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Abstract: This study aimed to investigate the performance of accelerated solvent extraction (ASE)
as a green approach for the recovery of polyphenols and pigments from wild nettle leaves (NL).
ASE was operated at different temperatures (20, 50, 80 and 110 ◦C), static times (5 and 10 min)
and cycle numbers (1–4) using ethanol (96%) as an extraction solvent. In order to compare the
efficiency of ASE, ultrasound assisted extraction (UAE) at 80 ◦C for 30 min was performed as a
referent. Polyphenol and pigment analyses were carried out by HPLC and antioxidant capacity was
assessed by ORAC. Seven polyphenols from subclasses of hydroxycinnamic acids and flavonoids,
along with chlorophylls a and b and their derivatives and six carotenoids and their derivatives were
identified and quantified. Chlorogenic acid was the most abundant polyphenol and chlorophyll a
represented the dominant pigment. ASE conditions at 110 ◦C/10 min/3 or 4 cycles proved to be the
optimal for achieving the highest yields of analyzed compounds. In comparison with UAE, ASE
showed better performance in terms of yields and antioxidants recovery, hence delivering extract
with 60% higher antioxidant capacity. Finally, the potential of NL as a functional ingredient from
natural sources can be successfully accessed by ASE.

Keywords: Urtica dioica L.; nettle leaves; accelerated solvent extraction; polyphenols; chlorophylls;
carotenoids; HPLC; ORAC

1. Introduction

Nettle (Urtica dioica L.) is a herbaceous and perennial wild plant for which numerous studies show
that almost every part of it (stem, flowers, leaves, roots and seeds) has a significant content of various
bioactive compounds with corresponding antioxidant capacity (polyphenols, carotenoids, chlorophyll,
phytosterols, etc.) [1–3]. Therefore, different parts of this plant may have different applications for
functional food production due to its valuable nutritional and biological composition [4–7]. In particular,
aerial parts of the nettle are good sources of polyphenols [8–10] and pigments [11,12] with different
pharmacological and medicinal properties [13–15]. Dried nettle extract has already been used as
commercially formulated food supplement that may have positive effects on reducing osteoarthritis
symptoms [16]. Consumer preferences are driving rapidly towards the natural products, hence, the
interest of the industry in the production and application of natural extracts is constantly growing
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as they show multiple benefits and could represent a valuable ingredient of functional foods, foods
supplements and nutraceuticals [17,18].

Nettle extracts are the most common form of its application in the industry, where for each
individual species, as well as its part, optimal extraction conditions should be determined with
an emphasis on maximum process efficiency and selective isolation of target compounds [19].
Conventional extraction techniques, such as maceration and solvent extraction, use large amounts
of solvent, are long-lasting and ultimately do not result in extracts of adequate quality and yield.
Therefore, currently priority is given to green extraction techniques that enable fast and environmentally
friendly efficient extraction with less energy and solvent consumption [20]. Among these techniques,
Accelerated Solvent Extraction (ASE) is highly appreciated for its effectiveness, easy use and fully
automated process [21]. The ASE is carried out with a liquid solvent in a combination of elevated
temperature and elevated pressure. The method is suitable for the extraction of bioactive compounds
sensitive to oxygen and heat [22]. The great advantage of this technique is the ability to work with a
larger number of extraction cycles, which significantly contributes to a higher extraction yield [23].
Other benefits of ASE include better diffusion of solvent into the sample due to cell-wall disruption
upon high pressure, reduced viscosity of the solvent at elevated pressure and temperature resulting in
better solubility, advanced mass transfer, and reduced extraction time [24]. However, ASE may be
incomplete due to the limited volume of the solvent and also lower extraction yields of thermolabile
components can be reached due to elevated temperatures [24]. Nevertheless, as each extraction
parameter can have a significant effect on the extraction efficiency of target compounds, ASE should be
optimized in order to maximize its potential [25].

Novel green solvent extraction approaches follow the requirements of being free of toxic solvents.
Also, to be performed in miniaturized [26] and automated [27] fashion, are other features of greenness
of analytical chemistry. Although the ASE system has been successfully used for isolation of bioactive
compounds from various plant material, studies investigating the application of ASE for the isolation
of bioactive compounds from nettle are very scarce. Only one research was conducted with aim to
investigate ASE extracts of nettle roots, stems, leaves and flowers with respect to anti-inflammatory
activity [28]. The extraction methodology was taken from the publication of Johnson et al. [29]
and included temperature (22–27 ◦C and 100 ◦C), static time 5 min, flushing volume 50%, nitrogen
purge time 100 s, and number of cycles 3. Nevertheless, the aim of this work was to investigate the
anti-inflammatory and cytotoxic effects of obtained nettle extracts, therefore, did not give a conclusion
about the efficiency of ASE in terms of the influence of its process parameters on bioactives recovery.
In conclusion, authors stated that further chemical investigation of ASE extracts of nettle is required to
identify the individual bioactive compounds responsible for their observed therapeutic potential [28].

Therefore, the aim of this study was to investigate the potential of ASE as a green strategy for the
recovery of hydrophilic and lipophilic antioxidants such as polyphenols and pigments (chlorophylls and
carotenoids) from wild nettle (Urtica dioica L.). As a referent extraction technique for the comparison
with ASE efficiency, ultrasound assisted extraction (UAE) was also performed. Moreover, ASE
parameters such as extraction temperature, static time and cycle number were optimized with respect
to the highest recovery of target bioactive compounds and antioxidant capacity.

2. Materials and Methods

2.1. Chemicals

HPLC grade acetonitrile was purchased from J.T. Baker Chemicals (Deventer, Netherlands).
Water was purified in a ableMilli-Q water purification system (Millipore, Burlington, MA, USA).
Ethanol (96%) was obtained from Gram–mol d.o.o. (Zagreb, Croatia) and formic acid (98–100%) from
T.T.T. d.o.o. (Sveta, Nedelja, Croatia). Chlorogenic acid (≥95%), p-coumaric acid (≥98%), ferulic acid
(≥99%), quercetin-3-glucoside (≥99%), (−)-β-carotene, α-carotene, chlorophyll a (from Anacystis nidulans
algae), chlorophyll b (from spinach) and 2,2′-Azobis (2-amidinopropane) dihydrochloride were obtained
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from Sigma-Aldrich (St. Louis, MO, USA). Fluorescein sodium salt was purchased from Honeywell
Fluka™ (Seelze, Germany) and Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) from
Acros Organics (Geel, Belgium).

2.2. Plant Material

Wild nettle (Urtica dioica L.) was collected in April 2019 in Sela Žakanjska, Croatia (altitude 244 m,
latitude 45◦36′27.8” N, longitude 15◦20′38.2” E). Immediately after harvesting, nettle leaves (NL) were
separated from stalks and freeze-dried (Alpha 1-4 LSCPlus, Martin Christ Gefriertrocknungsanlagen
GmbH, Osterode am Harz, Germany). Afterwards, dry leaves were grinded using a mortar and
obtained powder was instantly used for the extraction. Dry matter content of nettle powders was
determined by drying at 103 ± 2 ◦C to constant mass [30].

2.3. Extraction Procedures

2.3.1. Accelerated Solvent Extraction

Polyphenols and pigments of NL were isolated using Accelerated Solvent Extraction (ASE)
(Dionex™ASE™ 350 Accelerated Solvent Extractor, Thermo Fisher Scientific Inc., Sunnyvale, CA, USA).
Extractions were performed in 34 mL stainless steel cells fitted with two cellulose filters (Dionex™
350/150 Extraction Cell Filters, Thermo Fisher Scientific Inc., Sunnyvale, CA, USA) containing 1 g of
the sample mixed with 2 g of diatomaceous earth. In order to establish the highest extraction efficiency,
extractions were performed under different extraction conditions as follows: extraction temperatures
(20, 50, 80 and 110 ◦C), static extraction times (5 and 10 min) and extraction cycles (1, 2, 3 and 4),
while all other parameters remained constant: 10.34 MPa, 30 s of purge with nitrogen and 50% volume
flush. Ethanol (96%) was used as the extraction solvent and obtained extracts were collected in 250 mL
glass vial with Teflon septa, transferred into 50 mL volume flask and made up to volume with the
extraction solvent.

