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ACCELERATED POLYNOMIAL APPROXIMATION

OF FINITE ORDER ENTIRE FUNCTIONS

BY GROWTH REDUCTION

JÜRGEN MÜLLER

Abstract. Let f be an entire function of positive order and finite type. The
subject of this note is the convergence acceleration of polynomial approximants
of f by incorporating information about the growth of f(z) for z → ∞. We
consider “near polynomial approximation” on a compact plane set K, which
should be thought of as a circle or a real interval. Our aim is to find sequences
(fn)n of functions which are the product of a polynomial of degree ≤ n and
an “easy computable” second factor and such that (fn)n converges essentially
faster to f on K than the sequence (P ∗n)n of best approximating polynomials
of degree ≤ n. The resulting method, which we call Reduced Growth method
(RG-method) is introduced in Section 2. In Section 5, numerical examples of
the RG-method applied to the complex error function and to Bessel functions
are given.

1. Introduction

Let K be a compact subset of the complex plane C. To avoid technical difficulties
we will assume, if not otherwise stated, that K and C \ K are connected and K
does not consist of a single point. (In fact we are mainly interested in the cases of

K being a disk or an interval.) Moreover, by Ĉ := C∪{∞} we denote the extended
complex plane and we set

∆r := {z ∈ C : |z| ≤ r} , ∆ := ∆1.

According to the Riemann mapping theorem there exists a uniquely determined
conformal mapping ψ : Ĉ \∆→ Ĉ \K such that

ψ(w) = cw +
∞∑
ν=0

cνw
−ν (|w| > 1)

and c = c(K) > 0. In this case, c(K) is the logarithmic capacity of K.
In the sequel we will consider entire functions of finite order ρ > 0 and type τ ,

i.e., we assume

ρ = ρf = lim sup
r→∞

log logM(r, f)

log r
∈ (0,∞)

and

τ = τf = lim sup
r→∞

logM(r, f)

rρ
<∞
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744 JÜRGEN MÜLLER

where M(r, f) := ||f ||∆r
. Let Πn be the set of polynomials of degree ≤ n and let

En(f,K) := inf
P∈Πn

||f − P ||K ,

with ||ϕ||K := sup
z∈K
|ϕ(z)|, denote the error of best polynomial approximation of f

on K. The following result seems to be first established by Batyrev and may be
found, under more general assumptions on K, in [31] or [24].

Theorem 1. Let K ⊂ C be a compact set as above, and let f : K → C be a
function. Then f is the restriction on K of an entire function of order ρ and type
τ if and only if

lim sup
n→∞

n1/ρEn(f,K)1/n = c(K)(eρτ)1/ρ.(1)

A sequence (Pn) with Pn ∈ Πn for all n ∈ N is called maximally convergent on
K to f if the asymptotic rate of best polynomial approximation is realized by (Pn),
that is

lim sup
n→∞

n1/ρ||f − Pn||1/nK = c(K)(eρτ)1/ρ.

Besides the polynomials P ∗n of best approximation given by

||f − P ∗n ||K = inf
P∈Πn

||f − P ||K

the computation of which is rather expensive, mainly two types of maximally con-
vergent sequences (Pn) are considered: polynomial interpolants in equidistributed
nodes and Faber expansions. We will briefly recall these two kinds of polynomial
approximants.

1. Let (z
(n)
k )n∈N0,k=0,...,n be an infinite matrix (the node matrix) such that

z
(n)
k ∈ K for n ∈ N0 and k = 0, ..., n and let

ωn(z) =
n∏
k=0

(z − z(n)
k ) (n ∈ N0) .

If Γr = ψ(∂∆r) is a level curve of ψ−1 for some r > 1, then the (uniquely deter-

mined) polynomial interpolant Ln(f) ∈ Πn to f with respect to the nodes z
(n)
k may

be expressed by the Hermite interpolation formula

Ln(z) = Ln(f)(z) =
1

2πi

∫
Γr

ωn(t)− ωn(z)

t− z
f(t)

ωn(t)
dt (z ∈ K) .(2)

The nodes z
(n)
k are called equidistributed on K, if

||ωn||1/(n+1)
K → c(K) (n→∞).(3)

We refer to [9], where examples of equidistributed nodes are given. In particular,

if K = ∆r for some r > 0 and if z
(n)
k = 0 for all k and n, then we obtain

Ln(f) = Sn(f) ,(4)

where Sn(f) is the n-th partial sum of the Taylor expansion of f around the origin.
2. Let K and ψ be as above. The n−th Faber polynomial Fn = Fn,K with

respect to K may be defined by

ψ′(w)

ψ(w) − z =
∞∑
n=0

Fn(z)

wn+1
(z ∈ K).
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APPROXIMATION OF FINITE ORDER ENTIRE FUNCTIONS 745

By a well-known result of Kövari and Pommerenke (see [17]), there exist constants
A > 0 and α < 0.5 such that for every f holomorphic on K (i.e. holomorphic in a
neighbourhood of K)

||f − Tn(f)||K ≤ AnαEn(f,K) ,(5)

where Tn(f) denotes the n−th partial sum of the Faber expansion of f , that is

Tn(f) = Tn,K(f) =
n∑
k=0

ak(f)Fk(6)

with

ak(f) =
1

2πi

∫
|w|=1

f(ψ(w))

wn+1
dw.(7)

From (5) it follows that (Tn(f)) converges maximally on K to f .
In particular, for K = ∆r we have Tn,∆r (f) = Sn(f), and therefore Theorem 1

implies

lim sup
n→∞

n1/ρ ||f − Sn(f)||1/n∆r
= r(eρτ)1/ρ(8)

(note that c(∆r) = r). Moreover, for K = [−1, 1], the n−th partial sum of the
Faber expansion of f equals the n−th partial sum of the Tschebyscheff expansion
of f . Since c([−1, 1]) = 1/2, Theorem 1 yields

lim sup
n→∞

n1/ρ ||f − Tn(f)||1/n[−1,1] =
1

2
(eρτ)1/ρ.(9)

Two facts should be emphasized: On the one hand, the asymptotic rate of best
polynomial approximation on K of an entire function of finite order is determined
by the growth parameters order and type of f , and, on the other hand, information
on the growth of f , which is often available from theoretical investigations, cannot
be used to improve the rate of convergence for polynomial approximation of f .

The basic idea in the sequel is the following: Use information about the growth
of f to modify the function f in such a way that the modified f̃ is “better” approx-
imable onK by polynomials than f itself, and then recover f from an approximation
of f̃ .

2. The RG-method

We first want to describe the underlying idea in the special case of K being the
closed unit disk and the partial sums Sn of the Taylor expansion around the origin
as approximating polynomials.

Let, for an arbitrary power series

g(z) =
∞∑
ν=0

gνz
ν

around the origin,

Sn(g)(z) =
n∑
ν=0

gνz
ν
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746 JÜRGEN MÜLLER

denote the n-th Taylor section of g. For g being holomorphic on ∆r for some r > 1,
we obtain from the Cauchy integral formula

||g − Sn(g)||∆ ≤
M(r, g)

rn(r − 1)
.

Thus, if f is an entire function of order ρ and type τ <∞, and if (rn) is an arbitrary
sequence with 1 < rn →∞, we get

lim sup
n→∞

n1/ρ||f − Sn(f)||1/n∆ ≤ lim sup
n→∞

n1/ρM(rn, f)1/n

rn
.

If τ > 0 and if we take

rn =
( n
τρ

)1/ρ

,

then we find

lim sup
n→∞

n1/ρM(rn, f)1/n

rn
≤ (eρτ)1/ρ .

Since c(∆) = 1, this implies in particular that Sn(f) converges to f maximally on
∆.

Now the simple idea is the following: We replace in the above estimates f by
fϕn, where (ϕn)n is a sequence of functions such that ϕn is holomorphic on ∆rn

for all n ∈ N. With ϕ := (rn, ϕn)n and

µ(ϕ) := lim sup
n→∞

n1/ρM(rn, fϕn)1/n

rn

we get as above

lim sup
n→∞

n1/ρ||fϕn − Sn(fϕn)||1/n∆ ≤ µ(ϕ) .

If µ(ϕ) < (eρτ)1/ρ and if |ϕn|1/n converges to 1 uniformly on ∆, then the sequence
(ϕ−1
n Sn(fϕn))n converges asymptotically by the factor (µ(ϕ)/(eρτ)1/ρ)n faster to

f than maximally convergent polynomial sequences.
Using (2), one can prove in a similar way (cf. [21]) the following more general

result.

Theorem 2. Let K ⊂ C be a compact set such that Ĉ \ K is simply connected,
K not a single point, and let f be an entire function of order ρ ∈ (0,∞) and type
τ <∞.

Suppose further that ϕ := (rn, ϕn)n is a sequence such that 0 < rn → ∞ for
n→∞ and ϕn is a function which is holomorphic on ∆rn ∪K.

If (z
(n)
k )n∈N0,k=0,...,n is a matrix of equidistributed nodes on K, then

lim sup
n→∞

n1/ρ ||fϕn − Ln(fϕn)||1/nK ≤ c(K)µ(ϕ) .(10)

The estimates (1) and (10) suggest the following idea for an algorithm:

1. Search for a sequence ϕ = (rn, ϕn)n as in Theorem 2 such that

µ(ϕ) < (eρτ)1/ρ

and |ϕn|1/n → 1 locally uniformly on C.
2. Compute an approximating polynomial Pn = Pn(fϕn,K) of fϕn.
3. Take ϕ−1

n · Pn(fϕn) as approximation of f .
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APPROXIMATION OF FINITE ORDER ENTIRE FUNCTIONS 747

In the sequel, we will refer to this method as the Reduced Growth method (RG-
method).

Looking at step 1 of our proposed algorithm, two questions arise:

(i) Let Φ be the set of all sequences ϕ = (rn, ϕn)n as in Theorem 2 with |ϕn|1/n →
1 locally uniformly on C. Can we determine

m = mf := inf
ϕ∈Φ

µ(ϕ) ?

(ii) If so, how can we find “easy computable” sequences ϕ ∈ Φ such that µ(ϕ) ≈
m?

To answer these questions we have to throw a closer look at f . The indicator
function h = hf : [−π, π]→ R of f is defined by

hf (ϑ) := lim sup
r→∞

log |f(reiϑ)|
rρ

(ϑ ∈ [−π, π]) .

This function reflects the asymptotic growth behaviour of f at infinity. In par-
ticular, from leading terms of asymptotic expansions we may obtain hf . In the
following we assume hf to be known.

From the definition it follows directly that hf (ϑ) ≤ τ for all ϑ. Moreover, it is a
well-known fact (see for example [20], p. 2752 f) that actually

−τ ≤ hf (ϑ) ≤ τ (ϑ ∈ [−π, π])

and that hf is continuous (with hf (−π) = hf (π)). The crucial role in our game is
played by

τ = τf :=
1

2π

π∫
−π

hf (ϑ)dϑ .(11)

The value τ is intimately related to the number of zeros of f , as may be seen
from classical results on entire functions found for example in [18], Chapter 4. Let
nf(r) denote the number of zeros of f in ∆r (counted with multiplicity). Then, if f
is of completely regular growth (for a definition see [18], Chapter 3, or [2], Definition
1.5.9), we have

lim
r→∞

nf (r)

rρ
= ρτ .

From a result of Steinmetz ([27]) it may be seen ([21]) that in particular all en-
tire functions which are solutions of m-th order homogeneous linear differential
equations with rational coefficient functions are of completely regular growth.

A most simple conclusion from the above cited results is the fact that always
τ ≥ 0 (and thus τ ∈ [0, τ ]). The following result gives an answer to question (i).

Lemma 3. Let f be an entire function of order ρ > 0 and of completely regular
growth. Then we have

m = (eρτ)1/ρ .

For a proof of the inequality ≥ we refer to [21]. The converse inequality ≤ follows
for example from Theorem 6 below.

We now turn to the question (ii) of how to find sequences ϕ ∈ Φ such that

µ(ϕ) ≈ (eρτ)1/ρ
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748 JÜRGEN MÜLLER

and such that the functions ϕn are “easy computable”. We restrict ourselves to
sequences (ϕn) of the form ϕn = e−Rn , where the Rn are polynomials. In [21],
however, also sequences (ϕn) of rational functions are applied.

For given hf we consider a polynomial Q such that Q(0) = 0, and we set

τ(Q) = τf (Q) := max
ϑ

(hf (ϑ) −ReQ(eiϑ)) .(12)

Since ReQ is subharmonic on ∆, we find

1

2π

π∫
−π

[
hf (ϑ)−ReQ(eiϑ)

]
dϑ ≥ τ −ReQ(0) = τ

and thus

τ(Q) ≥ τ .(13)

In the sequel we will always assume τ(Q) > 0. We define

rn :=

(
n

τ(Q)ρ

)1/ρ

(14)

and

ϕn(z) = ϕn,Q(z) := exp(−rρnQ(z/rn)) (z ∈ C) .(15)

Then it is easily seen that ϕ = (rn, ϕn)n ∈ Φ and one can prove

Lemma 4. Let (rn) and (ϕn) be defined by (14) and (15). Then we have

µ(ϕ) ≤ (eρτ(Q))1/ρ .(16)

Proof. For every n ∈ N we have r−ρn log |ϕn(rne
iϑ)| = −ReQ(eiϑ) and thus

log
M(rn, fϕn)

rρn
≤ max

ϑ

[ log |f(rne
iϑ)|

rρn
− hf (ϑ)

]
+ max

ϑ
[hf (ϑ)−ReQ(eiϑ)] .

From Theorem 28, Chapter I, of [18] one can deduce

lim sup
n→∞

max
ϑ

[ log |f(rne
iϑ)|

rρn
− hf (ϑ)

]
≤ 0

and therefore

lim sup
n→∞

logM(rn, fϕn)

rρn
≤ τ(Q) .

According to (14) we find

µ(ϕ) = lim sup
n→∞

n1/ρ
(
M(rn, fϕn)1/rρn

)rρn/n
rn

≤ (eρτ(Q))1/ρ.

The following is the main result of Section 2.

Theorem 5. Let K ⊂ C be a compact set such that Ĉ \K is simply connected, K
not a single point and let Q be a polynomial with Q(0) = 0. Suppose further that f
is an entire function of order ρ ∈ (0,∞) and type τ <∞ and that (ϕn) is given by
(15).

1. If (z
(n)
k )n∈N0,k=0,...,n is a matrix of equidistributed nodes on K, then

lim sup
n→∞

n1/ρ ||f − ϕ−1
n Ln(fϕn)||1/nK ≤ c(K)(eρτ(Q))1/ρ .(17)
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APPROXIMATION OF FINITE ORDER ENTIRE FUNCTIONS 749

2. Let E denote the set of all entire functions. If (Tn) is a sequence of operators
Tn : E → Πn such that there exist constants A,α > 0 with

||g − Tn(g)||K ≤ AnαEn(g,K)(18)

for all g ∈ E, then

lim sup
n→∞

n1/ρ ||f − ϕ−1
n Tn(fϕn)||1/nK ≤ c(K)(eρτ(Q))1/ρ .(19)

Proof. 1. Since |ϕn|−1/n → 1 uniformly on K, the assertion of 1. follows directly
from Theorem 2 and Lemma 4.

2. Let Ln(fϕn) denote the n−th polynomial interpolant to fϕn with respect to
the system of the Fekete nodes of K. Since the Fekete nodes are equidistributed
on K (see for example [9]), by Theorem 2 and Lemma 4 we find

lim sup
n→∞

n1/ρ ||fϕn − Tn(fϕn)||1/nK = lim sup
n→∞

n1/ρEn(fϕn,K)1/n

≤ lim sup
n→∞

n1/ρ ||fϕn − Ln(fϕn)||1/nK ≤ c(K)(eρτ(Q))1/ρ.

Since |ϕn|−1/n → 1 uniformly on K, we obtain our assertion.

Remark. Obviously, condition (18) is satisfied by the sequence of best approxima-
tion operators, that is, Tn(g) is defined by

||g − Tn(g)||K = inf
P∈Πn

||g − P ||K (g ∈ H(K)) .

Moreover, by the above cited result of Kövari and Pommerenke (5), the same is
true for the sequence (Tn) of the n−th partial sums of the Faber expansion with
respect to K and therefore, in particular, in the case of K = ∆r for the Taylor
sections Sn and in the case K = [−1, 1] for the Tschebyscheff sections.

For a finite set M ⊂ N we define

ΠM :=
{ ∑
ν∈M

aνz
ν : aν ∈ C for ν ∈M

}
,

i.e. ΠM is the set of polynomials with powers only in M . (Note that always
Q(0) = 0 for Q ∈ ΠM .) If Q ∈ ΠM , then, by definition (15), we have ϕn = e−Rn

where Rn ∈ ΠM for all n ∈ N. Therefore, the approximations of f obtained by the
RG-method are of the form

ϕ−1
n · Pn = eRn · Pn with Rn ∈ ΠM and Pn ∈ Πn.

Since the effort for the evaluation of the factor eRn does not increase with n we
may regard ϕ−1

n · Pn as a “near polynomial approximation” of f . Theorems 1 and
5 show that, if τ(Q) < τ , we get a (geometric) acceleration factor (τ(Q)/τ)n/ρ if
we approximate fϕn instead of f by a polynomial sequence as in Theorem 5. The
“cost” for that is an additional multiplication by ϕ−1

n = eRn .

3. The polynomial Q

We turn to the question of how to choose an appropriate polynomial Q in order
to apply the above RG-method in an efficient way. In view of the investigations
made in Section 2 it is natural to consider the following problem:

Choose QM ∈ ΠM such that

max
ϑ

(hf (ϑ)−Re QM(eiϑ)) = min
Q∈ΠM

max
ϑ

(hf (ϑ)−Re Q(eiϑ))(20)
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750 JÜRGEN MÜLLER

(or at least a polynomial Q ∈ ΠM “near” QM). This is a kind of one-sided
Tschebyscheff approximation of the (continuous and 2π-periodic) function hf by
trigonometric polynomials without constant term. The problem may be viewed as
a semi-infinite optimization problem and has therefore in particular always a solu-
tion (cf. [15], Chapter 3). In our later applications it is in fact possible to solve the
problem analytically. A method for solving (20) numerically is described in [21].

For the important case M = {1, ...,m} we put

Qm := Q{1,...,m}

and obtain the following estimate.

Theorem 6. With the notations used above we have

τ ≤ τ(Qm) ≤ τ + 2εm(hf )

where εm(hf ) denotes the error of best approximation of hf by trigonometric poly-
nomials of degree ≤ m. This implies in particular

τ(Qm)→ τ (m→∞) .

Proof. Let tm denote the best approximating trigonometric polynomial of degree

≤ m to the function hf on [−π, π]. If a
(m)
0 /2 is the constant term of tm, that is

a
(m)
0

2
=

1

2π

π∫
−π

tm(ϑ)dϑ ,

then

|a(m)
0 |
2

=
1

2π

∣∣∣ π∫
−π

hf (ϑ)dϑ +

π∫
−π

(tm(ϑ)− hf (ϑ))dϑ
∣∣∣ ≤ τ + εm(hf ) ,

and therefore

max
ϑ

[
hf (ϑ)− (tm(ϑ) − a(m)

0 /2)
]
≤ τ + 2εm(hf ) .

Since tm − a(m)
0 /2 is the real part of a polynomial in eiϑ of degree ≤ m without

constant term, the assertion is proved.

Remark. 1. In many interesting cases hf is a “trigonometric spline” of order ρ,
which means that there exists a partition ϑ0 < ϑ1 < . . . < ϑN = ϑ0 + 2π of
[ϑ0, ϑ0 + 2π] and constants aj , bj , j = 1, ..., N, such that

hf (ϑ) = aj cos(ρϑ) + bj sin(ρϑ)

for ϑ ∈ [ϑj−1, ϑj ] and j ∈ {1, ..., N}. In this case, hf satisfies a Lipschitz condition
of the form

|hf (ϑ)− hf (ϑ̃)| ≤ c|ϑ− ϑ̃| (ϑ, ϑ̃ ∈ [−π, π])

where c := ρ ·max{|a1|, ..., |aN |, |b1|, ..., |bN |}. Therefore, by an improved version of
Jackson’s theorem,

εm(hf ) ≤ πc

2(m+ 1)
(m ∈ N)

(see for example [3], p. 143), and thus

τ(Qm) ≤ τ +
πc

m+ 1
(m ∈ N) .
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2. A particular simple but, nevertheless, for our later applications very interesting
special case is

ρ ∈ N and M = {ρ} .
In this case we have

Qρ(z) = −azρ

with some constant a = a(hf ) and therefore by (14) and (15)

ϕn(z) = e−Qρ(z) (n ∈ N) ,(21)

i.e., ϕn is independent of n. For ρ = 1, that is, f is a function of exponential type
τ , and in the special case K = ∆, we note that for Pn(fe−Q1) = Sn(fe−Q1), where
Sn denotes the n−th Taylor section, the RG-method coincides with the method
introduced by Gabutti and Lyness in [8] (see also [7]). Observe, however, that in
the paper [8], the computation of a does not depend on hf , but the singularities of
the Borel transform of f .

4. The polynomials Pn

Assume that we have found a polynomial Q such that τ > τ(Q) ≈ τ . The
question now is how to choose the approximating polynomial Pn = Pn(fϕn,K) ∈
Πn of fϕn on K. Since the polynomial Q does only depend on hf , we had so far no
need to look on our compact set K on which we want to approximate f . This set K
now plays an important role in order to choose Pn. Of course, concerning speed of
approximation, the best possible choice is given by the sequence P ∗n = P ∗n(fϕn,K)
of best approximating polynomials of fϕn with respect to K. However, in the most
interesting cases of K being a disk or an interval, also more explicit polynomial
approximants are known, which are essentially as good as the polynomial best
approximations.

It is worth while to be noted at this place that, since

Ln(fϕn) = Ln(Ln(f)Ln(ϕn))

for the polynomial interpolant of degree ≤ n in an arbitrary system of nodes (z
(n)
k ),

the computation of Ln(fϕn) does not require more information about f than the
computation of Ln(f), namely, the values of f (and, in the case of multiple nodes,

derivatives of f) at the nodes (z
(n)
k ).

1. The case K = ∆r. Let g be holomorphic in ∆r and let

g(z) =
∞∑
ν=0

gνz
ν (z ∈∆r)

be the Taylor expansion of g around the origin. In the case K = ∆r, the Taylor
sections

Sn(g)(z) =
n∑
ν=0

gνz
ν (z ∈ C)

represent the interpolation polynomials of degree ≤ n to g in the equidistributed

nodes z
(n)
k = 0 for k = 0, . . . , n as well as the n-th partial sum of the Faber

expansion with respect to K of g. Since c(∆r) = r, by Theorem 5 we have

lim sup
n→∞

n1/ρ||f − ϕ−1
n Sn(fϕn)||1/n∆r

≤ r(eρτ(Q))1/ρ.
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Another system of equidistributed nodes (z
(n)
k ) for K = ∆r, where r ≥ 1,

consists of the (n+ 1)st roots of unity

z
(n)
k = e2πik/(n+1) (k = 0, . . . , n, n ∈ N0)

([9], Chapter II).
In our numerical examples we will only consider (forK = ∆r) the Taylor sections

Sn, since they converge practically as fast as the best approximating polynomials
(cf. for example [13]) on every ∆r. If Q(z) =

∑
ν∈M

aνz
ν for some M ⊂ N and if (rn)

and (ϕn) are given by (14) and (15), then the Taylor coefficients ϕk,n = ϕ
(k)
n (0)/k!

of

ϕn(z) = exp(−rρnQ(z/rn)) =
∏
ν∈M

exp(−aνzνrρ−νn )

may be computed by repeated Cauchy product (i.e. by repeated discrete convolu-
tion) from the Taylor coefficients of exp(−aνzνrρ−νn ). Now, if the Taylor coefficients
fk = f (k)(0)/k! of f for k = 0, . . . , n are known, one more Cauchy product gives

Sn(fϕn)(z) =
n∑
ν=0

zν

(
ν∑
k=0

fkϕν−k,n

)
.

However, if the Taylor coefficients f0, . . . , fn of f are computed numerically by a
quadrature forumula or by Fast Fourier Transform (cf. [19]), then it is convenient to

compute also the coefficients
ν∑
k=0

fkϕν−k,n of fϕn directly by a quadrature formula

or FFT.
2. The case K = [a, b]. As is well-known, in the case K = [−1, 1] systems of

equidistributed nodes are for example the zeros of the Tschebyscheff polynomials

z
(n)
k = cos

(
(2k + 1)π

2(n+ 1)

)
, k = 0, . . . , n,

or the Fejér nodes given by

z
(n)
k = cos

(
2kπ

n+ 1

)
, k = 0, . . . , n

(see for example [9], Chapter II). Since in the second case z
(n)
k = z

(n)
n−k+1 for k =

1, . . . , n, we have interpolation of f and f ′ in these nodes.
As remarked in Section 1, the Faber polynomials for K = [−1, 1] coincide with the
(normalized) Tschebyscheff polynomials, more precisely,

Fn(x) =

{
2 · cos(n arccosx), if n = 1, 2, . . . ,

1, if n = 0,
(22)

for x ∈ [−1, 1] (see for example [20], p. 1103), and the n-th partial sum Tn of the
Faber expansion equals the n-th partial sum of the Tschebyscheff expansion. Since
c([−1, 1]) = 1/2, Theorem 5 gives

lim sup
n→∞

n1/ρ||f − ϕ−1
n Tn(fϕn)||1/n[−1,1] ≤

1

2
(eρτ(Q))1/ρ.

Thus we see that the smaller capacity of K = [−1, 1] compared to K = ∆ causes
an acceleration factor of (1/2)n if f is approximated by ϕ−1

n Tn(fϕn) instead of
ϕ−1
n Sn(fϕn) on [−1, 1].
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The case of an arbitrary interval K = [a, b] with a, b ∈ C may be reduced to the
case K = [−1, 1] by a simple linear transformation, so that this case is essentially
included above. In particular, for a function g holomorphic on [a, b] the n-th Faber
section Tn(g) = Tn,[a,b](g) with respect to [a, b] is given by

Tn,[a,b](g)(w) = Tn,[−1,1](g̃)

(
2

b− aw −
b+ a

b− a

)
,

where

g̃(z) := g

(
b− a

2
z +

a+ b

2

)
.

As in the standard case [a, b] = [−1, 1] we denote Tn,[a,b](g) as n-th Tschebyscheff
section of g (with respect to [a, b]).

Since the partial sums Tn of the Tschebyscheff expansion converge practically
as fast as the best approximations on K = [a, b] (see for example [25], p. 134),
and since, on the other hand, they have computational advantages (cf. [26]), we
will restrict ourselves in the numerical examples for K = [a, b] to the Tschebyscheff
expansion. In most cases, Tschebyscheff coefficients are computed numerically by
some quadrature formula ([25], p. 148 ff) or by Fast Fourier Transform (cf. [12]).
Of course, the same methods may be used to compute the coefficients of fϕn
numerically.

3. More general K. More general compact setsK (having simply connected com-

plement Ĉ \K) may be handled similar to the above case of K = [a, b] by choosing
the n-th partial sum Tn of the Faber expansion instead of the n-th Tschebyscheff
section. An efficient method for the numerical evaluation of Tn is described in [5].
Moreover, in [4] and [10] explicit expressions for the Faber polynomials Fn,K in the
cases of K being a circular or an annular sector are given.

5. Numerical examples

In our numerical examples we restrict ourselves to the compact sets K being the
most simple and the most important ones, namely closed circles ∆r and compact
(real) intervals. Thereby we express the numerical results in terms of (an approxi-
mation of) the function sd defined for a compact set K ⊂ C, an entire function f

of order ρ and an approximation f̃ of f by

sd(K) := sd(K; f, f̃) := inf
z∈K

(− log10 |f(z)− f̃(z)|+ hf (arg z)|z|ρ/ log(10)).

(23)

This function may be viewed as an approximation of the number of signifi-
cant decimal digits achieved by the approximation f̃ of f on K except for neigh-
bourhoods of the zeros of f . We hereby replace the more accurate relative error

− log10

∣∣∣(f(z)− f̃(z))/f(z)
∣∣∣ by

− log10

∣∣∣∣∣ f(z)− f̃(z)

ehf (arg z)|z|ρ

∣∣∣∣∣ = − log10 |f(z)− f̃(z)|+ hf(arg z)|z|ρ/ log(10) ,

(24)

since in this way we can avoid problems obviously occurring near the zeros of f . On
the other hand, sd(K) is a more suitable approximation of the number of significant

decimal digits than the absolute error − log10 ||f − f̃ ||K , since the error in sd(K) is
normalized in sectors where f grows or decreases exponentially fast.
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The numerical calculations were carried out in double precision Fortran, which
gives a maximal accuracy of 16 decimal digits. As “exact” functions f we used
certain high degree Taylor sections.

1. Confluent hypergeometric functions. In our first numerical example we sup-
pose f to be a confluent hypergeometric function

K(a, c; z) :=
∞∑
ν=0

(a)ν z
ν

(c)νν!
,

where (a)0 := 1 and

(a)ν := a(a+ 1) · · · (a+ ν − 1) (ν ∈ N)

is Pochhammer’s notation. The confluent hypergeometric functions are of order 1,
type 1, and have (for a 6= c) indicator function

h(ϑ) =

{
cos(ϑ), if |ϑ| ≤ π/2
0, else

with τ =
1

π
.

We apply the RG-method for the two cases M = {1} and M = {1, 2}.
If M = {1}, then the minimax problem (20) has the solution

Q1(z) = z/2 and τ(Q1) = 1/2.

Since ρ = 1 and M = {1}, the functions ϕn = e−Q1 given by (15) are independent
of n and the power series of fe−Q1 is given by

f(z)e−Q1(z) = K(a, c; z)e−z/2 =
∞∑
ν=0

zν

(
(−1)ν

2ν ν!

ν∑
k=0

(
ν

k

)
(−2)k

(a)k
(c)k

)
.

(25)

If we replace for K = ∆r the Taylor sections Sn(f) by ez/2 Sn(fe−Q1)(z) or if
we replace for K = [a, b] the Tschebyscheff sections Tn(f) by ez/2 Tn(fe−Q1)(z)
then, according to Theorems 1 and 5, we get an (asymptotic) acceleration factor of

(τ(Q1)/τ)n = (1/2)n .

As noted above, for M = {1} the RG-method coincides with the method intro-
duced by Gabutti and Lyness [8] for the case of the Taylor sections. They find the
polynomial Q1 by “Symmetrization” of the indicator diagram of f , which is [0, 1]
here.

Besides the use of Taylor sections, an efficient method for evaluating K(1, c; z)
for complex z is given by the continued fractions expansion

K(1, c; z) =
a1

1+

a2z

1+

a3z

1+
. . .(26)

where a1 = 1, a2 = −1/c and

a2k+1 =
k

(c+ 2k − 2)(c+ 2k − 1)
, a2k+2 = − c+ k − 1

(c+ 2k − 1)(c+ 2k)

(see for example [16]). As is well-known, the approximants of (26) form a stair step
sequence in the Padé table of K(1, c; z), that is, the n-th approximant

fn(z) =
a1

1+

a2z

1+
. . .

anz

1
(27)
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coincides with the
([
n−1

2

]
,
[
n
2

])
-degree Padé approximation of K(1, c; ·). As may

be found in [6], the asymptotic rate of convergence of the (m,m)-degree Padé
approximations Rm of K(1, c; ·) is given by

lim sup
m→∞

(2m) ||K(1, c; ·)−Rm||1/2m∆r
= er/2.

Thus, for n = 2m+ 1 we find

lim sup
n→∞

n ||K(1, c; ·)− fn||1/n∆r
= er/2.

(Actually, the same is true for arbitrary n.) This is the same rate as for the Taylor
sections Sn(fϕ(1)) for f(z) = K(1, c; z). Since the sum of the numerator and
denominator polynomial degree of fn is (essentially) n, once the coefficients are
stored, the effort for evaluating fn and Sn(fe−Q1) is essentially the same.

In the case M = {1, 2} the minimax problem (20) is approximately solved by

Q(z) =
z

2
+

z2

4
√

2

and this solution also seems to be exact (added in proof: it is exact, as was told to
me by K. Petras). We find

τ(Q) =
1

2
√

2
= 0.35 . . . ,

which, according to (14) and (15), yields

ϕn(z) = ϕn,Q(z) = exp(−z
2
− z2

16n
) .

Thus, if we use the polynomial Q instead of Q1, we achieve a further acceleration
factor of (τ(Q)/τ(Q1))n = (1/

√
2)n. Moreover, since τ(Q)/τ = π/(2

√
2) ≈ 1.1 does

not differ essentially from 1, it is of little interest to consider any further case of M .
In our test example we consider the (besides the exponential function) most

prominent member K(1
2 ,

3
2 ; ·) of the class of confluent hypergeometric functions,

which is the essential ingredient of the error function by

erf(z) =
2z√
π
K(

1

2
,

3

2
;−z2) .

Figure 1 shows sd(∆r) as a function of r for f̃(z) = ez/2S12(fe−Q1)(z) (RG1) and

f̃ = ϕ−1
12 S12(fϕ12) (RG2) as well as for f̃ = S12(f), the 12-th Taylor section of f

(TS).

We have added sd(∆r) also for f̃(z) = ezf12(−z), where f12 is the continued
fractions approximant (27) of K(1, 3

2 ; z) (CF ). (By Kummer’s first identity we

have K(1
2 ,

3
2 , z) = ezK(1, 3

2 ;−z).)
Since (0.5)12 ≈ 10−3.6 and (0.35)12 ≈ 10−5.5, we can expect 3-4 extra significant

decimal digits for RG1 and 5-6 extra significant decimal digits for RG2. Figure 1
shows that these acceleration factors are actually achieved. As we have seen above,
the asymptotic rate of convergence for RG1 is the same as for CF , but actually for
small values of n the method RG1 turns out to be somewhat more accurate.

Table 1 shows the values of sd(K) for several intervals K for f̃(z) =

ez/2T10(fe−Q1)(z) (RG1) and f̃ = ϕ−1
10 T10(fϕ10) (RG2) as well as for the Tscheby-

scheff section T10(f) of f (TSCHS).
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Figure 1. sd(∆r) for f = K(1/2, 3/2; ·)

Table 1. sd(K) for f = K(1/2, 3/2; ·)

Interval TSCHS RG1 RG2

K = [−2, 2] 8.6 11.4 12.9
K = [0, 4] 7.7 11.9 12.7
K = [−4, 0] 9.4 10.9 12.8

Since (0.5)10 ≈ 10−3 and (0.35)10 ≈ 10−4.5, we can expect about 3 extra decimal
digits in the RG1 case and about 4-5 extra decimal digits in the RG2 case. For
K = [−2, 2], this acceleration is realized. We find that Tn(f) behaves for small n
on K = [−4, 0] better than theoretically expected and on K = [0, 4] not as good
as theoretically expected. Thus, the RG-method is somewhat more effective in the
case K = [0, 4].

It has to be noted that besides the computation of a polynomial (of degree
12 or 10 in our examples), the RG1- and the RG2-method, as the method CF ,
require an additional evaluation of the exponential function. However, since in
most algorithms for the complex error function the so-called Faddeeva function ω
is computed instead of erf (see for example [11], [23], [29]), one has to multiply by
an exponential term anyway, so that there may be no extra effort.

For example in the algorithm given in [23], which seems to be the state of the
art (cf. [29]), ω is computed by truncation of the power series in

ω(z) = e−z
2

(
1 +

2i√
π

∞∑
ν=0

z2ν+1

(2ν + 1)ν!

)
= e−z

2

(
1 +

2iz√
π
K(

1

2
,

3

2
; z2)

)
for z in a certain neighbourhood of the origin (and in the first quadrant). The
extra evaluation of the exponential function in the case of the RG1-method may
be avoided by computing with f(w)e−Q1(w) = K(1

2 ,
3
2 ;w)e−w/2 the approximation(

e−z
2/2
)2

+
2ize−z

2/2

√
π

Sn(fe−Q1)(z2)
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of ω(z). So, storing the coefficients of fe−Q1 (see (25)) and evaluating Sn(fe−Q1)(z2)
for example by Horner’s algorithm may be an interesting alternative in the algo-
rithm given in [23]. The same could be true for the RG2-method, where the higher
speed of the polynomial approximations stands against one extra evaluation of the
exponential function and the disadvantage that fϕn depends on n.

2. Bessel functions. In our second numerical example we are concerned with the
Bessel functions Jλ and Yλ. A fundamental system of Bessel’s differential equation
is given by

Jλ(z) =
(z

2

)λ ∞∑
ν=0

(−z2)ν

ν! Γ(λ + ν + 1) 4ν
=

1

Γ(λ+ 1)

(z
2

)λ ∞∑
ν=0

(−z2)ν

(λ+ 1)ν ν! 4ν
,

the Bessel function of order λ of first kind, and the Bessel function of order λ of
second kind Yλ, defined by

Yλ(z) =
Jλ(z) · cos(λπ) − J−λ(z)

sin(λπ)

for λ /∈ Z. Thus, for the evaluation of Jλ and Yλ in the case λ /∈ Z it is essential to
compute

fλ(z) = 0F1(λ+ 1;
z

4
) =

∞∑
ν=0

zν

(λ + 1)ν ν! 4ν
.

The functions fλ are of order ρ = 1/2 and type τ = 1 with indicator function

hfλ(ϑ) = h(ϑ) = cos(ϑ/2).

For M = {1}, the minimax problem (20) has the solution

Q1(z) =
z

2
√

2
and τ(Q1) =

1√
2

as may be seen by some elementary calculus. According to Theorems 1 and 5 we
achieve an acceleration factor of

τ(Q1)2n = (1/2)n

if we replace the Taylor sections Sn(fλ) by ϕ−1
n Sn(fλϕn) or if we replace the

Tschebyscheff sections Tn(fλ) by ϕ−1
n Tn(fλϕn). By (14) and (15) we obtain

ϕn(z) = exp(− z

8n
).

Therefore, the Taylor sections Sn(fλϕn) may be explicitly computed as

Sn(fλϕn)(z) =
n∑
ν=0

zν

(
(−1)ν

ν!(8n)ν

ν∑
k=0

(
ν

k

)
(−1)k(8n)k

(λ+ 1)k

)
.

Figure 2 shows sd(∆r) as a function of r for

f1/2(z) = 0F1(
3

2
;
z

4
) =

sinh(
√
z)√

z

and f̃ = ϕ−1
10 S10(f1/2 ϕ10) (RG) as well as f̃ = S10(f1/2) (TS).

Since (0.5)10 ≈ 10−3, we can expect about 3 extra significant decimal digits for
RG compared to TS. The numerical results show that the (asymptotic) acceleration
factor is (at least) realized even for small n. It has to be remarked that, as in the
first example, in the RG-case besides the evaluation of a polynomial (here of degree
10) an extra calculation of ϕ−1

n (z) = exp(z/8n) has to be carried out. However,
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Figure 2. sd(∆r) for f1/2

since the computation of Jλ requires also the calculation of the factor zλ, which
in the case λ ∈ C \ Z is computed as exp(λ log z), the factor exp(z/8n) may be
integrated into this evaluation of the exponential.

Of course, a similar argumentation applies to the case of an interval and the
corresponding Tschebyscheff sections Tn. On this “real-variable case” we will focus
our attention now.

For λ ∈ N0, the Bessel functions of second kind are given by

Yλ(z) =
2

π
Jλ(z)

(
γ + log

z

2

)
− 1

π
(
z

2
)λ

1

Γ(λ+ 1)

[
(ψ0 + ψλ) ∗ fλ

]
(−z2)

− 1

π

(z
2

)−λ λ−1∑
k=0

(λ− k − 1)

k!

(z
2

)2k

.

Here, γ is Euler’s constant and

ψm(z) :=
∞∑
k=0

zk

(
m+k∑
`=1

1

`

)
,

where
∑
φ

:= 0, and ∗ denotes the Hadamard product of power series (see for example

[14], 9.7). Thus, the evaluation of Yλ for λ ∈ N0 requires a further essential
computation of

gλ := (ψ0 + ψλ) ∗ fλ,
for which it may also be shown that

hgλ = hfλ = h .

In many applications (for example series expansions in Bessel functions) one needs
arrays {J0(z), . . . , JN (z)} and {Y0(z), . . . YN (z)} of Bessel functions of first and
second kind. Such arrays are usually computed by recurrence relations. Since the
2-term recurrence in ascending order

Jλ+1(z) =
2λ

z
Jλ(z)− Jλ−1(z)
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is in general numerically unstable, one applies recurrence in descending order for
the computation of Bessel functions of the first kind Jλ. This leads to the so-called
Miller algorithm (cf. [28]). On the contrary, Bessel functions of the second kind Yλ
may be computed stably by using the recurrence formula in ascending order

Yλ+1(z) =
2λ

z
· Yλ(z)− Yλ−1(z).

Thus it is of fundamental importance to find effective methods for the calculation
of Y0 and Y1. As we have seen above, the functions Y0 and Y1 are essentially built
up from the four entire functions of order 1/2

f0 = 0F1(1;
·
4

) , f1 = 0F1(2;
·
4

)

and

g0 = 2ψ0 ∗ f0 , g1 = (ψ0 + ψ1) ∗ f1

all having indicator function h. Therefore, if we apply the RG-method, one poly-
nomial Q applies to f0, f1, g0 and g1. As in the case λ ∈ C \Z, we get for M = {1}

Q1(z) =
z

2
√

2
and τ(Q1) =

1√
2
.

In the numerical examples for the evaluation of f0, f1, g0 and g1 we restrict ourselves
to the real variable case, namely K is one of the intervals K1 = [−50, 0] and
K2 = [−100, 0]. Intervals on the negative half axis play the most important role
since approxmations of f0, f1, g0 and g1 on the negative half axis are needed for
the approximation of Y0 and Y1 on the positive real axis. In our examples of
K1 = [−50, 0] and K2 = [−100, 0], respectively, the approximations of f0, f1, g0

and g1 yield approximations of Y0 and Y1 on K̃1 = (0,
√

50] and K̃2 = (0, 10],
respectively.

Tables 2–5 show the approximations of the significant decimal digits sd(K1) and
sd(K2) for the functions f ∈ {f0, f1, g0, g1} and the approximants T10(f) (TSCHS)
and ϕ−1

10 T10(f ϕ10).
The numerical results show that the expected acceleration factor (0.5)10 ≈ 10−3

is actually achieved.
Besides the evaluation of a polynomial of degree 10, the RG-method requires

the computation of the exponential factor ϕ−1
10 (z) = exp(z/80). However, the ex-

tra evaluation of the exponential function need only be carried out once for the
approximation of f0, f1, g0 and g1.

Although we have here only considered the real-variable case, similar results may
be obtained for K = ∆r. Moreover, in [21] the RG-method is also applied to Bessel
functions by using a sequence of multipliers (ϕn)n consisting of rational functions,
and to the Airy function.

Table 2. sd(K) for f0

Interval TSCHS RG

K1 9.7 12.7
K2 6.6 9.3
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Table 3. sd(K) for f1

Interval TSCHS RG

K1 10.7 14.7
K2 7.6 11.1

Table 4. sd(K) for g1

Interval TSCHS RG

K1 8.9 11.8
K2 5.8 8.4

Table 5. sd(K) for g1

Interval TSCHS RG

K1 10.0 13.7
K2 6.9 10.0

Finally, we mention the articles [30] and [22] where an alternative method for
convergence acceleration of entire functions of finite order is described.
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