
Accelerated Remotely Keyed Encryption

Stefan Lucks?

Theoretische Informatik
University of Mannheim, 68131 Mannheim A5, Germany

lucks@th.informatik.uni-mannheim.de

Abstract. Remotely keyed encryption schemes (RKESs) support fast
encryption and decryption using low-bandwidth devices, such as secure
smartcards. The long-lived secret keys never leave the smartcard, but
most of the encryption is done on a fast untrusted device, such as the
smartcard’s host.
This paper describes an new scheme, the length-preserving “accelerated
remotely keyed” (ARK) encryption scheme and, in a formal model, pro-
vides a proof of security. For the sake of practical usability, our model
avoids asymptotics.
Blaze, Feigenbaum, and Naor gave a general definition for secure RKESs
[3]. Compared to their length-preserving scheme, the ARK scheme is
more efficient but satisfies the same security requirements.

1 Introduction

A remotely keyed encryption scheme (RKES) distributes the computational bur-
den for a block cipher with large blocks between two parties, a host and a card.
We think of the host being a computer under the risk of being taken over by
an adversary, while the card can be a (hopefully tamper-resistant) smartcard,
used to protect the secret key. We do not consider attacks to break the tamper-
resistance of the smartcards itself. The host knows plaintext and ciphertext, but
only the card is trusted with the key.

An RKES consists of two protocols, one for encryption and one for decryption.
Given a β-bit input, either to encrypt or to decrypt, such a protocol runs like
this: The host sends a challenge value to the card, depending on the input, and
the card replies a response value, depending on both the challenge value and
the key. This exchange of values can be iterated. During one run of a protocol,
every challenge value may depend on the input and the previously given response
values, and the response values may depend on the key and the previous challenge
values. (In this paper, we disregard probabilistic RKESs, where challenge and/or
response values also may depend on random coin flips.)

? Supported by German Science Foundation (DFG) grant KR1521/3-1.

L. Knudsen (Ed.): FSE’99, LNCS 1636, pp. 112–123, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Accelerated Remotely Keyed Encryption 113

1.1 History

The notion of remotely keyed encryption is due to Blaze [2]. Lucks [5] pointed
out some weaknesses of Blaze’s scheme and gave formal requirements for the
security of RKESs:

(i) Forgery security: If the adversary has controlled the host for q−1 interactions,
she cannot produce q plaintext/ciphertext pairs.

(ii) Inversion security: An adversary with (legitimate) access to encryption must
not be able do decrypt and vice versa.

(iii) Pseudorandomness: The encryption function should behave randomly, for
someone neither having access to the card, nor knowing the secret key.

While Requirements (i) and (ii) restrict the abilities of an adversary with access
to the smartcard, Requirement (iii) is only valid for outsider adversaries, having
no access to the card. If an adversary could compute forgeries or run inversion
attacks, she could easily distinguish the encryption function from a random one.

1.2 Pseudorandomness – Towards a Better Definition

It is theoretically desirable that a cryptographic primitive always appears to
behave randomly for everyone without access to the key. So why not require
pseudorandomness with respect to insider adversaries?

In any RKES, the amount of communication between the host and the card
should be smaller than the input length, otherwise the card could just do the
complete encryption on its own. Since (at least) a part of the input is not handled
by the smartcard, and, for the same reasons, (at least) a part of the output is
generated by the host, an insider adversary can easily decide that the output
generated by herself is not random.

Recently, Blaze, Feigenbaum, and Naor [3] found a better formalism to define
the pseudorandomness of RKESs. Their idea is based on the adversary gaining
direct access to the card for a certain amount of time, making qh interactions with
the card. For the adversary having lost direct access to the card, the encryption
function should behave randomly. An attack is divided into two phases:

1. During the host phase (h-phase), the adversary is an insider, sends challenge
values to the card and learns the card’s response values. She may run through
the en- and the decryption protocol and may also deviate from the protocol
(note though, that the card always interprets the “next value” it reads as
the next challenge value, until the current protocol is finished).
At the end of the h-phase, the adversary loses direct access to the card, i.e.,
is no longer an insider.

