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Accelerated Stokesian dynamics: Brownian motion

Adolfo J. Banchioa) and John F. Bradyb)

Division of Chemistry and Chemical Engineering, California Institute of Technology,
Pasadena, California 91125

~Received 21 November 2002; accepted 12 March 2003!

A new Stokesian dynamics ~SD! algorithm for Brownian suspensions is presented. The

implementation is based on the recently developed accelerated Stokesian dynamics ~ASD!
simulation method @Sierou and Brady, J. Fluid Mech. 448, 115 ~2001!# for non-Brownian particles.

As in ASD, the many-body long-range hydrodynamic interactions are computed using fast Fourier

transforms, and the resistance matrix is inverted iteratively, in order to keep the computational cost

O(N log N). A fast method for computing the Brownian forces acting on the particles is applied by

splitting them into near- and far-field contributions to avoid the O(N3) computation of the square

root of the full resistance matrix. For the near-field part, representing the forces as a sum of pairwise

contributions reduces the cost to O(N); and for the far-field part, a Chebyshev polynomial

approximation for the inverse of the square root of the mobility matrix results in an O(N1.25 log N)

computational cost. The overall scaling of the method is thus roughly of O(N1.25 log N) and makes

possible the simulation of large systems, which are necessary for studying long-time dynamical

properties and/or polydispersity effects in colloidal dispersions. In this work the method is applied

to study the rheology of concentrated colloidal suspensions, and results are compared with

conventional SD. Also, a faster approximate method is presented and its accuracy discussed.

© 2003 American Institute of Physics. @DOI: 10.1063/1.1571819#

I. INTRODUCTION

The understanding and prediction of the rheology and

dynamics of Brownian suspensions has been ~and still is! a

subject of both fundamental and technological interest. In the

last decade, considerable effort has been made to investigate,

experimentally and theoretically, the structure and dynamics

of colloidal suspensions. The equilibrium structure and short-

time dynamics of monodisperse suspensions have been thor-

oughly studied and, in many aspects, are well understood.1,2

The long-time dynamics, rheology, and the nonequilibrium

structure, on the other hand, are still the subject of ongoing

research. The presence of many-body hydrodynamic interac-

tions ~HI! greatly complicates the theoretical treatment of

these systems, and for this reason the development of simu-

lation techniques capable of addressing the hydrodynamic

interactions has been a significant advance. In particular,

since its first implementation for Brownian suspensions, the

Stokesian dynamics ~SD! simulation method has been suc-

cessfully applied for more than ten years to a wide range of

problems, such as the short-time diffusion and rheology of

Brownian suspensions, as well as the nonequilibrium prop-

erties of suspensions under flow3–7 to mention but a few.

Long-time dynamics and large-scale structure formation,

however, were normally out of the scope of SD simulations

owing to the large computational costs involved @an O(N3)

scheme, where N is the number of particles in the system#,
which limited its use to small systems ~typically 27–125

particles in the simulation box!.
Recently, Sierou and Brady8 presented the accelerated

Stokesian dynamics ~ASD! algorithm for nonBrownian sus-

pensions, a new implementation of the SD method in which

the computational cost scales as O(N log N). This new

scheme allows simulations of the order of 1000 or more par-

ticles, and makes possible the study of highly concentrated

suspensions, large-scale structure formation, etc. The method

can also be readily extended to study nonspherical particles

and mixtures or polydispersity effects.

The aim of this work is to develop a new SD simulation

technique for Brownian suspensions in which the computa-

tional cost scales roughly as O(N1.25 log N). This will be

achieved by extending the ASD code for the efficient treat-

ment of Brownian forces, which in the original SD imple-

mentation involved O(N3) operations. This new algorithm

will now make possible the simulation of much larger sys-

tems, and will also allow much longer simulations ~on the

particle time scale!, which is necessary for assessing long-

time dynamics and time-correlation functions.

This article is organized as follows: In Sec. II, we de-

scribe in detail the new simulation method. Results for the

rheology of concentrated colloidal suspensions are presented

in Sec. III. Conclusions are given in Sec. IV.

II. METHOD

First, we briefly review the conventional Stokesian dy-

namics algorithm for Brownian suspensions, emphasizing

the steps in which the computational cost is larger than

a!Present address: Facultad de Matemática, Astronomı́a y Fı́sica, Univer-

sidad Nacional de Códoba, Ciudad Universitaria, 5000 Córdoba, Argen-
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O(N). We will then discuss the changes introduced in the

ASD algorithm, and finally we describe in detail the further

modifications needed for the inclusion of Brownian motion

in order to keep the scaling of the computations as low as

possible.

For a system of N rigid particles ~of characteristic size

a) suspended in an incompressible Newtonian fluid of vis-

cosity h0 and density r, the particle motion is governed by

the coupled N-body Langevin equation:

m"
dU

dt
5Fh

1Fb
1Fp, ~1!

where m is the generalized mass/moment of inertia tensor, U

is the particle translational/rotational velocity vector, and on

the right-hand side are the forces/torques acting on the par-

ticles, which for convenience we split into: hydrodynamic

forces (Fh) due to the motion of the particles relative to the

fluid; the stochastic forces (Fb) responsible for the Brownian

motion; and deterministic nonhydrodynamic forces (Fp),

which may be either interparticle or external.

When the particle Reynolds number is small, the hydro-

dynamic forces/torques acting on the particles in a suspen-

sion undergoing a bulk linear flow are given by

Fh
52RFU"~U2u`!1RFE :E`. ~2!