2.3.2. Ultrasound Assisted Extraction

In order to compare ASE efficiency, an ultrasound assisted extraction (UAE) of NL polyphenols
and pigments was simultaneously conducted at previously optimized conditions. Briefly, sample
(0.5 g) was put into a sealed test tube (50 mL) and 25 mL of ethanol (96%) was added and homogenized
on the Vortex ZX3 (Velp Scientifica Srl, Usmate (MB), Italy). The test tube was placed in an ultrasound
bath with frequency of 40 kHz (Bandelin electronic GmbH & Co., Berlin, Germany) at 80 ◦C for
30 min. Afterwards, the suspension was centrifuged (Z 206 A, Hermle Labortechnik GmbH, Wehingen,
Germany) at 6000 rpm for 15 min. The supernatant was filtered using Whatman No. 4 filter into 25 mL
volumetric flasks, and made up to volume with the extraction solvent.

Experiental setup is shown in Figure 1. All extracts were prepared in duplicate. Extracts were stored
at −18 ◦C in inert gas atmosphere and filtered through a 0.45 µm membrane filter (Macherey-Nagel
GmbH, Düren, Germany) prior to HPLC analysis.

2.4. HPLC Analysis

Separation and quantification of polyphenols and pigments were performed using HPLC analysis
with Agilent 1260 Infinity quaternary LC system (Agilent Technologies, Santa Clara, CA, USA) equipped
with photodiode array detector (PDA), an automatic injector and ChemStation software. The separation
of phenolic compounds was performed on a Nucleosil 100-5C18, 5 mm (250 mm × 4.6 mm i.d.) column
(Macherey-Nagel, GmbH, Düren, Germany). The composition of solvents and gradient elution
conditions were previously described by [31]. For gradient elution, mobile phase A contained 3%
of formic acid in water (v/v), while mobile phase B contained 3% of formic acid in 100% acetonitrile
(v/v). The used elution program commenced with 10% A in B, raising to 40% A after 25 min, then to
70% A after 30 min and then to 10% A after 35 min. Operating conditions were as follows: column
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temperature 20 ◦C, injection volume 20 µL and the flow rate was 0.9 mL min−1. Detection was
performed with UV/VIS–PDA detector by scanning from 220 to 360 nm. Identification was assessed
by comparing retention times and spectral data with those of authentic standards (phenolic acids
were identified at 280 nm and flavonol glycosides at 360 nm) and previous literature reports [1,32–34].
Quantitative determinations were carried out using external standard method.Processes 2020, 8, x FOR PEER REVIEW 4 of 20 
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For HPLC analysis of carotenoids and chlorophylls, Phenomenex Develosil RP-Aqueus C 30, 3 µm,
(250 × 4.6 mm i.d.) (Phenomenex, Torrance, CA, USA) column was used. The solvent composition
and the used gradient conditions were described previously by Castro-Puyana et al. [35]. The mobile
phase consisted of a mixture of MeOH: Methyl tert-butyl ether (MTBE): water (90:7:3, v/v/v) as mobile
phase A and MeOH: MTBE (10:90, v/v), as mobile phase B. The flow rate was 0.8 mL min−1 and the
injection volume 10 µL. The chromatogram was monitored by scanning from 240 to 770 nm and the
signal intensities detected at 450 nm and 660 nm were used for carotenoid and chlorophyll quantitation.
Identification was carried out by comparing retention times and spectral data with those of the
authentic standards (α- and β-carotene, chlorophyll a and b) or in case of unavailability of standards
by comparing the absorption spectra reported in the literature [36,37]. Quantifications were made by
the external standard calculation, using calibration curves of the standards β-carotene, α-carotene,
chlorophyll a and chlorophyll b. The quantification of individual carotenoid compounds (neoxantine,
violaxantine, lutein and its derivatives, derivative of zeaxantine and lycopene) was calculated as
β-carotene equivalents and derivatives of chlorophylls as chlorophyll a and b equivalents using the
equation based on the calibration curves, respectively. The concentrations of analyzed compounds
were expressed as mg 100 g−1 of dry matter, as mean values ± SD (N = 4).

2.5. Antioxidant Capacity

The antioxidant capacity of the extracts was assessed by the oxygen radical absorbance
capacity (ORAC) assay according to the study of Prior et al. [38] and Bender et al. [39] with minor
modifications. The ORAC procedure used an automated plate reader (BMG LABTECH, Offenburg,
Germany) with 96-well plates and data were analyzed by MARS 2.0 software. The 2,2′-Azobis
radical (2-amidinopropane) dihydrochloride (AAPH), fluorescein solution, different dilutions of
6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) and samples were prepared in 75 µM
phosphate buffer (pH 7.4). Briefly, 25 mL of appropriate diluted samples were added in a 96-well
black plate containing 150 µL of fluorescein solution (70.3 nM). The plate was incubated for 30 min
at 37 ◦C and after the first three cycles (representing the baseline signal), AAPH (240 mM) was
injected into each well to initiate the peroxyl radical generation. On each plate, different dilutions
of Trolox (3.37–107.88 µM) were used as a reference standard. Fluorescence intensity (excitation
at 485 nm and emission at 528 nm) was monitored every 90 s over a total measurement period of
120 min. The measurements were performed in duplicates and results are expressed as mmol of Trolox
equivalents (TE) 100 g−1 of dry matter, as mean values ± SD (N = 4).

2.6. Statistical Analysis

Statistical analysis was carried out using Statistica ver. 10.0 software (Statsoft Inc., Tulsa, OK,
USA). Experimental part was designed as full factorial randomized design and descriptive statistic was
assessed for the basic evaluation of the data. Multivariate analysis of variance (MANOVA) was used
for the analysis of continuous variables (polyphenols, pigments and antioxidant capacity) and marginal
mean values were compared with Tukey’s HSD test. Obtained results are expressed as mean ± SE.
Relationships between antioxidant capacity and determined compounds were tested by calculation of
Pearson’s correlation coefficient. All tests were carried out at the significance level p ≤ 0.05.