2. In the distinguishing phase (d-phase), the adversary chooses texts and asks
for their en- or decryptions. The answers to these queries are either chosen
randomly, or by honestly en- or decrypting according to the RKES.
The adversary’s task is to distinguish between the random case and honest
encryption.

114 S. Lucks

Consider an adversary having encrypted the plaintext P ∗ and learned the corre-
sponding ciphertext C∗ during the h-phase. If she could ask for the encryption of
P ∗ or the decryption of C∗ during the d-phase, her task would be quite easy. In
the d-phase, we thus need to “filter” texts that appeared in the h-phase before.
But since the adversary may deviate from the protocol, it is not easy to formally
define which texts are to be filtered out. The authors of [3] require an arbiter
algorithm B to sort out up to qh texts. This algorithm need not actually be
implemented, it simply needs to exist. (The formal definition below looks quite
complicated. Readers with few interest in formalisms should keep in mind that
the arbiter B treats the special case that in the d-phase the adversary A asks for
values already known from the h-phase. As will become clear below, the arbiter
B for our scheme does exist and actually is quite simple.)

Throughout this paper, “random” always means “according to the uniform
probability distribution”. By x ⊕ y we denote the bit-wise XOR of x and y.

After that much discussion, we give the formal definitions (which are not
much different from the ones in [3]).

1.3 Definitions

A (length-preserving) RKES is a pair of protocols, one for en- and one for decryp-
tion, to be executed by a host and a card. The length of a ciphertext is the same
as that of the corresponding plaintext.

Let B be an algorithm, the “arbiter algorithm”, which is initialized with a
transcript of the communication between host and card during the h-phase.

During the host phase (h-phase), A may play the role of the host and exe-
cute both the card’s protocols up to qh times, together. A may send challenge
values to the card not generated according to the protocol and does learn the
corresponding response values.

During the distinguishing phase (d-phase), A chooses up to qd texts T as
queries and asks for the corresponding en- or decryptions.

W.l.o.g., we prohibit A to ask equivalent queries, i.e., to ask twice for the
encryption of T , to ask twice for the decryption of T , or to ask once for the
encryption of a T and some time before or after this for the decryption of the
corresponding ciphertext. (Encrypting under a length-preserving RKES is a per-
mutation, hence A doesn’t learn anything new from asking equivalent queries.)

Before the d-phase starts, a switch S is randomly set either to 0 or to 1. If
the arbiter B acts, A’s query is answered according to the RKES; B can act on
most qh queries.

Consider the queries B does not act on. The answers are generated depending
on S. Consider A asking for the en- or decryption of a text T ∈ {0, 1}β with
β > a. If S = 0, the response is evaluated according to the RKES. If S = 1, the
response is a random value in {0, 1}β .

At the end of the d-phase, A’s task is to guess S. A’s advantage advA is

advA =
∣∣ prob[“A outputs 1” |S = 1] − prob[“A outputs 1” |S = 0]

∣∣

Accelerated Remotely Keyed Encryption 115

By qh, we denote the number of interactions between the adversary A and the
card during the h-phase, by qd we denote the number of queries A asks during
the d-phase; q := qh + qd denotes the total query number.

A RKES is (t, q, e)-secure, if there exists an arbiter algorithm B such that
any t-time adversary A with a total query number of at most q has an advantage
of at most e.

1.4 Building Blocks and Security Assumptions

In this section, we describe the building blocks we use for our scheme. As will be
proven below, our scheme is secure if its building blocks are secure. Note that
definitions of standard cryptographic and complexity theoretic terms are left out
here; they can be found e.g. in [4].

By a and b with b ≥ a, we denote the blocksizes of our building blocks (while
our scheme itself is able to encrypt blocks which may grow arbitrarily large).
Note that a and b are important security parameters! We may use, say,
a 64-bit block cipher such as triple DES as pseudorandom permutation, but this
has significant consequences for the security of our scheme, even if the adversary
cannot break triple DES.