Here, u` is the velocity of the bulk linear flow evaluated at

the center of a particle, u`(x)5Ġ"x, where Ġ is the bulk

velocity gradient tensor, with E` its rate of strain. The resis-

tance tensors RFU(x) and RFE(x) give the hydrodynamic

forces/torques on the particles due to their motion relative to

the fluid and due to the imposed flow, respectively. RFU(x)

and RFE(x) depend on the particle positions ~both transla-

tional and orientational!, represented by the generalized con-

figuration vector x.

The deterministic, nonhydrodynamic forces Fp are arbi-

trary, and we assume that they can be computed in O(N)

operations. This might not be the case when particles interact

via a long-range potential with no cutoff. Long-range forces

of, e.g., electrostatic origin, however, may be evaluated in

O(N log N) operations by following a method similar to the

one used in ASD for the hydrodynamic interactions.

The Brownian force Fb arises from the thermal fluctua-

tions in the fluid and is a Gaussian stochastic variable, de-

fined by

Fb
50, Fb~0 !Fb~ t !52kTRFUd~ t !, ~3!

where the overbar denotes an ensemble average over the

thermal fluctuations in the fluid, k is Boltzmann’s constant, T

is the absolute temperature, and d(t) is the delta function.

The correlation at 0 and t is a consequence of the

fluctuation–dissipation theorem for the N-particle system.

In the conventional SD algorithm, an evolution equation

for the particle configuration is obtained by integrating Eq.

~1! twice over a time step Dt ~larger than the inertial relax-

ation time, tB5m/6ph0a , but small compared with the time

over which the configuration changes!, leading to

Dx5$u`
1RFU

21
"@RFE :E`

1Fp#%Dt1kT“"RFU
21Dt

1X~Dt !1o~Dt !, ~4!

with

X̄50, X~ t !X~ t !52kTRFU
21Dt . ~5!

Here, Dx is the change in particle position during the time

step Dt and X(t) is a Gaussian random displacement com-

puted as

X~ t !5&kTDtA"C~ t !

with

A"AT
5RFU

21, ~6!

where C(t) is a normal deviate, i.e., C(t)50 and

C(t)C(t)51. In conventional SD, the matrix A was ob-

tained as a byproduct of the inversion of RFU , and did not

result in any additional computational cost.

To complete our brief description of the SD algorithm

we still have to discuss how the resistance matrices are cal-

culated. For this purpose, we define the grand resistance ma-

trix R as

R5FRFU RFE

RSU RSE
G , ~7!

where RSU and RSE are similar to RFU and RFE and relate

the particle stresslet, S—the symmetric first moment of the

force density on a particle—to the velocity and the rate of

strain by

FF

SG52R"FU2u`

2E` G1FFb
1Fp

2rFp G . ~8!

The inverse of the grand resistance matrix is the grand mo-

bility matrix M and gives the particle velocities and the rate

of strain (U2u`,E`) in terms of the total forces/torques and

stresslets ~F, S!.
In Eq. ~8! the definition of the stresslet contribution due

to the interparticle forces as rFp may need clarification. First,

it is assumed that the interparticle forces do not result in a

net force on the suspension, i.e., (Fp
50, where ( stands for

a sum over all particles. A net force should be considered an

external force and generates bulk translational motion, not

stress. Thus, rFp is independent of the origin and the sum

over all particles and over all unit cells can be performed. In

the special case in which the forces are pairwise additive, the

stresslet can be written as (1/2)(1/N) ( i jri jFi j
p , where the

sum is over all particles, ri j5rj2ri , and Fi j
p is the interpar-

ticle force for the pair i j . If the forces are not pairwise ad-

ditive, as in electrorheological fluids for example, then the

more general form implied by rFp must be used. Care must

also be exercised when only summing over a single unit cell;

the nearest image must be used.

Conventional SD exploits the fact that hydrodynamic in-

teractions among particles can be decomposed into long-

range mobility interactions and short-range lubrication inter-

actions and splits the grand resistance matrix according to

R5~M`!21
1Rnf , ~9!

with

Rnf5R2B2R2B
`

5FRFU ,nf RFE ,nf

RSU ,nf RSE ,nf
G . ~10!
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Here, M
` is the grand mobility matrix from the infinite ~via

periodic boundary conditions! system formed by a truncated

multipole expansion in combination with Faxén laws, and

Rnf contains the near-field lubrication interactions. Rnf is

formed in a pairwise additive fashion from the exact two-

body resistance interactions, R2B , minus the two-body inter-

actions already included in (M`)21, denoted as R2B
` .

Due to the near-field character of lubrication interac-

tions, only pairs of particles that are closer than a certain

cutoff distance ~typically 4 particle radii! have nonzero en-

tries in Rnf . For this reason, Rnf is a sparse matrix, and its

construction involves only O(N) operations. M
`, on the

other hand, is not sparse, and its construction requires O(N2)

calculations.

From Eqs. ~4!–~6!, and the above-presented discussion,

we can identify the computations in conventional SD that

require O(N2) or larger operations:

~i! M
`: its construction is of O(N2).

~ii! RFU
21 : matrix inversion of O(N3).

~iii! “"RFU
21 : uses RFU

21 and M
`.

~iv! X: uses the factorization: A"AT
5RFU

21 , an O(N3) op-

eration.

In order to obtain a method with a more favorable scaling,

we need to devise alternate approaches to avoid these com-

putations, or to compute them in a more efficient manner.

In ASD Sierou and Brady8 developed an alternative al-

gorithm that avoided the explicit computation of M
` and the

inversion of RFU
21 , the computationally more expensive parts

in absence of Brownian motion. In what follows, we briefly

describe their approach and then present different schemes

for addressing ~iii! and ~iv! in order to keep the overall scal-

ing as low as possible.