3. Results and Discussion

3.1. Influence of Accelerated Solvent Extraction on Polyphenols Recovery

ASE of NL was performed using 96% ethanol as solvent. The reason for choosing this solvent
is that ethanol has a GRAS status (“Generally Recognized as Safe”), so it meets one of the criteria of
green chemistry, i.e., green extraction [40] that coupled with ASE might be an efficient green tool for
bioactives recovery. Therefore, in order to achieve the maximum efficiency of the extraction process and
to provide a high extraction yield of target compounds, the extraction operating parameters need to be
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optimized [41]. Therefore, present study involved the optimization of the ASE operating conditions
in terms of temperature (20, 50, 80 and 110 ◦C), static time (5 and 10 min) and number of extraction
cycles (1–4) for NL polyphenols and pigments extraction. In obtained extracts various polyphenols
have been identified and quantified by HPLC analysis: chlorogenic acid (ChA), p-coumaric acid
(p-CA), ferulic acid (FA) and chicoric acid (CA) belonging to the group of hydroxycinnamic acids
(HCA) and flavonoids (F) quercetin-3-glucoside (Q-3-G), kaempferol-3-rutinoside (K-3-R) and luteolin
(LTL) (Table 1). As it can be observed, the most abundant polyphenol was ChA with the highest
content of 278.14 mg 100 g−1 dm at 110 ◦C/10 min/2 cycles. CA was the least represented compound,
detected only at 110 ◦C/10 min/2–4 cycles. Similar polyphenols profile in NL was found by other
authors [2,9,10,34,42,43]. Carvalho et al. [10] studied the polyphenols composition in leaves of three
nettle species (Urtica dioica L., Urtica membranacea Poir and Urtica urens L.), where Urtica dioica L. had
the highest concentration of polyphenols and HCA were the most dominant, especially derivatives
of caffeic and p-CA. In accordance, Vajić et al. [42] identified two groups of polyphenols in NL, HCA
and F, among which the most dominant were 2-O-caffeoyl malic acid, ChA and rutin. Orčić et al. [9]
reported that neochlorogenic acid was the most abundant compound in overground parts of nettle,
consisting up to 3.6% of the extract by weight. The following most represented components were
quercetin-3-O-rhamnosylglucoside and Q-3-G. Slight differences in composition of polyphenols could
be due to the type and various extraction conditions, as well as the pre-harvest and post-harvest
conditions [1,2,44,45]. In study of Pinelli et al. [34] ChA and 2-O-caffeoylmalic acids represented 71.5
and 76.5 % of total polyphenols (TP) in cultivated and wild NL, respectively. However, CA was
not reported in previous research, while in our study it was identified only at the highest applied
conditions (110 ◦C/10 min/2–4 cycles), pointing ASE as very efficient for the isolation of bioactive
polyphenolic compounds.

The influence of ASE parameters (temperature, static time and cycle number) on yield of NL
polyphenols are presented in Table 2. The sum of TP includes determined total HCA (THCA) and
total F (TF). As it can be seen, the effect of temperature, static time and cycle number had a significant
influence (p < 0.01) on all polyphenols groups as well as on TP, except THCA were not significantly
affected by the cycle number (p = 0.19). The increase of temperature from 20 to 110 ◦C resulted with
significantly higher THCA, ranging from 16.87 to 255.51 mg 100 g−1 dm, TF (from 3.67 to 80.16 mg
100 g−1 dm) and TP (from 20.54 to 335.67 mg 100 g−1 dm). These results are in accordance with the
findings of Zgórka (2009) [46] who reported that the concentration of isoflavone from clover increased
with temperature increase (75–125 ◦C) during ASE and there was no degradation of the analyzed
compounds. Increase of the temperature during ASE increases the solubility of the compounds,
diffusion rate and mass transfer, enhances the penetration of the solvents into the matrix and thus
affects the extraction efficiency [47]. However, Erdogan and Erdemoglu [48] reported that optimum
temperature for ASE of polyphenols from apricots was 60 ◦C, above which the amount of polyphenols
decreased due to the possible degradation, which accents the need for the adjustment of proper
temperature depending on the used matrix. Considering static time, all polyphenol groups showed
the highest content at static time of 10 min (THCA = 164.31 mg 100 g−1 dm, TF = 50.47 mg 100 g−1 dm,
TP = 214.78 mg 100 g−1 dm) (Table 2). It is evident that longer static time (10 vs. 5 min) promoted
almost double yields of all compound groups. Regarding the cycle number, results revealed that the
highest yields of polyphenols were achieved during the third cycle, with an increase of 42–58% when
compared to the initial cycle number (1). The same trend was observed by Gomes et al. [49] where the
maximum of studied ASE conditions (80 ◦C/10 min/5 cycles) resulted in highest polyphenols yields.
Moreover, Mottaleb and Sarker [21] confirmed the significance of the combined effects of static time
and number of cycles in the recovery of natural products.
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Table 1. Nettle leaves polyphenols (mg 100 g−1 dm) and ORAC values (mmol TE 100 g−1 dm) in extracts obtained at ASE different conditions.

Temperature (◦C) Static Time (min) Cycle Number ChA p-CA FA CA Q-3-G K-3-R LTL ORAC

20

5

1 6.69 ± 0.05 1.33 ± 0.02 nd nd nd nd nd 2.66 ± 0.01
2 8.63 ± 0.31 1.73 ± 0.04 nd nd nd nd nd 3.08 ± 0.03
3 9.03 ± 0.34 1.51 ± 0.20 nd nd nd nd nd 2.42 ± 0.04
4 10.53 ± 0.17 1.76 ± 0.08 nd nd nd nd nd 2.96 ± 0.14

10

1 10.14 ± 6.63 1.75 ± 1.10 nd nd 5.41 ± 0.04 nd nd 5.37 ± 0.07
2 19.74 ± 0.80 2.82 ± 0.57 nd nd 7.32 ± 0.52 nd nd 7.54 ± 0.06
3 24.09 ± 1.01 3.61 ± 0.33 nd nd 8.27 ± 0.67 nd nd 10.22 ± 0.02
4 27.65 ± 1.00 3.95 ± 0.12 nd nd 8.32 ± 0.42 nd nd 9.91 ± 0.05

50

5

1 10.08 ± 0.25 1.82 ± 0.23 nd nd 6.57 ± 0.27 nd nd 4.61 ± 0.02
2 13.00 ± 0.24 1.63 ± 0.22 nd nd 3.84 ± 0.16 nd nd 4.77 ± 0.04
3 13.70 ± 0.72 1.55 ± 0.32 nd nd 4.69 ± 0.40 nd nd 3.53 ± 0.04
4 15.56 ± 0.53 1.55 ± 0.37 nd nd 4.80 ± 0.20 nd nd 3.43 ± 0.06

10

1 23.36 ± 0.94 4.01 ± 0.73 nd nd 5.63 ± 0.55 nd nd 7.50 ± 0.04
2 31.13 ± 1.47 4.89 ± 0.79 nd nd 7.17 ± 0.98 nd nd 10.08 ± 0.01
3 37.35 ± 1.70 6.14 ± 1.01 nd nd 8.67 ± 1.16 nd nd 10.74 ± 0.06
4 51.01 ± 0.54 7.14 ± 0.87 nd nd 11.71 ± 1.93 2.62 ± 3.70 nd 12.53 ± 0.05

80

5

1 74.73 ± 2.56 45.79 ± 1.78 nd nd 29.48 ± 4.99 10.13 ± 1.05 1.61 ± 0.36 14.13 ± 0.03
2 72.28 ± 1.76 26.68 ± 10.49 nd nd 39.24 ± 10.96 10.66 ± 1.11 2.06 ± 0.72 13.43 ± 0.02
3 150.77 ± 41.24 30.19 ± 7.08 1.81 ± 0.00 nd 30.93 ± 9.27 9.14 ± 0.80 1.28 ± 0.39 13.24 ± 0.07
4 109.74 ± 31.04 17.70 ± 2.30 1.55 ± 0.03 nd 34.49 ± 10.31 9.57 ± 0.85 1.37 ± 0.34 13.67 ± 0.03

10

1 154.35 ± 19.17 54.71 ± 20.50 2.07 ± 0.05 nd 50.73 ± 11.06 13.02 ± 0.21 1.86 ± 0.21 14.26 ± 0.06
2 188.32 ± 6.66 104.22 ± 3.84 2.60 ± 0.09 nd 73.60 ± 10.53 17.88 ± 1.05 2.75 ± 0.21 21.11 ± 0.03
3 231.86 ± 37.64 68.26 ± 16.06 2.49 ± 0.04 nd 68.51 ± 8.61 17.12 ± 0.70 2.45 ± 0.22 22.07 ± 0.03
4 173.65 ± 7.56 47.85 ± 8.91 3.18 ± 0.02 nd 64.14 ± 9.80 15.82 ± 0.87 2.21 ± 0.18 21.71 ± 0.02