Our building blocks are
– an a-bit blockcipher E (i.e., a family of pseudorandom permutations EK

over {0, 1}a),
– a family of pseudorandom functions FK{0, 1}b −→ {0, 1}a (F may be a

b-bit blockcipher, if a < b we ignore the last b − a bits of the output),
– a hash function H : {0, 1}∗ −→ {0, 1}b, and
– a length-preserving stream cipher S : {0, 1}∗ −→ {0, 1}∗, depending on

an a-bit key. In practice, S may be an additive stream cipher, i.e., a
pseudorandom bit generator where each bit of the output is XOR-ed
with the plaintext (or ciphertext, if we think of S−1). Just as well, S
may be designed from the block cipher E, using a standard chaining
mode such as CBC.

For the analysis, we assume our building blocks (such as block ciphers) to
behave like their ideal counterparts (such as random permutations). This “ideal
world” view allows us to define the resistance of our scheme against adversaries
with unbound running time:

A RKES is (q, e)-secure, if any adversary A with a query-complexity of
at most q has an advantage of at most e.

Consider our RKES being (q, e)-secure in the ideal world, but not (t, q, e+ε)-
secure in the real world. If either t is large enough to be infeasible or ε ≥ 0 is
small enough to be negligible, the notion “(q, e)-secure” can still approximatively
describe the scheme’s true security. Otherwise, we have found an attack on (at
least) one of the underlying building blocks. Being (q, e)-secure for reasonable
values of q and e implies that the construction itself is sound.

116 S. Lucks

This is a standard argument for many cryptographic schemes, being compo-
sed from other cryptographic schemes and “provably secure”.

Our security assumptions are
1. EK is a random permutation over {0, 1}a, and for K 6= K ′ the permu-

tations EK and EK′ are independent.
2. FK{0, 1}b −→ {0, 1}a, is a random function, i.e., a table of 2b random

values in {0, 1}a. Similarly to above, two random functions depending
on independently chosen keys are assumed to be independent.

3. H is collision resistant, i.e., the adversary does not know and is unable to
find a pair (V, V ′) ∈ {0, 1}∗ with V 6= V ′ and H(V) 6= H(V ′) if V 6= V ′.

4. SK is a length-preserving stream cipher, depending on a key K ∈ {0, 1}a.
I.e., for every number n, every plaintext T ∈ {0, 1}n, every set of keys
L = {K1, . . . , Kr} ⊆ {0, 1}a and every key K ∈ {0, 1}a, K 6∈ L, the
value SK(T) ∈ {0, 1}n is a random value, independent of T , SK1(T), . . . ,
SKn(T). Similarly, the value S−1(T) is a random value, independent of
S−1

K1
(T), . . . , S−1

Kn
(T).

We do not specify the key sizes of E and F . We implicitly assume the security
level of E and F (and thus their key size) to be long enough that breaking either
of them is infeasible.

In the world of complexity theoretical cryptography, the usage of asympto-
tics is quite common. While this may simplify the analysis, it often makes the
results less useful in practice. From a proof of security, the implementor of a
cryptographic scheme may conclude the scheme to be secure if the security pa-
rameters are chosen large enough – but such a result provides little help to find
out how large is “large enough”. (Often, the implementor can find this out by
very diligently reading and understanding the proof, though.)

This paper avoids asymptotics. If we call an amount of time to be “infeasible”,
we are talking about a fixed amount of computational time. What actually is
considered infeasible depends on the implementors/users of the scheme and their
threat model. Similarly, we use the word “negligible”.

2 The ARK Encryption Scheme

Using the above building blocks, we describe the accelerated remotely keyed
(ARK) encryption scheme. For the description, we use two random permutati-
ons E1, E2 over {0, 1}a and two random functions F1, F2 : {0, 1}b −→ {0, 1}a.
In practice, these components are realized pseudorandomly, depending on four
different keys.

The encryption function takes any β-bit plaintexts, encrypts it, and outputs
a β-bit ciphertext. The blocksize β can take any value β ≥ a.

We represent the plaintext by (P, Q) with P ∈ {0, 1}a and Q ∈ {0, 1}β−a;
similarly we represent the ciphertext by (C, D) with C ∈ {0, 1}a and D ∈
{0, 1}β−a. For the protocol description, we also consider intermediate values
X, Z ∈ {0, 1}b and Y ∈ {0, 1}a. The encryption protocol works as follows:

Accelerated Remotely Keyed Encryption 117

�
�

���@
@

@@ -

6 6

D

��
��

��
��

- - - -- -

6 6

6

6

?
6

6

CYP

Q

ZX

H S H

F1 F2

E1 E2⊕⊕
Card

Fig. 1. The ARK encryption protocol.