A. Far-field hydrodynamics: M
`

In the Stokesian dynamics algorithm the far-field many-

body hydrodynamic interactions are accounted ~in the resis-

tance formulation! by the inverse of the far-field mobility

matrix M
`. As already mentioned, the explicit computation

of M
` involves O(N2) operations; for this reason, we avoid

computing M
` explicitly and, instead, find a way to com-

pute M
`
"y, for a given ~far-field! force/torque/stresslet vec-

tor y5(fff ,tff ,sff).

For this purpose, Sierou and Brady use Faxén laws to

obtain an expression for the particle velocities and rate of

strain as a function of the particles’ force/torque/stresslet and

the far-field fluid velocity and its rate of strain at the center

of the particles, namely,

u2u`~x!52

1

6ph0a
fff1S 11

a2

6
“

2Duff , ~11a!

v2v`~x!52

1

8ph0a3 tff1

1

2
“Ãuff , ~11b!

2E`
52

3

20ph0a3 sff1S 11

a2

10
“

2D eff . ~11c!

Here, uff corresponds to the far-field fluid velocity evaluated

at the center of the particle, and eff is its rate of strain, arising

from the presence of all other particles ~represented as force/

force-moment densities!. Both are functions of the far-field

force/torque/stresslet vector (fff ,tff ,sff), In Eqs. ~11a! and

~11b! u and v stand for the particle translational and rota-

tional velocity, respectively, i.e., U5(u,v). We will further

omit the details on how uff and eff are obtained from the

force/torque/stresslet y; we only mention that this can be

done in O(N log N) by representing the particle moments as

forces on a grid, and then solving for the far-field velocity

field on that grid using fast Fourier transforms and the

particle-mesh-Ewald technique. For a detailed description

see Ref. 8.

B. Computing particle velocities: RFU
À1

As is well known, the most efficient way of solving a

large sparse linear system of equations is using iterative

methods. Conjugate gradient methods have proven to be a

powerful technique for solving large linear systems, and they

share the advantage of referencing the matrix only through

its product with a vector, a necessary condition in our case,

since we know M
` only through its action on the vector y.

Not having RFU explicitly, forces us to solve for the

velocities and ~far-field! stresslet simultaneously. In the ab-

sence of particle inertia ~particle inertia can be easily in-

cluded if desired!, Eqs. ~1!, ~2!, ~7!, and ~8! give

F 0

SG52R"FU2u`

2E` G1FFb
1Fp

2rFp G . ~12!

Note that the unknowns are U and S. We further split U

2u` and S into a so-called hydrodynamic part, Uh and Sh, a

Brownian part, Ub and Sb, and an interparticle force part, Up

and Sp, satisfying the following:

F 0

ShG52R"F Uh

2E`G , ~13!

F 0

SbG52R"FUb

0 G1FFb

0 G , ~14!

F 0

SpG52R"FUp

0 G1F Fp

2rFpG . ~15!

By doing this, we can compute the particle motion and the

rheological properties arising from the Brownian motion

separately from the hydrodynamic and interparticle force

contributions. The extra cost of solving Eq. ~13! @and/or Eq.

~15!; actually, they are combined together in one step# is

usually not considerable since the hydrodynamic quantities

change slowly and one can use the solution from the previ-

ous time step as an initial guess, leading to convergence in a

few iterations. Solving Eq. ~14!, on the other hand, must be

done anew at each time step, since Fb and Sb are completely

uncorrelated ~as they must be! from one time step to the

next.

Note that the splitting defined in Eqs. ~13!–~15! corre-

sponds to the forces in Eq. ~1!. The linearity of the hydrody-

namic forces at low Reynolds number allows one to super-

impose effects. The physical interpretation is that Sh is

directly proportional to the rate of strain E`, Sb to the

Brownian forces Fb, and Sp to the interparticle forces Fp.
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For example, in a flow cessation experiment, E` is suddenly

set to zero and the hydrodynamic stresslet Sh drops instanta-

neously to zero, while Sb and Sp relax to zero as the structure

relaxes back to equilibrium. Calling Sh the hydrodynamic

stresslet is actually a misnomer, since both Sb and Sp contain

direct contributions due to hydrodynamic interactions ~in-

deed Sb is purely hydrodynamic in origin!; a better name

would be SE, indicating its proportionality to the rate of

strain. Note also, that each stresslet depends on the structure

~i.e., the configuration of particles!, which results from the

combined effects of hydrodynamic, Brownian, and interpar-

ticle forces and this ‘‘indirect’’ effect is not superposable.

Using Eqs. ~9!, ~10!, and ~13!, we find the following

equation for Uh,

RFU ,nf"U
h
1Fff

h
5RFE ,nf :E`, ~16!

with the far-field hydrodynamic forces/torques, Fff
h , and

stresslets, Sff
h , satisfying

M
`
"FFff

h

Sff
h G5F Uh

2E`G . ~17!

Replacing Uh in Eq. ~17! from Eq. ~16! and rearranging

terms leads to the linear system of equations for Fff
h and Sff

H :

M̃
`
•FFff

h

Sff
h G5FRFU ,nf

21
"Fnf

h

2E` G , ~18!

where

M̃
`

5M
`

1FRFU ,nf
21 0

0 0
G , ~19!

and

Fnf
h

5RFE ,nf :E`. ~20!

Note that Uh does not appear explicitly in Eq. ~18!, but is

computed when evaluating the left-hand side.

To solve the linear system of equations ~18! we use a

generalized conjugate gradient method, and for computing

the action of RFU ,nf
21 ~needed to evaluate the right-hand side

and to calculate the action of M̃
`) we employ an incomplete

Cholesky preconditioned conjugate gradient method as de-

scribed in Ref. 8. Note that we have two nested iterative

solvers, a preconditioned conjugate gradient for the inner

iterations ~inversion of RFU ,nf) and a generalized conjugate

gradient for the outer iterations ~inversion of M̃
`).