110

5

1 83.78 ± 13.87 29.49 ± 6.89 1.31 ± 0.10 nd 31.04 ± 3.17 9.81 ± 0.40 0.89 ± 0.05 14.51 ± 0.05
2 134.55 ± 23.01 39.40 ± 9.57 1.89 ± 0.06 nd 40.48 ± 10.86 12.76 ± 0.27 1.31 ± 0.06 14.52 ± 0.02
3 163.61 ± 23.95 52.84 ± 3.21 2.41 ± 0.05 nd 48.66 ± 7.59 14.86 ± 0.19 1.14 ± 0.05 14.05 ± 0.02
4 143.13 ± 6.73 52.59 ± 1.18 2.35 ± 0.10 nd 51.42 ± 8.06 14.85 ± 0.50 1.84 ± 0.70 14.52 ± 0.02

10

1 174.46 ± 2.09 57.49 ± 22.23 1.94 ± 0.00 nd 55.63 ± 13.15 16.81 ± 0.75 1.14 ± 0.24 14.34 ± 0.03
2 278.14 ± 55.96 76.83 ± 19.23 4.26 ± 0.05 4.34 ± 0.03 71.22 ± 16.81 21.87 ± 0.81 3.20 ± 2.30 16.71 ± 0.04
3 251.58 ± 38.79 104.56 ± 16.76 5.91 ± 0.00 6.07 ± 0.04 94.67 ± 0.87 24.22 ± 0.98 6.76 ± 4.89 17.78 ± 0.04
4 248.49 ± 38.24 105.96 ± 3.42 8.22 ± 0.03 8.47 ± 0.08 87.14 ± 4.84 23.34 ± 0.90 6.25 ± 4.63 17.50 ± 0.05

ASE = accelerated solvent extraction, ChA = chlorogenic acid, p-CA = p-coumaric acid, FA = ferulic acid, CA = chicoric acid, Q-3-G = quercetin-3-glucoside, K-3-R = kaempferol-3-rutinoside,
LTL = luteolin. nd = not detected. Results are expressed as mean ± SD.
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Table 2. The influence of ASE conditions on yield of nettle leaves polyphenols (mg 100 g−1 dm), pigments (mg 100 g−1 dm) and ORAC values (mmol TE 100 g−1 dm).

Source of Variation THCA TF TP TCH TCAR TPG ORAC

Temperature (◦C) p < 0.01 * p < 0.01 * p < 0.01 * p < 0.01 * p < 0.01 * p < 0.01 * p < 0.01 *
20 16.87 ± 3.72a 3.67 ± 1.70a 20.54 ± 4.23a 464.37 ± 2.25a 31.48 ± 0.01a 495.85 ± 2.25a 5.52 ± 0.01a
50 27.99 ± 3.72a 6.96 ± 1.70a 34.95 ± 4.23a 678.60 ± 2.25b 44.07 ± 0.01b 722.67 ± 2.25b 7.15 ± 0.01b
80 195.60 ± 3.72b 63.76 ± 1.70b 259.35 ± 4.23b 1070.63 ± 2.25c 64.74 ± 0.01c 1135.38 ± 2.25c 16.70 ± 0.01d

110 255.51 ± 3.72c 80.16 ± 1.70c 335.67 ± 4.23c 1075.25 ± 2.25c 65.81 ± 0.01d 1141.06 ± 2.25c 15.49 ± 0.01c
Static time (min) p < 0.01 * p < 0.01 * p < 0.01 * p < 0.01 * p < 0.01 * p < 0.01 * p < 0.01 *

5 83.67 ± 2.63a 26.81 ± 1.21a 110.48 ± 2.99a 709.20 ± 1.59a 45.52 ± 0.00a 754.71 ± 1.59a 8.72 ± 0.01a
10 164.31 ± 2.63b 50.47 ± 1.21b 214.78 ± 2.99b 935.23 ± 1.59b 57.54 ± 0.00b 992.77 ± 1.59b 13.71 ± 0.01b

Cycle number p < 0.01 * p < 0.01 * p < 0.01 * p < 0.01 * p < 0.01 * p < 0.01 * p < 0.01 *
1 92.41 ± 3.72a 29.97 ± 1.70a 122.38 ± 4.23a 746.06 ± 2.25a 47.31 ± 0.01a 793.37 ± 2.25a 9.67 ± 0.01a
2 127.13 ± 3.72b 39.42 ± 1.70b 166.55 ± 4.23b 829.68 ± 2.25b 52.60 ± 0.01c 882.28 ± 2.25b 11.41 ± 0.01b
3 146.17 ± 3.72c 42.67 ± 1.70b 188.84 ± 4.23c 838.54 ± 2.25c 51.94 ± 0.01b 890.48 ± 2.25b 11.76 ± 0.01c
4 130.25 ± 3.72b 42.49 ± 1.70b 172.74 ± 4.23b 874.57 ± 2.25d 54.26 ± 0.01d 928.82 ± 2.25c 12.03 ± 0.01d

Grand mean 123.99 38.64 162.63 822.21 51.53 873.74 11.22

ASE = accelerated solvent extraction, THCA = total hydroxycinnamic acids, TF = total flavonoids, TP = total phenols, TCH = total chlorophylls, TCAR = total carotenoids, TPG = total
pigments. * Statistically significant variable at p ≤ 0.05. Results are expressed as mean ± SE. Values with different letters within column are statistically different at p ≤ 0.05.
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The purpose of the extraction cycles is to introduce a fresh solvent during the extraction with
the aim to maintain a favorable extraction balance. This could be useful for samples with a high
concentration of analytes or for samples where it is difficult for solvent to penetrate in the pores of
matrix. However, extraction cycles need to be adequately combined with static extraction time for the
most efficient extraction [21].

Currently, UAE performed by using an ultrasound bath operating at a frequency between 37 and
45 kHz represents an easy and low-cost extraction process used to obtain high valuable compounds
from natural products [50]. In line with this, ASE (80 ◦C/10 min/3 cycles) was compared with UAE
under previously optimized conditions (80 ◦C/30 min). The polyphenols concentrations obtained at
UAE optimal conditions are shown in Table 3. Comparing the yields of both techniques obtained
at similar setups, ASE outputs are generally three-fold higher for most of the analyzed polyphenols.
Zengin et al. [51] reported that ASE accomplished the highest yields of TP content (65.05 mg GAE g−1)
of Tanacetum parthenium extracts in comparison with other four different extraction techniques, among
which UAE was also studied.

Table 3. Nettle leaves polyphenols (mg 100 g−1 dm), pigments (mg 100 g−1 dm) and ORAC values
(mmol TE 100 g−1 dm) in UAE extracts obtained at optimal extraction conditions (80 ◦C/30 min).

Compounds Concentration

Polyphenols

ChA 76.84 ± 3.32
p-CA 53.23 ± 1.07
Q-3-G 19.02 ± 2.77
K-3-R 5.18 ± 0.45

Chlorophylls

CHL b der 1 8.42 ± 0.06
CHL a der 1 36.65 ± 2.10
CHL a der 2 38.62 ± 2.44

CHL b 230.46 ± 15.17
CHL a 589.04 ± 22.36

CHL a der 5 5.07 ± 0.02

Carotenoids

VIOLAX der 1.17 ± 0.10
NEOX 2.38 ± 0.15

VIOLAX 1.10 ± 0.08
13′-cis-LUT 2.38 ± 0.06
LUT 5,6-ep 1.10 ± 0.09
NEOX der 0.67 ± 0.02

LUT 21.25 ± 1.04
ZEAX der 1.02 ± 0.03
9′-cis-LUT 1.78 ± 0.11
α-CAR 6.12 ± 0.41
β-CAR 14.14 ± 1.03