1. Given the plaintext (P, Q), the host sends P and X := H(Q) to the card.
2. The card responds with Y := E1(P) ⊕ F1(X).
3. The host computes D := SY (Q).
4. The host sends Z := H(D) to the card.
5. The card responds with C := E2(Y ⊕ F2(Z)).

Decrypting (C, D) is done like this:

1. The host sends C and Z = H(D) to the card.
2. The card responds with Y = E−1

2 (C) ⊕ F2(Z).
3. The host computes Q = SY (D).
4. The host sends X = H(Q) to the card.
5. The card responds with P = E−1

1 (Y ⊕ F1(X)).

Note that by first encrypting any plaintext (P, Q) under any key and then decryp-
ting the result the ciphertext under the same key, one gets (P, Q) again.

3 The Security of the ARK Scheme

By Pi, Xi, Yi, Zi, and Ci we denote the the challenge and response values of
the i-th protocol execution, which may be either a en- or a decryption protocol.
The protocol can either be executed in the h-phase, indicated by i ∈ {1, . . . , qh},
or in the d-phase, indicated by i ∈ {qh + 1, . . . , q}. A value Yi is “unique”, if
Yi 6∈ {Y1, . . . , Yi−1, Yi+1, . . . , Yq}. The ARK schemes security greatly depends on
the values Yk in the d-phase being unique, except when B acts (“in the d-phase”

118 S. Lucks

indicates k > qh). If the k-th en- or decryption query is answered according to
the ARK scheme, and if Yk is unique, then the answer is almost a random value.

Theorem 1. For every number q and e = 1.5 ∗ q2/2a, the ARK scheme is a
(q, e)-secure length-preserving RKES.

Proof. For the proof, we first define the arbiter algorithm, and then we bound
the advantage of the adversary.

The arbiter algorithm B:
For i ∈ {1, . . . , qh}, the arbiter B compiles a list L1 of all the pairs (Pi, Xi) and
another list L2 of all pairs (Ci, Yi). These can be deduced from the transcript.

If, in the d-phase, A asks for the encryption of a plaintext (Pj , Qj) with
j ∈ {qh +1, . . . , q}, the first challenge value for the card is the pair (Pj , Xj) with
Xj = H(Qj). Only if the pair (Pj , Xj) is contained in the list L1, B acts on
that query, and the answer is generated according to the encryption protocol.
Similarly, if A asks for the decryption of a ciphertext (Cj , Dj) in the d-phase,
and if the corresponding challenge value (Cj , Zj) is contained in L2, B acts and
the answer is generated according to the decryption protocol.

Now we argue, that B does not act on more than qh queries. Due to Assump-
tion 3, i.e., due to the collision resistance of H, the adversary A does not know
more than one value Q with H(Q) = Xi. For the same reason, A does not know
more than one value D with H(D) = Zi. Hence for every i ∈ {1, . . . , qh}, A can
ask no more than one plaintext (Pj , Qj) to be encrypted during the d-phase,
where the corresponding pair (Pj , Xj) would be found in the list L1. Similarly,
we argue for decryption queries. Finally, consider a plaintext T = (Pj , Qj) and
the corresponding ciphertext T ′ = (Cj , Dj). Asking for the encryption of T is
equivalent to asking for the decryption of T ′, and we only regard non-equivalent
queries. We observe: ((Pj , H(Qj)) is in the list L1) ⇔ ((Cj , H(Dj)) is in L2).

The advantage of A:
In short, the remainder of the proof is as follows:

Both for S = 0 and S = 1, we define what it means for the the k-th query
(k ∈ {qh + 1 . . . , q}) to be “badk”. We define sets Uk and show that if
query k is not badk, the response is a uniformly distributed random
value in Uk. Further, we evaluate the probability that the k-th query is
badk. We write bad∗ if any query k in the d-phase is badk. If not bad∗,
then all the answers to A are randomly chosen according to a probability
distribution induced by the sets Uk, and thus do not depend on S. This
allows us to bound the advantage of A:

advA ≤ prob[bad∗|S = 0] + prob[bad∗|S = 1].

Let k > qh and A be asking for the encryption of a plaintext (Pk, Qk) ∈ {0, 1}a×
{0, 1}β−a.

We assume (Pk, Xk) 6∈ {(P1, X1), . . . , (Pk−1, Xk−1)}. If j ∈ {1, . . . , qh} and
(Pj , Xj) = (Pk, Xk), then B acts and the answer to this query does not depend

Accelerated Remotely Keyed Encryption 119

on S. If j ∈ {qh+1 . . . , k−1}, then (Pj , Qj) 6= (Pk, Qk), because the j-th and the
k-th query are not equivalent. If (Pj , Qj) 6= (Pk, Qk), then (Pj , Xj) = (Pk, Xk)
would indicate a collision Qj 6= Qk for H, something we assume A can’t find.

Depending on previous protocol executions and responses, we define the set
Uk ⊆ {0, 1}a × {0, 1}β−a of ciphertexts:

Uk :=
({0, 1}a − {C1, . . . , Ck−1}

) × ({0, 1}β−a
)
.

For S = 1, the ciphertext (Ck, Dk) is a uniformly distributed random value
in {0, 1}a × {0, 1}β−a. We define badk :⇔ Ck ∈ {C1, . . . , Ck−1}. Obviously, if
not badk, then (Ck, Dk) is a uniformly distributed random value in Uk. Further:

prob[badk|S = 1] ≤ k − 1
2a

.

Now, we concentrate on S = 0. Here, we define

badk :⇔ (
Yk ∈ {Y1, . . . , Yk−1} or Ck ∈ {C1, . . . , Ck−1}

)

Obviously, if not badk, then (Ck, Dk) ∈ Uk. Also, if not badk, then Yk is not
in {Y1, . . . , Yk−1}, and then SYk

(Q) is a uniformly distributed random value in
{0, 1}β−a. Further, if Zj = Zk, then due to Yj 6= Yk, we have Cj 6= Ck. Apart
from this restriction, Ck is a uniformly distributed random value in {0, 1}a, and
especially: if not badk, the ciphertext (Ck, Dk) is uniformly distributed in Uk.

If Xj 6= Xk, then F1(Xj) and F1(Xk) are two independent random values
in {0, 1}b, and so are Yj and Yk. If (Pk, Xk) 6∈ {(P1, X1), . . . , (Pk−1, Xk−1)} for
every j ∈ {1, . . . , k − 1}, we have Pj 6= Pk if Xj = Xk. In this case Yj 6= Yk.
Hence prob[Yj = Yk] ≤ 2−a. Similarly, we get prob[Cj = Ck|Yj 6= Yk] ≤ 2−a.
This gives

prob[badk|S = 0] ≤ 2
k − 1
2a

.

Thus:

prob[bad∗|S = 1] ≤
q∑

k=qh+1

prob[badk|S = 1] ≤ 1
2

q2

2a
,

and

prob[bad∗|S = 0] ≤
q∑

k=qh+1

prob[badk|S = 0] ≤ q2

2a
.

Due to the symmetric construction of the ARK encryption protocol, the same
argument applies if A, as the k-th query, asks for the decryption of the ciphertext
(Ck, Dk) instead of asking for an encryption. Hence, the advantage of A is

advA ≤ 3
2

∗ q2

2a
.

ut

120 S. Lucks

4 The BFN Scheme [3]

In [3], the Blaze, Feigenbaum, and Naor describe a length-preserving RKES
which we shortly refer to as the “BFN-scheme”. As the ARK scheme is claimed
to be accelerated, we need to compare the BFN scheme and the ARK scheme.
Similarly to the ARK scheme, we represent the plaintext by (P, Q) with P ∈
{0, 1}a and Q ∈ {0, 1}β−a, and the ciphertext by (C, D) with C ∈ {0, 1}a and
D ∈ {0, 1}β−a. Further, we consider X, Z ∈ {0, 1}b and I, J, Y ∈ {0, 1}a. (Note
that [3] only considers b = a.)

6 6

- - - -- -

@
@

@@R

6
?

6

6
?

6

�
���@

@@ -
6 6

E E0

F2 F3

H S

X Y Z

E

F1

H

Q D

CP

Card

I J

Fig. 2. The BFN encryption protocol [3].

As building blocks, we need one random permutation E0 over {0, 1}a, three
random functions F1, F2 : {0, 1}b → {0, 1}a, F3 : {0, 1}a → {0, 1}a, and a block
cipher E (i.e., a family of random permutations) EK over {0, 1}a, depending on
a key K ∈ {0, 1}b). The encryption protocol works as follows:

1. Given the plaintext (P, Q), the host sends P and X := H(Q) to the card.
2. The card computes X∗ = F1(X), and uses X∗ as the key for E.
3. The card computes I := EX∗(P).
4. The card computes J := E0(I).
5. The card responds Y := F2(I) to the host.
6. The host computes D := SY (C).
7. The host sends Z := H(D) to the card.
8. The card computes Z∗ = F3(Z), and uses Z∗ as the key for E.

Accelerated Remotely Keyed Encryption 121

9. The card responds C := EZ∗(Y) to the host.

Decrypting (C, D) is done the obvious way.

Obviously, the ARK and the BFN scheme work quite similarly:

1. The cryptographic calculations on the side of the host are exactly the same
for both protocols.

2. The communication between the host and the card is exactly the same for
both protocols.

3. Inside the card, the ARK scheme needs four evaluations of cryptographic
functions such as Ei and Fj . (Also, it needs two bit-wise XOR operations.)
In contrast to this, the BFN scheme needs six evaluations of cryptographic
functions.

4. Also inside the card, the ARK scheme allows the keys for the cryptogra-
phic functions to be chosen once and for all. On the other hand, the BFN
scheme requires two evaluations of the block cipher E, where the keys are
dynamically chosen, depending on some of the challenge values.

The third point indicates that, when implementing both schemes using the
same building blocks, the BFN scheme’s smartcard operations should take 50 %
more time than the ARK scheme’s smartcard operations. Due to the last point,
things actually can be much worse for the BFN scheme. This greatly depends
on the choice of the block cipher E and the key set-up time of E.

5 Final Remarks

5.1 The Importance of the Building Blocks

It should be stressed that our proof of security is with respect to any attack an
adversary can come up with. Often, proofs of security in cryptography only deal
with specific attacks, such as differential or linear cryptanalysis.

On the other hand, for practically using the ARK scheme, one has to in-
stantiate the generic building blocks we are using. Our proof of security is only
applicable, if all building blocks are secure, i.e., satisfy the security assumptions
specified in this paper.

Hence, ARK scheme implementors have the freedom of choice to select their
building blocks – and take the responsibility for the building blocks to be secure.
If the building blocks are secure, the scheme is secure, too.

5.2 Inversion Security

This paper’s reasoning is based on the security definition of Blaze, Feigenbaum
and Naor [3], which seems to be more suitable than the one of Lucks [5]. It
requires RKESs to be pseudorandom with respect to ex-insiders. Consider the
RKES Σ being pseudorandom with respect to ex-insiders.

122 S. Lucks

Clearly, Σ is pseudorandom with respect to outsiders, too. Also, Σ is forgery
secure. Otherwise, the adversary could execute the protocol q −1 times in the h-
phase to predict q plaintext/ciphertext pairs. In the d-phase, the adversary could
ask for the encryptions of these q plaintexts, and compare the results with her
own predictions. (Note that the arbiter B can act on at most q − 1 plaintexts.)

But what about inversion security? Obviously, this property is quite desirable
for some applications. Consider the RKES Σ∗, a simple modification of Σ. Both
the en- and the decryption protocol of Σ∗ start with an additional challenge
value β ∈ {0, 1}. The encryption protocol of Σ∗ goes like this:

1. The host sends β to the card.
2. If β = 0, both parties follow the encryption protocol of Σ.

Else, both parties follow the decryption protocol of Σ.

Similarly, we may define the decryption protocol of Σ∗. Note that we did change
the protocol, but the en- and decryption functions remain the same. Since the
additional challenge value just allows the adversary another way to execute the
decryption protocol, the security of Σ∗ and Σ is the same:

Theorem 2. Σ is (q, e)-secure ⇐⇒ Σ∗ is (q, e)-secure.

On the other hand, Σ∗ clearly is inversion insecure. If, e.g., we only allow the
adversary to execute the encryption protocol of Σ∗, via β = 1 she can decrypt
any ciphertext, because she can still run the decryption protocol of Σ.

Hence, inversion security is a property of its own right, not covered by the
above notion of “(q, e)-security”.

5.3 Implementing the ARK Scheme

For actually implementing the ARK scheme, one needs to instantiate the building
blocks with cryptographic functions. In this context, the role of the blocksizes a
and b are important. Note that the parameter b is simply ignored in the proof of
security. But we require the hash function H : {0, 1}∗ → {0, 1}b to be collision
resistant. Thus, it must be infeasible to do close to

√
2b offline calculations. On

the other hand, due to Theorem 1 the ARK scheme’s construction is sound if the
total query number q � √

2a. This restricts the number of online calculations
for the adversary.

The difference between offline calculations (using any hardware the adversary
has money for) and online calculations on smartcards allows the implementor to
chose b > a. The current author recommends b ≥ 160 and a ≥ 128.

The hash function H can be a dedicated hash function such as SHA-1 or
RIPEMD-160. The block cipher E needs to be a 128-bit block cipher, such as
the (soon to be chosen) DES-successor AES. In this case, the pseudorandom
functions FK must map a 160-bit input to a 128-bit output. One can realize
these functions as message authentication codes (MACs), e.g. as CBC-MACs
based on E. Such MACs are provably secure [1].

Finally, for the encryption function S we have a couple of choices. S may
either be a dedicated stream cipher, such as RC4, or a block cipher in a standard

Accelerated Remotely Keyed Encryption 123

chaining mode, such as CBC or OFB. If one is using a block cipher, using the
same one as inside the smartcard is reasonable.

Sometimes, a given application allows the security architect to drastically
restrict the number of en- and decryptions during the lifetime of a key. If this
number is well below 232, we may even use a 64-bit block cipher for E, e.g. triple
DES. In this case, we need to observe two things:

1. The number of en- or decryptions should never exceed a previously defined
bound q∗ � 232, say q∗ = 224. The card should be provided with a counter,
to ensure the card to stop working after q∗ protocol executions.

2. The encryption function S is defined to take an a-bit value as the key. Kno-
wing one plaintext-part Qj and the corresponding ciphertext part Cj =
SYj

(Qj), the a-bit key Yj can be found by brute force, on the average in
2a−1 steps. For a = 64, one should modify the ARK scheme and choose
another key-dependent function to stretch the 64-bit value Y to get a larger
key. E.g., think of using the block cipher E under a new key K3, and send
the 128-bit value (Yj , EK3(Yj)) to the card. This allows a key size for S of
up to 128 bits. During the h-phase, the adversary learns qh pairs of known
plaintext Yj and ciphertext EK3(Yj). This is no problem, since we anyway
assume E to behave pseudorandomly.

References

1. M. Bellare, J. Kilian, P. Rogaway, “The Security of Cipher Block Chaining”, in
Crypto 94, Springer LNCS 839, 341–358.

2. M. Blaze, “High-Bandwidth Encryption with Low-Bandwidth Smartcards”, in Fast
Software Encryption 1996 (ed. D. Gollmann), Springer LNCS 1039, 33–40.

3. M. Blaze, J. Feigenbaum, M. Naor, “A Formal Treatment of Remotely Keyed En-
cryption”. in Eurocrypt ’98, Springer LNCS.

4. M. Luby, “Pseudorandomness and Cryptographic Applications”, Princeton Univer-
sity Press, Princeton, 1996.

5. S. Lucks, “On the Security of Remotely Keyed Encryption”, in Fast Software En-
cryption 1997 (ed. E. Biham), Springer LNCS 1267, 219–229.

	Introduction
	History
	Pseudorandomness -- Towards a Better Definition
	Definitions
	Building Blocks and Security Assumptions

	The ARK Encryption Scheme
	The Security of the ARK Scheme
	The BFN Scheme cite {BFN98}
	Final Remarks
	The Importance of the Building Blocks
	Inversion Security
	Implementing the ARK Scheme