Having Fff
h and Sff

h satisfying Eq. ~18!, we can obtain the

hydrodynamic contributions to the particle velocities and

stresslets as

Uh
5RFU ,nf

21
"Fnf

h
2RFU ,nf

21
"Fff

h , ~21!

Sh
52RSU ,nf"U

h
1RSE ,nf :E`

1Sff
h . ~22!

The operation count is O(N log N) ~shown in the follow-

ing! times the number of iterations necessary for conver-

gence. Through the use of the preconditioner, a typical num-

ber of iterations for the inner solver is O(20) ~with a

tolerance of 1025 and a time step of 1023), for the outer

solver the number of iterations needed is O(25) ~with a tol-

erance of 1024 for f50.45, Pe51). These representative

values are for the computation of the hydrodynamic velocity,

and may be considerably reduced ~down to a few! by using a

larger tolerance ~taking care that this does not alter the aver-

age results!.

C. Brownian displacement: X

Unlike the deterministic velocity Uh in Eq. ~13!, the

Brownian velocity Ub fluctuates with a characteristic time

equal to the Brownian relaxation time tB , which usually is

several orders of magnitude smaller than the time interval

needed for the particles to move a significant fraction of their

size. Here, we are only interested in the diffusive limit, i.e.,

when the time step is much larger than tB .

In order to compute the Brownian displacement X that

satisfies Eq. ~5!, we determine the Brownian velocity Ub

from Eq. ~14!. ~A similar approach was suggested in Ref. 9.!
Note that here, and in the rest of this paper, Ub ~and also the

random forces Fb) are fixed during the time step.

The algorithm is as follows: First, a set of random

forces/torques Fb is generated according to the discretized

version of Eq. ~3!. Then, Eq. ~14! for Ub is solved iteratively

and finally X is given as X5UbDt . It is straightforward to

show that X computed this way fulfills Eq. ~5!. To solve Eq.

~14!, we proceed as with Eq. ~13!. ~For an alternative ap-

proach for low densities see Appendix A.!
In the rest of this section, we describe how to generate

the random Brownian forces/torques Fb, while keeping the

overall scaling of the algorithm as low as possible.

The Brownian forces are split into a near- and a far-field

part, according to

Fb
5Fnf

b
1Fff

b , ~23!

with

Fnf
b

5Fff
b
50, ~24!

and

Fnf
b Fnf

b
52kTRFU ,nf /Dt , ~25!

Fff
bFff

b
52kT~M`!FU

21/Dt , ~26!

Fnf
b Fff

b
50. ~27!

Here, (M`)FU
21 represents the part of RFU arising from the

inverse of M
`.

1. Brownian forces: Near-field part

To generate the near-field part of the random forces/

torques, Fnf
b , obeying Eqs. ~24!, ~25!, and ~27! using O(N)

operations, we write the Brownian force/torque acting on

particle i , Fnf,i
b as a pairwise sum over all of its near neigh-

bors according to

Fnf,i
b

5 (
g5(i , j)

uri2rju,4a

~Lii
g
"Cg ,i

nf
1Li j

g
"Cg , j

nf !, ~28!

with
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F Lii
g Li j

g

Lj i
g Lj j

g G "F Lii
g Li j

g

Lj i
g Lj j

g GT

52kT~R2B,FU ,i j2R2B,FU ,i j
` !,

~29!

and Cg ,i
nf is a random Gaussian deviate of length 6 for par-

ticle i in pair g, satisfying

Cg ,i
nf

50, Cg ,i
nf

Cn , j
nf

51dgnd i j . ~30!

In Eq. ~29!, (R2B,FU ,i j2R2B,FU ,i j
` ) is the 12312 two-body

pairwise contribution to RFU ,nf arising from pair g5(i , j),

which we factorize using Cholesky decomposition to obtain

the Li j
g .

2. Brownian forces: Far-field part

For the far-field part of the Brownian forces/torques, we

employ Fixman’s method,10,11 consisting of replacing the

square root of (M`)21 by its Chebyshev polynomial ap-

proximation, and exploit the fact that only its action on a

vector is needed. Note that in our case, because we compute

the random forces instead of the random displacements, we

need to approximate the square root of the inverse of the

~far-field! mobility matrix.

To generate a set of random Gaussian deviates with a

given covariance matrix M, the most common way is to

factorize the covariance matrix as in Eq. ~6!. This factoriza-

tion, however, is not unique and any choice of the factors

satisfying M5A"AT is valid. In particular, one can choose A

to be the square root of M, i.e., M5A"A, with A5AT. This

has the advantage that a polynomial approximation can be

used to approximate the square root.

In the case of the far-field Brownian forces/torques, Fff
b ,

the covariance matrix is proportional to the FU block of the

inverse of M
` @cf. Eq. ~26!#. Since we do not have M

`

explicitly, and we only can compute its action on vector ~a
force/torque/stresslet vector!, we generate Fff

b as the forces/

torques part of

F Fff
b

Sran
G5A2kT

Dt
~M`!21/2

"FCF
ff

CS
ffG . ~31!

Here, Cff
5@CF

ff ,CS
ff# is an 11N normal deviate. If we fur-

ther require each component of Cff to be independent of any

component of Cg ,i
nf , it is straightforward to show that Fff

b as

defined in Eq. ~31! fulfills Eqs. ~24!, ~26!, and ~27!. We will

approximate the inverse of the square root of M
` in Eq. ~31!

by its polynomial approximation as described in the follow-

ing.