LYC der 10 0.32 ± 0.01

Antioxidant capacity

ORAC 13.26 ± 0.05

UAE = ultrasound assisted extraction, ChA = chlorogenic acid, p-CA = p-coumaric acid, Q-3-G = quercetin-3-glucoside,
K-3-R = kaempferol-3-rutinoside, CHL b der 1 = chlorophyll b derivative 1, CHL a der 1 = chlorophyll a
derivative 1, CHL a der 2 = chlorophyll a derivative 2, CHL b = chlorophyll b, CHL a = chlorophyll a, CHL a der
5 = chlorophyll a derivative 5, VIOLAX der = violaxanthin derivative, NEOX = neoxanthin, VIOLAX = violaxanthin,
13′-cis-LUT = 13′-cis-lutein, LUT 5,6-ep = lutein 5,6-epoxide, NEOX der = neoxanthin derivative, LUT = lutein,
ZEAX der = zeaxanthin derivative, 9′-cis-LUT = 9′-cis-lutein, α-CAR = α-carotene, β-CAR = β-carotene, LYC der
10 = lycopene derivative 10. Results are expressed as mean ± SD.
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In their study, UAE yielded 30% less of polyphenols in comparison with ASE, showing its lower
efficiency, which is similarly to our results. ASE also showed the best performance for polyphenols
extraction in other studies [47,51,52]. Summarizing the obtained results, ASE proved to be effective
green technique for recovery of NL polyphenols, whereas conditions 110 ◦C/10 min/3 cycles showed
the highest polyphenols yield. It was shown that temperature presents one of the most important
factors among the examined conditions, where generally, application of higher temperature results in
higher yields of polyphenols.

3.2. Influence of Accelerated Solvent Extraction on Chlorophylls and Carotenoids Recovery

Chlorophylls and carotenoids are pigments responsible for plant color [53], but they also possess
antioxidant properties [54,55], therefore promoting health effects [56]. Along with phenols, NL extracts
were also analyzed for the pigment content and the obtained results are given in Tables 4 and 5.
HPLC analysis revealed eight chlorophylls including chlorophyll a (CHL a), chlorophyll b (CHL b) and
their derivatives (Table 4). CHL a was the most abundant component ranging between 167.41 and
871.33 mg 100 g−1 dm, where the highest level was obtained at 80 ◦C/10 min/2 cycles. The following
component was CHL b in a ratio of 1:3 when compared to the amount of CHL a, which had been
previously confirmed in other studies [12,44]. The component with the lowest concentration was CHL
a derivative 2 in the range of 1.06–3.70 mg 100 g−1 dm obtained only at 50 and 80 ◦C. Concentrations of
other identified chlorophylls were much lower. Identified carotenoids were as follows: violaxanthin
derivative (VIOLAX der), neoxanthin (NEOX), violaxanthin (VIOLAX), 13′-cis-lutein (13′-cis-LUT),
lutein 5,6-epoxide (LUT 5,6-ep), neoxanthin derivative (NEOX der), lutein (LUT), zeaxanthin (ZEAX),
9′-cis-lutein (9′-cis-LUT), α-carotene (α-CAR), β-carotene (β-CAR) and lycopene derivative 10 (LYC
der 10) (Table 5). The most dominant carotenoid was LUT ranging from 5.52 to 30.16 mg 100 g−1 dm
with the highest yield achieved at 110 ◦C/10 min/2 cycles. β-CAR was the following carotenoid with a
maximum value of 19.02 mg 100 g−1 dm, while the least present carotenoid was LYC der 10 (0.32–0.85 mg
100 g−1 dm) and it was detected only at higher temperatures (80 and 110 ◦C). With respect to carotenoids
composition, our results are in agreement with the findings from the study of Guil-Guerrero et al. [11]
where total of nine carotenoids were identified in NL extracts being LUT, β-CAR and their isomers 60%
of total carotenoids (TCAR). However, carotenoids in our study were found in higher concentrations,
probably due to the application of different extraction technique and conditions. When supercritical
and liquid CO2 extraction were used to characterize NL chlorophylls and carotenoids, it was revealed
that chlorophylls content was lower (CHL a 73 mg 100 g−1 dm, CHL b 100 100 g−1 dm), while LUT and
β-CAR contents were higher (LUT 39 mg 100 g−1 dm, β-CAR 24 mg 100 g−1 dm) in comparison with
our results [57]. Moreover, it can be observed that the chlorophylls levels are much higher compared
to the levels of carotenoids (Tables 4 and 5), which is in accordance with previous studies, where NL
extracts had four-fold higher concentrations of chlorophylls in comparison with carotenoids [2,44].
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Table 4. Nettle leaves chlorophylls (mg100 g−1 dm) in extracts obtained at ASE different conditions.

Temperature
(◦C) Static Time (min) Cycle Number CHL b der 1 CHL a der 1 CHL a der 2 CHL b CHL a der 3 CHL a der 4 CHL a CHL a der 5

20

5

1 nd nd nd 50.13 ± 3.21 2.32 ± 0.14 nd 167.41 ± 10.10 nd
2 nd nd nd 52.20 ± 1.96 2.80 ± 0.09 nd 201.34 ± 1.36 nd
3 nd nd nd 64.08 ± 5.47 2.98 ± 0.25 1.81 ± 0.11 218.83 ± 19.03 nd
4 nd nd nd 76.86 ± 4.49 4.06 ± 0.31 2.53 ± 0.14 266.62 ± 22.25 nd

10

1 nd nd nd 149.34 ± 11.54 5.77 ± 0.11 6.27 ± 0.02 486.82 ± 30.11 9.71 ± 0.66
2 nd nd nd 124.02 ± 9.65 4.23 ± 0.32 4.75 ± 0.33 420.08 ± 3.56 5.63 ± 0.41
3 nd nd nd 144.32 ± 3.63 5.42 ± 0.25 5.31 ± 0.25 493.82 ± 14.79 7.12 ± 0.22
4 nd nd nd 164.12 ± 12.09 6.08 ± 0.04 5.97 ± 0.19 546.09 ± 21.45 6.14 ± 0.31

50

5

1 nd nd nd 128.14 ± 2.55 5.28 ± 0.06 2.79 ± 0.08 410.82 ± 9.96 2.15 ± 0.06
2 nd nd nd 118.76 ± 4.58 5.96 ± 0.14 3.81 ± 0.20 405.97 ± 37.05 1.84 ± 0.25
3 nd nd nd 118.89 ± 8.85 5.29 ± 0.24 3.79 ± 0.27 399.27 ± 16.16 2.15 ± 1.04
4 nd nd nd 127.24 ± 4.30 7.26 ± 0.57 5.12 ± 0.15 444.73 ± 7.86 1.86 ± 0.77

10

1 nd nd nd 149.14 ± 6.98 6.13 ± 0.48 5.75 ± 0.43 480.65 ± 25.52 4.90 ± 0.13
2 nd 2.07 ± 0.03 1.86 ± 0.07 186.43 ± 14.74 9.64 ± 0.08 6.35 ± 0.23 576.32 ± 5.93 6.71 ± 0.52
3 nd 1.90 ± 0.16 2.34 ± 0.11 199.60 ± 8.55 10.89 ± 0.87 7.97 ± 0.50 618.59 ± 50.38 8.20 ± 0.74
4 nd 2.61 ± 0.23 3.70 ± 0.18 220.30 ± 18.18 11.09 ± 0.66 6.55 ± 0.42 691.27 ± 7.45 6.74 ± 0.30

80

5

1 nd 4.60 ± 0.33 1.06 ± 0.05 223.73 ± 15.02 8.95 ± 0.73 3.06 ± 0.27 672.71 ± 49.12 8.13 ± 0.18
2 nd 4.97 ± 0.12 3.59 ± 0.09 250.17 ± 21.37 8.70 ± 0.55 2.96 ± 0.02 722.10 ± 60.17 12.55 ± 1.09
3 nd 4.52 ± 0.06 2.87 ± 0.14 253.59 ± 7.58 9.23 ± 0.32 2.84 ± 0.03 721.07 ± 58.77 21.77 ± 1.11
4 nd 5.03 ± 0.11 nd 253.75 ± 8.64 11.06 ± 0.86 3.11 ± 0.18 736.72 ± 8.72 21.21 ± 2.04

