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Abstract

Background: Monte Carlo-based iterative reconstruction to correct for photon

scatter and collimator effects has been proven to be superior over analytical

correction schemes in single-photon emission computed tomography (SPECT/CT),

but it is currently not commonly used in daily clinical practice due to the long

associated reconstruction times. We propose to use a convolutional neural network

(CNN) to upgrade fast filtered back projection (FBP) image quality so that

reconstructions comparable in quality to the Monte Carlo-based reconstruction can

be obtained within seconds.

Results: A total of 128 technetium-99m macroaggregated albumin pre-treatment

SPECT/CT scans used to guide hepatic radioembolization were available. Four

reconstruction methods were compared: FBP, clinical reconstruction, Monte Carlo-

based reconstruction, and the neural network approach. The CNN generated

reconstructions in 5 sec, whereas clinical reconstruction took 5 min and the Monte

Carlo-based reconstruction took 19 min. The mean squared error of the neural

network approach in the validation set was between that of the Monte Carlo-based

and clinical reconstruction, and the lung shunting fraction difference was lower than

2 percent point. A phantom experiment showed that quantitative measures required

in radioembolization were accurately retrieved from the CNN-generated

reconstructions.

Conclusions: FBP with an image enhancement neural network provides SPECT

reconstructions with quality close to that obtained with Monte Carlo-based

reconstruction within seconds.
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Background

Monte Carlo-based iterative reconstruction to correct for scatter and collimator ef-

fects has been proven to be superior over more analytical correction schemes, al-

beit at the cost of reconstruction times of potentially several hours [1–3]. This has

up to now limited introduction of such techniques into daily clinical practice be-

cause the requirement of reconstruction job queues causing interrupted workflow

is considered bothersome. In addition, technologists prefer to quickly judge

whether a scan was correctly performed, e.g., by validating whether a patient has

moved during the examination. Substantial reconstruction acceleration can be
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achieved with code parallelization, the use of dedicated workstations, and restric-

tions on the matrix size or number of iterations, which might bring the recon-

struction time to a clinically acceptable value. We will in this work, however,

explore a different method for acceleration that is also less dependent on recon-

struction settings for its required reconstruction time.

Deep learning has emerged in recent years for a variety of applications in medical im-

aging, such as segmentation, super-resolution, and denoising [4]. We believe there is a

major opportunity for these networks to aid single-photon emission computed tomog-

raphy (SPECT) by accelerating the reconstruction step. Specifically, we propose to first

generate a low-quality reconstruction using fast filtered back projection (FBP) and then

pass the result to an image enhancement convolutional neural network. Such a trained

network would improve reconstruction quality and would be able to generate its results

within seconds.

Although our approach is valid for all forms of SPECT/CT imaging, the focus of this

work will be on potential implementation in the hepatic radioembolization workflow

[5]. In this treatment, microspheres filled with radioactivity are inserted into the liver

to deliver a damaging dose to the tumour. A scan of technetium-99m macroaggregated

albumin (99mTc-MAA) is normally performed in a separate safety procedure for estima-

tion of the lung shunting fraction (LSF) and detection of potential extrahepatic distri-

butions. Ideally, both this pre-treatment procedure and the treatment itself would be

performed in a single setting, to minimize in-between changes in anatomy and catheter

position [6]. Such a single-session procedure would require SPECT/CT in the interven-

tion room for a smooth workflow, for which we are developing a compact mobile sys-

tem [7–9], scanning to be performed in minutes, and reconstructions to be available

within seconds.

This study compares the obtained image quality, reconstruction speed, and response

to short scan time for the discussed fast neural network approach, a relatively slow but

accurate Monte Carlo-based reconstructor, and a commercially available clinical recon-

structor, so that it becomes clear whether the neural network approach can provide re-

constructions with quality similar to those obtained with Monte Carlo-based

reconstruction, but now within seconds.

Methods

Convolutional neural networks are usually trained with pairs of low- and high-quality im-

ages. In nuclear medicine, however, the high-quality images (e.g. obtained with long scan

time) can be substantially different from true distributions, due to technical limitations

such as the limited spatial and energy resolution of the gamma camera. To prevent the

neural network from learning the errors that arise from these limitations, this work intro-

duced an additional intermediate reconstruction and projection step. The neural network

could with this method potentially learn how to approach the true distribution better than

the iterative image reconstructor. The separate steps are discussed in more detail below.

Patient data

Our retrospective study was approved by the local ethics committee, who also waived

the need for informed consent of the patients involved. Projections of 128 SPECT/CT
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scans from the pre-treatment 99mTc-MAA radioembolization procedure were available.

All scans were performed on a dual-head Symbia T16 detector system (Siemens

Healthineers, Erlangen, Germany). Projections were obtained in 20min under 120 an-

gles using a low energy high resolution (LEHR) parallel hole collimator with a photo-

peak window between 129 and 150 keV and a scatter window between 108 and 129

keV. Out of the 128 distributions, 100 were used for network training, 20 for validation,

and 8 for testing purposes.

Ground truth reconstruction

The patient projections were first reconstructed using the Utrecht Monte Carlo System

(UMCS) [10]. This software package has been validated for several isotopes [11–14]

and is considered state-of-the-art. UMCS accounts for attenuation with the μ-map ob-

tained from the CT, resolution through point spread function modelling, and scatter

using Monte Carlo simulation of the photon interactions in the body. A total of 10 iter-

ations with 8 subsets were performed and no post-reconstruction filter was applied.

The volumes had 128 × 128 × 128 voxels with 3.9 mm isotropic voxel size. The resulting

reconstructions were set as ground truth distributions and were used for comparison of

the reconstruction methods at a later stage.

Synthetic volumes

The performance of the neural network should improve when more unique volumes

are available to train on. The 100 ground truth distributions in the training set were

hence used to create additional synthetic volumes. From a random patient, the liver

mask with corresponding attenuation map was first selected. A sphere with a random

diameter of 7 to 20 pixels was then positioned at a random location in the liver and

filled with a random patch of the activity distribution from another patient. The process

was repeated until the entire liver mask was filled. The generated synthetic volumes

were thus a composition of patches from tens of separate reconstructions. In total, 900

synthetic volumes were created with this method.

Projection generation

Projections of the 100 ground truth distributions and 900 synthetic volumes (with colli-

mator and detector effects and up to ten orders of scatter) were generated using

UMCS. The use of a high number of photon tracks combined with convolution-based

forced detection yielded nearly noise-free projections. Poisson noise was then added so

that the simulated projections became representative of real detector measurements.

Projections were simulated for two scan times: 20 min, as is customary for a regular

diagnostic SPECT/CT scan, and 5min, which we envision for use in interventional

radioembolization procedures. The total activity of the ground truth volumes was set to

150MBq, as this is the average injected dose in the radioembolization pre-treatment

procedure in our hospital. The detector was configured with a single head, in anticipa-

tion of the compact mobile system mentioned in the introduction.

Reconstruction methods

The above projection sets were reconstructed using four different methods:

Dietze et al. EJNMMI Physics            (2019) 6:14 Page 3 of 12



– Filtered back projection (FBP). The ramp filter was used in combination with

Chang’s correction [15] to compensate for attenuation (using the attenuation map

from the CT scan). A post-reconstruction Gaussian filter of 5 mm full width at half

maximum (FWHM) was applied to remove the most severe artefacts.

– Monte Carlo-based reconstruction (MC). The projections were reconstructed using

the same reconstructor as used in the initial reconstruction (UMCS). A total of 10

iterations with 8 subsets were performed and no post-reconstruction filter was

applied.

– Clinical reconstruction (CLINIC). An iterative reconstruction method, as can be

found in state-of-the-art clinical methods (such as Flash3D in Siemens systems),

was used. This reconstruction method included attenuation correction and

resolution recovery and used dual-energy window scatter correction [16]. Scattered

photons were smoothed with a Gaussian filter of 5 mm FWHM and added to the

reconstruction loop at fraction k = 0.5. A post-reconstruction Gaussian filter of 5

mm FWHM was employed and a total of 10 iterations with 8 subsets were

performed. These settings were chosen as they are the current clinical practice in

our institute.

– Convolutional neural network approach (CNN). The projections were first

reconstructed using FBP as above and then fed to the trained network to increase

the image quality.

Network design

The neural network used a deep convolutional encoder-decoder structure (see Fig. 1),

which is frequently used for denoising applications [17, 18]. Network training was per-

formed by minimizing the voxel-wise mean squared error of the FBP reconstructions

with the combination of the 100 ground truth distributions and 900 synthetic volumes.

The network consisted of layers with several resolutions, which were connected with

each other via concatenation (to ensure small objects were not lost in training). Five

adjacent slices per sample were used as input so that resolution in all directions was

Fig. 1 Schematic of the encoder-decoder convolutional neural network with five input slices as used in this

study. Left are examples of the FBP input reconstructions and right the associated ground truth distribution
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preserved. By inserting all 128 slices from FBP into the network, the entire volume was

reconstructed. Separate networks were trained for both simulated scan times.

For the encoding layers, every step consisted of two 3 × 3 convolutional layers with

ReLu activation function, followed by 2 × 2 max pooling. The decoding layers first

upsampled the resolution and again used two 3 × 3 convolutional layers. Learning was

performed using the ADAM optimizer [19] with a learning rate of 1e−4. The data was

fed to the network with a batch size of 128. Training continued until no further de-

crease in the loss function was observed for 20 epochs. The training was performed

using TensorFlow 1.7.0 [20] with Keras 2.1.6 [21].

Evaluation

Network performance

It was first studied whether the introduced reconstruction and projection step (by set-

ting the initial reconstructed images as ground truth) performed better than when

training directly to the Monte Carlo-based generated reconstructions. It was subse-

quently evaluated whether the augmentation of training data with synthetic volumes

aided network performance by separately training with 0, 300, 600, and 900 synthetic

phantoms, in addition to the 100 ground truth distributions. The minimum acquired

losses were used as a measure for network performance. Since the neural network is

slightly sensitive to the random initial weights chosen, five realizations were performed

per setting.

Validation performance

The mean squared error of the four reconstructions (normalized to the total recon-

structed activity) with the associated ground truth was calculated for the two scan

times and used as a quantitative measure for reconstruction quality for the 20 patients

in the validation set. The difference of the LSF with the ground truth distributions was

furthermore measured because this measure is often assessed in hepatic

radioembolization.

Phantom measurements

A phantom study was performed to evaluate to what extent the neural network ap-

proach could reconstruct true detector projections. An anthropomorphic phantom was

adjusted from a commercially available phantom (Anthropomorphic Torso Phantom:

ECT/TOR/P) by the inclusion of three extrahepatic spheres (with volumes of 2.0, 4.1,

and 8.1 mL) and one solid sphere (15.7 mL) and one sphere with cold core (5.6 mL cold

volume; 18.7 mL hot volume) inside the liver (see Fig. 2). The extrahepatic spheres were

filled with 2.7 uptake ratio in relation to the liver background activity, for the spheres

inside the liver, this ratio was 7.7. The lungs were filled with LSF of 5.2%. The phantom

was filled with water and had 157MBq total activity of 99mTc. The phantom was con-

figured in this way to represent situations encountered in hepatic radioembolization

[22, 23].

The anthropomorphic phantom was scanned for 20 min on the same scanner with

the same acquisition settings as in the patient scans but now with a single head. By uni-

form random subsampling from the obtained projections, projections with 5 min scan
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time were additionally acquired. The liver, sphere, and lung masks were generated from

delineation on the low-dose CT. The uptake ratios of the solid spheres, contrast-to-

noise ratio (CNR), and LSF were calculated from the reconstructions and compared

with the values of the phantom. The CNR was calculated with the solid sphere inside

the liver and the liver background.

Original detector projections

Reconstructions were finally performed on the 8 patient projections in the testing set

to give an indication of the reconstruction performance on true detector projections

for patient distributions with varying levels of activity. Since no ground truth is present

for these cases, the reconstructions were solely visually compared.

Results

Reconstruction time

The CNN reconstruction was performed on the graphics processing unit (GPU), the

other options used the central processing unit (CPU) with a single core, all on a Dell

Precision 7810 (2.60 GHz Xeon E5-2640v3 and 64 GB RAM) with NVIDIA Quadro

P6000. The time for reconstruction of an entire volume was approximately 2 s using

FBP and 5 s with CNN. The clinical reconstruction required 5 min and the Monte

Carlo-based reconstruction required 19min. The CNN training took approximately 10

h for the case of 900 synthetic volumes.

Network performance

Directly training the FBP to the Monte Carlo-based reconstructions (with no synthetic

volumes) resulted in a minimum validation loss of 1.31 ± 0.02, whereas with the intro-

duced reconstruction and projection step, it reduced to 1.22 ± 0.01. This indicated that

the introduction of this step aided network performance.

Fig. 2 The anthropomorphic phantom with three extrahepatic volumes and one solid lesion and one

lesion with a cold core inside the liver
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The minimum validation loss was 1.22 ± 0.01 when no synthetic volumes were used

and then decreased to 1.06 ± 0.02 for 300 volumes, 1.04 ± 0.01 for 600 volumes, and

1.01 ± 0.01 for 900 volumes. The introduction of synthetic volumes into the training set

thus also improved network performance.

Validation performance

The reconstructions of one patient distribution from the validation set are shown in

Fig. 3 for the four reconstruction methods and two scan times. For all reconstruction

methods, it is evident that quality deteriorated with shorter scan time. FBP created re-

constructions with severe artefacts and tumour contrast was low. Clinical reconstruc-

tions had no visible artefacts but had low contrast too. The CNN approach provided

results that were comparable to the Monte Carlo-based reconstructions.

The mean squared error of the reconstructions with the associated ground truth dis-

tributions in the validation set is depicted in Fig. 4. These quantitative results showed

that the neural network approach had the performance closest to the Monte Carlo-

based reconstruction, for both scan times.

The difference of the LSF obtained with the four reconstruction methods with that

from the ground truth distributions is shown in Fig. 5. The Monte Carlo-based recon-

struction and clinical reconstruction provided the lowest difference. FBP resulted in an

overestimation of several percent point (pp) and the CNN reconstruction gave a slight

underestimation for the 5 min scan. The values from clinical, CNN, and Monte Carlo-

based reconstruction were all, however, within 2 pp difference.

Phantom measurements

The quantitative measures from the reconstructions of the phantom experiment are

compiled in Table 1, together with the true values as configured in the phantom. The

uptake ratios became relatively worse for spheres of decreasing size, due to the partial

volume effect. The Monte Carlo-based and CNN reconstructions provided similar ra-

tios, whereas the found values were lower for clinical reconstruction and FBP. The

CNN, clinical, and MC reconstructions gave comparable LSF values; a higher fraction

was obtained with FBP. The CNR provided values that were in the same range for both

Fig. 3 Reconstructed image slices of a representative patient distribution from the validation set, for the

four reconstruction methods and two scan times. Additionally shown is the associated ground

truth distribution
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clinical, CNN, and Monte Carlo-based reconstruction; again, only FBP had substantially

lower values.

Original detector projections

Five reconstructions obtained from the real detector projections of the 8 patients in the

testing set are visualized in Fig. 6. These projection sets were generally obtained a few

hours after injection (in contrast to our envisioned interventional scanning) and thus

did not carry the 150MBq as in the simulations. The network from the 20min scan

time was used for the CNN because this network was trained with the closest activity

levels. No ground truth is available for these images. Visual inspection, however,

Fig. 4 Mean squared error for the 20 distributions in the validation set, for the four reconstructions

methods and the two scan times. The asterisk denotes the reconstruction methods that were significantly

different from the Monte Carlo-based reconstruction (Mann-Whitney U test at p < 0.01)

Fig. 5 The difference in percent point (pp) of the LSF for the 20 distributions in the validation set, for the

four reconstructions methods and the two scan times. Additionally shown are the LSFs found in the

ground truth distribution. The asterisk denotes the reconstruction methods that resulted in a significantly

different LSF from the Monte Carlo-based reconstruction (Mann-Whitney U test at p < 0.01)
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showed that CNN and Monte Carlo-based reconstruction had the same features

present. This indicated that the neural network approach was also able to generalize

well to true detector measurements for patients.