The Chebyshev polynomial approximation of the scalar

function 1/Ax over the range @lmin ,lmax# reads

1/Ax' (
j50

NCheb

a jC j~x !, ~32!

where C j(x) are the shifted Chebyshev polynomials, which

have the following recursion relations:

C l11~y !52yC l~y !2C l21~y !,

~33!
C0~y !51, C1~y !5y ,

with

y5

2x

lmax2lmin

2

lmax1lmin

lmax2lmin

. ~34!

The Chebyshev coefficients, a j in Eq. ~32!, depend on lmin

and lmax , and are usually computed for an approximation of

much larger order than NCheb to estimate the truncation

error.12

The approximation in Eq. ~32! can be generalized to a

function of matrices, keeping the same Chebyshev coeffi-

cients a j , if the eigenvalues of the matrix are bounded by

@lmin ,lmax#. This results in the following approximate ex-

pression for the action of (M`)21/2 on a vector y:

~M`!21/2
"y'z5 (

j50

NCheb

a jC j~M
`!"y. ~35!

The factors C j(M
`)"y can be computed recursively, and in-

volve evaluations of the action of M
` on vectors, which can

be computed in O(N log N) operations ~see Appendix B!.
The number of terms, NCheb , to be included in Eq. ~35!

to achieve the desired accuracy @typically of O(1022)] de-

pends on the ratio lmax /lmin . This dependence was found to

scale roughly as (lmax /lmin)
1/2, in agreement with similar

findings for the square root of the mobility matrix in simu-

lations of polymer chains.10,11 Taking into account that the

ratio lmax /lmin was found to scale with the number of par-

ticles, N , roughly as N1/2, the overall scaling of the compu-

tation of the far-field part of the Brownian forces is nearly of

order O(N1.25 log N).

Before calculating the Chebyshev approximation of

(M`)21/2
"y, we need to know the lmin and lmax bounding

the eigenvalues of M
`. Following Jendrejack et al.11 and

noting that if we assume we are using a valid eigenvalue

range, we have

lim
NCheb→`

@z"M
`
"z#5y"y, ~36!

which allows us to define an estimate of the relative error

resulting from the polynomial approximation as

ECheb5Auz"M
`
"z2y"yu

z"M
`
"z

. ~37!

We compute ECheb for each configuration and use its value to

decide whether or not it is necessary to compute a new ei-

genvalue range for the given configuration. The upper and

lower eigenvalues are calculated in O(N log N) operations

using the free software package ARPACK.13

D. Mean drift term: “"RFU
À1

The presence of the mean drift term in Eq. ~4! is a con-

sequence of the simple forward time-stepping integration

scheme used. Replacing it by any higher order scheme, such

as a mid-point or end-point algorithm, leads to an evolution

equation without a mean drift term.14 In this way, the explicit

computation of “"RFU
21 , of order O(N3), may be completely

avoided. However, the price for this is that one has to com-

pute two velocities by iteratively inverting RFU at each time

step. ~More sophisticated methods do not improve the accu-

racy because of the discontinuities in the random forces.!
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We chose a slightly modified mid-point scheme for the

computation of the Brownian velocity ~and similarly for the

Brownian stresses which also include divergences in their

expressions; see the following!. Instead of evaluating an in-

termediate velocity at the middle of the time step, we pre-

ferred to move the particles to an intermediate position by

using a fraction of the time step 1/n , with n typically on the

order of 100. This is used to avoid particle ‘‘overlaps’’ in the

intermediate configuration.

If at time t0 the system has the configuration x0 , and the

corresponding grand resistance matrix of the system is R0 ,

then we compute the Brownian velocity for a given set of

random forces Fb ~with FbFb
52kTR0 /Dt) in the following

manner.

~1! Compute the random velocity U0
b ~and S0

b) satisfying

R0"FU0
b

0
G5F Fb

2S0
bG . ~38!

~2! Move the particles to the intermediate position x8,

according to

x85x01U0
b

Dt

n
. ~39!

~3! Compute a new random velocity Ub
8 ~and Sb

8) sat-

isfying

R8"FUb
8

0 G5F Fb

2Sb
8
G . ~40!

Note, that here R8 represents the grand resistance matrix at

the configuration x8, and the forces Fb are the same as used

in Eq. ~38!.
~4! Compute a realization of the mean drift and of the

Brownian stress, Sb
52kT“"(RSU"RFU

21), as

Udrift
b Dt5

n

2
~Ub

82U0
b!Dt , ~41!

Sb
52

n

2
~RSU8 "Ub

82RSU"U0
b!. ~42!

It is straightforward to show that

Udrift
b

5kT“"RFU
21

1o~Dt !, ~43!

and

Sb
52kT“"~RSU"RFU

21!1o~Dt !, ~44!

as desired. From Eqs. ~41! and ~42!, it is apparent that we

preferred to numerically compute a realization of the drift

term ~and Brownian stress!, instead of actually using a true

mid-point-like scheme, which would have given the same

results. We found this approach to reduce the noise arising

from terms that average to zero in the computation of Sb.

Note that U0
b in Eq. ~41! is the Brownian velocity used

for generating the Brownian displacement X ~see Sec. II C!.
For comparison, if one chooses n52 and uses a mid-

point scheme, the Brownian velocity would be

Umid
b

5
1
2~Ub

81U0
b!, ~45!

and would replace U0
b
1Udrift

b in our scheme.

To solve Eqs. ~38! and ~40! we proceed as before for Eq.

~13! ~see Sec. II B and Appendix A!.

E. Approximate method

As we show in the following, the above-presented

method has a favorable scaling of roughly the order of

N1.25 log N as desired, but the computational overhead for

achieving this performance still renders this method a com-

putationally intensive scheme, preventing, for the moment,

its use for large systems on personal computers ~PC!. Paral-

lelization and faster CPU speeds should in the near future

allow one to take full advantage of the method. For this

reason, we also have developed an approximate scheme that

has the same favorable scaling with N , but that allows the

study of large systems on a single PC.