10

1 nd 5.03 ± 0.07 nd 253.75 ± 10.54 11.06 ± 0.74 3.11 ± 0.08 736.72 ± 3.66 21.21 ± 1.45
2 nd 7.47 ± 0.37 nd 301.80 ± 26.44 10.89 ± 0.71 2.94 ± 0.22 871.33 ± 52.30 13.63 ± 0.99
3 nd 7.60 ± 0.22 nd 280.77 ± 14.73 8.81 ± 0.42 3.20 ± 0.17 850.56 ± 30.47 15.20 ± 0.56
4 11.91 ± 0.42 8.92 ± 0.44 nd 239.99 ± 20.19 13.05 ± 0.24 4.39 ± 0.36 860.70 ± 13.96 10.98 ± 0.87

110

5

1 nd 4.23 ± 0.06 nd 217.77 ± 5.66 7.33 ± 0.09 2.55 ± 0.14 660.54 ± 28.87 7.48 ± 0.63
2 nd 4.82 ± 0.01 nd 259.70 ± 17.05 9.86 ± 0.05 3.40 ± 0.11 739.60 ± 15.47 11.11 ± 1.04
3 nd 4.70 ± 0.10 nd 280.66 ± 23.56 11.64 ± 0.60 4.13 ± 0.35 714.51 ± 41.41 22.89 ± 1.52
4 7.20 ± 0.15 4.36 ± 0.08 nd 271.95 ± 3.72 12.57 ± 1.03 4.43 ± 0.40 768.41 ± 1.22 22.19 ± 2.07

10

1 7.45 ± 0.02 4.16 ± 0.28 nd 233.27 ± 5.27 10.29 ± 0.08 3.89 ± 0.23 756.26 ± 31.28 26.66 ± 1.95
2 nd 2.42 ± 0.02 nd 308.74 ± 19.54 11.05 ± 1.07 4.89 ± 0.13 775.16 ± 26.55 152.85 ± 12.12
3 nd 5.05 ± 0.09 nd 255.42 ± 7.46 8.36 ± 0.54 3.06 ± 0.21 821.35 ± 3.33 35.94 ± 3.02
4 nd 4.68 ± 0.15 nd 271.74 ± 22.47 8.31 ± 0.11 2.97 ± 0.05 793.09 ± 54.06 36.89 ± 0.98

ASE = accelerated solvent extraction, CHL b der 1 = chlorophyll b derivative 1, CHL a der 1 = chlorophyll a derivative 1, CHL a der 2 = chlorophyll a derivative 2, CHL b = chlorophyll b,
CHL a der 3 = chlorophyll a derivative 3, CHL a der 4 = chlorophyll a derivative 4, CHL a = chlorophyll a, CHL a der 5 = chlorophyll a derivative 5. nd = not detected. Results are
expressed as mean ± SD.
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Table 5. Nettle leaves carotenoids (mg 100 g−1 dm) in extracts obtained at ASE different conditions.

Temperature
(◦C)

Static Time
(min)

Cycle
Number

VIOLAX
der NEOX VIOLAX 13′-cis-LUT LUT

5,6-ep
NEOX

der LUT ZEAX 9′-cis-LUT α-CAR β-CAR LYC
der 10

20

5

1 0.60 ± 0.02 0.70 ± 0.05 2.14 ± 0.14 nd nd 0.30 ± 0.01 5.52 ± 0.21 nd 0.54 ± 0.03 1.45 ± 0.07 4.23 ± 0.22 nd
2 0.63 ± 0.01 0.83 ± 0.01 2.48 ± 0.21 nd 0.33 ± 0.01 0.35 ± 0.00 6.39 ± 0.45 0.28 ± 0.00 0.57 ± 0.00 1.80 ± 0.11 5.11 ± 0.01 nd
3 0.65 ± 0.02 0.90 ± 0.03 2.65 ± 0.23 0.21 ± 0.01 0.35 ± 0.01 0.35 ± 0.01 6.91 ± 0.44 0.30 ± 0.02 0.58 ± 0.01 2.01 ± 0.16 5.66 ± 0.51 nd
4 0.81 ± 0.05 1.06 ± 0.05 3.11 ± 0.17 0.30 ± 0.01 0.41 ± 0.02 0.44 ± 0.03 8.28 ± 0.66 0.37 ± 0.01 0.74 ± 0.02 2.28 ± 0.03 6.75 ± 0.55 nd

10

1 1.01 ± 0.07 1.90 ± 0.12 3.65 ± 0.30 1.55 ± 0.10 0.30 ± 0.00 0.52 ± 0.01 15.71 ± 1.02 0.54 ± 0.03 1.72 ± 0.01 3.71 ± 0.25 12.40 ± 1.02 nd
2 0.84 ± 0.06 1.76 ± 0.12 3.45 ± 0.32 1.02 ± 0.03 0.10 ± 0.00 1.06 ± 0.01 13.16 ± 1.10 0.45 ± 0.03 1.52 ± 0.05 3.18 ± 0.24 10.82 ± 0.87 nd
3 1.11 ± 0.10 1.92 ± 0.01 3.24 ± 0.26 1.54 ± 0.06 0.00 ± 0.00 0.66 ± 0.04 15.27 ± 0.96 0.53 ± 0.01 1.98 ± 0.07 3.61 ± 0.16 12.59 ± 0.99 nd
4 1.16 ± 0.08 2.29 ± 0.17 4.81 ± 0.41 1.30 ± 0.09 0.13 ± 0.00 1.53 ± 0.09 17.51 ± 1.20 0.67 ± 0.04 1.12 ± 0.06 5.29 ± 0.41 13.87 ± 1.05 nd

50

5

1 1.09 ± 0.08 1.89 ± 0.10 4.40 ± 0.39 0.58 ± 0.01 0.62 ± 0.02 0.51 ± 0.01 12.71 ± 1.05 0.59 ± 0.01 0.91 ± 0.02 3.82 ± 0.12 9.22 ± 0.04 nd
2 0.92 ± 0.03 2.01 ± 0.15 4.66 ± 0.44 0.45 ± 0.01 0.63 ± 0.03 0.42 ± 0.03 12.95 ± 0.96 0.19 ± 0.00 0.79 ± 0.03 3.87 ± 0.12 9.38 ± 0.23 nd
3 0.95 ± 0.07 1.85 ± 0.12 4.18 ± 0.32 0.60 ± 0.03 0.60 ± 0.02 0.43 ± 0.02 12.49 ± 0.87 0.20 ± 0.01 0.80 ± 0.03 3.88 ± 0.05 9.38 ± 0.00 nd
4 1.14 ± 0.05 2.17 ± 0.20 5.00 ± 0.47 0.60 ± 0.05 0.70 ± 0.05 0.52 ± 0.02 14.30 ± 0.56 0.65 ± 0.05 1.02 ± 0.08 4.34 ± 0.33 10.44 ± 0.21 nd

10

1 1.05 ± 0.06 1.89 ± 0.13 3.29 ± 0.15 1.34 ± 0.11 0.65 ± 0.05 0.40 ± 0.01 14.76 ± 1.11 0.26 ± 0.01 1.03 ± 0.07 4.76 ± 0.45 11.83 ± 0.66 nd
2 1.23 ± 0.01 2.20 ± 0.17 3.73 ± 0-29 1.67 ± 0.10 0.77 ± 0.04 0.46 ± 0.02 17.67 ± 0.85 0.84 ± 0.06 1.24 ± 0.09 5.74 ± 0.55 14.10 ± 0.36 nd
3 1.36 ± 0.10 2.21 ± 0.07 3.76 ± 0.21 1.93 ± 0.15 0.89 ± 0.01 0.69 ± 0.04 18.49 ± 0.84 0.89 ± 0.07 1.59 ± 0.10 5.88 ± 0.21 14.56 ± 0.74 nd
4 1.80 ± 0.13 2.67 ± 0.09 5.38 ± 0.11 1.87 ± 0.06 1.13 ± 0.09 0.92 ± 0.08 21.88 ± 1.57 1.05 ± 0.09 1.76 ± 0.09 6.30 ± 0.11 15.84 ± 0.77 nd

80

5

1 2.07 ± 0.14 2.39 ± 0.13 6.10 ± 0.50 1.48 ± 0.03 1.08 ± 0.08 1.20 ± 0.10 20.38 ± 1.66 0.72 ± 0.05 1.99 ± 0.11 5.13 ± 0.26 14.83 ± 0.91 nd
2 1.99 ± 0.15 2.71 ± 0.22 5.82 ± 0.33 2.00 ± 0.17 1.13 ± 0.09 1.13 ± 0.08 21.93 ± 2.00 0.82 ± 0.04 3.99 ± 0.12 5.62 ± 0.09 15.54 ± 1.21 0.36 ± 0.01
3 2.01 ± 0.16 2.78 ± 0.26 5.57 ± 0.45 1.93 ± 0.18 0.14 ± 0.01 1.03 ± 0.07 21.25 ± 1.52 0.29 ± 0.01 3.93 ± 0.06 5.42 ± 0.49 15.64 ± 1.20 0.34 ± 0.00
4 1.70 ± 0.09 3.12 ± 0.24 5.11 ± 0.28 2.25 ± 0.08 1.08 ± 0.08 0.85 ± 0.07 22.29 ± 0.98 0.82 ± 0.05 3.82 ± 0.14 5.90 ± 0.27 15.35 ± 0.59 0.35 ± 0.01

10

1 1.70 ± 0.09 3.12 ± 0.12 5.11 ± 0.24 2.25 ± 0.10 1.08 ± 0.07 0.85 ± 0.06 22.29 ± 0.58 0.82 ± 0.05 3.82 ± 0.20 5.90 ± 0.35 15.35 ± 0.85 0.35 ± 0.02
2 2.19 ± 0.011 3.47 ± 0.21 6.67 ± 0.52 2.38 ± 0.07 1.32 ± 0.07 1.17 ± 0.11 25.40 ± 2.21 0.88 ± 0.06 4.50 ± 0.23 6.59 ± 0.24 17.55 ± 0.08 0.41 ± 0.01
3 2.12 ± 0.18 3.28 ± 0.25 5.86 ± 0.23 2.49 ± 0.22 1.24 ± 0.10 1.10 ± 0.05 24.30 ± 0.33 0.87 ± 0.04 4.57 ± 0.17 6.37 ± 0.24 17.00 ± 1.05 0.44 ± 0.02
4 2.45 ± 0.21 3.09 ± 0.11 6.03 ± 0.36 2.17 ± 0.14 1.26 ± 0.12 1.13 ± 0.09 24.40 ± 2.08 0.82 ± 0.03 4.48 ± 0.31 6.35 ± 0.52 16.56 ± 0.74 nd

110

5

1 1.69 ± 0.012 2.87 ± 0.06 5.91 ± 0.35 1.79 ± 0.17 1.00 ± 0.05 0.67 ± 0.02 20.89 ± 0.78 0.65 ± 0.03 2.90 ± 0.18 5.51 ± 0.31 14.72 ± 0.47 nd
2 1.72 ± 0.14 3.50 ± 0.014 6.16 ± 0.41 2.18 ± 0.20 1.18 ± 0.09 0.82 ± 0.02 23.52 ± 0.32 0.92 ± 0.07 3.25 ± 0.22 6.21 ± 0.20 16.00 ± 1.25 0.32 ± 0.00
3 1.77 ± 0.13 3.62 ± 0.22 5.94 ± 0.35 2.44 ± 0.19 0.98 ± 0.07 0.81 ± 0.05 24.20 ± 1.47 0.87 ± 0.06 3.57 ± 0.09 6.12 ± 0.54 16.41 ± 1.26 0.34 ± 0.01
4 1.74 ± 0.14 3.43 ± 0.30 5.26 ± 0.47 2.50 ± 0.23 1.09 ± 0.06 0.74 ± 0.03 23.23 ± 0.88 0.76 ± 0.06 3.63 ± 0.16 5.77 ± 0.20 15.71 ± 0.93 0.36 ± 0.01

10

1 1.93 ± 0.15 3.40 ± 0.24 4.68 ± 0.43 2.65 ± 0.24 1.08 ± 0.06 0.73 ± 0.04 22.98 ± 1.26 0.81 ± 0.02 3.70 ± 0.08 5.83 ± 0.17 15.53 ± 0.88 0.43 ± 0.03
2 2.04 ± 0.11 4.33 ± 0.36 2.50 ± 0.21 4.35 ± 0.37 0.95 ± 0.07 0.59 ± 0.03 30.16 ± 2.11 1.07 ± 0.01 4.54 ± 0.25 7.03 ± 0.66 19.02 ± 1.52 0.85 ± 0.04
3 1.97 ± 0.05 3.45 ± 0.15 4.71 ± 0.12 3.00 ± 0.28 1.13 ± 0.03 0.80 ± 0.07 24.18 ± 1.45 0.90 ± 0.07 3.72 ± 0.15 6.19 ± 0.62 16.29 ± 0.04 0.55 ± 0.03
4 1.77 ± 0.07 3.17 ± 0.27 3.93 ± 0.33 2.72 ± 018 0.97 ± 0.02 0.71 ± 0.06 23.07 ± 0.63 0.74 ± 0.06 3.74 ± 0.10 5.59 ± 0.47 15.80 ± 0.14 0.58 ± 0.04

ASE = accelerated solvent extraction, VIOLAX der = violaxanthin derivative, NEOX = neoxanthin, VIOLAX = violaxanthin, 13′-cis-LUT = 13′-cis-lutein, LUT 5,6-ep = lutein 5,6-epoxide,
NEOX der = neoxanthin derivative, LUT = lutein, ZEAX = zeaxanthin, 9′-cis-LUT = 9′-cis-lutein, α-CAR = α-carotene, β-CAR = β-carotene, LYC der 10 = lycopene derivative 10. nd = not
detected. Results are expressed as mean ± SD.
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Table 2 provides the results of ASE conditions’ impact on the yield of NL pigments. The sum
of total pigments (TPG) includes total chlorophylls (TCH) and TCAR. The results showed that the
temperature, static time and number of cycles significantly affected (p < 0.01) content of all analyzed
pigments. TCH and TCAR increased two-fold with an increase in temperature (TCH 464.37 vs.
1075.25 mg 100 g−1 dm, TCAR 31.48 vs. 65.81 mg 100 g−1 dm). Nevertheless, it can be observed
that several chlorophylls and carotenoids achieved maximum yield at 80 ◦C, while at 110 ◦C a
decrease in yield was recorded (Tables 4 and 5). Considering static time, all pigments showed higher
content at static time of 10 min and as for cycle number, it can be observed that the highest yields
of pigments were achieved at the maximum cycle number (Table 2). Finally, the highest TPG was
obtained at 110 ◦C (1141.06 mg 100 g−1 dm), at the static time of 10 min (992.77 mg 100 g−1 dm)
and at the fourth cycle of extraction (928.82 mg 100 g−1 dm) with temperature being dominant for
influencing the extraction yield. Temperature increase affects the viscosity and solubility of the
solvent, but degradation of the components can also occur if the applied temperature is too high [58].
Optimization of ASE parameters for carotenoids extraction (LUT and β-CAR) from carrot was also
conducted by Saha et al. [58] by variation of temperature (40, 50 and 60 ◦C) and static time (5, 10 and
15 min). An increase in extraction yield for 4–8% was recorded by increasing the time for 5 min at
60 ◦C, but extraction efficiency was not observed when more than three cycles were carried out, giving
60 ◦C/15 min/3 cycles as optimal conditions. Furthermore, Cha et al. [59] investigated the effect of
temperature (50, 105 and 160 ◦C) and static time (8, 19 and 30 min) on content of chlorophylls and
carotenoids from algae Chlorella vulgaris and also concluded that temperature had the strongest influence
on pigment extraction. They reported maximum yields of CHL a and b at the highest temperatures
(150–160 ◦C), while β-CAR showed temperature sensitivity since its yield decreased at temperatures
between 120 and 160 ◦C. Kim et al. [60] characterized twelve carotenoids from different varieties of
paprika isolated using ASE at optimal conditions of 100 ◦C/5 min/3 cycles, and Mustafa et al. [56]
reported 60 ◦C/2 min/5 cycles as the highest efficiency ASE conditions for carotenoids extraction from
carrot by-products. They recorded a decrease of α- and β-CAR at temperatures above 120 ◦C, which is
explainable by the thermo-sensitivity of carotenoids. They also proposed the use of several cycles, since
some carotenoids are beginning to release during longer extraction time. Hojnik et al. [12] believe that
for the extraction of chlorophylls it is necessary to conduct at least 2 extraction cycles in order to obtain
a high yield, while Rafajlovska et al. [61] showed that multiple cycle extraction is better technique than
one long cycle extraction. Although they applied different technique (supercritical CO2 extraction),
the levels of CHL a + b and β-CAR in NL significantly raised with the application of several steps of
extraction. Further, chlorophylls dissolved better at higher pressure and temperature (210 bar, 50 ◦C)
compared to the carotenoids (140 bar, 40 ◦C).

Comparing the pigment yields between ASE and UAE (Tables 3–5), it is evident that ASE yielded
higher amounts of almost all pigments, especially the dominant ones. Research of Plaza et al. [62]
also compared ASE and UAE for the extraction of chlorophylls and carotenoids from the algae Chlorella.
It was concluded that ASE accomplished higher yields of pigments along with being a faster and more
controlled technique. Moreover, Koo et al. [63] achieved a seven-fold higher amount of zeaxanthin from
Chlorella in ASE extract compared to the extracts obtained with UAE. Based on the above results, ASE is
a technique that executes higher yields of targeted compounds and protects sensitive compounds from
light and oxygen under controlled conditions of temperature, pressure and extraction time [64].

3.3. Influence of Accelerated Solvent Extraction on Antioxidant Capacity

As already mentioned, it is well established that antioxidants prevent the oxidation of other
substances and, in biological systems, they neutralize reactive free radicals, thus protect the body from
various diseases. Since NL extracts already proved to be a very rich source of natural antioxidants,
antioxidant capacity (AC) in obtained extracts was documented by the ORAC method (Table 1).
ORAC values ranged from 2.42 to 22.07 mmol TE 100 g−1 dm. The highest value was determined in
extract obtained at 80 ◦C/10 min/3 cycles, after which a decline was recorded. Similar ORAC levels
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were recorded by Moldovan et al. [8]. High AC of nettle was also confirmed in Skapska et al. [65]
and Tian et al. [66] research.

Considering ASE conditions, temperature, static time and cycle number had a significant influence
(p < 0.01) on the AC. The most suitable combination of ASE parameters for achieving the extract with
the highest ORAC value was 80 ◦C/10 min/4 cycles, as presented in Table 2. Regarding temperature,
AC of the extracts was three-fold higher at 80 ◦C (16.70 mmol TE 100 g−1 dm) compared to the value at
the initial temperature (5.52 mmol TE 100 g−1 dm) and afterwards it slightly decreased. This points
that analyzed compounds of NL extracts were stable at 80 ◦C. This is in accordance with previously
discussed results since the increase of AC derives from the abundant presence of bioactive molecules
at higher temperatures as a consequence of the cell-wall disruption and increased mass transfer from
the sample to the pressurized solvent. Accordingly, Howard et al. [67] reported an increase of spinach
extracts AC combined with elevated temperature as well as Benchikh and Louailèche [68] in study of
carob pulp polyphenols.

Calculated correlation coefficients showed a very strong correlation (r = 0.86–0.94) between the
analyzed compounds and ORAC levels (Table 6), showing that NL THCA and TF as well as pigments
significantly contribute to its antioxidant potential. Previous research showed that phenolic acids and
flavonoids are significant antioxidants [69–71] as well as chlorophylls [54] and carotenoids [72–75].

Table 6. Pearson’s correlations between nettle leaves polyphenols (mg 100 g−1 dm), pigments
(mg 100 g−1 dm) and ORAC values (mmol TE 100 g−1 dm) in ASE extracts.

Parameter ORAC

THCA 0.86 *
TF 0.87 *
TP 0.87 *

TCH 0.94 *
TCAR 0.92 *
TPG 0.92 *

ASE = accelerated solvent extraction, THCA = total hydroxycinnamic acids, TF = total flavonoids, TP = total phenols,
TCH = total chlorophylls, TCAR = total carotenoids, TPG = total pigments. * p ≤ 0.05.

When comparing AC between ASE and UAE extracts, the higher ORAC values were observed in
ASE comparted to UAE extracts (22.07 vs. 13.26 mmol TE 100 g−1 dm) (Tables 1 and 3), confirming that
ASE is more efficient for achieving high valuable extracts. Similarly, Hossain et al. [47] reported 77.52%
higher AC in rosemary ASE extract in comparison with conventional extract, as a result of more
efficient ASE of antioxidant phenolic compounds. Other authors also reported similar findings [51].

From all of the above, NL certainly represents a great source of various antioxidants (hydrophilic
and lipophilic), where generally all analyzed compounds strongly contribute to AC. Moreover, ASE
provides higher extraction yields of bioactive antioxidants in comparison with UAE; thus, it could be
considered as an efficient green tool for the production of highly valuable nettle extracts for further
industrial use.

4. Conclusions

Due to the increased interest in the industry for application of natural extracts in functional food
production, the obtained results clearly demonstrate that ASE nettle extracts could be considered as
green extracts for potential further use. Wild NL extracts were shown as a valuable natural source
of structurally diverse bioactive compounds, polyphenols and pigments. Moreover, high efficiency
for obtaining valuable NL extracts has been successfully obtained by ASE at optimized conditions of
110 ◦C, 10 min of static time and three or four cycles. Among the bioactive components that contribute
to the biological value of NL, seven polyphenols belonging to the groups of hydroxycinnamic acids and
flavonoids, chlorophylls a and b along with six of their derivatives and twelve carotenoids were present.
Quantitatively, ChA was the most abundant polyphenol and CHL a represented the dominant pigment,
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followed by CHL b, LUT and β-CAR. Furthermore, ASE showed better performance in comparison
with UAE, obtaining higher yields of antioxidant compounds and 60% higher antioxidant capacity.
Results of this study are fundamental for future research involving spray-drying of NL extracts and
further implementation of the obtained NL powder into various food products.

Author Contributions: Conceptualization, M.R. and D.B.K.; Data curation, M.R., E.C., S.P. and F.Ç.; Formal
analysis, V.K., S.P. and F.Ç.; Methodology, M.R., S.P. and D.B.K.; Project administration, V.D.-U.; Resources, I.Ž.;
Supervision, V.D.-U.; Writing—original draft, M.R., E.C. and D.B.K.; Writing—review & editing, V.D.-U. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Croatian Science Foundation project (grant number IP-01-2018-4924).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Otles, S.; Yalcin, B. Phenolic compounds analysis of root, stalk, and leaves of nettle. Sci. World J. 2012, 2012,
1–12. [CrossRef] [PubMed]
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Zeković, Z. The functional food production: Application of stinging nettle leaves and its extracts in the
baking of a bread. Food Chem. 2020, 312. [CrossRef] [PubMed]
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