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Abstract
We introduce a proximal version of the stochas-
tic dual coordinate ascent method and show how
to accelerate the method using an inner-outer it-
eration procedure. We analyze the runtime of the
framework and obtain rates that improve state-
of-the-art results for various key machine learn-
ing optimization problems including SVM, logis-
tic regression, ridge regression, Lasso, and multi-
class SVM. Experiments validate our theoretical
findings.

1. Introduction
We consider the following generic optimization problem
associated with regularized loss minimization of linear pre-
dictors: Let X1, . . . , Xn be matrices in Rd×k (referred to
as instances), let φ1, . . . , φn be a sequence of vector con-
vex functions defined on Rk (referred to as loss functions),
let g(·) be a convex function defined on Rd (referred to as
a regularizer), and let λ ≥ 0 (referred to as a regularization
parameter). Our goal is to solve:

min
w∈Rd

P (w) where P (w) =

[
1

n

n∑
i=1

φi(X
>
i w) + λg(w)

]
.

(1)
For example, in ridge regression the regularizer is g(w) =
1
2‖w‖

2
2, the instances are column vectors, and for every i

the i’th loss function is φi(a) = 1
2 (a−yi)2, for some scalar

yi.

Let w∗ = argminw P (w) (we will later make assumptions
that imply that w∗ is unique). We say that w is ε-accurate if
P (w)−P (w∗) ≤ ε. Our main result is a new algorithm for
solving (1). If g is 1-strongly convex and each φi is (1/γ)-
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smooth (meaning that its gradient is (1/γ)-Lipschitz), then
our algorithm finds, with probability of at least 1 − δ, an
ε-accurate solution to (1) in time

Õ

(
d

(
n+ min

{
1

λ γ
,

√
n

λ γ

}))
.

This applies, for example, to ridge regression and to logistic
regression with L2 regularization. The Õ notation hides
constants and logarithmic terms.

Intuitively, we can think of 1
λγ as the condition number of

the problem. If the condition number is O(n) then our
runtime becomes Õ(dn). This means that the runtime is
nearly linear in the data size. This matches the recent result
of Shalev-Shwartz & Zhang [21], Le Roux et al. [13], but
our setting is significantly more general. When the condi-
tion number is much larger than n, our runtime becomes
Õ(d

√
n
λ γ ). This significantly improves over the result of

[21, 13]. It also significantly improves over the runtime of
accelerated gradient descent due to Nesterov [16], which is
Õ(dn

√
1
λ γ ).

By applying a smoothing technique to φi, we also derive
a method that finds an ε-accurate solution to (1) assuming
that each φi is O(1)-Lipschitz, and obtain the runtime

Õ

(
d

(
n+ min

{
1

λ ε
,

√
n

λ ε

}))
.

This applies, for example, to SVM with the hinge-loss. It
significantly improves over the rate d

λε of SGD (e.g. [23]),
when 1

λε � n.

We can also apply our results to non-strongly convex reg-
ularizers (such as the L1 norm regularizer), or to non-
regularized problems, by adding a slight L2 regularization.
For example, for L1 regularized problems, and assuming
that each φi is (1/γ)-smooth, we obtain the runtime of

Õ

(
d

(
n+ min

{
1

ε γ
,

√
n

ε γ

}))
.
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This applies, for example, to the Lasso problem, in which
the goal is to minimize the squared loss plus an L1 regular-
ization term.

To put our results in context, in Table 1 we specify the
runtime of various algorithms (while ignoring constants
and logarithmic terms) for three key machine learning ap-
plications; SVM in which φi(a) = max{0, 1 − a} and
g(w) = 1

2‖w‖
2
2, Lasso in which φi(a) = 1

2 (a − yi)
2

and g(w) = σ‖w‖1, and Ridge Regression in which
φi(a) = 1

2 (a− yi)2 and g(w) = 1
2‖w‖

2
2. Additional appli-

cations, and a more detailed runtime comparison to previ-
ous work, are given in Section 4. In the table, SGD stands
for Stochastic Gradient Descent, and AGD stands for Ac-
celerated Gradient Descent.