The most time-consuming parts of the algorithm are the

~iterative! inversions of the resistance matrix. In particular,

solving for the Brownian velocities consumes most of the

time, since the velocities of the previous time step may not

be used as initial guesses ~the Brownian forces are random

and uncorrelated!, in contrast to the hydrodynamic velocity,

which is strongly correlated from one time step to the next.

Furthermore, two Brownian velocities are needed at each

time step, and needed with good accuracy in order to com-

pute the mean drift and Brownian stress.

An alternative approximate faster algorithm is the fol-

lowing near-field scheme ~ASDB-nf!:

~1! For the hydrodynamic velocity Uh solve with the full

resistance matrix ~as in ASD!. For consistency, all hy-

drodynamic quantities are computed with full hydrody-

namic interactions.

~2! For the computation of the Brownian velocities ~and

other Brownian quantities! use a mean-field-like ap-

proximation for the hydrodynamic far-field interactions,

i.e., replace M
` by a diagonal matrix with effective val-

ues that depend on volume fraction.

~3! For the diagonal approximation to M
` use the values of

the translational and rotational short-time self-

diffusivities for an equilibrium system in absence of

near-field hydrodynamic interactions.

Replacing M
` by a diagonal matrix dramatically sim-

plifies the computations since the inverse of this matrix

~trivially obtained! can be added to RFU ,nf , and then the

iterative inversion can simply be done using the Cholesky

preconditioned conjugate gradient algorithm.

To obtain the equilibrium translational and rotational

short-time self-diffusivities in absence of near-field hydrody-

namic interactions, we generated for each volume fraction a

set of equilibrium configurations ~obtained using molecular

dynamics! and computed the diffusivities and the high fre-

quency dynamic viscosities (h 8̀ ) as an average over all con-

figurations ~here, we followed Sierou and Brady8 for com-

puting the self-diffusivities!.
The translational self-diffusivity shows a strong N21/3

dependence,15 and for this reason we used an extension of

Ladd’s16 proposed expression to extract the infinite system
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diffusivity from the N-particle periodic diffusion coefficient,

which reads

Ds ,ff
s

5Ds ,ff
s ~N !1~h0 /h` ,ff8 !D0@1.7601~f/N !1/3

2f/N# .

~46!

Here, we have replaced the self-diffusivities and the suspen-

sion viscosity from Ladd’s expression by their counterparts

in the absence of near-field interactions. In Fig. 1 we plot the

translational self-diffusion coefficient versus number of par-

ticles for f50.45, compared with the corresponding ex-

trapolated translational self-diffusivities from Eq. ~46!. For

comparison, a fitted curve of the form a1bN21/3 is also

shown; the value of a is shown by the solid line. Figure 1

shows that Eq. ~46! gives a good estimate for the infinite

system self-diffusivity.

Figure 2 shows the results obtained for the short-time

translational and rotational self-diffusivities for different vol-

ume fractions. ~The rotational diffusivities do not have a

strong N-dependence15 and need not be corrected for finite

N .) Polynomial fits of the diffusivities are also shown. These

might be useful for the simulation of other volume fractions

without the need to compute the far-field diffusivities. We

used these functions for our ASDB-nf runs. It is interesting

to note that according to the fitted polynomia, the first-order

~in f! term of the far-field translational self-diffusion coeffi-

cient has a factor 1.5, which is to be compared with the exact

value 1.83, first obtained by Batchelor.17 Batchelor’s result

contains the near-field interactions and is therefore larger,

implying a smaller diffusivity.

The scaling of this approximate method is dominated by

the computation of the hydrodynamic velocity, which scales

as O(N log N). In case of an equilibrium suspension, the ap-

proximate method is an O(N) scheme.

III. RESULTS AND DISCUSSION

In this section we present results obtained with both the

new ASD for Brownian suspensions ~ASDB! and the ap-

proximate version ASDB-nf, illustrating the scaling of the

methods and also comparing their results with those obtained

by the conventional SD algorithm. The aim of this section is

to verify the predicted scalings, to assess the accuracy of the

ASDB-nf, as well as to verify the proper implementation of

the ASDB scheme.

Figure 3 shows the CPU time needed for 100 time steps

of a typical simulation of a system with a volume fraction

f50.45 and Pe51, starting from an equilibrium configura-

tion, as a function of the number of particles in the simula-

tion box, N . ~The Peclet number measures the relative im-

portance of shear to thermal forces and is given by Pe

56ph0a3ġ/kT , with the shear rate ġ given by the magni-

tude of the velocity gradient tensor.! We have chosen 100

time steps to try to capture the average computational cost,

since at the beginning the eigenvalues need to be computed

and in many cases they are not computed again for hundreds

FIG. 1. Short-time self-diffusion coefficient in absence of near-field hydro-

dynamic interactions vs the number of particles in the system. The closed

circles are ASD results, the crosses are extrapolated values according to Eq.

~46!, the dotted line is a fitted curve of the form a1bN21/3, and the solid

line represents the ordinate of this fit. Here, results are shown for f
50.45.

FIG. 2. Short-time self-diffusion coefficients in absence of near-field hydro-

dynamic interactions vs volume fraction @values for the translational diffu-

sivities have been corrected according to Eq. ~46! from values for N

5427– 512]. Dotted lines represent the quadratic fits of the data.

