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Accelerated Stokesian Dynamics simulations
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A new implementation of the conventional Stokesian Dynamics (SD) algorithm,
called accelerated Stokesian Dynamics (ASD), is presented. The equations governing
the motion of N particles suspended in a viscous fluid at low particle Reynolds
number are solved accurately and efficiently, including all hydrodynamic interactions,
but with a significantly lower computational cost of O(N lnN). The main differences
from the conventional SD method lie in the calculation of the many-body long-
range interactions, where the Ewald-summed wave-space contribution is calculated
as a Fourier transform sum and in the iterative inversion of the now sparse resistance
matrix. The new method is applied to problems in the rheology of both structured and
random suspensions, and accurate results are obtained with much larger numbers
of particles. With access to larger N, the high-frequency dynamic viscosities and
short-time self-diffusivities of random suspensions for volume fractions above the
freezing point are now studied. The ASD method opens up an entire new class of
suspension problems that can be investigated, including particles of non-spherical
shape and a distribution of sizes, and the method can readily be extended to other
low-Reynolds-number-flow problems.

1. Introduction

Numerical simulations of the behaviour of suspensions of particles provide a valu-
able tool for understanding many complex rheological phenomena. Through simula-
tions both the macroscopic suspension properties and the suspension microstructure
have been studied, and insight into structure–property relationships has been ob-
tained (Brady & Bossis 1988; Foss & Brady 2000). Determining the hydrodynamic
interactions among particles in Stokes flow (small Reynolds number), however, can
be a complicated and computationally expensive task, mainly owing to the long-range
nature of the interactions and the presence of strong lubrication effects when particles
are in close proximity to each other. The fluid velocity disturbance caused by a particle
on which a net external force acts decays as 1/r, where r is the distance from the par-
ticle, and therefore the hydrodynamic interactions cannot be truncated and no simple
pairwise-additive approximation can be made. In addition, the presence of lubrica-
tion effects makes conventional numerical techniques (such as the boundary-integral
technique) expensive computationally when two particles approach each other.

Durlofsky, Brady & Bossis (1987) developed a method that successfully accounts for
both the many-body interactions and the near-field lubrication effects by splitting the
hydrodynamic interactions into a far-field mobility calculation and a pairwise additive
resistance calculation. The main advantage of the method is that a relatively small
number of unknowns per particle is sufficient to solve many dynamic simulation
problems adequately. The main disadvantage of the method, however, is that it
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requires the inversion of a far-field mobility matrix with at least (11N)2 elements (N
being the number of particles in the system), with a computational cost that limits
the method to N of the order of a hundred.

The method of Durlofsky et al. (1987) and its extension to infinite suspensions
by Phillips, Brady & Bossis (1988) is known as Stokesian Dynamics (SD) (Brady &
Bossis 1988) and has been used successfully over the last decade to give accurate
results for many problems where the system size is of relatively little importance.
For a variety of problems however, it is desirable to simulate systems containing a
much larger number of particles in order to eliminate any system size effects. For
example, in the simulation of very dense suspensions, large-scale simulations are
often needed to capture the microstructure correctly; in addition, most commonly
used Monte Carlo algorithms cannot even generate particle configurations above the
freezing point of hard spheres (φ > 0.49) for N < 500–1000 as the small system
size causes very rapid crystallization. Similarly, problems involving fibre suspensions
require large-scale simulations to ensure that the simulation box size is significantly
larger than the length of each fibre.

In order to address problems where the system size is important and larger systems
are therefore necessary, we present a new method that maintains the same level of
accuracy as conventional Stokesian Dynamics, but with a computational cost that
scales only as N lnN. Our main objective is to avoid both the costly construction of
the far-field mobility matrix and its inversion. Before going into the details of our
new approach, it is worth making some general observations to see how we might
construct a more efficient algorithm.

Iterative schemes can replace O(N3) inversions with potentially less costly O(N2)
multiplications, and when applied to ‘special’ matrices – sparse, positive-definite, well-
conditioned – iterative schemes can result in O(N) operations. As we shall see in
the next section, for most applications of hydrodynamic interactions in Stokes flow,
the far-field resistance matrix usually appears as a product with a velocity and the
knowledge of the far-field hydrodynamic force (and not the elements of the matrix
itself) is sufficient for the iterative calculation of the particle velocities. It is therefore
feasible to attempt a method that would only calculate 6N far-field hydrodynamic
force/torques as opposed to the full far-field mobility matrix. In addition, with this
approach, only the near-field contribution to the hydrodynamic interactions remains
in a matrix-like form; a matrix that is now sparse and can be manipulated easily in
O(N) operations. This approach leads again to a system of linear equations of the
form A ·x = b, where now x is the vector representing the translational and rotational
velocities of all particles, A is a sparse matrix representing the near-field part of the
resistance matrix with only O(N) non-zero elements, and b represents the shearing
and non-hydrodynamic force/torques on the particles and, in addition, includes all
the far-field physics. We use a particle-mesh approach (Hockney & Eastwood 1988)
in combination with the Ewald summation technique to generate the far-field part
of b in O(N lnN), an approach based on newly developed particle-mesh-Ewald
algorithms (Darden, York & Pedersen 1993). Lubrication interactions are treated as
in conventional SD, taking special care to store the now sparse resistance matrix in
a computationally efficient manner. The linear system is solved iteratively and, with
proper preconditioning, very few iterations are necessary to achieve convergence.

We should also mention here the existence of other O(N) algorithms, developed
by Ladd (1994a, b) and by Sangani & Mo (1996), that attempt to address similar
problems. Ladd’s method is based on the lattice-Boltzmann technique – the fluid
continuum is replaced by a lattice-Boltzmann gas, while the behaviour of the rigid
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particles is simulated with the use of suitable rules for the momentum and position
exchange between the lattice-gas particles. Ladd (1994a, b) also used continuum Stokes
flow lubrication results to reduce the number of lattice gas points between near
touching particles. Sangani & Mo’s algorithm follows a more traditional approach by
calculating the full resistance matrix through a fast multipole summation technique
and inverting the resulting matrix iteratively. The fast multipole method is a widely
used approach to performing fast summations in a number of fields. This method
is in principle O(N), although the iterative solution technique employed by Sangani
& Mo appears to perform poorly, at least in their published results. The calculation
of the far-field hydrodynamic interactions presented in the following sections was
inspired by the work of J. J. L. Higdon and coworkers (personal communication
2000; Guckel 1999). Higdon applied a particle-mesh-Ewald-sum (PME) technique
(Darden et al. 1993) for the calculation of the far-field hydrodynamic force/torques;
the problem of solving the resulting system of equations efficiently, however, was
never fully addressed.

The basic method is presented in § 2 where we describe in detail both the calculation
of the far-field interactions and the iterative scheme for the solution of the resulting
linear system. In § 3, we test the accuracy of our method by performing calculations
for simple cubic arrays – cases that have been studied extensively in the past and for
which both analytical and simulation results are available for comparison. In § 4, we
calculate properties of random suspensions and document results where the system
size is indeed important, e.g. for very concentrated suspensions. We conclude in § 5
with remarks on how this method can be extended to other problems in Stokes flow
and the analogous problems in electrostatics and elasticity theory.

2. Method

Before proceeding with the presentation of the new method, we give a brief overview
of the conventional Stokesian Dynamics technique. For N rigid particles suspended
in an incompressible Newtonian fluid of viscosity η and density ρ, the motion of the
fluid is governed by the Navier–Stokes equations, while the motion of the particles is
described by the coupled N-body equation of motion:

m ·
dU p

dt
= F h + F p, (2.1)

which simply states that the mass times the acceleration equals the sum of the
forces. In (2.1), m is the generalized mass/moment-of-inertia matrix of dimensions
6N × 6N, U p is the particle translational/rotational velocity vector of dimension 6N,

and F h and F p are the hydrodynamic and external force-torque vectors acting on the
particles. Although the Stokesian Dynamics method can also be applied to problems
where Brownian motion is important, here we only consider non-Brownian systems
(infinite Péclet number); extension to include Brownian motion in ASD is possible,
however (Banchio & Brady 2001). When the motion on the particle scale is such that
the particle Reynolds number is small, the fluid equation of motion becomes linear
(Stokes equation) and the hydrodynamic forces and torques acting on the particles in
a suspension undergoing a bulk linear flow are given by:

F h = −RFU · (U p − u∞) + RFE : E . (2.2)

Here, u∞ is the velocity of the bulk linear flow evaluated at the particle centre, E is the
externally imposed rate of strain tensor, and RFU(x) and RFE(x) are the configuration-
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dependent resistance matrices that give the hydrodynamic force/torques on the par-
ticles owing to their motion relative to the fluid and owing to the imposed shear flow,
respectively; the vector x denotes the configuration – position and orientation – of the
particles.

The combination of the resistance matrices is denoted the grand resistance matrix:

R =

[

RFU RFE

RSU RSE

]

, (2.3)

where RSU and RSE are similar to RFU and RFE and relate the particle stresslet,
S

h – the symmetric first moment of the force density on a particle – to the velocity and
the rate of strain. The inverse of the resistance matrix is known as the mobility matrix
M and gives the particle velocities (U p − u∞, −E ) in terms of the forces (F h and S

h).
Conventional SD exploits the fact that hydrodynamic interactions among particles
can be decomposed into long-range mobility interactions and short-range lubrication
interactions. The long-range interactions are computed by expanding the force density
on the surface of each particle in a series of moments. The zeroth moment is simply
the net force acting on a particle (plus, for a spherical particle, a potential dipole),
the first moment can be decomposed into the torque and the stresslet, while higher
moments are neglected. There is no fundamental reason that higher moments cannot
and should not be included, and indeed there are problems where higher moments
are significant (Ladd 1990); but, the first two moments, when combined with the
near-field lubrication interactions, are the minimum set needed and require the least
computational effort. Furthermore, this level of truncation has been shown to give
very accurate results for many hydrodynamic problems.

This truncated multipole expansion, in combination with Faxén’s laws, is used to
form the grand mobility matrix M∞. Once constructed, the grand mobility matrix
is inverted to yield a far-field approximation to the grand resistance matrix. While
M∞ is pairwise additive, on inversion infinite reflections among all moments and all
particles are computed, and thus the far-field resistance matrix is a true many-body
interaction. Finally, since the many-body approximation to the resistance matrix still
lacks lubrication, which would only be reproduced upon inversion of the mobility
matrix if all multipole moments were included, the near-field interactions are intro-
duced into the resistance tensor in a pairwise additive fashion. The exact two-body
resistance interactions (Jeffrey & Onishi 1984), R2B , are added to (M∞)−1, but since
the far-field two-particle resistance interactions have already been included upon the
inversion of M∞ special care is needed in order not to count these interactions twice.
Thus, the two-body interactions already included in (M∞)−1, denoted as R∞

2B , are
subtracted (Durlofsky et al. 1987), and the approximation to the grand resistance
matrix becomes:

R = (M∞)−1 + R2B − R∞
2B . (2.4)

Once the grand resistance matrix is known, from (2.1) and (2.2) the particle velocities
can be obtained if the forces are known or vice versa. From the particle velocities
new configurations are obtained, the resistance tensors are computed anew and the
procedure repeated. This method captures both the near- and far-field physics and
has given excellent results for many problems. Unfortunately, the direct solution of
equation (2.1) as implemented in conventional Stokesian Dynamics is computationally
expensive since it involves the costly O(N2) calculation of the far-field mobility matrix
and its costly O(N3) inversion. We now present an alternative approach in an attempt
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to minimize the computational cost and devise a method with a more favourable
scaling.

As in conventional SD, we split the hydrodynamic force into a far-field and a
near-field part:

F h = F h
ff + F h

nf

= −RFU,ff · (U p − u∞) + RFE ,ff : E − RFU,nf · (U p − u∞) + RFE ,nf : E . (2.5)

The near-field resistance matrix in the above equation corresponds simply to the
proper component of R2B − R∞

2B in (2.4), while the far-field resistance matrix is the
corresponding part of (M∞)−1. Instead of calculating (M∞)−1 directly as was done
before, however, we now calculate the far-field hydrodynamic force instead. Although
this approach does result in some loss of information (compared to the calculation
of the full matrix), it allows us to calculate only 6N hydrodynamic force/torques, a
procedure with a significantly smaller computational cost. In the following subsections,
we discuss this calculation in detail, along with a discussion of iterative techniques
that further reduce the computational cost of the inversion of the remaining near-field
matrix.

2.1. Calculation of the far-field interactions

As was already mentioned, in order to avoid the expensive construction of the far-
field resistance matrix we calculate the far-field hydrodynamic force directly – that
is, the product of the resistance matrix with a known velocity. In order to clarify
the most important features of the new approach, we first use a simple schematic
description. In Stokes flow the velocity at any point in the fluid can be expressed in
a number of equivalent ways – integral representations of Green functions, multipole
expansions of force moments, etc. In the following paragraphs we will present the
multipole expansion approach in detail, but for the moment we use a very general
functional form:

ui(x) − u∞
i (x) =

∑

n

Gij(x, xn)F
n
j , (2.6)

where ui(x) − u∞
i (x) is the i-component of the velocity disturbance in the fluid at any

position x, Fn
j is the j-component of the hydrodynamic force, torque, stresslet (or even

higher moments) on each particle n, and Gij corresponds to the appropriate solution
function. To determine the motion of a particle immersed in a flow field given by
(2.6), we make use of the Faxén formulae that relate the force (and higher moments)
on a particle n to the particle velocity Un

p,i and the fluid velocity at the particle centre,
ui(xn):

Fn
i = (Un

p,i − u∞
i (xn)) + H(ui(xn) − u∞

i (xn)), (2.7)

where H represents a known functional operation. (A scalar operator multiplying
the particle velocity, e.g. 6πηa for a sphere of radius a in a fluid with viscosity η,
can be included in the non-dimensionalization of the force and therefore has been
omitted here.) It should be clear that by combining equations (2.6) and (2.7) we can
eliminate the fluid velocity ui(xn) and construct a mobility matrix relating the velocity
of each particle to the forces on all of the particles. It should also be obvious that
the mobility formulation is the most straightforward to calculate, since Un

p,i is only
present in equation (2.7); such a mobility formulation must then be inverted to give
the resistance formulation.

An alternative approach is not to calculate the mobility matrix and calculate Fn
i

directly in an iterative manner. Assuming that all the particle velocities are known
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(either as a nested iterative procedure, or more simply as the velocities of the previous
time step), an initial value is assumed for the hydrodynamic forces, equation (2.6) is
solved for the corresponding fluid velocities, ui, and then with application of Faxén’s
laws (2.7) the initial forces are corrected and the process repeated until convergence.
The computational cost of such a procedure is dominated by the O(N2) calculation
of
∑

n Gij(x, xn)F
n
j – a sum over the forces of all the other particles. However, the

calculation of these sums can be accelerated significantly with the use of recently
developed methods, such as the PME technique. The ideas of particle-mesh techniques
(Hockney & Eastwood 1988) are used to assign particles to a mesh according to their
positions and then fast Fourier transform (FFT) techniques are used to evaluate the
wave-space part of the Ewald sum on this mesh. The fast evaluation of the wave-space
sum is then used to set the parameters to allow an O(N) evaluation of the real-space
sum. PME algorithms have been successfully applied to the calculation of Coulombic
interactions (Darden et al. 1993, 1997; Essmann et al. 1995; Petersen 1995) and
recently have been formulated for the case of hydrodynamic interactions by Higdon
and coworkers (Guckel 1999); this formulation will be described here in detail.

Our starting point is Hasimoto’s solution (1959) of the Stokes equations for the
flow past a periodic array of spheres. Hasimoto’s solution is exactly equivalent to
that given by Beenaker (1986); however, because a regular grid of points is used for
the calculation of the Fourier space sum, Hasimoto’s approach is preferred. Note also
that all of the following analysis refers to periodic systems; the subject of convergence
of the resulting infinite sums will not be discussed since it has been resolved in the
past (see Brady et al. 1988). Following Hasimoto, the fluid velocity in the presence of
a periodic array of N suspended particles at positions rn, represented as point forces
F n (with Fn

j , the j-component of the force that the fluid exerts on particle n), in a
periodic unit cell of volume V0 can be expressed as:

uj(x) =
1

4πη

(

S1
j − ∂2S2

l

∂xl∂xj

)

, (2.8)

where

S2
l = − 1

4π
3V0

∑

k 6=0

e−2πi(k·r)

k4
F̂k
l , (2.9)

and

S1
j = ∇2S2

j . (2.10)

Here, k is the reciprocal lattice vector (corresponding to the real space vector r), and
F̂k
j is the j-component of the Fourier transform of the real-space lattice point force F n.
The above sum, which simply represents the contribution to the fluid velocity of all

the ‘particle-point-forces’, can be evaluated efficiently with the introduction of Ewald’s
summation technique. We start with an integral representation for 1/k2m:

1

k2m
=

π
m

Γ (m)

∫ ∞

0

e−πk2ββm−1 dβ. (2.11)

Then

σm
j =

∑

k 6=0

e−2πi(k·r)

k2m
F̂k
j =

π
m

Γ (m)

∑

k 6= 0

∫ ∞

0

e−πk2β−2πi(k·r)F̂k
j β

m−1 dβ

=
π
m

Γ (m)

∫ ∞

0

βm−1

[

∑

k

F̂k
j e

−πk2β−2πi(k·r) − F̂0
j

]

dβ. (2.12)
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A splitting parameter α is introduced and the integral in (2.12) is split into two parts,
one from 0 to α, and the other from α to ∞. Ewald’s theta transformation formula

∑

k

F̂k
j e

−πk2β−2πi(k·r) =
V0

β3/2

∑

n

e−π(r−rn)/βFn
j (2.13)

is then applied to the integral from 0 to α.
The general formula for the evaluation of S1

j or S2
j is then:

σm
j =

∑

k 6=0

e−2πi(k·r)

k2m
F̂k
j

=
π
mαm

Γ (m)

[

V0α
−3/2

∑

n

φ−m+1/2

(

π(r − rn)
2

α

)

Fn
j − F̂0

j

m

]

+
π
mαm

Γ (m)

[

∑

k 6=0

e−2πi(k·r)φm−1(παk
2)F̂k

j

]

, (2.14)

where we have replaced β = α/ξ in the first integral and β = αξ in the second.
The first sum and the constant term correspond to the real-space sum contribution
from the presence of all particles (including the self-term), while the second sum is
the wave-space sum excluding the k = 0 term. The function φν is the incomplete
Γ -function:

φν(x) =

∫ ∞

1

ξνe−xξ dξ, (2.15)

and can easily be evaluated since it satisfies simple recurrence formulae (see Hasimoto
1959 for more detail).

Using (2.14) and substituting the expressions (2.9) and (2.10) for S1 and S2 into
(2.8) for the fluid velocity, we obtain:

uj(x) =
1

4πη

(

∑

n

Fn
l

[(

− π

α3/2

)

r2φ1/2δjl + α−1/2δjl +
(

π

α3/2

)

xlxjφ1/2

]

)

+
1

4πη

(

1

πV0

∑

k 6=0

e−2πi(k·r)

(

F̂k
j

k2
− F̂k

l klkj

k4

)

e−παk2 (

1 + παk2
)

)

. (2.16)

This is the exact result for Stokes flow in a periodic array of point forces. We shall
now show how this result can be generalized for the case of a random distribution
of particles, to include higher moments (torque, stresslet, etc.) in order to account for
the finite size of the particles in different types of flows, and we shall demonstrate an
efficient way to calculate the above sums numerically.

The incomplete Γ -functions φν(x) tend rapidly to zero as x → ∞. Therefore as
α → 0,

φ−m+1/2(π(r − rn)
2/α) → 0

and the velocity is represented as a pure wave-space sum. On the other hand, for large
values of α the wave-space sum contribution vanishes and the velocity is represented
as a real-space sum. The choice of α and the optimum efficiency of balancing the
computational work for the evaluation of the two sums is one of the main issues of
the algorithm.
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Figure 1. The transition from a force acting on a particle’s centre to a set of forces acting on the
grid points γ.

2.2. Wave-space sum contribution

The wave-space sum contribution to the fluid velocity given by

WS =
1

4πη

[

1

πV0

∑

k 6=0

e−2πi(k·r)

(

F̂k
j

k2
− F̂k

l klkj

k4

)

e−παk2 (

1 + παk2
)

]

, (2.17)

can be evaluated efficiently as the inverse Fourier transform of the expression
(

F̂k
j

k2
− F̂k

l klkj

k4

)

e−παk2

(1 + παk2). (2.18)

In order to do so, some further analysis of the meaning and calculation of F̂k
j is

necessary. Let us consider again the flow past a periodic array of spheres. If the
spheres are sufficiently small, then the force acting on the surface of each sphere
can be simply assumed to be a point force acting on its centre. The position of
sphere n can then be specified either in the real-space (r) or in the reciprocal-space
(k). For the case of a real-space simple cubic lattice, the reciprocal space lattice is
also simple cubic. Then if Fn

j is the j component of the point-force representing

particle n at position rn, F̂
k
j is simply its Fourier transform (on the same position,

since both the real and reciprocal lattices are simple-cubic). For the case of a cubic
array of point forces, the above description is all that is needed to evaluate the wave
sum using conventional FFT methods. In order to address more realistic cases, e.g.
finite-sized particles in random configurations and in different external fields, while
still maintaining the ‘lattice-point-force’ approach, we must implement a more general
particle and grid representation.

Let us now consider the case of a random distribution of spheres in a periodic
computational domain where the particles are no longer part of a periodic array.
Although the positions of the spheres no longer define a lattice, we can still define an
artificial rectangular grid over the computational domain (see figure 1); the positions
of the particles, however, no longer coincide with the grid-points. It is nevertheless
possible to transfer the force acting on the centre of each sphere to a collection of
forces acting on the grid-points located in the vicinity of the sphere. This is done
by following well-known particle-mesh algorithms (Eastwood & Hockney 1988). It is
desirable that the transition from the particle centre to the grid should involve only
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a relatively small number of grid points, be a smooth function of the location of the
particle and capture the correct long-range physics for distances far away from the
force centre. Here, we perform the force assignment by the use of matched Taylor
series expansions. For example, for the point force we require:

F0
j e

−2π(k·r0) =
∑

nodes γ

f
γ
j e

−2πi(k·rγ), (2.19)

or, after Taylor series expansion:

F0
j (1 + 2πiklx

0
l − 2π

2klkmx
0
l x

0
m + · · ·)

=
∑

nodes

f
γ
j (1 + 2πiklx

γ
l − 2π

2klkmx
γ
l x

γ
n + · · ·), (2.20)

where x0
l is the l-coordinate of the actual position of the particle and x

γ
l is the

l-coordinate of the grid-point positions γ. Equations (2.19) and (2.20) simply state
that when a force is transferred to the grid from a particle centre, all its moments
are also preserved. It is of course not possible to retain infinite terms in (2.20) and a
truncated version is used.

The above analysis was limited to the case of point-forces; in most practical
applications, however, we must take into account the particle size and represent the
particles more accurately. Following the conventional Stokesian Dynamics approach,
each particle is represented as an expansion of the force density on its surface in a
series of moments at its centre. Using the same level of accuracy as in conventional SD,
each spherical particle is represented as a point force F , a doublet D (corresponding
to the torque and stresslet), a potential dipole d (which is simply equal to −a2F /6η,
where a is the particle radius), and a potential quadrupole L (which simply equals
−a4

S/10η, where S is the particle stresslet), while higher moments are neglected. The
redistribution of the potential doublet, dipole, etc., follows the exact same procedure
as for the force since they are just higher moments of the force singularity, and
formulae equivalent to (2.20) can be derived. These formulae simply state, as was the
case with (2.20), that the net force, torque, stresslet, etc. is conserved when transferred
from the particle to the grid. The number of moments retained depends on the desired
accuracy, and for this work an O(k3) matching is used, which means that the potential
quadrupole is distributed to the grid with a leading error of O(1). To obtain that
level of accuracy, the force moments must be distributed as equivalent forces on a
5 × 5 × 5 set of grid points centred at the node closest to the particle centre. Higher
accuracy can be obtained with an increased number of matched terms (corresponding
to increased number of grid points upon which the force is distributed), but the
computational cost increases accordingly. The formulae for the moment distribution
on the grid can be found in Sierou (2001) or obtained from the editorial office or the
authors on request.

To summarize, the wave sum is calculated through the following steps: (i) each
particle’s force/torque/stresslet/etc. is distributed on a regular mesh over the compu-
tational domain, (ii) the FFT of the distributed forces is calculated and the expression
in equation (2.18) is evaluated, (iii) the inverse FFT of step (ii) is calculated, which
simply gives the wave-space sum of equation (2.17). Thus, at the end, for a given set
of forces and higher moments on the particles, the contribution to the fluid velocity
owing to the wave-space sum is calculated. This is a far-field contribution. The dis-
tribution of the forces on the grid and the simultaneous solution for all grid points
includes effects from all particles.
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This velocity corresponds to the fluid velocity on the given grid of nodes and not
to the velocity at the particle centres, which is required for Faxén’s laws. The fluid
velocity at a particle’s centre is obtained by interpolating from the grid to the particle
position by a simple Lagrangian interpolation with a 5 × 5 × 5 set of grid points for
each particle. The general form of the Lagrangian interpolation is:

u(x0) =

5
∑

i=1

5
∑

j=1

5
∑

k=1

hi(x)hj(y)hk(z)ui,j,k , (2.21)

where u(x0) is the interpolated velocity at position x0, and ui,j,k are the velocities at a
given grid point (i, j, k) (the indices i, j and k now correspond to local nodes around
each particle’s centre). The interpolating polynomials are of the form:

hi(x0) =

∏

j,j 6=i(x0 − xj)
∏

j,j 6=i(xi − xj)
, (2.22)

where xi are the positions of the interpolation grid points in one dimension. The
derivatives of the interpolants are then used to calculate the derivatives of the fluid
velocity at the particle’s centre.

2.3. Real-space sum contribution

In addition to the wave-space sum contribution, the real-space sum expression,

RS =
1

4πη

∑

n

Fn
l

[(

− π

α3/2

)

φ1/2r
2δjl + α−1/2δjl +

(

π

α3/2

)

φ1/2xlxj

]

, (2.23)

must be evaluated. This equation gives the velocity at any point in the fluid owing
to the presence of an array of point forces at distances rn; similar expressions can
be obtained in a straightforward manner for the velocity and any number of higher
derivatives of the velocity due to the presence of a torque, stresslet, etc. Equation
(2.23) suggests that the calculation of the real-space sum requires O(N2) operations,
since the calculation of the velocity at each particle centre requires the sum over
all particles (including a self-term). The incomplete Γ -function, φν , however, decays
very fast, so that for small enough α the contribution of particle pairs that are not
near neighbours will be very small and can be neglected without significant error.
The elementary way to evaluate this sum is to sweep through all the particles, test
whether their separation is less than a ‘cutoff separation’, rc, and if so compute the
two-particle contribution according to (2.23). Such an approach is clearly impractical,
however, since it also gives an operation count that scales as N2.

To reduce the computational cost we arrange the particles in such a way that the
tests for locating the neighbouring particles are only performed over a small subset
Nn of the total number of particles N. This is accomplished by introducing a ‘chaining
mesh’ (Hockney & Eastwood 1988), which is a regular lattice of (Mx × My × Mz)
cells covering the computational periodic box; the number of cells in each direction
is such that the lengths of each side of each cell are always greater or equal to the
aforementioned cutoff radius. Those particles that have non-zero contributions to the
real-space sum of the hydrodynamic force must lie either in the same cell as any
given particle, or in one of the 27 neighbouring cells, and therefore we only need to
sweep through those neighbouring cells in search of a particle’s nearest neighbours.
The calculation of the infinite real-space sum is thus reduced to the calculation of
the sum locally over only a small number of neighbouring particles – those particles
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that are closer than the chosen value of the cutoff radius, rc. (The choice of rc
and its effect on the accuracy of the calculation will be discussed in detail in the
following section.) The real-space sum calculation can thus be done analytically in
a straightforward manner; the detailed formulae (Sierou 2001) corresponding to the
contributions of higher moments may be obtained upon request from the editorial
office or the authors. Note that according to (2.23), when calculating the real-space
correction to the fluid velocity at the centre of a particle, the real-space sum is
performed over all neighbouring particles, including the reference particle, and thus a
self-term contribution must also be calculated. After the completion of the real-space
sum step for every neighbouring particle pair, a correction to the fluid velocity at
the particle centre is evaluated, which is added to the already evaluated fluid velocity
from the wave-space sum.

As a final note, in a sheared suspension, the unit cell and FFT grid points must
deform along with the shear rate until the lattice repeats itself, typically at the end of
one strain for simple shear flow.

2.4. Force laws

With the fluid velocity determined at each particle centre, the far-field force, torque
and stresslet exerted on each particle are calculated from Faxén’s laws:

F ff = −6πηa
(

U p − u∞(x)
)

+ 6πηa(1 + 1
6
a2∇2)(uff ), (2.24a)

T ff = −8πηa3
(

Ωp − ω∞(x)
)

+ 4πηa3
∇ × (uff ), (2.24b)

Sff = 20
3

πηa3
E + 20

3
πηa3(1 + 1

10
a2∇2)(eff ), (2.24c)

where uff corresponds to the far-field fluid velocity evaluated at the centre of the
particle, U p and Ωp are the particle translational and angular velocities, u∞, ω∞ and
E are the bulk velocity, angular velocity and rate of strain, respectively, and eff is the
rate of strain of the far-field velocity.

The scheme described above corresponds to a prediction–correction method where
the hydrodynamic forces on the particles are first used as input to calculate both
the wave- and real-space contributions to the fluid velocity and then the forces are
calculated again from the far-field velocities with the assistance of Faxén’s laws.
Determining the forces is the resistance formulation of the problem – for a given
configuration of particles and particle velocities, the particle forces and force moments
are calculated. It has recently been shown (Ichiki & Brady 2001) that the method of
reflections (which corresponds to the simplest iterative scheme for the inversion of
the mobility matrix) can be divergent when more than two particles are present.

An alternative way to invert the mobility matrix, which is still largely based on the
method of reflections, is to use a simple under-relaxation scheme and replace (2.24)
by:

F ff = [−6πηa
(

U p − u∞(x)
)

+ 6πηa(1 + 1
6
a2∇2)(uff )]ω + F old

ff (1 − ω), (2.25)

where ω is the relaxation parameter, and F old
ff is the previous guess for F ff . In

practice, values of ω as low as 0.05 may be necessary for very large, or very dense
systems, which leads to a large number of iterations when the initial guess is poor.
The relaxation parameter ω appears to have no significant effect on the dynamics
of the system after the system is relaxed to a quasi-steady state (typically after the
particles have moved the length of the unit cell). For a fixed geometry, as in the lattice
calculations described in § 3, the relaxation parameter has no effect. As suggested
by Ichiki & Brady (2001), the breakdown of the method of reflections can also be
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overcome by the use of a conjugate-gradient-type iterative method. The generalized
minimum residual method (GMRES) was used here, and it was found that very
accurate results can always be obtained with very few iterations. (It should be noted
that the fact that the mobility matrix is never constructed does not introduce any
further difficulties since in most iterative methods matrices only appear as products
with vectors.)

We also briefly note here that the particle pressure (Morris, Jeffrey & Brady 1993)
can be readily calculated following the same procedure. The wave-space contribution
is obtained as part of the FFT procedure since it simply corresponds to the fluid
pressure at the centre of each particle, while the real-space sum part is calculated
analytically.

2.5. Near-field interactions

Lubrication interactions are included in a manner very similar to conventional SD.
The two-body resistance matrix R2B of equation (2.4) is calculated from the known
exact results, and the part of the two-body interactions already included in the far
field (R∞

2B) is subtracted as in conventional SD. The chaining mesh is again used so
that only interactions between neighbouring particles will be included, thus reducing
the computational cost from N2 to NNn, where Nn is now the number of particles
closer to the cutoff radius for lubrication, which is 4a. To further reduce both the
computational cost and the memory requirements the near-field resistance matrices
are stored in a sparse form, i.e. for each particle only the non-zero contributions from
neighbouring particles are stored, reducing the dimensions of RFU from 6N × 6N
to 6N × 6Nn. This procedure allows every multiplication with any of the near-field
resistance matrices to be an O(N) operation.

2.6. Time integration

After both the far-field force and the near-field resistance matrices are calculated, the
new particle velocities must be calculated from (2.1), which, in the absence of particle
inertia, gives

0 = −RFU,nf ·
(

U p − u∞(x)
)

+ RFE ,nf : E
∞ + F p + F ff , (2.26)

where now RFU,nf is a sparse, symmetric, positive-definite matrix. Note that since the
far-field interactions are not included in the resistance matrix, the unit tensor I is
added to RFU,nf and subtracted from equation (2.26) to assure positive definiteness.
The most efficient way to solve a sparse symmetric positive-definite system is by an
iterative method, where the computational times can scale linearly with the matrix size
since the sparse matrix multiplications required for an iterative method scale as N.
However, a carefully designed iterative method must be applied since the number of
iterations can increase significantly with increasing N. It is also worth noting that in
(2.26) the far-field force is considered known, implying that the previous step velocities
have been used for its calculation; alternatively, an additional iterative scheme can be
employed such that the velocities used in the far-field calculation are also updated. In
most problems, either the far-field force is small in magnitude (e.g. sheared systems)
or it does not change rapidly with time (e.g. sedimenting systems), and in both cases
the two approaches give results that are statistically indistinguishable; the simpler
approach is therefore used hereinafter.

Conjugate gradient methods provide a quite general means of solving the N × N
linear system

A · y = b. (2.27)
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The advantage of these methods is that they reference matrix A only through its
product with a vector, an operation that can be very efficient for properly stored
matrices. The basic idea behind them for the simplest case of a symmetric positive-
definite matrix is minimizing the function

f(y) = 1
2
y · A · y − b · y, (2.28)

which is equivalent to its gradient ∇f = A ·y −b being zero, thus giving the solution to
(2.27). The minimization proceeds by generating a succession of search directions and
improved minimizers until the required accuracy is reached. The ordinary conjugate
gradient method works well – the number of iterations required for convergence is
reasonably small – for matrices that are well-conditioned, i.e. matrices with eigenvalues
that are tightly clustered. This suggests using these methods on a preconditioned form
of equation (2.27):

(Ã
−1

· A) · y = Ã
−1

· b. (2.29)

The matrix Ã is called a preconditioner and its purpose is that now the matrix (Ã
−1

·A)
will be well-conditioned, i.e. ‘close’ to the identity matrix.

Torres & Gilbert (1996) applied the conjugate gradient method for the sparse
positive-definite near-field hydrodynamic resistance matrix RFU,nf for different precon-
ditioners and established that good convergence rates are possible when an incomplete
Cholesky preconditioner is used. The incomplete Cholesky factor L0 is constructed
following the same algorithm as for the calculation for the complete Cholesky factor,
except that a specific element L0,ij is calculated only when the corresponding element
RFU,ij is non-zero and is otherwise set equal to zero. Thus, for each i = 1, 2, . . . , 6N

L0,ii =

(

RFU,ii −
i−1
∑

k=1

L2
0,ik

)1/2

, (2.30)

and then for j = i + 1, i + 2, . . . , 6N

L0,ji =















1

L0,ii

(

RFU,ij −
i−1
∑

k=1

L0,ikL0,jk

)

for RFU,ij 6= 0,

0 for RFU,ij = 0.

(2.31)

The main advantage of the incomplete Cholesky preconditioner is that it captures
the essential physics of the lubrication forces between two nearly touching particles
while remaining as sparse as the initial RFU . If only the non-zero elements of L0

are computed and unnecessary operations with zero-valued elements are avoided, the
preconditioning step remains an O(N) operation.

Following Torres & Gilbert (1996), a variation of the incomplete Cholesky factor
is used where ‘blocks’ of the matrix L0 are handled as opposed to individual elements.
Since the resistance matrix consists of 6 × 6 blocks that map the velocity of one
particle to the force/torque on another particle, the entire corresponding block of
L0 is computed if any of the elements in the corresponding RFU block are non-zero.
Furthermore, they suggest a particle re-ordering according to the proximity of the
particles to one another so that a more ‘ordered’ form of the resistance matrix can
be used. The reverse Cuthill–McKee method (Cuthill & McKee 1969; George &
Liu 1981) was found to achieve the best overall results, and we use this approach
in our method. The benefit of particle reordering is both a more rapid convergence
and a minimization of the breakdowns of the Cholesky preconditioner. Since an
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Figure 2. The number of iterations required for convergence of 10−4, – – –, with and —–, without
preconditioning (N = 512, φ = 0.45, sheared system). The importance of an appropriate precondi-
tioner becomes increasingly important for large strains as particle clusters form and the resulting
resistance matrix, RFU,nf , becomes increasingly ill-conditioned.

incomplete version of the Cholesky factor is calculated, there is no guarantee, even
for a symmetric positive-definite matrix, that square roots of negative numbers will
not occur. To solve this problem qI , where q is a positive number large enough so
that positive definiteness is obtained, is added to RFU . Although this addition solves
the problem, it increases the number of iterations required for convergence, and it
was empirically observed by Torres & Gilbert that the reordering of the particles
reduces significantly the number of factorization breakdowns.

We should emphasize here that the use of the preconditioner has a very important
effect on the number of iterations required for convergence, especially for dense
sheared systems. In the absence of preconditioning, the number of iterations can
be of the order of 100–200 when particle clusters are forming and the interparticle
separations become very small. Sangani & Mo (1996) also report iterations of the same
order for their non-preconditioned system. The use of the preconditioner, however,
decreases the number of iterations dramatically and most systems, including dense
sheared suspensions, can be solved in less than 10 iterations. Figure 2 demonstrates
the effect of the preconditioner for a sheared system of N = 512 particles at volume
fraction φ = 0.45; the necessary number of iterations to achieve an accuracy of 10−4

in the residual calculation is significantly smaller for the preconditioned case. The
effect of the preconditioner becomes even more significant with increasing strain; as
the particles move closer together and form clusters, the non-preconditioned iterative
procedure requires consistently more than 100 iterations for convergence.

The iterative procedure works well when the near-field lubrication matrix is rea-
sonably well-behaved – in practice, when the interparticle distances are no less than
(10−5–10−6)a. In order to assure these minimum separations in a dynamic simulation,
a repulsive interparticle force is generally required. When shearing a dense suspen-
sion in the absence of Brownian and/or interparticle forces, particle overlaps can
occur even for extremely small time steps (Dratler & Schowalter 1996). The pres-
ence of an interparticle force can have a significant effect on the properties of some
systems (e.g. sheared dense suspensions) and its impact is a matter for a separate
study. The main point that we wish to make here is that our new method does
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not impose any more restrictions on the minimum interparticle separation compared
to conventional SD, because the implicit inversion of the near-field resistance ma-
trix captures the same physics as the inversion of the full resistance matrix. Since
we shall validate the method only with non-dynamic results where the interparticle
force will always be zero, the issue of the interparticle force will not be mentioned
further.

2.7. Total operations count for each time step

The most time consuming parts of our algorithm are the calculation of the far-field
and near-field interactions and the inversion of the resistance matrix. The inversion of
the resistance matrix, when done iteratively as described in the previous section, can
be an O(N) operation depending on the preconditioner. The near-field interactions
and the real-space contribution to the far-field, as was already discussed, can be
calculated in O(N) operations with the introduction of a chaining mesh. The wave-
space contribution of the far-field interactions, on the other hand, is calculated in
O(N3

m lnNm), where Nm is the total number of mesh points in each direction. In order
for this part of the calculation to be O(N), Nm must scale as N1/3. The number
of mesh points Nm determines the accuracy of the wave-space sum calculation, and
therefore our choice of Nm should be a compromise between desired accuracy and
computational cost. This is where the choice of the splitting parameter α becomes
important.

For small values of α, the wave-space sum constitutes the largest part of the
contribution, and therefore a large number of FFT points per particle are necessary
for an acceptable degree of accuracy. However, if a large value of α is used, then
the wave-space sum contribution is small and even low accuracy in its calculation
leads to an acceptable overall error. The real-space sum on the other hand, requires
a small value of α to minimize its error since only a few neighbouring particles are
used for the calculation of the real-space sum. By balancing those two requirements
an optimum value of α can be found that will give both acceptable accuracy and
reasonable computational cost.

To demonstrate the effect of the method parameters – splitting parameter α, cutoff
radius for the calculation of the real-space sum rc, and number of mesh-points Nm for
the FFT calculation – on the Ewald-sum calculation, we study the following problem.
A small number of particles (N = 30) is placed randomly in a unit cell of length
L = 16a, corresponding to a volume fraction of 3%. An external force is imposed on
all particles and the resulting far-field fluid velocities at the centre of each particle are
calculated according to (2.16). The same calculation is repeated by using the exact
formulation of the Ewald sum of (2.16); this is done by including the interactions
between all the particles not only in the unit cell, but also in 10 neighbouring cells in
each direction. The relative error between the exact Ewald-sum calculation and the
PME calculation is then determined as (ufluid,PME − ufluid,exact)/ufluid,exact and averaged
over all the positions of the particles. Figure 3 shows this relative error for different
values of α, wave-space sum discretization dx (= L/Nm, where L is the length of
the unit cell and Nm is the number of FFT points in each direction) and cutoff
radius rc. It can be seen clearly that for every choice of dx and real-space sum cutoff
radius, an optimum α exists. This is expected since, as was already mentioned, for
increasing α the error in the wave-space sum calculation decreases, while the error
in the real-space sum calculation increases. For a given dx, the error decreases with
increasing rc, while the optimum choice of α increases with increasing rc. In other
words, for a fixed accuracy of the wave-space sum calculation, corresponding to a
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Figure 3. The relative error for the calculation of the fluid velocity for a system of N = 30
particles in a gravitational field. The error is presented for different values of the wave-space sum
discretization, dx, and different values of the real-space sum cutoff radius, rc, as a function of the
splitting parameter α. (a) dx = 0.125a, (b) 0.25a, (c) 0.5a, (d) 1.0a.

fixed number of FFT points, the overall accuracy will increase as the accuracy of the
real-space sum calculation increases (cutoff radius for the real-space sum increases). In
addition, the increased accuracy of the real-space sum calculation is more important
for larger values of the splitting parameter α; for small values of α the real-space-
sum contribution is very small and its accuracy does not affect the overall accuracy
significantly. On the other hand, for a fixed cutoff radius and increasing number of
FFT points, the optimum value of α now decreases, since increased accuracy in the
wave-space sum calculation now allows smaller values of the splitting parameter. It is
also worth noting that the minimum error is completely determined by the choice of
dx and rc, and for some cases no choice of α gives acceptable behaviour; for example,
for the case of rc = 2a, dx = 1.0a, the minimum error is close to 30%. For two FFT
points per particle radius (dx = 0.5a, figure 3c) and rc = 6 − 7a, accuracy within 1%
can be obtained with a choice of α ≈ 12 − 15, and for most applications this range of
parameters will be used since it was found also to give an acceptable computational
cost.

Figure 4 shows the computational time for one time step as a function of the
number of particles N. The times correspond to a shearing problem at volume
fraction φ = 0.45; one iteration is performed for the convergence of the far-field
interactions, and the inversion of the near-field matrix takes 8–10 iterations for all
numbers of particles shown. All the runs were performed on a single DEC Alpha AXP
21164 processor and the times are given in seconds. The data are in good agreement
with the proposed N lnN scaling set by the scaling of the FFT calculations.
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Figure 4. The CPU time (in seconds) for one time step of a shearing simulation as a function of
the number of particles N. Symbols, ASD; · · ·, N lnN scaling.

3. Results – simple cubic arrays

In this section, the accuracy of the method is tested for the case of simple cubic
arrays of spheres, a case for which a number of analytical and simulation results
are available. Different choices for the method parameters are presented, which
further demonstrates – this time for a problem with a known solution – that the
PME calculation of the far-field contribution can give acceptable accuracy with low
computational cost.

3.1. Sedimentation of cubic arrays: sensitivity to method parameters

The first case we consider is a set of 8 particles sedimenting in a simple cubic
lattice. Since the system is periodic, the number of particles is not important and our
main goal is to check the accuracy of the far-field calculations. It is easy to show
that for identical spherical particles on a cubic lattice subject to a constant external
force, the pairwise additive near-field forces will always sum to zero regardless of
the volume fraction; therefore, the accuracy of the calculation of the far-field is the
only issue. The exact infinite sums presented in § 2.1 are expected to give, within the
number of moments included, results in exact agreement with the multipole moments
analytical results of Zick & Homsy (1982) and the conventional SD results, since an
equivalent approach is used for their derivation. The introduction of an FFT method,
however, truncates the wave-space sum to the number of mesh points used, while the
introduction of a near-field-like approach to the real-space sum truncates it to only
the contributions of a few neighbouring particles. Nevertheless, with a careful choice
of the splitting parameter α, the infinite sums decay rapidly and acceptable accuracy
can be obtained.

Figure 5 presents the sedimentation velocity for a relatively low volume fraction,
φ = 0.064, as a function of both the splitting parameter α and the wave-space sum
discretization dx; the cutoff radius for the calculation of the real-space sum is defined
so that only one neighbour in each direction is included, rc =

√
3 × 4a ≈ 7a. Good

accuracy for the sedimentation velocity is obtained for a wide range of α and a desired
plateau is observed for α near the optimum. The plateau in figure 5 corresponds to the
range of α where the inclusion of only one neighbour in the real-space sum and the
discretization of the wave-space sum provide a nearly exact evaluation of the sums in
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Figure 5. The dependence of the sedimentation velocity of an SC array of spheres on α

and dx; N = 8, φ = 0.064, L = 8.0, rc =
√

3 × 4a.

equation (2.16). Obviously as the wave-space sum discretization (dx) becomes finer,
a wider range of α (starting from smaller values) can be used with no significant loss
of accuracy. Near the optimum value of α, however, values of dx near 0.5, or two
points per particle radius, are sufficient for satisfactory accuracy, which allows us to
treat large systems using a relatively small number of FFT discretization points.

Figures 6 and 7 present the same analysis for the case of φ = 0.5236, a close packed
simple cubic array. Figure 6 corresponds to the inclusion of only one neighbour in the
real-space sum, a cutoff radius of rc =

√
3 × 2a ≈ 3.46a, while figure 7 corresponds

to the inclusion of two neighbours, rc =
√

3 × 4a ≈ 7a. The case of rc ≈ 3.46a gives
satisfactory results only when a fine wave-space discretization is used, in agreement
with the observations of figure 3. In figure 7 on the other hand, the larger value of
rc allows fewer FFT points to be used and permits a greater range of α, in this case
going to larger values since more neighbouring particles have already been included.
It should also be noted that for dense systems the same value of rc corresponds to
a larger number of near neighbours and therefore a larger computational cost in the
real-space sum. On the other hand (for the same number of particles), dense systems
correspond to much smaller unit cells and therefore the extra computational cost for
the inclusion of more near neighbours is counteracted by the need for fewer FFT
points for a given discretization (dx) and vice versa.

Figure 8 presents the sedimentation velocity for volume fraction φ = 0.064 and
α = 16 as a function of the wave-space sum discretization parameter, dx, and for two
different positions of the particles – on the grid points, and positioned midway between
two grid points. This tests both the significance of the discretization in the wave-space
sum and the accuracy of the force distribution/interpolation scheme. Again, for the
given value of α corresponding to a value near the optimum, no significant loss
of accuracy occurs for a wide range of dx. Also, the positions of the particles on
or off the FFT grid is of little importance even for the largest values of dx. The
same parametric analysis was also conducted for the case of sheared suspensions; the
dependence on the far-field method parameters was even less apparent in this case
since lubrication is now important and the calculation of the near-field interactions
dominates the accuracy of the method.
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3.2. Sedimentation of cubic arrays: volume fraction dependence

We now discuss the average sedimentation velocity of a simple cubic array of spherical
particles as a function of the volume fraction φ. As was already mentioned, lubrication
plays no role in this problem and the accuracy of the resulting sedimentation velocity
is solely determined by the accuracy of the far-field calculation. Since the mobility
matrix is never calculated, the sedimentation velocity can be found by simply imposing
an external force (gravity) on all the particles and calculating the resulting steady-state
(converged) velocities. Also, since all particles are identical in a periodic lattice, they all
have the same velocity and therefore the relative distances between particles always
remain constant; in other words, there is no difference between a dynamic and a
static approach to the problem. Figure 9 shows a comparison of the non-dimensional
sedimentation velocity of a simple-cubic array of spheres obtained by the ASD
method with the conventional SD results of Brady et al. (1988) and the theoretical
calculations by Saffman (1973) and Zick & Homsy (1982). Saffman’s calculations are
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for point-force particles and result in a sedimentation velocity U/U0 = 1 − 1.738φ1/3,
where U0 is the settling velocity of an isolated particle under the same conditions. Zick
& Homsy’s results are exact, as they used sufficient moments, to achieve convergence
to the exact limit. For the same number of moments, the SD and ASD results are
identical for all volume fractions – the new method has the exact same accuracy as
conventional SD.

For low volume fractions all methods give identical results. For high volume
fractions ASD overestimates the sedimentation velocities in the exact same manner
that conventional SD does. Only the point force and the second moment of that
point force have a contribution in this formulation. Odd moments, although included,
have no effect on the sedimentation velocity of cubic arrays, and as a result only the
second-order method results of Zick & Homsy can be reproduced. For high-volume
fractions, higher moments are needed; the SC results of Zick & Homsy and the



Accelerated Stokesian Dynamics 135

α

φ

20

0 0.1

12

8

4

0.2 0.3 0.4 0.5 0.6

16

b

φ

7.0

0 0.1

5.0

4.0

0.2 0.3 0.4 0.5 0.6

6.0

3.0

2.0

1.0

Figure 10. The dependence of the shear viscosity functions α and β of an SC array of spheres
on the volume fraction. △, Accelerated Stokesian Dynamics (ASD) results; ×, ASD results in the
absence of lubrication; �, exact analytical results of Hoffman (1999); · · ·, — · —, asymptotic results
of Hoffman for the φ → 0 and; φ → φmax limits.

random array results of Ladd (1990) indicate that at least four moments are required
for reasonable accuracy near maximum packing. This can easily be done in principle
following the methodology outlined above, but at an increased computational cost
per particle; the overall method will still scale as N lnN, however.

3.3. Shear viscosity of cubic arrays

To calculate the shear viscosity of a cubic array of spheres, the relationship between
the bulk stress and the imposed rate of strain is required. Again, since the far-field
mobility or resistance matrices are never calculated, we simply impose an external rate
of strain on the particles and calculate the resulting induced far-field hydrodynamic
stresslets. To those values, the near-field contribution calculated from the near-field
resistance matrix, RSE,nf , is added; for a cubic lattice there is no RSU contribution
because all the particles move with the velocity of the bulk flow (U p = u∞). It should
also be noted that the viscosity is calculated for an instantaneous configuration
corresponding to a non-distorted cubic lattice. At a later instant in time, the cubic
lattice will be distorted as the particles move with the bulk flow and a different
instantaneous viscosity can be evaluated. It is a straightforward matter to calculate
the stresslets at each instant; for both simple shear and planar pure straining motion,
the unit cell returns to its non-distorted shape periodically and only a finite number
of configurations need to be sampled. Since all analytical results available correspond
to the non-distorted cubic cell we present only this case here. The particle stress for a
simple cubic array can be described by two independent parameters α and β, which
are only functions of the lattice geometry and the particle volume fraction; these two
functions correspond to pure straining and simple shear flow, respectively, and the
viscosity for any other linear flow can be obtained as a linear combination of these
two cases (Zuzovsky, Adler & Brenner 1983; Nunan & Keller 1984). (We retain the
notation α and β for consistency with previous authors; the viscosity function α is
not to be confused with the splitting parameter of the same symbol.)

Figure 10 shows a comparison of α and β for a simple cubic lattice obtained by our
ASD simulations with the asymptotic and exact results of Hoffman (1999). Hoffman’s
results reproduce the well-established analytical results of Nunan & Keller for low
to intermediate volume fractions, whereas the high volume fraction asymptotes are
generated with higher accuracy. Specifically, Hoffman’s asymptotic expansions for
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high volume fractions can be expressed in terms of ǫ = 1 − (φ/φmax)
1/3, as follows:

α = 3
16

πǫ−1 + 27
80

π ln ǫ−1 − 2.85 − 1.3ǫ ln ǫ−1 + O(ǫ),

β = 1
4
ln ǫ−1 − 0.604 − 0.30ǫ ln ǫ−1 + O(ǫ),

}

(3.1)

where the constant term has been corrected from the Nunan & Keller result (Hoffman
claims there is a sign error in those results) and the coefficient of the next term (ǫ ln ǫ−1)
is also evaluated. The far-field only (absence of lubrication) results are also presented
and are in exact agreement with the low volume fraction asymptotic behaviour. In
contrast to sedimentation, the high-volume-fraction asymptote is also reproduced with
very good accuracy; for shearing motion, lubrication is important and it precisely
captures the two-body singular effects described by the high-φ asymptotes. The
inclusion of higher moments in the far field is not as important as it was in the
case of sedimentation, although for intermediate volume fractions our viscosities are
slightly larger than the analytical results of Hoffman, as was also the case for the
conventional SD algorithm.

3.4. Spin viscosity of cubic arrays

The spin viscosity of a cubic array gives the relationship between the torque exerted
on each particle T and its angular velocity ω. (Since all particles in a cubic array
are identical, no averaging is necessary.) Symmetry of the cubic lattice reduces the
calculation of the spin viscosity to the calculation of one scalar, ζ, such that:

Ti = −ζωi. (3.2)

Zuzovsky et al. (1983) determined the high- and low-φ asymptotes for ζ, whereas
Hoffman (1999) calculated ζ for all volume fractions and improved upon the asymp-
totic expansions by including higher-order terms. Hoffman’s asymptotic expansion
is: ζ = π ln((φ/φmax)

−1/3 − 1)−1 − 3.15; the evaluation of the constant term improves
the expansion significantly since it is now valid for much lower volume fractions.
Figure 11 compares the results obtained for the spin viscosity ζ as a function of
volume fraction to the exact results of Hoffman. Excellent agreement is observed for
all volume fractions, and the low- and high-volume-fraction asymptotic results are
reproduced very accurately.

4. Results – random suspensions

In the following sections we present the results of a series of Monte Carlo simu-
lations from which the hydrodynamic properties of random hard-sphere suspensions
can be obtained. The Monte Carlo approach consists of generating several samples,
calculating the transport properties of interest for each sample, and then averaging,
in order to obtain values that describe the macroscopic behaviour of the system.
Different sampling techniques were used for different volume fractions; for φ < 0.49
the particles were placed in an arbitrary initial configuration and then moved using
a random-stepping routine in order to ensure that the sample was disordered – for
φ > 0.49 the sampling technique is discussed in detail in the following sections. We
first present the high-frequency dynamic viscosity of random suspensions for vol-
ume fractions ranging from infinite dilution up to random close packing along the
metastable fluid branch of the hard-sphere system. For volume fractions below the
freezing point (φ = 0.494), analytical and other simulation results are available for
comparison. For volume fractions above the freezing point, the system is maintained
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Figure 11. The dependence of the spin viscosity ζ of an SC array of spheres on the volume fraction.
△, Accelerated Stokesian Dynamics (ASD) results; —–, exact calculation of Hoffman (1999); −−−,
Hoffman’s low concentration analytical result; — · —, singular form as φ → φmax.

in the disordered metastable liquid state, and the singular behaviour of the viscosity
as φ approaches random close packing (φrcp ≈ 0.64) is studied. We next turn briefly
to the sedimentation problem. As has been shown in the past for conventional SD,
the order of approximation is only accurate for low to intermediate volume fractions,
and we therefore simply present the N-dependence of the sedimentation velocity for
a given low volume fraction. Finally, we study the short-time self-diffusion coeffi-
cient – the mobility of a single particle in a suspension of force-free particles. This is
an example of a case where the knowledge of the resistance matrix, and not just the
far-field hydrodynamic force, is of importance, and we demonstrate how our method
can still determine the short-time self-diffusion coefficient in O(N lnN) operations.

4.1. Viscosity of random suspensions: below the freezing point

The effective viscosity of a random dispersion of hard spheres, which is known
as the high-frequency dynamic viscosity, has been studied in the past for volume
fractions below the freezing point, and essentially exact, as well as low φ asymptotic,
results are available (Batchelor & Green 1972; Ladd 1990). The effective viscosity is
readily calculated by imposing an external shear flow and converging the far-field
contributions and the particle velocities, while keeping the particles at fixed positions.
In contrast to the cubic array, the externally imposed stresslet produces non-zero
particle velocities that also need to be determined as part of the iterative procedure.
The total particle stresslet is then calculated as a sum of the converged far-field
contribution, Sff , and the near-field contribution Snf = RSE,nf : E − RSU,nf · (U p − u∞),
which now also contains a non-zero velocity contribution.

Figure 12 shows the hydrodynamic viscosity of a random suspension of identical
spheres as a function of the volume fraction for different numbers of particles in the
range N = 125–2000, and averaged over a number of independent configurations in
the range 10–100. Since a much larger number of particles can now be used, fewer
independent configurations are required giving statistical errors that are less than
2% for all volume fractions below the freezing point and all number of particles
shown. (The error bars in figure 12 are omitted since they are always smaller than the
size of the symbols.) The results of Ladd (1990), where up to 7 moments have been
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Figure 12. The relative viscosity is plotted as a function of the volume fraction for different
numbers of particles (N = 125–2000) and volume fractions. —–, multipole-moment simulation
results of Ladd (1990); +; ⊕, experimental results of van der Werff et al. (1989) and Shikata &
Pearson (1994).

included in the calculations, are taken to be exact. As was the case for the cubic array,
the importance of lubrication is such that very accurate results are obtained even
when using a low-order moment approximation to the far-field interactions. (Ladd
also observed that the effective viscosity is not sensitive to the inclusion of higher
moments.) It is also apparent that the viscosity is insensitive to the system size, since
statistically indistinguishable results are obtained for N ranging from 125 to 2000.
Also shown are the experimental results of Van der Werff et al. (1989) and Shikata
& Pearson (1994) obtained from oscillating Couette viscometry with a frequency
sufficiently high that the distribution of the solid particles is unaffected by the shear
flow and corresponds to the equilibrium hard-sphere structure. Very good agreement
is observed, especially for the lower volume fractions (see below for results above the
freezing point).

4.2. Viscosity of random suspensions: above the freezing point

Although a large number of analytical results exist for the effective viscosity of hard-
sphere suspensions for volume fractions in the stable fluid region (below φ = 0.494),
very few theoretical or experimental results are available for systems along the
metastable extension of the fluid branch. For volume fraction below φ = 0.494, only
a single stable fluid (disordered) phase exists; above this point, the phase diagram
splits into a metastable fluid phase (leading to random close packing) and a stable
ordered phase (leading to FCC crystals). This work will only be concerned with the
metastable disordered branch of the phase diagram. This is an example where a large
number of particles are necessary to capture the correct behaviour, as a macroscopic
system at these high volume fractions will undoubtedly have clusters in some regions
and freely mobile particles in others, which is difficult to model unless the unit cell
is sufficiently large. In addition, even generating such a dense configuration can be
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Figure 13. The relative viscosity is plotted as a function of the volume fraction for volume fractions
above the melting point. — · —, extension of the empirical fit to Ladd’s simulation results below the
freezing point; · · ·, the same extension for the curve fitted to the van der Werff et al. (1989) results;
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challenging since metastable systems have a tendency to crystallize and to introduce
order into the structure.

Standard hard-sphere molecular dynamics or Monte Carlo algorithms cannot be
used to generate random distributions above the freezing transition. Using a different
approach with a large number of particles, however, hard-sphere microstructures
at volume fractions up to random close packing can be generated. Although the
term random close packing is widely used, it is not always clear whether it is a
universal quantity, or whether it depends on the method used to generate any given
configuration; the exact value of φrcp is also discussed and the value φrcp = 0.64
was used here. (See Torquato, Truskett & Debenedetti (2000) for a discussion on
whether random close packing is a well-defined state.) For the purposes of this work,
the computational technique suggested by Rintoul & Torquato (1996b) was used
to generate the random hard-sphere configurations. Starting from an initial set of
random overlapping spheres, the spheres are expanded and simultaneously moved to
reduce overlap; if the system becomes jammed (overlapping cannot be reduced) the
spheres are shrunk and moved until the system becomes unjammed (see Clarke &
Wiley 1987). This process of expansion and contraction is repeated until a desirable
volume fraction is obtained. After that, the system is equilibrated using standard
hard-sphere molecular dynamics. For volume fractions above the freezing point, the
equilibration process must be closely monitored because there are two phenomena
occurring simultaneously – the system moves from a non-equilibrium to an equilibrium
state and at the same time it moves from the metastable branch to the stable ordered
branch of the phase diagram. By monitoring the system pressure and by using the
differences in the time scales between the equilibration and crystallization processes
(it usually takes longer for the system to crystallize), it is possible to generate the
desired configurations of random hard spheres for volume fractions very close to
random close packing (Rintoul & Torquato 1996a, Speedy 1994). It was observed
that small systems had a tendency to crystallize sooner, and therefore for some volume
fractions up to 2000 particles were used. It is worth noting that it is most difficult to
generate non-ordered configurations for volume fractions between 0.52 and 0.58 as
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Figure 14. The relative viscosity is plotted as a function of ln(1/ǫ), where ǫ = 1 − φ/φrcp, for
φ > 0.60. A linear best fit is also shown.

the system tends to crystallize very fast. The higher volume fractions correspond to
an amorphous glassy state, and the tendency for freezing is less severe. (See Speedy
1994, 1997 for more details on sampling and phase transitions.)

In figure 13, we present the high-frequency dynamic viscosity for volume fractions
up to 0.635, along with the experimental results of van der Werff et al. (1989) and
Shikata & Pearson (1994). Two extrapolated expressions, one from the experimental
results of van der Werff et al. and one derived from the results of Ladd, are also
presented. There is significant spread in the experimental data at high volume fraction
that might be an indication of some freezing in some of the experimental data or
simply represent the difficulty of measuring the volume fraction at high volume
fractions. Within the error bars of the experimental data, however, our results are
in reasonable agreement with the experiments. It is interesting to note that our
results for φ < 0.60 are in good agreement with the fitted curve given by Ladd
(1990), which is a simple extrapolation of a semi-empirical fit of Ladd’s results from
lower volume fractions. This is not surprising; since the metastable branch is the
continuous extension of the fluid branch, it is reasonable that the viscosity would
also be a continuous extension of the viscosity from below the freezing point and can
potentially be described by the same empirical equation. The empirical relation given
by Ladd, however, does not predict any singular behaviour as maximum packing is
approached, and therefore fails at very high volume fractions.

A very sharp increase in the viscosity is observed for volume fractions above
60%, suggesting a singular behaviour in the limit of φ → φrcp. The exact form
of this singular behaviour is not known. Results from lubrication theory for cubic
lattices would suggest that the singular form should consist of both 1/ǫ and ln ǫ
terms (corresponding to α and β of figure 10), where ǫ = 1 − (φ/φrcp)

1/3, but the
relative amount of each term is unknown. We found the data to be well fit by
ηr = 15.78 ln(1/ǫ) − 42.47 as seen in figure 14. A similar fit with both 1/ǫ and ln ǫ
gave a very small coefficient (of order 10−2) for the 1/ǫ term. As far as we are able
to tell at this point, the ln ǫ behaviour accurately describes the numerical data.

4.3. Sedimentation velocity: dependence on system size

It is straightforward to calculate the average sedimentation velocity of a random
suspension of spheres: after imposing an external force on each particle, the velocity
of each particle is converged while the particles remain fixed at their random locations.
As was discussed for the sedimentation of the cubic arrays, our method can predict
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Figure 15. The sedimentation velocity of a random suspension of spheres at φ = 0.05 and for
different number of particles N. ASD results for N = 125–512 (△) are plotted as a continuation of
Ladd’s (1990) results (O) for smaller systems. The corrected infinite system sedimentation velocity
(equation (4.1)) gives a constant value for all N.

accurate velocities only for low to moderate volume fractions; for higher volume
fractions more moments are required to represent the particles correctly. Since this
behaviour has been discussed and analysed in the past for the conventional SD
method (Phillips et al. 1988), here we restrict ourselves to low volume fractions and
demonstrate the dependence of the sedimentation velocity on the system size. Phillips
et al. (1988) showed that the sedimentation velocity has a strong N−1/3 dependence
owing to the long-range effects of the periodic images of particles outside the unit
cell. The motion is in essence a superposition of the sedimentation velocity of the
dilute periodic array of images, (φ/N)1/3, with that for the random suspension (which
is O(φ) at low φ). Figure 15 shows clearly the N−1/3 dependence of the sedimentation
velocity for a volume fraction of φ = 0.05.

Mo & Sangani (1994) calculated the difference in the velocity induced at the centre
of a test particle in a periodic suspension and a random suspension to be:

Us = Us(N) + 1.7601(φ/N)1/3η0/η S(0)U0 + O(φ/N), (4.1)

where S(0) is the structure factor, and η and η0 are the suspension and pure fluid
viscosities, respectively (values for the suspension viscosity η are the high-frequency
dynamic viscosity and were calculated in the previous section and given in fig-
ure 12). The structure factor can be estimated for the hard-sphere dispersion from
the Carnahan–Starling approximation:

S(0) =
(1 − φ)4

1 + 4φ + 4φ2 − 4φ3 + φ4
, (4.2)

and the corrected sedimentation velocities can be calculated directly from (4.1). The
corrected velocities are also presented in figure 15 and they do indeed give the same
value for all N.

4.4. Short-time self-diffusion coefficient

The short-time self-diffusion coefficient is defined through the Stokes–Einstein rela-
tion:

Ds
0 = kT 〈tr(R−1

FU)〉, (4.3)
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Figure 16. The short-time self-diffusion coefficient for a random suspension of spheres at φ = 0.05
and for different number of particles N. ASD results for N = 125–512 (△) are plotted as a contin-
uation of Ladd’s (1990) results (O) for smaller systems. The corrected infinite system self-diffusivity
(equation (4.7)) gives a constant value for all N.

where the trace operator picks out only the diagonal elements of R
−1
FU , and the angle

brackets imply a sum over all particles and an average over all configurations. Since
the far-field part of the resistance matrix RFU is never calculated, we must find a
different approach to calculate the self-diffusion coefficient. In addition, we must
isolate the diagonal elements of the resistance matrix for each particle, and therefore
the knowledge of only 〈R

−1
FU〉 is not adequate as it was for the calculation of the

sedimentation velocity.
A straightforward way to perform this calculation in order N operations is to

impose an external force, F g , with a Gaussian distribution on the particles, i.e.
〈F g〉 = 0 and 〈Fg,m

i F
g,n
j 〉 = δijδmn, where F

g,m
i is the i-component of the force acting on

particle m (superscripts m, n denote particles, while subscripts i and j denote Cartesian
coordinates). Following the procedure described above, the resulting particle velocities
can be calculated readily in order N. Although the mobility matrix is never calculated,
the resulting particle velocities, Un

i , still satisfy:

Un
i = R−1

FU, ijnmF
g,m
j . (4.4)

Now form the product

Un
i F

g,n
i = R−1

FU, ijnmF
g,m
j F

g,n
i , (4.5)

which gives after ensemble-averaging

〈Un
i F

g,n
i 〉 = 〈R−1

FU, iinn〉, (4.6)

from which the short-time self-diffusion coefficient can be calculated directly. This
approach was successfully employed to calculate the diffusion coefficient and study
its dependence on both the number of particles and the volume fraction.

Like the sedimentation velocity, the translational self-diffusivity also shows a strong
N−1/3 dependence (Phillips et al. 1988). Ladd (1990) proposed the following expres-
sion to extract the infinite system diffusivity from the N-particle periodic diffusion
coefficient:

Ds
0 = Ds

0(N) + (η0/η)(kT/6πη0a)[1.7601(φ/N)1/3 − φ/N], (4.7)
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Figure 18. The short-time self-diffusion coefficient is plotted as a function of the inverse of the
relative viscosity, for φ > 0.60. Solid symbols, simulation results; – – –, linear best fit.

where η and η0 are the suspension and pure fluid viscosities, respectively. The Stokes–
Einstein diffusivity of a single isolated particle is D0 = kT/6πη0a. Figure 16 shows the
self-diffusion coefficients for φ = 0.05 and N = 16–512. The corrected diffusivities,
after applying the correction given by (4.7), are also shown verifying both the strong
N−1/3 dependence of the self-diffusion coefficient on the number of particles and the
validity of equation (4.7), since a constant value can indeed be extracted for all N.

Figure 17 presents the short-time self-diffusion coefficients for volume fractions up
to 0.635, along with a number of available experimental and simulation data. The
self-diffusion coefficients are calculated from 20 realizations of N = 512 particles
and the values are adjusted to correct for the N1/3 dependence (limit for infinite N).
Very good agreement is observed between experimental and simulation results for all
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volume fractions below the freezing point (where experimental results are available).
A sharp decrease in the self-diffusion coefficient, in agreement with the sharp increase
in the viscosity, is observed for volume fractions above 60%. The self-diffusivity is
expected to vanish at random close packing in a manner inversely proportional to
the high-frequency dynamic viscosity. In figure 18, the self-diffusivity is plotted as a
function of the inverse high-frequency dynamic viscosity, resulting in a clear linear
scaling and therefore verifying that Ds

0 ≈ 1/η, in the limit of φ → φrcp.
We note here that the accuracy of our simulation results is limited by the small

number of moments used. It has been suggested in the past (Ladd 1990) that higher
moments can influence the value of the self-diffusivity, especially for high volume
fractions. No attempt has been made to correct for the inclusion of higher moments,
although the very good agreement between our results and experimental results would
suggest that the magnitude of the correction is indeed small.

5. Conclusions

We have described in detail a new method for calculating the hydrodynamic
interactions among particles in a suspension at small Reynolds number based on the
Stokesian Dynamics method, but with a significantly more favourable computational
cost of N lnN. The new method avoids the expensive calculation of the far-field
mobility matrix in favour of the direct calculation of the far-field hydrodynamic
force, and uses a carefully chosen preconditioning scheme to reduce the computational
cost of any iterative matrix inversions. The results of the method are in excellent
agreement with those obtained from conventional Stokesian Dynamics, and much
larger systems can now be simulated with the same accuracy. The power of the new
method is demonstrated in the calculation of the high-frequency dynamic viscosity
and short-time self-diffusivity of suspensions for volume fractions above the freezing
point, a case where a large number of particles is necessary to capture the correct
behaviour. This work was limited to the validation and evaluation of the method and
to some characteristic results corresponding to static (not evolving in time) systems.
This is by no means a restriction of the method; in fact, the method is ideally suited
for dynamic simulations where good initial guesses from the previous step in time
exist for all the iterative procedures. Results from dynamical studies will be the subject
of future publications.

It should also be noted that the methodology used here can be applied to other
problems in Stokes flow – non-spherical particles, deformable drops, etc. – with the
same performance characteristics. There are also analogous problems governed by
Laplace’s equation (e.g. effective conductivity) or the biharmonic equation (e.g. linear
elasticity) that could also be addressed in O(N lnN) operations using the ASD
methodology.

This work was supported in part by grants NAG3-2166 and NAG8-1661 from
NASA. The authors benefited greatly from discussions with Professor J. J. L. Higdon
on the PME method for Stokes flow. An anonymous referee is thanked for the
suggestion of the random forces to determine the short-time self-diffusivity.
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