Discussion

This study showed that FBP with an image enhancement convolutional neural network

in SPECT/CT can perform reconstruction within seconds. From the evaluation of the

validation set, the phantom experiment, and visual inspection of the testing set, it was

found that image quality close to that of the Monte Carlo-based reconstructor was

Table 1 Lung shunting fraction, uptake ratio for the spheres, and contrast-to-noise ratio for the

four reconstruction methods and two scan times, together with the values as configured in the

phantom

LSF [%] Up. 2.0 mL Up. 4.1 mL Up. 8.1 mL Up. 15.7 mL CNR

True values 5.2 2.7 2.7 2.7 7.7 –

5 min FBP 6.4 0.5 0.8 1.0 4.1 6.5

CLINIC 5.1 1.0 1.4 1.5 5.2 10.3

CNN 4.7 1.7 2.3 2.0 6.6 12.1

MC 5.8 2.0 2.3 2.2 6.5 11.0

20 min FBP 5.3 0.5 0.8 1.0 4.1 6.6

CLINIC 4.7 1.0 1.4 1.5 5.1 10.5

CNN 5.1 1.9 2.3 2.3 7.2 12.5

MC 5.2 2.0 2.2 2.2 6.5 11.6

Fig. 6 Reconstruction slices of five representative distributions from the test set, for the four

reconstruction methods
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retrieved. The neural network approach additionally performed well for short scans,

which would be required for use in interventional SPECT/CT scanning.

This study is one of the first to illustrate the use of deep learning in SPECT. In other

modalities, such as positron emission tomography (PET) [24, 25], the use of an image

enhancement neural network has previously been explored. The mentioned studies,

however, had the primary aim of limiting the injected dose and made no use of the ac-

celeration in reconstruction time as is illustrated in this study. Also, the method of cre-

ating synthetic volumes to augment the training data has not shown before in nuclear

medicine.

Although this study focused on potential implementation in the pre-treatment pro-

cedure of radioembolization, we believe that our approach is applicable to all forms of

SPECT/CT. We envision that one use would be to quickly validate whether a scan was

made without any motion artefacts. The network in this work was only trained with

distributions from radioembolization. It is unknown how well the network generalizes

to other distributions. It might prove that the neural network needs to be trained for

each procedure separately to ensure optimal results.

In the current clinical practice of radioembolization, the pre-treatment procedure of

radioembolization has two major aims: determination of the lung shunting fraction and

detection of potential extrahepatic distributions. Both measures were accurately re-

trieved from the reconstructions from the neural network approach in the phantom ex-

periment. For the patient distributions, it was found that the difference of the LSF

obtained with CNN and the ground truth was within 2 percent point, which can be

considered clinically sufficient.

A limitation of this study is that it was not shown that extrahepatic depositions were

also accurately detected in the patient distributions. Because these depositions are not

commonly found in our institute and we did not perform a selection on which distribu-

tions to include in training or validation, there were not enough cases to draw conclu-

sions on. However, by means of the phantom experiment and by illustrating the visual

quality of the images obtained with CNN, we are confident that patient extrahepatic

depositions would also be accurately detected.

It was shown that upon increasing the number of synthetic volumes, the neural net-

work performance increased. A further increase in quality might be achievable when

including more volumes or adding more layers to the network. However, this would

simultaneously increase the required GPU memory. Such computational aspects are

currently holding back further increase in network performance. With a smarter selec-

tion of distributions (i.e. assembling the set with the highest diversity), it might be pos-

sible to achieve improved results at the same computational cost.

The clinical and Monte Carlo-based reconstructions were performed using a single

core in this study. Substantial acceleration can be achieved when the code is paralle-

lized and a dedicated workstation with many CPU cores is used, which might bring the

Monte Carlo-based reconstruction time to a clinically acceptable value. The use of

GPUs is also very promising for shortening the reconstruction time [26]. An advantage

of the neural network approach is that the reconstruction time is almost independent

of the matrix size and the number of iterations.

A potential application for the developed method was proposed for interventional

scanning in radioembolization. This would also require short scan times and a scanner
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in the intervention room to ensure a smooth workflow. As for the short scan times, it

was recently shown that one can move toward substantially reduced scan times (< 10

min) and still obtain accurate results on various quantitative measures [27]. As for the

scanner, a mobile compact system that can be included in the intervention room [7–9]

is currently being built and it is expected that this system is available for patient studies

soon. Combined with the fast reconstruction in this work, we believe that all elements

are present to enable interventional SPECT imaging in clinical practice.

Conclusions

FBP with an image enhancement convolutional neural network can provide SPECT re-

constructions similar in quality to those obtained with Monte Carlo-based reconstruc-

tion for the pre-treatment procedure of hepatic radioembolization within seconds.
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