FIG. 3. The CPU time ~in arbitrary units! for 100 time steps of a shearing

simulation at f50.45 and Pe51, starting from an equilibrium configura-

tion. Dashed lines are a guide to the eye to show the approximate scalings

~as labeled!.
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of time steps ~depending on volume fraction and Pe!. Re-

member also that the SD algorithm usually computes the

inverse of M
` only every 100 time steps.

Two aspects are to be noted in Fig. 3. First, the observed

scalings of the different algorithms with N are roughly those

expected. For small systems, however, the ASDB scheme

scales nearly as N2, since the size of the simulation box is

smaller than the cutoff distance for the real sum contribution

to the far-field fluid velocity ~see Sierou and Brady8!. Sec-

ond, the computational overhead for achieving the favorable

N1.25 log N scaling is quite important, such that the break-

even point is for a system of about 300 particles. The

ASDB-nf approximate scheme, on the other hand, is about

20 times faster than ASDB for the system under consider-

ation; the factor of 20 is the cost of computing the far-field

random Brownian forces and resulting velocities.

For a suspension under steady simple shear flow the vis-

cosity is related to the xy component @if (x ,y) define the

velocity–velocity-gradient plane# of the bulk stress S and

rate of strain in the following manner:

h5

Sxy

2Exy
` , ~47!

where the bulk stress is defined as an average over the vol-

ume V containing the N particles and is given by

S52^p&I12h0^E`&2nkTI1n~^Sh&1^Sb&1^Sp& !.
~48!

Here, 2nkTI is the isotropic stress associated with the ther-

mal energy of the Brownian particles, I is the isotropic ten-

sor, and n is the number density of the particles. The angular

brackets denote an average over all particles and over time in

a dynamic simulation.

The individual hydrodynamic (Sh) and Brownian (Sb)

contributions to the viscosity are denoted as hh and hb ,

respectively; hence, in absence of interparticle forces,

h5h01hh1hb . ~49!

Results for the Brownian and hydrodynamic viscosities as a

function of Pe for a typical suspension with f50.45 are

presented in Fig. 4. Here, the number of particles used in the

simulation box was 64 in order to compare with conventional

SD results. In this plot we include data for the three schemes

SD, ASDB, and ASDB-nf. The agreement between data ob-

tained using SD and ASDB confirms the proper implemen-

tation of the scheme. ASDB-nf values are also in near perfect

quantitative agreement with the ASDB results. At the lowest

Pe, there is an appreciable scatter of the data, but this can be

attributed to the quite large error associated with these

points. Similarly, for high Pe the SD (N527) data seem to

lie systematically above the ASDB and ASDB-nf data. This

can be related to the fact that SD (N527) results were ob-

tained allowing some slight particle overlap, while the other

methods do not allow any particle overlap, and furthermore,

a minimum interparticle separation of 2.0002a was enforced.

For equilibrium suspensions it is possible to compute the

Brownian contribution to the zero-shear limiting viscosity hb

employing the Green–Kubo formula18

hb5h2h 8̀ 5

V

kT
E

0

`

^sxy~ t !sxy~0 !&dt . ~50!

Here, sxy(t) represents the instantaneous Brownian shear

stress, and ^sxy(t)sxy(0)& is the Brownian shear–stress au-

tocorrelation function.

In Fig. 5 we compare ASDB, ASDB-nf, and SD ~taken

from Foss and Brady7! results for the Brownian contribution

to the zero-shear limiting viscosity as a function of the vol-

ume fraction. All sets of data are obtained using Eq. ~50!. As

in the nonequilibrium case, we find good agreement between

the approximate ASDB-nf and the more accurate SD ~or

ASDB! algorithm. For f50.2 there is some discrepancy be-

tween the SD and the ASDB results, but we atribute this to

the difficulty in computing hb using Eq. ~50!, since very long

runs and a large number of particles are needed to obtain an

accurate stress-autocorrelation function. The exact low-

density limit,19,20 hb /h050.913f2
1O(f3), is also in-

cluded for comparison.

FIG. 4. Hydrodynamic and Brownian viscosity contributions for a Brownian

suspension with f50.45, vs Pe. Results are shown for systems with N

564, using SD, ASDB, and ASDB-nf, also included are SD data from Foss

and Brady ~Ref. 7! for systems with 27 particles.

FIG. 5. Brownian viscosity contribution as a function of the volume fraction

f. Results obtained using ASDB-nf are compared with SD data from Foss

and Brady ~Ref. 7!.
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Figures 6 and 7 show results for the short-time transla-

tional and rotational self-diffusion coefficients, respectively,

as a function of the volume fraction for equilibrium colloidal

suspensions. In the case of ASDB and ASDB-nf, the self-

diffusivities were obtained as

Ds ,ii
S [^RFU ,ii

21 &5

1

2Dt
^ui

Bui
B&. ~51!

Here ^ . . . & denotes an average over all particles and an en-

semble average ~over configurations during the simulation!,
and ui

B represents the i component of the particle Brownian

velocity, so that depending on i we compute the translational

or rotational diffusivity with respect to one axis. Since the

suspension is isotropic we average over the three axes to

obtain the plotted results. Note that computing the diffusivi-

ties according to Eq. ~51! also constitutes a test for the sta-

tistics of the Brownian forces.

As was mentioned,15 the rotational diffusivities ~Fig. 7!
do not have an appreciable size dependence and we simply

present results obtained for systems with N564. Transla-

tional diffusivities obtained using ASDB-nf are also not sen-

sitive to the size of the system since the far-field hydrody-

namic interactions ~responsible for the N21/3 dependence!
are approximated in a mean-field-like manner. Data for

ASDB-nf in Fig. 6 correspond to systems with N564.

In Fig. 6 the rigorous dilute limit Ds , tra
S /D05121.83f is

also included for comparison. Note that the inclusion of the

near-field interactions in the Stokesian dynamics algorithm

~compared with the far-field only computations shown in

Fig. 2! recovers the correct dilute limit.