Technical contribution: Our algorithm combines two
ideas. The first is a proximal version of stochastic dual co-
ordinate ascent (SDCA).1 In particular, we generalize the
recent analysis of [21] in two directions. First, we allow the
regularizer, g, to be a general strongly convex function (and
not necessarily the squared Euclidean norm). This allows
us to consider non-smooth regularization function, such as
the L1 regularization. Second, we allow the loss func-
tions, φi, to be vector valued functions which are smooth
(or Lipschitz) with respect to a general norm. This gen-
eralization is useful in multiclass applications. As in [21],
the runtime of this procedure is Õ

(
d
(
n+ 1

λγ

))
. This

would be a nearly linear time (in the size of the data) if
1
λγ = O(n). Our second idea deals with the case 1

λγ � n
by iteratively approximating the objective function P with
objective functions that have a stronger regularization. In
particular, each iteration of our acceleration procedure in-
volves approximate minimization of P (w) + κ

2 ‖w − y‖
2
2,

with respect to w, where y is a vector obtained from pre-
vious iterates and κ is order of 1/(γn). The idea is that
the addition of the relatively strong regularization makes
the runtime of our proximal stochastic dual coordinate as-
cent procedure be Õ(dn). And, with a proper choice of y
at each iteration, we show that the sequence of solutions
of the problems with the added regularization converge to
the minimum of P after

√
1
λγn iterations. This yields the

overall runtime of d
√

n
λγ .

Additional related work: As mentioned before, our first
contribution is a proximal version of the stochastic dual co-

1Technically speaking, it may be more accurate to use the term
randomized dual coordinate ascent, instead of stochastic dual co-
ordinate ascent. This is because our algorithm makes more than
one pass over the data, and therefore cannot work directly on dis-
tributions with infinite support. However, following the conven-
tion in the prior machine learning literature, we do not make this
distinction.

ordinate ascent method and extension of the analysis given
in Shalev-Shwartz & Zhang [21]. Stochastic dual coordi-
nate ascent has also been studied in Collins et al. [3] but
in more restricted settings than the general problem con-
sidered in this paper. One can also apply the analysis of
stochastic coordinate descent methods given in Richtárik &
Takáč [17] on the dual problem. However, here we are in-
terested in understanding the primal sub-optimality, hence
an analysis which only applies to the dual problem is not
sufficient.

The generality of our approach allows us to apply it for
multiclass prediction problems. We discuss this in detail
later on in Section 4. Recently, [11] derived a stochastic
coordinate ascent for structural SVM based on the Frank-
Wolfe algorithm. Although with different motivations, for
the special case of multiclass problems with the hinge-loss,
their algorithm ends up to be the same as our proximal dual
ascent algorithm (with the same rate). Our approach allows
to accelerate the method and obtain an even faster rate.

The proof of our acceleration method adapts Nesterov’s
estimation sequence technique, studied in Devolder et al.
[6], Schmidt et al. [18], to allow approximate and stochas-
tic proximal mapping. See also [1, 5]. In particular, it relies
on similar ideas as in Proposition 4 of [18]. However, our
specific requirement is different, and the proof presented
here is different and significantly simpler than that of [18].

There have been several attempts to accelerate stochastic
optimization algorithms. See for example [10, 9, 4] and the
references therein. However, the runtime of these methods
have a polynomial dependence on 1/ε even if φi are smooth
and g is λ-strongly convex, as opposed to the logarithmic
dependence on 1/ε obtained here. As in [13, 21], we avoid
the polynomial dependence on 1/ε by allowing more than
a single pass over the data.

2. Preliminaries
All the functions we consider in this paper are proper con-
vex functions over a Euclidean space. We use R to denote
the set of real numbers and to simplify our notation, when
we use R to denote the range of a function f we in fact
allow f to output the value +∞.

Given a function f : Rd → R we denote its conju-
gate function by f∗(y) = supx [y>x − f(x)] . Given a
norm ‖ · ‖P we denote the dual norm by ‖ · ‖D where
‖y‖D = supx:‖x‖P=1 y

>x. We use ‖ · ‖ or ‖ · ‖2 to denote
the L2 norm, ‖x‖ = x>x. We also use ‖x‖1 =

∑
i |xi|

and ‖x‖∞ = maxi |xi|. The operator norm of a ma-
trix X with respect to norms ‖ · ‖P , ‖ · ‖P ′ is defined as
‖X‖P→P ′ = supu:‖u‖P=1 ‖Xu‖P ′ .

A function f : Rk → Rd is L-Lipschitz with respect to a
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Problem Algorithm Runtime

SVM
SGD [23] d

λε

AGD [15] dn
√

1
λ ε

This paper d
(
n+ min{ 1

λ ε ,
√

n
λε}
)

Lasso

SGD and variants (e.g. [25, 24, 19]) d
ε2

Stochastic Coordinate Descent [20, 14] dn
ε

FISTA [16, 2] dn
√

1
ε

This paper d
(
n+ min{ 1ε ,

√
n
ε }
)

Ridge Regression

Exact d2n+ d3

SGD [13], SDCA [21] d
(
n+ 1

λ

)
AGD [16] dn

√
1
λ

This paper d
(
n+ min{ 1λ ,

√
n
λ}
)

Table 1. The runtime of various algorithms for three key machine learning problems.

norm ‖ · ‖P , whose dual norm is ‖ · ‖D, if for all a, b ∈ Rd,
we have ‖f(a) − f(b)‖D ≤ L ‖a − b‖P . A function f :
Rd → R is (1/γ)-smooth with respect to a norm ‖ · ‖P if
it is differentiable and its gradient is (1/γ)-Lipschitz with
respect to ‖ · ‖P . An equivalent condition is that for all
a, b ∈ Rd, we have f(a) ≤ f(b)+∇f(b)>(a−b)+ 1

2γ ‖a−
b‖2P . A function f : Rd → R is γ-strongly convex with
respect to ‖·‖P if f(w+v) ≥ f(w)+∇f(w)>v+ γ

2 ‖v‖
2
P .

It is well known that f is γ-strongly convex with respect to
‖ · ‖P if and only if f∗ is (1/γ)-smooth with respect to the
dual norm, ‖ · ‖D.

The dual problem of (1) is to maximize D(α) over α ∈
Rk×n where

D(α) =

[
1

n

n∑
i=1

−φ∗i (−αi)− λg∗
(

1
λn

n∑
i=1

Xiαi

)]
,

(2)
where αi is the i’th column of the matrix α, which forms a
vector in Rk.

We will assume that g is strongly convex which implies that
g∗(·) is continuous differentiable. If we define

v(α) =
1

λn

n∑
i=1

Xiαi and w(α) = ∇g∗(v(α)),

(3)
then it is known that w(α∗) = w∗, where α∗ is an opti-
mal solution of (2). It is also known that P (w∗) = D(α∗)
which immediately implies that for all w and α, we have
P (w) ≥ D(α), and hence the duality gap defined as
P (w(α)) − D(α) can be regarded as an upper bound on

both the primal sub-optimality, P (w(α)) − P (w∗), and
on the dual sub-optimality, D(α∗)−D(α).

3. Main Results
In this section we describe our algorithms and their analy-
sis. We start in Section 3.1 with a description of our prox-
imal stochastic dual coordinate ascent procedure (Prox-
SDCA). Then, in Section 3.2 we show how to accelerate
the method by calling Prox-SDCA on a sequence of prob-
lems with a strong regularization. Throughout this section
we assume that the loss functions are smooth. The case of
non-smooth but Lipschitz loss functions can be tackled by
applying a “smoothing” technique (see Nesterov [15]).

Due to the lack of space, all proofs are omitted from this ex-
tended abstract and can be found in the long version of the
paper [22]. The long version also contains detailed pseudo-
code of all the algorithms.

3.1. Proximal Stochastic Dual Coordinate Ascent

We now describe our proximal stochastic dual coordinate
ascent procedure for solving (1). Our results in this sub-
section holds for g being a 1-strongly convex function with
respect to some norm ‖ · ‖P ′ and every φi being a (1/γ)-
smooth function with respect to some other norm ‖ · ‖P .
The corresponding dual norms are denoted by ‖ · ‖D′ and
‖ · ‖D respectively.

The dual objective in (2) has a different dual vector associ-
ated with each example in the training set. At each iteration
of dual coordinate ascent we only allow to change the i’th
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column of α, while the rest of the dual vectors are kept in-
tact. We focus on a randomized version of dual coordinate
ascent, in which at each round we choose which dual vector
to update uniformly at random.

At step t, let v(t−1) = (λn)−1
∑
iXiα

(t−1)
i and let

w(t−1) = ∇g∗(v(t−1)). We will update the i-th dual vari-
able α(t)

i = α
(t−1)
i + ∆αi, in a way that will lead to a

sufficient increase of the dual objective. For the primal
problem, this would lead to the update v(t) = v(t−1) +
(λn)−1Xi∆αi, and therefore w(t) = ∇g∗(v(t)) can also
be written as

w(t) = argmin
w

[
−w>

(
n−1

n∑
i=1

Xiα
(t)
i

)
+ λg(w)

]
.

Note that this particular update is rather similar to the up-
date step of proximal-gradient dual-averaging method (see
for example Xiao [24]). The difference is on how α(t) is
updated.

The goal of dual ascent methods is to increase the dual
objective as much as possible, and thus the optimal way
to choose ∆αi would be to maximize the dual objective,
namely, we shall let ∆αi be the maximizer of

− 1

n
φ∗i (−(αi + ∆αi))− λg∗(v(t−1) + (λn)−1Xi∆αi).

However, for a complex g∗(·), this optimization problem
may not be easy to solve. To simplify the optimization
problem we can rely on the smoothness of g∗ (with respect
to a norm ‖ · ‖D′ ) and instead of directly maximizing the
dual objective function, we try to maximize a proximal ob-
jective which is a lower bound of the dual objective. This
yields maximization of the expression:

− φ∗i (−(αi + ∆αi))− w(t−1)>Xi∆αi −
1

2λn
‖Xi∆αi‖2D′ .

In general, this optimization problem is still not necessar-
ily simple to solve because φ∗ may also be complex. We
will thus also propose alternative update rules for ∆αi of
the form ∆αi = s(−∇φi(X>i w(t−1)) − α

(t−1)
i ) for an

appropriately chosen step size parameter s > 0. Our anal-
ysis shows that setting s = λnγ

R2+λnγ , for R being an upper
bound on ‖Xi‖D→D′ , still leads to a sufficient increase in
the dual objective. A detailed pseudo-code can be found in
[22].

The theorem below provides an upper bound on the number
of iterations required by our prox-SDCA procedure.

Theorem 1. The expected runtime required to minimize P
up to accuracy ε using procedure Prox-SDCA is

O

(
d

(
n+

R2

λγ

)
· log

(
D(α∗)−D(α(0))

ε

))
.

3.2. Acceleration

The Prox-SDCA procedure described in the previous sub-
section has the iteration bound of Õ

(
n+ R2

λγ

)
. This is

a nearly linear runtime whenever the condition number,
R2/(λγ), is O(n). In this section we show how to improve
the dependence on the condition number by an accelera-
tion procedure. In particular, throughout this section we
assume that 10n < R2

λγ . We further assume throughout this
subsection that the regularizer, g, is 1-strongly convex with
respect to the Euclidean norm, i.e. ‖u‖P ′ = ‖ · ‖2. This
also implies that ‖u‖D′ is the Euclidean norm. A gener-
alization of the acceleration technique for strongly convex
regularizers with respect to general norms is left to future
work.

The main idea of the acceleration procedure is to itera-
tively run the Prox-SDCA procedure, where at iteration t
we call Prox-SDCA with the modified objective, P̃t(w) =
P (w) + κ

2 ‖w − y(t−1)‖2, where κ is a relatively large
regularization parameter and the regularization is centered
around the vector

y(t−1) = w(t−1) + β(w(t−1) − w(t−2))

for some β ∈ (0, 1). That is, our regularization is centered
around the previous solution plus a “momentum term”
β(w(t−1) − w(t−2)).

The values of β and κ are set by our theoretical analy-
sis as follows: κ = R2/(γn) − λ, and β = 1−η

1+η where

η−1 =
√
−1 + κ/λ. At each “outer” iteration of the ac-

celeration procedure, we apply Prox-SDCA for approxi-
mately solving P̃t(w). We initialize the dual solution to
be the dual solution from the previous iteration, and we
require the accuracy of Prox-SDCA at iteration t to be

η
2(1+η−1)ξt−1 where ξ1 = (1 + η−2)(P (0) − D(0)) and
ξt = (1− η/2)t−1ξt−1.

A detailed pseudo-code of the algorithm is given in [22].
All the parameters of the algorithm are determined by our
theory.
Theorem 2. The total runtime required by accelerated
Prox-SDCA to guarantee an ε-accurate solution with prob-
ability of at least 1− δ is

O

(
d

√
nR2

λ γ
· log

(
1

δ

)
·

log

(
R2

λ γ n

) (
log

(
R2

λγn

)
+ log

(
P (0)−D(0)

ε

)))
.

4. Applications
In this section we specify our algorithmic framework to
several popular machine learning applications. In Sec-
tion 4.1 we start by describing several loss functions and
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deriving their conjugate. In Section 4.2 we describe several
regularization functions. Finally, in the rest of the subsec-
tions we specify our algorithm for Ridge regression, SVM,
and Lasso.

4.1. Loss functions

Squared loss: φ(a) = 1
2 (a − y)2 for some y ∈ R. The

conjugate function is

φ∗(b) = max
a

ab− 1

2
(a− y)2 =

1

2
b2 + yb

Hinge loss: φ(a) = [1 − a]+ := max{0, 1 − a}. The
conjugate function is

φ∗(b) = max
a

ab−max{0, 1− a} =

{
b if b ∈ [−1, 0]

∞ otherwise

Smooth hinge loss: This loss is obtained by smoothing
the hinge-loss. This loss is parameterized by a scalar γ > 0
and is defined as:

φ̃γ(a) =


0 a ≥ 1

1− a− γ/2 a ≤ 1− γ
1
2γ (1− a)2 o.w.

(4)

The conjugate function is

φ̃∗γ(b) =

{
b+ γ

2 b
2 if b ∈ [−1, 0]

∞ otherwise

It follows that φ̃∗γ is γ strongly convex and φ̃ is (1/γ)-
smooth. In addition, if φ is the vanilla hinge-loss, we have
for every a that φ(a)− γ/2 ≤ φ̃(a) ≤ φ(a) .

4.2. Regularizers

L2 regularization: The simplest regularization is the
squared L2 regularization

g(w) =
1

2
‖w‖22 .

This is a 1-strongly convex regularization function whose
conjugate is g∗(θ) = 1

2‖θ‖
2
2 . We also have∇g∗(θ) = θ .

For our acceleration procedure, we also use the L2 regular-
ization plus a linear term, namely,

g(w) =
1

2
‖w‖2 − w>z ,

for some vector z. The conjugate of this function is

g∗(θ) = max
w

[
w>(θ + z)− 1

2
‖w‖2

]
=

1

2
‖θ + z‖2 .

We also have
∇g∗(θ) = θ + z .

L1 regularization: Another popular regularization we
consider is the L1 regularization,

f(w) = σ ‖w‖1 .

This is not a strongly convex regularizer and therefore we
will add a slight L2 regularization to it and define the L1-
L2 regularization as

g(w) =
1

2
‖w‖22 + σ′ ‖w‖1 , (5)

where σ′ = σ
λ for some small λ. Note that λg(w) =

λ
2 ‖w‖

2
2 + σ‖w‖1 , so if λ is small enough (as will be for-

malized later) we obtain that λg(w) ≈ σ‖w‖1.

The conjugate of g is

g∗(v) = max
w

[
w>v − 1

2
‖w‖22 − σ′‖w‖1

]
.

The maximizer is also ∇g∗(v) and we now show how to
calculate it. We have

∇g∗(v) = argmax
w

[
w>v − 1

2
‖w‖22 − σ′‖w‖1

]
= argmin

w

[
1

2
‖w − v‖22 + σ′‖w‖1

]
A sub-gradient of the objective of the optimization problem
above is of the form w − v + σ′z = 0, where z is a vector
with zi = sign(wi), where if wi = 0 then zi ∈ [−1, 1].
Therefore, if w is an optimal solution then for all i, either
wi = 0 or wi = vi− σ′sign(wi). Furthermore, it is easy to
verify that if w is an optimal solution then for all i, if wi 6=
0 then the sign of wi must be the sign of vi. Therefore,
whenever wi 6= 0 we have that wi = vi − σ′sign(vi). It
follows that in that case we must have |vi| > σ′. And, the
other direction is also true, namely, if |vi| > σ′ then setting
wi = vi−σ′sign(vi) leads to an objective value whose i’th
component is

1

2
(σ′)

2
+ σ′(|vi| − σ′) ≤

1

2
|vi|2 ,

where the right-hand side is the i’th component of the ob-
jective value we will obtain by setting wi = 0. This leads
to the conclusion that ∇ig∗(v) = sign(vi) [|vi| − σ′]+ . It

follows that g∗(v) = 1
2

∑
i

(
[|vi| − σ′]+

)2
.

4.3. Ridge Regression

In ridge regression, we minimize the squared loss with L2

regularization. That is, g(w) = 1
2‖w‖

2 and for every i we
have that xi ∈ Rd and φi(a) = 1

2 (a−yi)2 for some yi ∈ R.
The primal problem is therefore

P (w) =
1

2n

n∑
i=1

(x>i w − yi)2 +
λ

2
‖w‖2 .
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The runtime of Prox-SDCA for ridge regression is

Õ

(
d

(
n+

R2

λ

))
,

where R = maxi ‖xi‖. This matches the recent results
of [13, 21]. If R2/λ � n we can apply the accelerated
procedure and obtain the improved runtime

Õ

(
d

√
nR2

λ

)
.

4.4. Lasso

In the Lasso problem, the loss function is the squared loss
but the regularization function is L1. That is, we need to
solve the problem:

min
w

[
1

2n

n∑
i=1

(x>i w − yi)2 + σ‖w‖1

]
, (6)

with a positive regularization parameter σ ∈ R+.

Consider the optimization problem of minimizing

P (w) =
1

2n

n∑
i=1

(x>i w − yi)2 + λ

(
1

2
‖w‖22 +

σ

λ
‖w‖1

)
,

(7)
for some λ > 0. This problem fits into our framework,
since now the regularizer is strongly convex. Furthermore,
if w∗ is an (ε/2)-accurate solution to the problem in (7),
then it is easy to verify that setting λ = ε(σ/ȳ)2 guarantees
that w∗ is an ε accurate solution to the original problem
given in (6).

Let us now discuss the runtime of the resulting method.
Denote R = maxi ‖xi‖ and for simplicity, assume that
ȳ = 1

2n

∑n
i=1 y

2
i = O(1). Choosing λ = ε(σ/ȳ)2, the

runtime of our method becomes

Õ

(
d

(
n+ min

{
R2

ε σ2
,

√
nR2

ε σ2

}))
.

It is also convenient to write the bound in terms of B =
‖w̄‖2, where, as before, w̄ is the optimal solution of the L1

regularized problem. With this parameterization, we can
set λ = ε/B2 and the runtime becomes

Õ

(
d

(
n+ min

{
R2B2

ε
,

√
nR2B2

ε

}))
.

The runtime of standard SGD is O(dR2B2/ε2) even in
the case of smooth loss functions such as the squared loss.
Several variants of SGD, that leads to sparser intermedi-
ate solutions, have been proposed (e.g. [12, 19, 24, 7,

8]). However, all of these variants share the runtime of
O(dR2B2/ε2), which is much slower than our runtime
when ε is small.

Another relevant approach is the FISTA algorithm of [2].
The shrinkage operator of FISTA is the same as the gradient
of g∗ used in our approach. It is a batch algorithm using
Nesterov’s accelerated gradient technique. For the squared

loss function, the runtime of FISTA is O
(
dn
√

R2B2

ε

)
.

This bound is worst than our bound by a factor of at least√
n.

Another approach to solving (6) is stochastic coordinate de-
scent over the primal problem. [19] showed that the run-
time of this approach is O

(
dnB2

ε

)
, under the assumption

that ‖xi‖∞ ≤ 1 for all i. Similar results can also be found
in [14].

For our method, the runtime depends onR2 = maxi ‖xi‖22.
If R2 = O(1) then the runtime of our method is much bet-
ter than that of [19]. In the general case, if maxi ‖xi‖∞ ≤
1 then R2 ≤ d, which yields the runtime of

Õ

(
d

(
n+ min

{
dB2

ε
,

√
ndB2

ε

}))
.

This is the same or better than [19] whenever d = O(n).

4.5. Linear SVM

Support Vector Machines (SVM) is an algorithm for learn-
ing a linear classifier. Linear SVM (i.e., SVM with linear
kernels) amounts to minimizing the objective

P (w) =
1

n

n∑
i=1

[1− x>i w]+ +
λ

2
‖w‖2 ,

where [a]+ = max{0, a}, and for every i, xi ∈ Rd.
This can be cast as the objective given in (1) by letting
the regularization be g(w) = 1

2‖w‖
2
2, and for every i,

φi(a) = [1− a]+, is the hinge-loss.

Let R = maxi ‖xi‖2. SGD enjoys the rate of O
(

1
λε

)
.

Many software packages apply SDCA and obtain the rate
Õ
(
n+ 1

λε

)
. We now show how our accelerated proximal

SDCA enjoys the rate Õ
(
n+

√
n
λε

)
. This is significantly

better than the rate of SGD when λε < 1/n. We note that
a default setting for λ, which often works well in practice,
is λ = 1/n. In this case, λε = ε/n� 1/n.

Our first step is to smooth the hinge-loss. Let γ = ε and
consider the smooth hinge-loss as defined in (4). Recall
that the smooth hinge-loss satisfies, for every a, φ(a) −
γ/2 ≤ φ̃(a) ≤ φ(a). Let P̃ be the SVM objective while
replacing the hinge-loss with the smooth hinge-loss. There-
fore, for everyw′ andw, P (w′)−P (w) ≤ P̃ (w′)−P̃ (w)+
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γ/2 . It follows that if w′ is an (ε/2)-optimal solution for
P̃ , then it is ε-optimal solution for P .

Denote R = maxi ‖xi‖. Then, the runtime of the resulting
method is

Õ

(
d

(
n+ min

{
R2

γ λ
,

√
nR2

γ λ

}))
.

In particular, choosing γ = ε we obtain a solution to the
original SVM problem in runtime of

Õ

(
d

(
n+ min

{
R2

ε λ
,

√
nR2

ε λ

}))
.

As mentioned before, this is better than SGD when 1
λε �

n.

5. Experiments
In this section we compare Prox-SDCA, its accelerated ver-
sion Accelerated-Prox-SDCA, and the FISTA algorithm of
[2], on L1 − L2 regularized loss minimization problems.

The experiments were performed on three large datasets
with very different feature counts and sparsity, which were
kindly provided by Thorsten Joachims (the datasets were
also used in [21]). These are binary classification prob-
lems, with each xi being a vector which has been normal-
ized to be ‖xi‖2 = 1, and yi being a binary class label of
±1. We multiplied each xi by yi and following [21], we
employed the smooth hinge loss, φ̃γ , as in (4), with γ = 1.
The optimization problem we need to solve is therefore to
minimize

P (w) =
1

n

n∑
i=1

φ̃γ(x>i w) +
λ

2
‖w‖22 + σ‖w‖1 .

In the experiments, we set σ = 10−5 and vary λ in the
range {10−6, 10−7, 10−8, 10−9}.

The convergence behaviors are plotted in Figure 1. In all
the plots we depict the primal objective as a function of
the number of passes over the data (often referred to as
“epochs”). For FISTA, each iteration involves a single pass
over the data. For Prox-SDCA, each n iterations are equiv-
alent to a single pass over the data. And, for Accelerated-
Prox-SDCA, each n inner iterations are equivalent to a sin-
gle pass over the data. For Prox-SDCA and Accelerated-
Prox-SDCA we implemented their corresponding stopping
conditions and terminate the methods once an accuracy of
10−3 was guaranteed.

It is clear from the graphs that Accelerated-Prox-SDCA
yields the best results, and often significantly outperform
the other methods. Prox-SDCA behaves similarly when λ

is relatively large, but it converges much slower when λ is
small. This is consistent with our theory. Finally, the rela-
tive performance of FISTA and Prox-SDCA depends on the
ratio between λ and n, but in all cases, Accelerated-Prox-
SDCA is much faster than FISTA. This is again consistent
with our theory.

6. Discussion and Open Problems
We have described and analyzed a proximal stochastic dual
coordinate ascent method and have shown how to accel-
erate the procedure. The overall runtime of the resulting
method improves state-of-the-art results in many cases of
interest.

There are two main open problems that we leave to future
research.

Open Problem 1. When 1
λγ is larger than n, the runtime

of our procedure becomes Õ
(
d
√

n
λγ

)
. Is it possible to

derive a method whose runtime is Õ
(
d
(
n+

√
1
λγ

))
?

Open Problem 2. Our Prox-SDCA procedure and its anal-
ysis works for regularizers which are strongly convex with
respect to an arbitrary norm. However, our acceleration
procedure is designed for regularizers which are strongly
convex with respect to the Euclidean norm. Is is possible to
extend the acceleration procedure to more general regular-
izers?
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Figure 1. Comparing Accelerated-Prox-SDCA, Prox-SDCA, and FISTA for minimizing the smoothed hinge-loss (γ = 1) with L1 −L2

regularization (σ = 10−5 and λ varies in {10−6, . . . , 10−9}). In each of these plots, the y-axis is the primal objective and the x-axis is
the number of passes through the entire training set. The three columns corresponds to the three data sets described in [21]. The methods
are terminated either if stopping condition is met (with ε = 10−3) or after 100 passes over the data.
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