440

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

input space, and use quadratics for the restricted function space

F̂(X). In Appendix C we provide the definition of F̂(X),
formulate line 8 of Algorithm 1 so that it can be passed

to a standard solver, and verify that Assumption 3.1 holds.

Assumption 3.2 was observed to hold empirically, in that the

solver returned a finite, optimal solution at each iteration.

A. 10 Dimensional Linear-Quadratic Problems

We consider an input constrained linear-quadratic system,

with dimension nx = 10, nu = 3, and nξ = 10. The system

dynamics take the form xt+1 = Axt +Buut+Bξξt, where

A, Bu, and Bξ are matrices of compatible size, and the

quadratic stage cost is l(x, u)=x⊺Inx
x+ 0.5u⊺Inu

u, where

In denotes an identity matrix of size n, and we use discount

factor γ=0.99. The exogenous disturbance is distributed as

ξt∼N (0, 0.01Inξ
) with Bξ as an identity matrix. The initial

state is normally distributed as x0 ∼N (0, 9Inx
). The A and

Bu matrices are randomly generated, with the A matrix scaled

to be marginally stable, i.e., a spectral radius equal to 1. The

lower and upper bounds for the input space U are chosen to

make the constraints relevant for the whole horizon, while the

state space X is unconstrained.

For this linear-quadratic setting, with polytopic input con-

straints, it is known that the optimal value function is convex

and piece-wise quadratic [54, Theorem 6.7], hence we further

restrict F̂(X) to convex quadratics. We initialise A with the

approach described in [19], i.e., we choose ρ as the initial state

distribution and solve of the following,

argmax
α∈RK

{∫

X

α⊺φ(x) ρ(dx) ; α ∈ S({α})

}

. (18)

In this setting (18) is a convex semi-definite program, the

objective requires the first and second moments of ρ, and the

constraint is reformulated as a linear matrix inequality with

respect to α, see [20, §6]. The solution of (18) represents the

lower bound proposed in [19].

To demonstrate the benefits of our proposed algorithms, we

compare the following variants:

1) Algorithm 2 exactly as stated, which we refer to as

Algorithm 2 with refinement.

2) Algorithm 2 with line 9 replaced by α̂← α(0), which

we refer to as Algorithm 2 without refinement.

We use this terminology with and without refinement because

the gradient steps of Algorithm 1, as executed by line 9 of

Algorithm 2, essentially refine the initial guess α(0) to an

updated α̂ that has that same or greater value of the point-

wise maximum objective, fpwm, at that iteration. We choose

c as N=106 samples from the initial state distribution, i.e.,

from N (0, 9Inx
), and we run the two variants described until

A has 105 members. As N is greater than 105, this means

that Algorithm 2 line 12 and after is never executed. We also

tested with N < 105, but found that the sub-optimality bounds

were significantly improved using a large N . We did not add

more than 105 members to A because the computation time

became prohibitive.

Figure 1 (a) shows the lower bound achieved by running

Algorithm 2 with (red) and without (blue) refinement. The

100 101 102 103 104

400

500

600
(a)

1 N

N
∑ i
=
1

(

m
a
x

ᾱ
∈
A

ᾱ
⊺
φ
(z

i
)

)

100 101 102 103 104
10−2

101

104 (b)

Cardinality of A

T
im

e
[s

]

Algorithm 2 with refinement

Algorithm 2 without refinement

Fig. 1. Results for the two variants described in Section IV-A, i.e., Algo-
rithm 2 with and without refinement. (a) the approximate value function V̄
integrated with respect to the N samples. (b) the cumulative computation
time, in seconds, for solving the optimization problems on Algorithm 2 line 8
and Algorithm 1 line 8, as performed on a 3.00Ghz Xeon processor.

key feature of the result is that, although Algorithm 2 without

refinement is guaranteed to converge, the cardinality of A
required to reach a reasonable lower bound is significant.

Algorithm 2 with refinement, on the other hand, achieves

a significantly better lower bound with over an order of

magnitude lower cardinality of A. The termination criteria

on Algorithm 1 line 11 is selected as a relative tolerance of

0.1%. For the result in Figure 1 we observe a maximum of

4 solves of Algorithm 1 line 8 until the termination criteria

triggers, i.e., the number of refinement steps performed. For

the final 9000 members added to A, only 1 or 0 solves of

Algorithm 1 line 8 is required for convergence. Hence the

computation times shown in Figure 1 (b) differ only slightly.

In summary, this result suggests that, compared to Al-

gorithm 2 without refinement, Algorithm 2 with refinement

provides an improved lower-bounding approximate value func-

tion with a moderate increase in computation time. Hence

for the remainder of the numerical results we only consider

Algorithm 2 with refinement.

B. Sub-optimality bounds

Comparing the lower bounds computed by various methods

is meaningful if it significantly tightens the sub-optimality

bound on the online performance for a particular policy. It

requires an impractical amount of computation to simulate

a policy from all N = 106 samples for sufficiently many

disturbance realisations. Instead, we simulate a clipped LQR

policy starting from 800 samples from c, each simulated for

103 time steps, and 103 extractions from the disturbance

distribution used to evaluate the expectation. In Figure 2 we

plot the percentage sub-optimality as certified by Algorithm 2

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TAC.2021.3050440

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

200 400 600 800
0

10

20

Samples from the state space

P
er

ce
n
ta

g
e

su
b
-o

p
ti

m
al

it
y

Fig. 2. Percentage sub-optimality bound of a clipped LQR policy for 800
randomly selected initial conditions, as certified by the lower-bound computed
by Algorithm 2 with refinement. Averaged over the 800 initial conditions, the
policy is certified to within 7.0% of the optimal.

TABLE I
COMPARING VARIOUS METHODS FOR CERTIFYING SUB-OPTIMALITY

Method used for compute the
approximate value function

|A|
Average % Time

sub-optimality [seconds]

Algorithm 2 with refinement
104 7.0 8338
100 15.0 4.5

Hand-tuned sequence of c(x) [27] 100 24.4 2.3
Iterated Bellman inequality [26] 100 53.7 2.8
Single Bellman inequality [19] 1 58.7 0.04

Note: column 3 is the bound on the percentage sub-optimality of the clipped
LQR policy as certified by the respective method. Column 4 is the time

required to compute A, as performed on a 3.00Ghz Xeon processor.

with refinement for each of the initial conditions. As the

initial conditions are drawn randomly, we make the figure

more readable by ordering the samples such that the line

is monotonically increasing. Averaging over the 800 initial

condition samples, Algorithm 2 with refinement certifies this

policy to be within 7.0% of the optimal. The figure also

shows that the online performance of the clipped LQR policy

is within 10% of the optimal for the majority of the initial

conditions sampled, and up to to 300% sub-optimal (not shown

for clarity) in the worst cases. This information could be used

by the practitioner to guide an improved policy design by, for

example, clustering the samples with similar sub-optimality

and looking for patterns in the data.

C. Comparison with existing methods

We describe four alternative methods to compute a lower-

bounding approximate value function, and in Table I we

compare the average sub-optimality bound over the same

800 samples from Section IV-B. The result described in Sec-

tion IV-B is shown as the first row of Table I. To demonstrate

the benefit of adding more members to A using our proposed

method, we run Algorithm 2 until A has only 100 members.

As the computation of the members of A is performed offline,

the extra time required to compute |A|=104 versus |A|=100
members is justified considering the significant improvement

in the sub-optimality bound, 7.0% versus 15.0%.

As a point of comparison from our previous work, we use

the hand-tuning method suggested [27], labelled as Hand-

tuned sequence of c(x) in Table I. To implement this method

we run Algorithm 2 without refinement and make the modifi-

cation that on line 8 we manually select a different objective

at each iteration. We performed this for a range of options for

the sequence of objectives and for the number of members

added to A, and the result shown in Table I is for the option

1 2 3 4 5 6 7 8 9 10 11 12

−40

−20

0

20

System number

P
er

ce
n
ta

g
e

d
if

fe
re

n
ce

Algorithm 2 with refinement, |A| = 104

Algorithm 2 with refinement, |A| = 100

Hand-tuned sequence of c(x) [27], |A| = 100

Iterated Bellman inequality [26], |A| = 100

Fig. 3. Comparing the lower bound for randomly generated systems.
Systems 1-6 have a discount factor γ=0.99, while systems 7-12 are respec-
tively identical to systems 1-6 except that the discount factor is γ=0.95.
For each of the four methods shown, the lower bound is computed as
1
N

∑
N

i=1 (maxᾱ∈A ᾱ⊺φ(zi)), and the percentage difference is computed
with respect to the best performing existing method, which is in all cases.

achieving the tightest bound.

As a point of comparison from existing literature, we use the

iterated Bellman inequality method proposed in [26], which

computes multiple lower-bounding functions from the solution

of one optimization problem. We use 100 Bellman inequality

iterations and construct an approximate value function that

is the point-wise maximum of the 100 lower-bounding func-

tions computed, i.e., |A| = 100. We note that more Bellman

inequality iterations did not improve the result, and the iterated

Bellman inequality methods proposed in [20], [25] also did not

compute a tighter approximation. When using only 1 Bellman

inequality this becomes the method proposed in [19] and is

labelled as Single Bellman inequality. The results in Table I

show that despite the low computation time, the sub-optimality

bound is significantly less tight than our proposed method.

Another possible variant of Algorithm 2 is to perform

multiple iterations of lines 7–11 in parallel, and then the

step A ← α̂ ∪ A (line 10) is performed once all parallel

computations are complete. Our testing indicates that the

tightest lower bound is achieved by Algorithm 2 as stated,

i.e., new members are computed and added “one at a time”.

The same trends were observed across different random

realization of the A and Bu matrices and different discount

factors, as shown in Figure 3. This figure shows that the hand-

tuning method of [27] consistently outperformed the iterated

Bellman inequality method of [26]. When running Algorithm 2

until |A| = 104, the improvement in lower bound ranges from

2.8% to 28.2% on the systems considered. We also considered

examples with a discount factor closer to 1, not shown in the

interest of space, observing that with γ = 0.9999 the solver

returned a finite, optimal solution at each iteration.

In summary, the comparisons in this section highlight that

Algorithm 2 with refinement is an acceleration of the point-

wise maximum approach proposed in [27] is the sense that

lower state-relevance weighting selection effort is required,

and it computes tighter lower bounds as the expense of an

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TAC.2021.3050440

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

acceptable increase in computation time.

D. Non-convex example

For linear quadratic examples, the optimization problems

of Algorithm 1 line 8 and Algorithm 2 line 8 remain convex

even when the stage cost or members of A are non-convex, see

Appendix C. We highlight that the approach can accommodate

a non-convex stage cost by considering a collision avoid ex-

ample where a non-convex quadratic encodes the objective of

avoiding a moving obstacle. The model represents two point-

mass objects moving on a 2-dimensional plane, with each

Cartesian coordinate modelled by double integrator dynamics.

One sub-system is controlled by the two control actions that

represent a driving force in each of the coordinate direc-

tions. The obstacle sub-system is uncontrolled and maintains

constant velocity, with the two disturbances representing an

exogenous driving force in each of the coordinate directions.

The dynamics for a single coordinate of a single sub-system

are,
[
x(u),t+1

ẋ(u),t+1

]

=

[
1 0.05
0 1

]

︸ ︷︷ ︸

A0

[
x(u),t

ẋ(u),t

]

+

[
0.00125
0.05

]

︸ ︷︷ ︸

B0

v , (19)

where the subscript (u) distinguishes these states from those

that follow and v is a scalar input. Letting the subscript (f)
indicate the state, action, and disturbance for the full system,

we order the the full state vector as,

x(f) =
[
x(u), ẋ(u), y(u), ẏ(u), x(ξ), ẋ(ξ), y(ξ), ẏ(ξ)

]
, (20)

where x(·), ẋ(·) and y(·), ẏ(·) represent the position and

velocity in each coordinate direction of the horizontal plane,

subscript (u) indicates the controlled sub-system driven by

actions ut ∈ R
2, and subscript (ξ) indicates the obstacle sub-

system driven by disturbances ξt ∈ R
2. The dynamics of the

combined system are thus,

x(f),t+1 =

[
A1 0
0 A1

]

x(f),t +

[
B1

0

]

ut +

[
0
B1

]

ξt, (21)

where A1 = diag(A0, A0) and B1 = diag(B0, B0). The stage

cost includes a convex component for deviations from the

origin,

l1(x(f)) = 0.5
(

x2
(u) + y2(u)

)

+ 0.005
(

x2
(ξ) + y2(ξ)

)

+0.1
(

ẋ2
(u) + ẏ2(u)

)

+ 0.001
(

ẋ2
(ξ) + ẏ2(ξ)

)

,

where a small penalty is applied to the obstacle states to satisfy

the inf-compact assumption on the stage cost [5, Assump-

tion 4.2.1(a)]. The non-convex collision avoidance term is,

l2(x(f)) = −200
((

x(u) − x(ξ)

)2
+
(
y(u) − y(ξ)

)2
)

+ 50,

which gives a penalty of 50 when the locations of the sub-

systems coincide, and drops to zero when the distance between

the sub-system locations is 0.5 meters. Thus the full loss

function is,

l(x(f), u) = max
{
l1(x(f)), l2(x(f))

}
+ 0.05u⊺u, (22)

and the discount factor is chosen as γ = 0.97. Each element of

ut is constrained to [−1, 1], and the disturbance distribution is

-3

-2

-1

0

1

2

3

0 2−2

0

2

−2

x(u)

y
(u

)

(a)

-3

-2

-1

0

1

2

3

0 2−2

x(u)

(b)

Fig. 4. Slices of: (a) the loss function, and (b) the approximate value function
as a point-wise maximum of 2000 quadratics, for the collision avoidance
example of Section IV-D. The red dot and arrow show the position and velocity
of the obstacle to be avoided.

ξt ∼ N (0, 0.42I2), chosen so that the exogenous forces acting

on the obstacle are somewhat similar to the maximum force

possible on the controlled sub-system.

We use the space of quadratics as F̂(X), initialize A
with the solution of problem (18) with ρ ∼ N (0, 2I8), we

draw N = 106 samples from the same distribution and run

Algorithm 2 with refinement until |A| = 2000. To visualize

the stage cost and approximate value function, Figures 4(a)

and 4(b) respectively, we show slices where the location of

the controlled sub-system varies, i.e., x(u) and y(u), and all

other states are fixed to: zero for the velocity of the controlled

system, (x(ξ), y(ξ))=(1.5, 1) for the obstacle location, and the

red arrow indicating the velocity of the obstable, i.e., the head

of the arrow is how far the obstacle would move in 20 time

steps if zero exogenous force is applied. Figure 4 (a) shows

that the stage cost has a strongly peaked concave quadratic

centered at the location of the obstacle. Although the optimal

value function is not computable due to the high dimension

of the system, Figure 4 (b) shows that the approximate value

function encodes features that we intuitively expect. Mainly

that the region of high cost due to an unavoidable collision

extends in the direction of the velocity of the obstacle.

This example highlights that the method proposed in this

paper offers an approach with minimal tuning effort for

approximating the value function of SOC problems with non-

convex stage costs of the form (22).

V. CONCLUSION

We proposed an algorithm that computes a family of lower

bounding approximate value functions in an iterative fashion,

with the choice of initial state distribution as the only param-

eter to be selected by the designer. We motivate our algorithm

by considering the non-convex objective of maximizing the

point-wise maximum of lower bounding value functions, and

use sub-gradient information to find (potentially) sub-optimal

solutions. Testing our algorithm on linear-quadratic examples,

we demonstrated a significant tightening of the lower bound

compared to existing methods, achieved with a modest or

negligible increase in the computation time.

As future work, we will investigate adaptations of the

proposed algorithm that are tailored to policy performance.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TAC.2021.3050440

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

This is a more challenging setting because the computation

restrictions are more stringent for evaluation of a policy.

Moreover, counter-examples can readily be constructed where

an approximate value function that provides a relatively tight

lower bound leads to a greedy policy with relatively poor

online performance.

The concepts in this paper can be adapted to a finite horizon

setting where one computes an approximate value function

at each time step, with each value function represented as

a point-wise maximum of functions. The core idea of ap-

plying gradient ascent to maximize the point-wise maximum

objective can be directly applied. This would allow for time-

varying dynamics and constraints sets, however, we expect

that further developments would be required for the choice of

state-relevance weighting at each time step.

APPENDIX A

REFORMULATION OF POINT-WISE MAXIMUM INEQUALITY

This appendix summarises our previous work [27] in the

context of this paper.

A. Jensen’s inequality and epigraph reformulation

The point-wise maximum constraint (5c) is equivalent to J

separate constraints of the form,

l(x, u) + γ E

[

max
k=1,...,J

Vk (g(x, u, ξ))

]

.

As max(·) is a convex function, by Jensen’s inequality a

sufficient condition for constraint (5c) is,

Vj(x) ≤ l(x, u) + γ max
k=1,...,J

E [Vk (g(x, u, ξ))] ,

∀x∈X , u∈U , j=1, . . . , J .
(23)

An exact epigraph reformulation can now be applied [55,

Theorem 1] with the epigraph variable denoted sV , i.e.,

Vj(x) ≤ l(x, u) + γ s2V , ∀ (x, u, sV) ∈ E , (24)

for j = 1, . . . , J , where the set E is defined as,

E =

{

x, u, sV

∣
∣
∣
∣

x ∈ X , u ∈ U , sV ∈ R,

s2V ≥ E [Vk (g(x, u, ξ))] ∀ k = 1, . . . , J

}

,

We choose to square the epigraph variable sV without loss of

generality because [5, Assumptions 4.2.1(b)] implies that V ∗

is non-negative.

B. S-procedure reformulation

The S-procedure [56], [57] is used to obtain a sufficient

condition for (24). Applying the S-procedure to the relevant

part of E leads to,

Vj(x) ≤ l(x, u) + γ s2V −
J∑

k=1

λk

(
s2V − E [Vk (g(x, u, ξ))]

)
,

∀x∈X , u∈U , sV ∈R, j=1, . . . , J,
(25)

with λk∈R+ as the non-negative decision variables introduced

by the S-procedure. Reformulation (25) still suffers from

difficulty (D5): there will be J bilinear terms of the form

λk E [Vk (g(x, u, ξ))] in each of the J constraints. Note that

the S-procedure, typically stated for polynomial inequalities,

only requires that the functions in (25) are real-valued, which

is ensured by the assumptions stated in Section II-A. Using

the S-procedure for a non-polynomial setting is sometimes

referred to as Lagrangian relaxation [57, Section 1.2.4]. The

following implications summarize the approximation steps,

(5c)
(Jensen)
⇐ (23)

(Epigraph)
⇔ (24)

(S-procedure)
⇐ (25) .

In words, this reformulation is sufficient in the sense that if

a family of functions V1, . . . , VJ satisfies (25) then it also

satisfies (5c) (but not necessarily the other way around). An

equivalent or tighter approximation can be found by allowing

the S-procedure multipliers to depend on the state and input,

i.e., λk : X×U → R+. This would require the introduction of

a restricted function space on (X×U), denoted F̂(X×U), and

defined similar to F̂(X) in (6).

C. Overcoming difficulty (D5) for (9)

The auxiliary problem (9) introduced in Section III-B has

a form similar to (23) except that the only constraint included

is the one with the decision variable on the left side of the

inequality. Letting V1 in (23) correspond to α⊺φ in (9) and

applying reformulation (25) we get the following sufficient

condition for (9b),

α⊺φ(x) ≤ l(x, u) + γ s2V

−
∑

ᾱ∈A

λᾱ

(
s2V − ᾱ⊺

E [φ(g(x, u, ξ))]
)
,

for all x ∈ X , u ∈ U , sV ∈ R, where the multipliers λᾱ are

additional non-negative decision variable for each element of

A. As the ᾱ are fixed parameters in problem (9), it is clear that

this reformulation is linear in the decision variables α and λᾱ.

When the problem data and basis functions are polynomial,

the infinite constraints are reformulated in the usual way, see

[20, Appendix A] for example, the result is a single Linear

Matrix Inequality (LMI) constraint.

APPENDIX B

PROPERTIES OF THE INNER PROBLEM OF SECTION III-C

All the material in this appendix is formulated for a min-

imization optimization objective, chosen to make the results

readily comparable with existing optimization literature. Prob-

lem (9) and Algorithm 1 are readily converted to minimization

problems by taking the negative of the objective.

A. Differentiability definitions

We provide for completeness the definitions of the regular

and general sub-differential as taken from [58, §7.D, §8.A].

The definition of the sub-differential commonly used for

convex optimization problems is special case of the regular

sub-differential defined below [58, Proposition 8.12], required

here because (9a) is non-convex when cast as a minimization

problem. We require additionally the general sub-differential

definition because (9a) is non-smooth.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TAC.2021.3050440

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12

Given a function f : Rn → R ∪ {−∞,∞}, a vector d∈Rn

is a regular lower subgradient of f at the point x∈Rn if the

following one-sided limit condition holds,

lim inf
z→x, z 6=x

f(z)− f(x)− (z − x)
⊺
d

‖z − x‖
≥ 0 .

The regular lower subdifferential of f at x, denoted ∂̂f(x) is

the set of regular lower subgradients of f at x. A vector d∈Rn

is a general lower subgradient of f at the point x if there exists

sequences x(i) f
→x and d(i)→d with d(i)∈ ∂̂f(x(i)), where

the notation
f
→ stands for f -attentive, defined as,

x(i) f
→x ⇔ x(i)→x with f(x(i))→f(x) .

The general lower subdifferential of f at x, denoted ∂f(x)
is the set of general lower subgradients of f at x. At a

point x where f is finite, the set ∂f(x) and ∂̂f(x) are

closed, with ∂̂f(x) convex and ∂̂f(x)⊆∂f(x). The function

f is subdifferentially regular at a point x if ∂̂f(x)=∂f(x).
These definitions and properties correspond to [58, Definition

8.3, Theorem 8.6, Definition 7.25]. Note that if f is differ-

entiable at x, then ∂̂f(x)={∇f(x)}, i.e., a singleton, and

if additionally f is smooth on a neighbourhood of x, then

∂f(x)={∇f(x)} also. For the standard definitions of the

gradient ∇f(x) of a function f at a differentiable point x,

the reader is referred to [59, §B.5]. The regular and general

upper subdifferential are computed as −∂̂ (−f) and −∂ (−f),
and denoted ∂̂+f and ∂+f , respectively.

B. Necessary condition for local optimality

A function f : Rn → R is proper, for a minimisation objec-

tive, if f(x)<+∞ for at least one x∈Rn, and f(x)>−∞ for

all x∈Rn. Consider the minimization of a proper, lower-semi-

continuous function f : Rn → R over a closed set C ⊆ R
n,

i.e., minx∈C f(x). As per [58, Theorem 8.15], a necessary

condition for the local optimality of a point x ∈ C is:

0 ∈ ∂f(x) + NC(x) , (26)

where NC is the general normal cone of the set C at the point

x, see [58, Definition 6.3]. If in addition C is a convex set,

then this condition is equivalent to the existence of a d∈∂f(x)
satisfying

(z − x)
⊺
d ≥ 0 , ∀ z ∈ C . (27)

see [58, Theorem 6.9]. Note further that if f is convex

then these conditions are necessary and sufficient for x to

be globally optimal. A stationary point of the optimisation

problem minx∈C f(x) is one satisfying 0∈∂ (f(x) + δC(x)),
where δC is the indicator function of the set C. All stationary

points satisfy (26) as,

∂ (f(x) + δC(x)) ⊆ ∂f(x) + ∂δC(x) = ∂f(x) +NC(x) .

If C is convex, then the inclusion becomes equality at a point

x where f is sub-differentially regular, [58, Corollary 10.9].

C. Proof of convergence for a more general problem statement

To streamline the proof of Theorem 3.3, we consider here a

more a general problem statement, and in Appendix B-D we

show that problem (9) and Algorithm 1 has this form. Given a

proper, lower-semi-continuous, concave function f : Rn → R

and a convex constraint set C ⊆ R
n such that f is bounded

below on C, we consider the optimization problem,

min f(x), s.t. x ∈ C . (28)

We show that Algorithm 3 finds points that satisfy (27); note

that in line 4 we use the lower sub-differential because (28)

is a minimization problem.

Algorithm 3 Find points satisfying necessary optimality con-

ditions of problem (28)

1: procedure MINIMIZECONCAVEFUNCTION(x(0) , ǫ)

2: k ← 0
3: repeat

4: d(k) ← an element from ∂f
(
x(k)

)

5: if
(
d(k) = 0

)
then

6: x(k+1) ← x(k)

7: else

8: x(k+1) ← x∗ ∈ argmin
{
x⊺ d(k), s.t.x ∈ C

}

9: end if

10: k ← k + 1
11: until

(

f
(
x(k)

)
− f

(
x(k−1)

))

< ǫ,

12: return x(k)

13: end procedure

Theorem B.1: For any initial condition x(0)∈C and any

ǫ>0, Algorithm 3 generates a non-decreasing sequence

f
(
x(k)

)
and terminates after a finite number of iterations.

With ǫ=0, and assuming that the argmin on line 8 is always

attained, the sequence f
(
x(k)

)
, converges to a finite value, and

the sequences x(k), d(k), satisfy condition (27) in the following

sense,

lim
k→∞

(

min
x∈C

(

x− x(k)
)⊺

d(k)
)

= 0 .

Proof of Theorem B.1:

The sub-differential gives majorizing functions

We first show that given any element of the general lower

subdifferential, d(k)∈∂f
(
x(k)

)
, the surrogate function,

sk (x) =
(

x− x(k)
)⊺

d(k) + f
(

x(k)
)

, (29)

is a point-wise upper-bound of the concave function f . This

is trivial for a differentiable point x(k) as we have that the

gradient is the only element of both the general lower and

upper subdifferential of f at x(k) and hence sk (x) is a global

upper-bound of f . Pathological functions where the gradient

is not an element of general subdifferential at a differentiable

point are excluded by virtue of the f being concave.

At a non-differentiable point x(k), as f is concave, the

regular lower subdifferential is empty at this point. Thus the

general lower subdifferential is defined by the limits along

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TAC.2021.3050440

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

13

all sequences of differentiable points leading to x(k). As the

regular lower and upper subdifferential are equal at all points

along any such sequence we have that,

∂f(x(k)) ⊂ −∂ (−f) (x(k)) .

Thus is remains to show that ∂ (−f) (x(k)) contains only

supporting hyperplanes of the hypograph of f at x(k). As −f
is convex, we have by [58, Proposition 8.12] that the general

lower subdifferential of −f is,

∂
(

−f(x(k))
)

= ∂̂
(

−f(x(k))
)

=
{

−d ∈ R
n
∣
∣
∣f(x) ≤ f(x(k)) +

(

x− x(k)
)⊺

d, ∀x∈X
}

,

Thus we have shown that the surrogate function sk (x) is a

point-wise upper-bound of the concave function f at any point

x(k) that it is constructed.

Termination in finite iterations

By definition, the minimization problem on line 8 returns

x(k+1) satisfying the optimality condition,
(

x− x(k+1)
)⊺

d(k) ≥ 0 , ∀x ∈ C . (30)

Combining the properties of the surrogate function sk with the

definition of line 8 as a minimization problem, we have that,

f
(

x(k)
)

= sk

(

x(k)
)

≥ sk

(

x(k+1)
)

≥ f
(

x(k+1)
)

, (31)

with x(k), x(k+1)∈C ensured by the constraints of line 8. The

equality is by (29), the first inequality is by definition of the

minimization on line 8, and the final inequality is by the fact

that the surrogate is a point-wise upper-bound.

By the assumption that f is bounded below on C, the

sequences f
(
x(k)

)
and sk

(
x(k)

)
, for k≥0, are convergent,

hence Cauchy. Therefore, for all ǫ>0 there must exist a k≥1
such that the condition on line 11 triggers.

Convergence to necessary conditions for optimality

For ǫ=0 we have from the argument above that the se-

quences f
(
x(k)

)
and sk

(
x(k)

)
converge to a finite value. To

show that the sequence x(k) satisfies condition (27) in the

limit, we need to show that,

lim
k→∞

(

sup
d∈∂f(x(k))

(

min
x∈C

(

x− x(k)
)⊺

d

))

≥ 0 .

To show this it is sufficient to show that the sequence x(k)

converges to an optimal point of minx∈C sk(x), i.e., we show

that sequences x(k), d(k), satisfy,

lim
k→∞

(

min
x∈C

(

x− x(k)
)⊺

d(k)
)

= 0 . (32)

The min here is attained by the assumption in the theorem

statement that line 8 of Algorithm 3 attains at every iteration.

To show that the limit in (32) exists and equals zero, we first

consider for the sake of contradiction that the sequences x(k),

d(k) satisfy,

lim inf
k→∞

(

min
x∈C

(

x− x(k)
)⊺

d(k)
)

= −δ < 0 .

By definition of the lim inf , for every k≥0 there exists a j≥k

for which,

min
x∈C

(

x− x(j)
)⊺

d(j) ≤ −
δ

2
. (33)

By definition of line 8 as a minimization problem we have for

this pair k, j that,

sj+1

(

x(j+1)
) (31)

≤ sj

(

x(j+1)
)

(29)
=
(

x(j+1) − x(j)
)⊺

d(j) + f
(

x(j)
)

(33)

≤ −
δ

2
+ f

(

x(j)
)

(31)

≤ −
δ

2
+ sk

(

x(k)
)

.

Repeating this argument starting from j + 1, we readily

establish that,

lim sup
k→∞

sk

(

x(k)
)

≤ lim sup
N→∞

(

s0

(

x(0)
)

− N
δ

2

)

= −∞ ,

which contradicts the previous conclusion that the sequence

sk
(
x(k)

)
converges to a finite value. Moreover we have that,

min
x∈C

(

x− x(k)
)⊺

d(k) ≤ 0 , for k≥0,

because x(k)∈C, for k≥0. Thus, by contradiction we have

shown that,

0 ≥ lim sup
k→∞

(

min
x∈C

(

x− x(k)
)⊺

d(k)
)

≥ lim inf
k→∞

(

min
x∈C

(

x− x(k)
)⊺

d(k)
)

≥ 0 ,

and hence the limit in (32) exists and equals zero.

Note that if line 5 of Algorithm 3 triggers, then the

subgradient is zero and condition (27) is satisfied. In this case

the x(k) returned is a global maximizer of the concave function

f . Note also that for a positive ǫ, if the condition on line 11

triggers with f
(
x(k)

)
= f

(
x(k−1)

)
, then x(k−1) satisfies (27).

To show this, first note that by (29) and (31) we have,

f
(

x(k−1)
)

(31)
= sk−1

(

x(k)
)

(29)
=
(

x(k) − x(k−1)
)⊺

d(k−1) + f
(

x(k−1)
)

.

From this we substitute x(k)⊺d(k−1) = x(k−1)⊺d(k−1) into the

optimality condition (30) that x(k) satisfies, and we get that

the d(k−1)∈∂f
(
x(k−1)

)
from line 4 of Algorithm 3 satisfies

condition (27) at x(k−1).

D. Proof of convergence for Algorithm 1

Proof of Theorem 3.3:

We show that the objective function fpwm and the convex

constraint α∈S(A) satisfy the assumptions of Theorem B.1.

Casting (9) as a minimization problem, the objective is,

−fpwm (α) = −
N∑

i=1

(
max

{
α⊺φ(zi), V̄ (zi)

})
.

The two elements of the max are linear in the decision variable

α, and thus the objective is concave in α.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TAC.2021.3050440

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

14

We now show that −fpwm is bounded below on the con-

straint set. The assumption that V̄ is a point-wise lower bound

of V ∗ means that for any α satisfying constraint (9b), the

function α⊺φ(x) is also a point-wise lower bound of V ∗(x)
for all x∈X . This is ensured by the Bellman operator T being

monotone and γ-contractive. Moreover, under [5, Assumptions

4.2.1(a), 4.2.1(b), 4.2.2] we have that V ∗(x) is finite for all

x ∈ X . Thus, we have that all elements of the sum in fpwm

are bounded above, and hence −fpwm is bounded below for

all α∈S(A).
Next we show that equation (11) correctly computes an

element of the general upper subdifferential of fpwm. For an

α where fpwm is differentiable, we have that α⊺φ(zi) 6= V̄ (zi)
for all i = 1, . . . , N , and thus equation (11) computes the

gradient at this point. The objective function fpwm is non-

differentiable for an α where α⊺φ(zi)= V̄ (zi) for at least one

point i = 1, . . . , N . Letting I<(α), I=(α), and I>(α) denote

the indices i = 1, . . . , N where α⊺φ(zi) is respectively less

than, equal, and greater than V̄ (zi), we define δmin(α) as,

δmin(α) = min
i∈
(
I<(α)∪I>(α)

)

∣
∣α⊺φ(zi)− V̄ (zi)

∣
∣ .

Recall that under Assumption 3.1, φ1 is taken to be

the constant function and let e1 denote a vector with

1 as the first element and zero otherwise. Thus for all

δ∈(0, δmin) we have that fpwm is differentiable at (α+ δ e1)
with gradient given by equation (11). For any sequence

δ → 0, the sequence (α+ δ e1) is fpwm-attentive, i.e.,

fpwm (α+ δ e1)→ fpwm (α) by continuity of fpwm. As the

gradient is the same for all δ∈(0, δmin), equation (11) cor-

rectly computes an element of the general upper subdifferential

of fpwm at α.

Finally, we need to show that the maximum on line 8 of

Algorithm 1 is always attained. First note that the objective

coefficient vector on line 8 of Algorithm 1 is given by,

d(k) =
∑
(
I>(α(k))∪I=(α(k))

) φ(zi) .

By Assumption 3.2 we have that,

max
α∈RK

{α⊺φ(zi) ; s.t.α ∈ S(A)}

attains its maximum for all zi, i=1, . . . , N , and denote f∗
i

as the optimal value. Thus the hyperplanes α⊺φ(zi)≤f∗
i are

all supporting hyperplanes of the convex constraint set S(A).
The following finite dimensional linear program relaxation of

line 8 of Algorithm 1 also attains its maximum,

max
α∈RK

1

N

∑

(I> ∪I=)
α⊺ φ(zi)

s.t. α⊺φ(zi) ≤ f∗
i , i = 1, . . . , N .

(34)

To show this, first observe that (34) is feasible and bounded

above by 1
N

∑

(I> ∪I=) f
∗
i , and thus by [45, Corollary 27.3.2]

problem (34) attains its maximum. Finally, by [45, Corollary

27.3.3] we have that attainment for (34) implies attainment for

line 8 of Algorithm 1.

We have shown that the assumptions of Theorem 3.3 satisfy

also the assumptions of Theorem B.1 and hence the claims

follow from Theorem B.1.

APPENDIX C

PROBLEM SETTING FOR SECTION IV

A. Quadratic Basis Functions

The space of quadratic functions is parameterized by a

constant offset s ∈ R, a linear co-efficient p ∈ R
nx , and a

quadratic coefficient as a symmetric matrix P ∈ S
nx . Thus

we express the restricted function space as,

F̂(X) =

{

V̂ (x)

∣
∣
∣
∣

V (x)=x⊺Px+ p⊺x+ s

P ∈ S
nx , p ∈ R

nx , s ∈ R

}

. (35)

Thus the α is the stacked vector of s, p, and the unique

elements of P , and the basis functions φ are the monomials of

x up to degree two, which clearly satisfy Assumption 3.1. Sim-

ilar to Section III-A we use a subscript on s, p, and P to label

the approximate value function they correspond to, for ex-

ample, V̂j ∈F̂(X) is equivalent to V̂j(x)=x⊺Pjx+ p
⊺

j x+ sj
for all x ∈ X . This space of convex quadratic functions is

considered by restricting matrix P to be positive semi-definite.

B. Formulating line 8 of Algorithm 1 for commercial solver

See Section IV for the definitions of A, Bu, and Bξ

as the linear dynamics, and Appendix C-A for the spec-

ification of the quadratic basis functions. We introduce

ui, ui ∈ R, i=1, . . . , nu, with ui < ui, to denote the lower

and upper bounds that describe each coordinate of the

U ⊆ R
nu space. The quadratic stage cost is condensed

into the matrix L ∈ R
(nx+nu+1)×(nx+nu+1) that takes the

form l(x, u) = [x⊺, u⊺, 1]L [x⊺, u⊺, 1]⊺. The notation diag (·)
places the vector argument on the diagonal of an otherwise

zero matrix, and ei is the standard basis column vector with

1 in the ith element and zeros elsewhere, with the dimension

clear from context. We overload the notation V̂ and introduce

the notation V̂ as the following matrices,

V̂ =





P 0 1
2p

⋆ 0 0
⋆ ⋆ s



 ,

V̂ =






A⊺PA A⊺PBu
1
2A

⊺p+A⊺PBξE [ξ]
⋆ B⊺

uPBu
1
2B

⊺

up+B⊺

uPBξE [ξ]

⋆ ⋆ s+ tr
(

B
⊺

ξPBξE [ξξ⊺]
)




 ,

where ⋆ indicates that the matrix is symmetric. Again, any

subscript V̂(·), V(·) also applies to s, p, and P . Both matrices

are symmetric with dimension (nx + nu + 1).
Using this notation, the point-wise maximum Bellman in-

equality (9b), repeated here for convenience,

α⊺φ(x) ≤
(
TuV̄

)
(x, u) , ∀x∈X , u∈U ,

is sufficiently reformulated as the following LMI:

0 � −

[

V̂ 0
⋆ 0

]

+

[
L 0
⋆ 0

]

+

[
0 0
⋆ γ

]

−
∑

ᾱ∈A

λᾱ

[

−V̂ᾱ 0
⋆ 1

]

−
nu∑

i=1

λi





0nx×nx
0 0

⋆ −diag (ei)
1
2 (ui + ui)ei

⋆ ⋆ −ui ui



.

(37)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TAC.2021.3050440

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

15

The s, p, and P in V̂ are decision variables, as well as the

λi ∈ R+ and λᾱ ∈ R+, with everything else as fixed problem

data. The λi are the auxiliary variables introduced when using

the S-procedure to reformulate the for all u ∈ U part of the

constraint in Appendix A-C, while the λᾱ are the auxiliary

variables described in Appendix A-C. The objective function

on line 8 of Algorithm 1 is linear in the decision variables,

and when computed as per line 4 of Algorithm 1 it requires

computation of the first and second moments of the zi for the

indices, i = 1, . . . , N , where the approximate value function

under consideration dominates V̄ . Letting µ and Σ denote the

first and second moments respectively, the problem on line 8

of Algorithm 1 becomes

max
s,p,P

{ tr (PΣ) + p⊺µ+ s, s.t.(37) } , (38)

where tr (·) denotes the trace of a square matrix. Note that

the constraint P � 0 can be added to restrict to the space of

convex quadratic functions.

REFERENCES

[1] F. Oldewurtel, A. Parisio, C. N. Jones, D. Gyalistras, M. Gwerder,
V. Stauch, B. Lehmann, and M. Morari, “Use of model predictive control
and weather forecasts for energy efficient building climate control,”
Energy and Buildings, vol. 45, pp. 15–27, 2012.

[2] C. Briat, A. Gupta, and M. Khammash, “Antithetic integral feedback
ensures robust perfect adaptation in noisy biomolecular networks,” Cell

Systems, vol. 2, no. 1, pp. 15 – 26, 2016.
[3] R. E. Bellman, “On the theory of dynamic programming,” Proceedings

of the National Academy of Sciences of the United States of America,
vol. 38, no. 8, pp. 716–719, 1952.

[4] D. P. Bertsekas and S. E. Shreve, Stochastic Optimal Control: The

Discrete-TIme Case. Athena Scientific, 1996.
[5] O. Hernández-Lerma and J. B. Lasserre, Discrete-time Markov control

processes: basic optimality criteria. Springer Science & Business
Media, New York, 1996.

[6] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction,
2nd ed. The MIT Press, 2018.

[7] J. B. Rawlings and D. Q. Mayne, Model Predictive Control: Theory and

Design. Nob Hill Publishing, LLC, Madison, WI, 2009.
[8] P. J. Goulart, E. C. Kerrigan, and J. M. Maciejowski, “Optimization over

state feedback policies for robust control with constraints,” Automatica,
vol. 42, no. 4, pp. 523–533, 2006.

[9] A. Nemirovski and A. Shapiro, “Convex approximations of chance
constrained programs,” SIAM Journal on Optimization, vol. 17, no. 4,
pp. 969–996, 2006.

[10] P. J. Werbos, “Beyond regression: new tools for prediction and analysis
in the behavioral sciences,” Ph.D. dissertation, Harvard University,
Cambridge Massachusetts, 8 1974.

[11] J. Si, A. G. Barto, W. B. Powell, and D. Wunsch, Handbook of learning

and approximate dynamic programming. John Wiley & Sons, 2004,
vol. 2.

[12] A. Bemporad and M. Morari, “Robust model predictive control: A
survey,” in Robustness in identification and control, A. Garulli and
A. Tesi, Eds. Springer London, 1999, pp. 207–226.

[13] D. Bernardini and A. Bemporad, “Scenario-based model predictive
control of stochastic constrained linear systems,” in IEEE Conference

on Decision and Control (CDC), Dec 2009, pp. 6333–6338.
[14] G. Schildbach, L. Fagiano, C. Frei, and M. Morari, “The scenario

approach for stochastic model predictive control with bounds on closed-
loop constraint violations,” Automatica, vol. 50, no. 12, pp. 3009–3018,
2014.

[15] W. B. Powell, Approximate Dynamic Programming, Solving the Curses

of Dimensionality, 2nd ed. John Wiley & Sons, Inc., Hoboken, New
Jersey, 2011.

[16] D. P. Bertsekas, Dynamic programming and optimal control, approxi-

mate dynamic programming, 4th ed. Athena Scientific Belmont, MA,
2012, vol. 2.

[17] P. J. Schweitzer and A. Seidmann, “Generalized polynomial approx-
imations in Markovian decision processes,” Journal of Mathematical

Analysis and Applications, vol. 110, pp. 568–582, 1985.

[18] F. D’Epenoux, “Sur un probleme de production et de stockage dans
l’aléatoire,” Revue Française de Recherche Opérationelle, vol. 14,
(English translation: Management Science, Vol. 10, 1963, pp. 98–108)
1960.

[19] D. P. De Farias and B. Van Roy, “The linear programming approach
to approximate dynamic programming,” Operations Research, vol. 51,
no. 6, pp. 850–865, 2003.

[20] Y. Wang, B. O’Donoghue, and S. Boyd, “Approximate dynamic pro-
gramming via iterated bellman inequalities,” International Journal of

Robust and Nonlinear Control, vol. 25, no. 10, pp. 1472–1496, 2014.

[21] T. Summers, K. Kunz, N. Kariotoglou, M. Kamgarpour, S. Summers,
and J. Lygeros, “Approximate dynamic programming via sum of squares
programming,” in European Control Conference (ECC), Zürich, Switzer-
land, July 2013, pp. 191–197.

[22] C. Savorgnan, J. B. Lasserre, and M. Diehl, “Discrete-time stochastic
optimal control via occupation measures and moment relaxations,” in
Conference on Decision and Control (CDC), held jointly with the

Chinese Control Conference (CCC). Shanghai: IEEE, December 2009,
pp. 519–524.

[23] S. Darbha, K. Krishnamoorthy, M. Pachter, and P. Chandler, “State
aggregation based linear programming approach to approximate dynamic
programming,” in Conference on Decision and Control (CDC). Atlanta:
IEEE, December 2010, pp. 935–941.

[24] K. Krishnamoorthy, M. Pachter, S. Darbha, and P. Chandler, “Ap-
proximate dynamic programming with state aggregation applied to
UAV perimeter patrol,” International Journal of Robust and Nonlinear

Control, vol. 21, no. 12, pp. 1396–1409, 2011.

[25] B. O’Donoghue, Y. Wang, and S. Boyd, “Min-max approximate dynamic
programming,” in International Symposium on Computer-Aided Control

System Design (CACSD). IEEE, 2011, pp. 424–431.

[26] ——, “Iterated approximate value functions,” in European Control

Conference (ECC). Zürich, Switzerland: IEEE, July 2013, pp. 3882–
3888.

[27] P. Beuchat, J. Warrington, and J. Lygeros, “Point-wise maximum ap-
proach to approximate dynamic programming,” in IEEE Conference on

Decision and Control (CDC), Dec 2017, pp. 3694–3701.

[28] M. Hohmann, J. Warrington, and J. Lygeros, “A moment and sum-of-
squares extension of dual dynamic programming with application to
nonlinear energy storage problems,” preprint arXiv:1807.05947, July
2018.

[29] M. V. Pereira and L. M. Pinto, “Multi-stage stochastic optimization
applied to energy planning,” Mathematical programming, vol. 52, no.
1-3, pp. 359–375, 1991.

[30] B. Lincoln and A. Rantzer, “Relaxing dynamic programming,” IEEE

Transactions on Automatic Control, vol. 51, no. 8, pp. 1249–1260,
August 2006.

[31] B. P. G. Van Parys, P. J. Goulart, and M. Morari, “Infinite horizon per-
formance bounds for uncertain constrained systems,” IEEE Transactions
on Automatic Control, vol. 58, no. 11, pp. 2803–2817, November 2013.

[32] W. B. Powell, “A unified framework for stochastic optimization,” Eu-

ropean Journal of Operational Research, vol. 275, no. 3, pp. 795–821,
2019.

[33] D. P. Bertsekas, “Dynamic programming and suboptimal control: A
survey from ADP to MPC,” European Journal of Control, vol. 11, no.
4-5, pp. 310–334, 2005.

[34] B. Stellato, T. Geyer, and P. J. Goulart, “High-speed finite control set
model predictive control for power electronics,” IEEE Transactions on

Power Electronics, vol. 32, no. 5, pp. 4007–4020, 2017.

[35] D. P. Bertsekas, Reinforcement learning and optimal control, 1st ed.
Athena Scientific Belmont, MA, 2019.

[36] ——, “Stochastic optimization problems with nondifferentiable cost
functionals,” Journal of Optimization Theory and Applications, vol. 12,
no. 2, pp. 218–231, 1973.

[37] D. P. De Farias and B. Van Roy, “On constraint sampling in the
linear programming approach to approximate dynamic programming,”
Mathematics of Operations Research, vol. 29, no. 3, pp. 462–478, 2004.

[38] A. Keshavarz and S. Boyd, “Quadratic approximate dynamic program-
ming for input-affine systems,” International Journal of Robust and

Nonlinear Control, vol. 24, no. 3, pp. 432–449, 2012.

[39] T. Sutter, P. M. Esfahani, and J. Lygeros, “Approximation of constrained
average cost Markov control processes,” in Conference on Decision and

Control (CDC), Los Angeles, California, USA, December 2014, pp.
6597–6602.

[40] M. Kamgarpour and T. Summers, “On infinite dimensional linear
programming approach to stochastic control,” in IFAC World Congress,
vol. 50, no. 1, Toulouse, France, July 2017, pp. 6148 – 6153.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TAC.2021.3050440

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

16

[41] D. P. De Farias and B. Van Roy, “On constraint sampling in the
linear programming approach to approximate dynamic programming,”
Mathematics of Operations Research, vol. 29, no. 3, pp. 462–478, 2004.

[42] N. Kariotoglou, M. Kamgarpour, T. H. Summers, and J. Lygeros,
“The linear programming approach to reach-avoid problems for Markov
decision processes,” Journal of Artificial Intelligence Research, vol. 60,
pp. 263–285, 2017.

[43] P. Mohajerin Esfahani, T. Sutter, D. Kuhn, and J. Lygeros, “From infinite
to finite programs: explicit error bounds with applications to approximate
dynamic programming,” SIAM Journal on Optimization, vol. 28, no. 3,
pp. 1968–1998, 2018.

[44] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM

review, vol. 38, no. 1, pp. 49–95, 1996.
[45] R. T. Rockafellar, Convex analysis. Princeton university press, 2015.
[46] A. L. Yuille and A. Rangarajan, “The concave-convex procedure,”

Neural Computation, vol. 15, no. 4, pp. 915–936, 2003.
[47] G. R. Lanckriet and B. K. Sriperumbudur, “On the convergence of

the concave-convex procedure,” in Advances in Neural Information

Processing Systems 22, Y. Bengio, D. Schuurmans, J. D. Lafferty,
C. K. I. Williams, and A. Culotta, Eds. Curran Associates, Inc., 2009,
pp. 1759–1767.

[48] T. Pham Dinh and H. A. Le Thi, “Convex analysis approach to dc
programming: Theory, algorithms and applications,” Acta Mathematica

Vietnamica, vol. 22, no. 1, pp. 289–355, 1997.
[49] K. Khamaru and M. Wainwright, “Convergence guarantees for a class

of non-convex and non-smooth optimization problems,” in Proceedings

of the 35th International Conference on Machine Learning, ser. Pro-
ceedings of Machine Learning Research, J. Dy and A. Krause, Eds.,
vol. 80. Stockholmsmässan, Stockholm Sweden: PMLR, 10–15 Jul
2018, pp. 2601–2610.

[50] N. V. Sahinidis, “BARON: A general purpose global optimization
software package,” Journal of Global Optimization, vol. 8, no. 2, pp.
201–205, Mar 1996.

[51] M. R. Kılınç and N. V. Sahinidis, “Exploiting integrality in the global
optimization of mixed-integer nonlinear programming problems with
BARON,” Optimization Methods and Software, vol. 33, no. 3, pp. 540–
562, Jun 2018.

[52] T. Gally, M. E. Pfetsch, and S. Ulbrich, “A framework for solving mixed-
integer semidefinite programs,” Optimization Methods and Software,
vol. 33, no. 3, pp. 594–632, 2018.

[53] P. N. Beuchat, A. Georghiou, and J. Lygeros, “Performance guaran-
tees for model-based approximate dynamic programming in continuous
spaces,” IEEE Transactions on Automatic Control, early access, Mar
2019.

[54] F. Borrelli, A. Bemporad, and M. Morari, Predictive Control for linear

and hybrid systems. Cambridge University Press, July 2017.
[55] P. N. Beuchat and J. Lygeros, “Approximate dynamic programming via

penalty functions,” in IFAC World Congress, vol. 50, 2017, pp. 11 814–
11 821.

[56] I. Petersen, V. A. Ugrinovskii, and A. V. Savkin, Robust Control Design

Using H-∞ Methods. Springer Science & Business Media, 2012.
[57] L. El Ghaoui and S.-I. Niculescu, “Robust decision problems in en-

gineering: a linear matrix inequality approach,” in Advances in Linear

Matrix Inequality Methods in Control. SIAM Society for Industrial
and Applied Mathematics, 2000, ch. 1, pp. 3–37.

[58] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, 3rd ed.
Springer Science & Business Media, 2009.

[59] D. P. Bertsekas, Nonlinear Programming, 3rd ed. Athena Scientific,
MA, 2016.

Paul N. Beuchat received the B.Eng. degree in
mechanical engineering and B.Sc. in physics from
the University of Melbourne, Australia, in 2008, and
the M.Sc. degree in robotics, systems and control
from ETH Zürich, Switzerland, in 2014. He obtained
his Ph.D. degree in 2019 from ETH Zürich, pursing
his research at the Automatic Control Laboratory
there. He is currently working as a Teaching Fellow
at the University of Melbourne in Australia. His
research interests are control and optimization of
large scale systems, with a focus towards developing

approximate dynamic programming techniques for applications in the areas
of building control, and coordinated flight.

Joseph Warrington is a Senior Staff Research
Engineer at Home Experience LLC, Cambridge UK.
Until December 2019 he was a Senior Scientist in
the Automatic Control Lab (IfA) at ETH Zurich,
Switzerland. His Ph.D. is from ETH Zurich (2013),
and his B.A. and M.Eng. degrees in Mechanical
Engineering are from the University of Cambridge
(2008). From 2014-2016 he worked as an energy
consultant at Baringa Partners LLP, London, UK,
and he has also worked as a control systems engineer
at Wind Technologies Ltd., Cambridge, UK, and

privately as an operations research consultant. He is the recipient of the
2015 ABB Research Prize for an outstanding PhD thesis in automation and
control, and a Simons-Berkeley Fellowship for the period January-May 2018.
His research interests include dynamic programming, large-scale optimiza-
tion, and predictive control, with applications including power systems and
transportation networks.

John Lygeros completed a B.Eng. degree in elec-
trical engineering in 1990 and an M.Sc. degree in
Systems Control in 1991, both at Imperial College
of Science Technology and Medicine, London, U.K..
In 1996 he obtained a Ph.D. degree in automatic
control from the Electrical Engineering and Com-
puter Sciences Department, University of California,
Berkeley. During the period 1996–2000 he held a
series of post-doctoral researcher appointments at
the Laboratory for Computer Science, M.I.T., and
the Electrical Engineering and Computer Sciences

Department at U.C. Berkeley. Between 2000 and 2003 he was a University
Lecturer at the Department of Engineering, University of Cambridge, U.K.,
and a Fellow of Churchill College. Between 2003 and 2006 he was an
Assistant Professor at the Department of Electrical and Computer Engineering,
University of Patras, Greece. In July 2006 he joined the Automatic Control
Laboratory at ETH Zurich, where he is currently serving as the Head of the
Automatic Control Laboratory and the Head of the Department of Information
Technology and Electrical Engineering. His research interests include mod-
elling, analysis, and control of hierarchical, hybrid, and stochastic systems,
with applications to biochemical networks, automated highway systems, air
traffic management, power grids and camera networks. John Lygeros is a
Fellow of the IEEE, and a member of the IET and the Technical Chamber of
Greece; since 2013 he serves as the Treasurer of the International Federation
of Automatic Control.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TAC.2021.3050440

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