IV. CONCLUSIONS

In this paper we have presented a new Stokesian dynam-

ics algorithm for Brownian suspensions ~ASDB! with a fa-

vorable scaling of roughly O(N1.25 log N). This new algo-

rithm is seen to be accurate, reproducing results obtained

with conventional SD. While accurate, ASDB is computa-

tionally still involved, and is only faster than conventional

SD for systems of the order of 200–300 particles. For this

reason, full advantage of this new scheme has only been

possible for the study of static quantities where a set of con-

figurations are given and static and short-time dynamic prop-

erties can be computed using ASDB without moving the par-

ticles. For dynamic simulations, which may require very

long runs, it is still very demanding using the current state of

the art PCs.

A very fast approximate algorithm ~ASDB-nf! was also

presented, whose scaling is of order N log N for nonequilib-

rium simulations and is O(N) for equilibrium suspensions.

This approximate algorithm was tested by comparing both

static and dynamic quantities and showed, in general, a re-

markable agreement with the ASDB ~or SD! data. Using

ASDB-nf, dynamic simulations of systems of the order of

500 particles are possible on a 1.5GHz PC. The study of

larger systems, or long-time dynamics of Brownian suspen-

sions, is therefore now accessible with ASDB-nf.

The scope of this article was limited to introducing the

new algorithms, and we leave the application of them for the

study of long-time dynamics and rheology of highly concen-

trated colloidal suspensions to future works.

As a final note, ASDB is constructed for infinite periodic

systems and achieves its favorable scaling through the use of

the FFT. If one wishes to study an isolated assembly of par-

ticles, such as a bead-spring model of a polymer in an un-

bounded fluid, then the method cannot be directly applied.

However, to model an isolated system it might prove more

advantageous to employ a very dilute periodic representation

with ASDB, than to treat a truly isolated system for which

the algorithm would scale roughly as O(N2.25).11 @Fast mul-

tipole methods might, in principle, allow one to reduce this

to O(N1.25).]
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APPENDIX A: ALTERNATIVE APPROACH
FOR THE INVERSION OF R

Solving Eq. ~13! as described in Sec. II B is inadequate

when the matrix RFU ,nf is ill-conditioned, which may occur

for low volume fractions. In particular, in the limit of infinite

dilution RFU ,nf[0. To overcome this inconvenience, we

present here an alternative approach that does not involve the

inversion of RFU ,nf , which is then more appropriate for low

volume fraction systems ~typically f<0.3).

From Eqs. ~16!, ~17!, and ~20!, it follows that Fff
h
5Fnf

h

2RFU ,nf"U
h, which we replace in Eq. ~17! to obtain

M
`
•FFnf

h
2RFU ,nf"U

h

Sff
h G5F Uh

2E`G . ~A1!

We now define F̃ and S̃ according to

M
`
•F F̃

S̃
G5F 0

2E`G . ~A2!

Note that this can be solved without knowing the velocity,

and, if desired, the values of F̃ and S̃ can be kept unchanged

for many time steps since M
` varies slightly with small

configuration changes ~in conventional SD the inverse of

M
` was kept constant for up to 100 time steps!.
Subtracting Eq. ~A2! from Eq. ~A1! yields

M
`
"FFnf

h
2F̃

0
G1M

`
"F2RFU ,nf"U

h

Sff
h
2S̃

G5FUh

0 G , ~A3!

and rearranging terms leads to the final equation for Uh and

(Sff
h
2S̃),

M
`̂
"F Uh

Sff
h
2S̃

G52M
`
"FFnf

h
2F̃

0
G , ~A4!

where

M
`̂

5M
`
•F2RFU ,nf 0

0 1
G2F1 0

0 0
G . ~A5!

For the Brownian velocity the approach is completely

analogous, the only difference is that since the rate of strain

does not appear there is no need to define ~and compute! the

analogues of F̃ and S̃.

The advantage of solving Eq. ~A4! instead of Eq. ~18! is

that there are no inner iterations in this approach, since we

have replaced the inversion of RFU ,nf ~which was done itera-

tively with a Cholesky preconditioned conjugate gradient al-

gorithm! by just a dot product of RFU ,nf and a vector. This

makes this approach more convenient for low to intermediate

concentrations. For concentrated suspensions, however, the

extra work of the inner solver for inverting RFU ,nf pays off

since it reduces the number of ~outer! iterations considerably.

APPENDIX B: CHEBYSHEV POLYNOMIAL
APPROXIMATION

C j(M
`) are the ~matrix-! generalized shifted Cheby-

shev polynomials, which satisfy the following recursion re-

lations:

C l11~M8!52M8C l~M8!2C l21~M8!,

~B1!
C0~M8!51, C1~M8!5M8,

with

M85

2

lmax2lmin

M
`

2

lmax1lmin

lmax2lmin

1. ~B2!

Here, lmax and lmin are the maximum and minimum eigen-

value of M
`, respectively.

Using these recursion relations, it is possible to compute

the action of C j(M
`) on an arbitrary vector y, by j repeti-

tions of computations of the form M8"x, which are

O(N log N).
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18 G. Nägele and J. Bergenholtz, J. Chem. Phys. 108, 9893 ~1998!.
19 G. K. Batchelor and J. T. Green, J. Fluid Mech. 56, 401 ~1972!.
20 B. Cichocki and B. U. Felderhof, J. Chem. Phys. 101, 7850 ~1994!.

10332 J. Chem. Phys., Vol. 118, No. 22, 8 June 2003 A. J. Banchio and J. F. Brady

Downloaded 13 Jan 2006 to 131.215.225.172. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp




