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In speech-production research, three-dimensional (3D) MRI of the

upper airway has provided insights into vocal tract shaping and

data for its modeling. Small movements of articulators can lead to

large changes in the produced sound, therefore improving the

resolution of these data sets, within the constraints of a sustained

speech sound (6–12 s), is an important area for investigation. The

purpose of the study is to provide a first application of com-

pressed sensing (CS) to high-resolution 3D upper airway MRI

using spatial finite difference as the sparsifying transform, and to

experimentally determine the benefit of applying constraints on

image phase. Estimates of image phase are incorporated into the

CS reconstruction to improve the sparsity of the finite difference

of the solution. In a retrospective subsampling experiment with no

sound production, 5� and 4� were the highest acceleration fac-

tors that produced acceptable image quality when using a phase

constraint and when not using a phase constraint, respectively.

The prospective use of a 5� undersampled acquisition and phase-

constrained CS reconstruction enabled 3D vocal tract MRI during

sustained sound production of English consonants /s/, /�/, /l/, and /r/

with 1.5 � 1.5 � 2.0 mm3 spatial resolution and 7 s of scan

time. Magn Reson Med 61:1434–1440, 2009. © 2009 Wiley-Liss, Inc.
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Three-dimensional (3D) imaging of the upper airway dur-
ing sustained sound production has recently emerged as a
promising tool in speech production research as a means
to capture the full geometry of the vocal tract. The diver-
sity of tongue shapes and dynamics are made possible, at
least in part, through different lingua-palatal bracing
mechanisms (1–4) leading to complex airway geometries,
the understanding of which is critical for investigations
into the production of both normal and disordered speech.
In addition to helping shed light on the intricate airway
shaping mechanisms underlying the production of various
linguistically meaningful speech sounds, 3D imaging also
lends itself to providing quantitative volumetric informa-
tion of the airway regions. The shaping of the tongue and
other articulators, and the temporal characteristics of their
shaping, give rise to characteristic patterns of acoustic
resonance behavior of the vocal tract that define the prop-
erties of human speech that can be modeled with such
quantitative information.

Recent work has shown that 3D tongue shape and the
dynamics underlying shape formation are critical to un-
derstanding natural linguistic classes and issues of phono-
logical representation as evidenced in speech motor con-
trol. Previous models of speech production often assumed
that the position of maximum constriction, defined in the
midsagittal plane, was the main “place of articulation”
parameter. Imaging studies (5) have suggested that articu-
lation cannot be characterized solely by identifying a con-
striction position and that speech production targets go
beyond the midsagittal plane. Initial speech studies using
MRI focused on vowel sounds (6,7). The models of the
vocal tract constructed from the MR images of different
vowels yielded good estimations of vowel formant fre-
quencies and formant patterns, which agreed with the
general acoustic implication of the notion of the tongue
height and backness on vowel articulation. For example,
the study by Narayanan et al. (8) that focused on tongue
shaping and 3D vocal tract data and models for the Amer-
ican English vowels /a/, /i/, /u/ showed distinct differ-
ences in tongue shaping: the anterior tongue was raised
and convex for /i/ compared with the lowered concave
shape for /a/ while the tongue back showed an opposite
trend in the degree of concavity. These data were used in
a finite element based simulation of the vocal tract models
to study the acoustic properties of the vowel sounds. Other
studies have investigated a variety of continuant conso-
nant sounds such as fricatives and liquids. Narayanan et
al. (3) examined vocal tract shaping of consonants using
MRI and other articulatory measurements, and have pre-
sented data and results on three dimensional vocal tract
and tongue shapes for fricative sounds produced by talkers
of American English. These data showed key differences
in tongue shaping between the sibilants /s/ (concave,
grooved) and /�/ (convex, cupped) and were helpful in
deriving meaningful acoustic source models for these
sounds (9). Using insights gained in imaging work, in
conjunction with the quantitative data of vocal tract area
functions and sublingual cavity of Alwan et al. (4), Espy-
Wilson et al. (10) created acoustic models for the Ameri-
can-English /r/ delineating clearly the role of the oral and
pharyngeal constrictions and the sublingual volume. Sim-
ilar advances have been made toward understanding the
acoustics of lateral sounds (11,12). While these studies
represent significant progress in speech research, they can
be further improved by addressing certain technological
limitations.

These previous MRI studies were based on 2D multi-
slice acquisitions, requiring multiple repetitions of the
same sound and scan-time on the order of several minutes
(3–7,11,13,14). These procedures are prone to data incon-
sistency, resulting from slightly different positions of the
jaw, head, and tongue during each repetition. Compared
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with 2D multi-slice, it is well known that 3D encoding
provides contiguous coverage with the potential for thin-
ner slices and improved signal-to-noise ratio (SNR) effi-
ciency. However, 3D encoding with high spatial resolution
currently requires prohibitively long scan time and easily
exceeds the normal duration of sustained sound produc-
tion with minimal subject motion.

3D MRI scans may be accelerated using time-efficient
k-space sampling (15), parallel imaging (16,17), or with the
recently developed approach of compressed sensing (18–
21). Many of the efficient k-space sampling schemes (based
on spiral and echo-planar trajectories) are prone to severe
blurring artifacts and geometric distortions due to off-
resonance at the air-tissue boundaries. Parallel imaging
requires the design and use of receiver coil arrays where
the elements have differing sensitivity over the anatomic
region of interest (22). Compressed sensing MRI (CS-MRI)
relies only on sparsity of the final reconstructed image in a
transform domain (18–21).

In this manuscript, we investigate the use of CS-MRI for
accelerated 3D upper airway imaging, and investigate the
potential benefit of phase constraints. MR images often
have spatially varying phases whose sources may include
receiver coil phase, gradient/DAQ delays, off-resonance,
flow and motion. Phase constrained (PC) CS, originally
proposed by Lustig et al. (20), applies a low spatial reso-
lution phase estimate as part of the encoding function.
This is expected to increase sparsity of the solution in
certain transform domains (e.g., finite difference). We ex-
plore the use of PC-CS in this application, because air-
tissue boundaries are the primary features of interest and
are expected to experience substantial phase variation due
to air-tissue susceptibility. We compare phase estimation
from a low-resolution fully sampled regime with a two-
stage approach that estimates the object phase map from a
non-PC CS reconstruction. In retrospective subsampling
experiments with no sound production, CS reconstructed
images with and without phase constraints were compared
qualitatively. Undersampled 3DFT acquisition and PC-CS
reconstruction was then prospectively applied with accel-
eration factors of 3, 4, and 5, to high-resolution 3D vocal
tract scanning during sustained sound production of En-
glish consonants /s/, /�/, /l/, /r/, sounds characterized by
complex tongue and airway shaping.

THEORY

Consider 3DFT imaging, where ky and kz are the phase
encoding directions, and therefore the axes of undersam-
pling. After 1D Fourier transformation along kx, the signal
for each x position can be expressed as:

s�kj� � �
l�1

L

e�i2�kj�rl ei��rl�m�rl� � n�kj�. [1]

Here, kj is the jth sampled k-space sample location in the
(ky, kz) domain and 1 � j � J, where J is the total number
of phase encodes. rl is the lth spatial position in the (y, z)
image domain, and L is the total number of pixels. � is the
phase in the (y, z) image domain and m is the desired

magnitude image (representing amplitude of transverse
magnetization) in the (y, z) image domain, and n is the
i.i.d. (independent and identically distributed) additive
white Gaussian noise. Because Equation [1] holds for 1 �

j � J, there exist J linear equations that can be expressed as
one matrix equation:

s � �Pm � n. [2]

Here, the signal vector s is �s�k1�s�k2�. . .s�kJ�	
T, 
 is the J �

L Fourier encoding matrix, where 
� j,l � � e�i2�kj � rl, P is an
L � L diagonal matrix, where the lth diagonal element is ei��rl�,
m � �m�r1�m�r2�. . .m�rL�	

T is the unknown image estimate
and n � �n�k1�n�k2�. . .n�kJ�	

T. When J �� L, Equation [2]
becomes a highly underdetermined linear system, and infi-
nitely many solutions for m exist. Compressed sensing the-
ory states that m can be exactly recovered with a very high
probability when m is sparse in a transform domain, by
minimizing the l1-norm of the sparsifying transform of the
solution under the constraint that �s��Pm�2 is close to zero.
Unconstrained optimization is more practical for large-scale
reconstruction problems such as MRI image reconstruction,
therefore, the unknown image estimate m is obtained by
minimizing the following convex function:

f�m� � �s��Pm�2
2
����m�1. [3]

Here,  is a regularization parameter that controls the rel-
ative weight of sparsity and data fitting, and � is a sparsifying
transform (e.g., wavelets, curvelets, or finite difference). In
this work, we adopted the finite difference sparsifier that
contains the horizontal and vertical gradients of the image. In
the absence of P (i.e., P is the identity matrix), the optimiza-
tion problem is referred to as non–phase-constrained CS
reconstruction. In phase constrained CS reconstruction, P
contains a predetermined estimate of the object phase, which
may originate from system delays, receiver coil phase, and
phase accrual due to off-resonance.

MATERIALS AND METHODS

Data Acquisition

Experiments were performed on a Signa Excite HD 3.0
Tesla scanner (GE Healthcare, Waukesha, WI) with gradi-
ents capable of 40 mT/m amplitude and 150 mT/m/ms
slew rate. The receiver bandwidth was set to �125 kHz
(i.e., 4 �s sampling rate). A birdcage head coil was used for
radio frequency (RF) transmission and signal reception.
Each subject was screened and provided informed consent
in accordance with institutional policy.

The vocal tract region of interest was imaged using a
single midsagittal slab with 8-cm thickness in the right–
left (R–L) direction. The readout direction was superior–
inferior (S–I) and the phase encode directions were ante-
rior–posterior (A–P) and right–left (R–L) (see Fig. 1). A
gradient echo sequence was used with echo time (TE) �

2.2 ms, repetition time (TR) � 4.6 ms, flip angle � 5°,
NEX � 1, spatial resolution � 1.5 � 1.5 � 2.0 mm3, and
field of view (FOV) � 24 � 24 � 10 cm3.

Pseudo-random undersampling was implemented as fol-
lows. First, two independent and uniformly distributed
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random numbers corresponding to k-space radius and az-
imuthal angle were generated to create pseudo random (ky,
kz) location in polar form. From the randomly chosen
samples, the nearest (ky, kz) Cartesian phase encodes were
selected for sampling. This scheme achieves a sampling
density that is inversely proportional to k-space radius.
Second, a low spatial frequency, whose outermost k-space
radius was 30% of the full k-space radius, was fully sam-
pled. The final sampling patterns and corresponding re-
duction factors are shown in Figure 2.

Image Reconstruction

Because all data sets were fully sampled along the readout
(kx) direction, data were first inverse-Fourier transformed
along the readout direction, and image reconstruction was
performed separately for each y–z planar section. For each

x position, fully sampled data sets were reconstructed
using 2D inverse Fourier transform (IFT). For the simu-
lated and real undersampled acquisitions, un-acquired k-
space locations were filled with zeros before inverse Fou-
rier transformation.

For PC-CS, the phase map was calculated in two ways:
(PC-I) Taking a 2D inverse Fourier transform of fully sam-
pled low spatial frequency data. To remove Gibbs ringing
artifacts due to k-space truncation, the low spatial fre-
quency data set was multiplied by a 2D Hanning window.
(PC-II) Taking the phase of the complex-valued image es-
timate obtained from a non-PC CS iterative reconstruction.
To avoid noise contamination, the PC-II phase map was
masked to contain only spatial locations where the mag-
nitude image was greater than 20% of its maximum value.

CS reconstructions from undersampled data sets were
based on an iterative nonlinear conjugate gradient algo-
rithm (20), which sought to find a global minimum for the
cost function in Equation [3]. The l1-norm of the finite
difference of the solution (also known as Total Variation)
(23) was used as a regularizer. The regularization param-
eter  was chosen based on the L-curve method (24). We
examined the tradeoff between data consistency and total
variation for a broad range of  values (see Fig. 3) before
selecting a  value for prospective scans. To speedup re-
constructions over a broad range of  values, the final
image from a particular  value was used as the initial
image estimate for the CS reconstruction with the next
higher  value.

In Vivo Experiments

Subjects were in supine position and their heads were
immobilized by inserting foam pads between their ears
and the receiver coil. A fully sampled data set without
sound production was acquired in one trained subject.
Their mouth was held open for 36 s without swallowing. A
total of 8000 (ky, kz) encodes, where the number of ky and
kz encodes was 160 and 50, respectively, was used to fully
cover 3D k-space at the Nyquist rate. This data set was
retrospectively subsampled to simulate the sampling pat-
terns shown in Figure 2. The CS reconstructions were
performed both without and with phase constraints.

FIG. 1. Illustration of the scan ori-

entation used in 3D upper airway

imaging. The dashed lines indi-

cate the orthogonal slice orienta-

tion of each image. The largest-

width, medium-width, and small-

est-width dashed lines are for the

prescription of the midsagittal,

coronal, and axial slices, respec-

tively. An 8-cm sagittal slab exci-

tation is applied to cover the vocal

tract volume of interest. The read-

out direction is along S-I so that

the analog low-pass filter sup-

presses signal from the brain and

neck. The features of interest in-

clude: LL, lower lip; UL, upper lip;

P, palate; T, tongue surface; V,

velum; PW, pharyngeal wall; E,

epiglottis.

FIG. 2. k-space sampling patterns used in the experimental studies.

a–e: Relative reduction factors are 1 (a), 1.3 (b), 3 (c), 4 (d), and 5 (e).

Note that an ellipse with radii 30% of the overall k-space radii was

fully sampled in all cases for the estimation of low-resolution image

phase.
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Prospective accelerated acquisitions were performed by
imaging the vocal tract shaping during each sustained sound
production of English consonants /s/, /�/, /l/, and /r/. Scan
time for the three-, four-, and fivefold accelerated acquisi-
tions took 12, 9, and 7 s, respectively. 2D CS reconstruction
was performed for each axial slice. The initial estimate for
the CS reconstruction of a slice was taken from the final
image estimate obtained from the CS reconstruction of its
adjacent slice. PC-CS reconstruction was applied with  �

0.005 and 100 iterations for 65 contiguous slices of interest
along x (i.e., S-I direction). The 3D visualization of tongue
shape was realized by manually segmenting the tongue in
each reconstructed coronal image, stacking the segmented
slices, and finally performing 3D volume rendering using the
vol3d.m Matlab routine (publicly available at http://www-
.mathworks.com). The final volume rendered tongue sur-
faces were able to be displayed at any view angle, providing
efficient visualization of tongue shaping.

RESULTS

Figure 3 shows an L-curve obtained from the non-PC CS
reconstruction. The corner of the L-curve was not sharp
and  � 0.005, which lies on highest curvature, was cho-
sen as an optimal regularization parameter for both the
non-PC and PC CS reconstructions. For large values of 

(i.e.,  � 0.01 in Fig. 3), reconstruction strongly favored
minimization of total variation so that reconstructed im-
ages were observed to be overly smooth.

Figure 4 shows images from one axial slice extracted from
3D volume in the retrospective subsampling experiment. Fig-
ure 4a contains images obtained from IFT, non-PC CS, PC-I
CS, and PC-II CS reconstructions of the data sets subsampled
with different reduction factors. The image from the elliptic
k-space full sampling (1.3�) was comparable in image qual-
ity to that from the rectangular k-space full sampling (1�).

The IFT reconstructed images from the undersampled data
exhibited incoherent aliasing artifacts and the image quality
was degraded with higher reduction factors. The non-PC CS
reconstruction improved image quality over the IFT recon-
struction in terms of de-noising and enhancement of the
air-tissue boundaries. The PC-I and PC-II CS reconstructions
further improved the boundary depiction quality for reduc-
tion factors 3, 4, and 5. Figure 4b contains phase difference
images after the low and high resolution phase maps were
subtracted from the full resolution fully sampled reference
phase map. Notice the larger phase errors in the low resolu-
tion phase map (see Fig. 4b(iii)) particularly in the regions of
interest (ROIs) with rapid phase variations (indicated by the
white arrows in Fig. 4b(i,iii,v)). Figure 4c compares the
boundary depiction in ROIs with rapid phase variation for
different reconstruction schemes. The PC-II CS reconstruc-
tion clearly improved the depiction of the air-tissue bound-
aries compared with PC-I CS reconstruction (see white ar-
rows in Fig. 4c).

Figure 5 shows a midsagittal slice and eight equally
spaced coronal slices reformatted from a 3D vocal tract
volume obtained after the PC-II CS reconstructions. 3D
imaging provided many useful vocal tract shaping features
that cannot be captured by 2D midsagittal imaging alone.
The groove of the tongue surface could be clearly observed
in coronal sections in /s/ (see the white arrow in the /s/
row of Fig. 5). /�/ and /l/ sounds exhibited very similar
vocal tract shaping patterns in the midsagittal scan plane,
but when comparing the coronal slices, the vocal tract
cross sectional areas were significantly different (see the
white arrows in the /�/ and /l/ rows in Fig. 5). Figure 6
shows a 3D visualization of the tongue surface for each
sound production of /s/, /�/, /l/, and /r/. The groove of the
tongue was clearly seen for the fricative /s/ and /�/ sounds,
but it was not observed for the /l/ sound. The cupping of
the tongue was observed in the /r/ sound.

FIG. 3. L-curve for the selection of regular-

ization parameter  for CS reconstruction of

the 3D upper airway data with reduction

factors of 3, 4, and 5. The CS reconstruction

was terminated at the 1000th iterate. The

plotted points (x) and their corresponding

regularization parameter values () are

shown for reduction factor 3. Virtually iden-

tical patterns were observed for reduction

factors 4 and 5. The corners of the L-curve

are not sharp, but provide a clear trade-off

between total variation (sparsity) and data

consistency.
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DISCUSSION

The major sources of phase include: (i) receiver coil phase,
(ii) spatial frequency offset due to field inhomogeneity and
air-tissue magnetic susceptibility difference, and (iii) gra-
dient/DAQ timing delay. These may be estimated from
separate calibration scans or by means of self-calibration,
which was chosen in this study. Self-calibration avoids
possible errors caused by the vocal tract geometry chang-
ing between calibration scans and accelerated scans. It is
noted that the features of interest are air–tissue boundaries
such as the tongue surface, lips, hard palate, velum, and
epiglottis which are coordinated for the generation of
unique gestures depending on different articulation tasks.
Even two separate productions of the same sound/articu-
lation task could result in slightly different vocal tract
shaping, and has been a source of difficulty widely re-
ported in the literature.

The PC-II CS reconstruction used a relatively high spatial
resolution phase map obtained from the non-PC CS recon-
struction and improved the depiction of the air-tissue bound-
aries with large degree of phase variation, particularly at high
acceleration factors. The phase map estimate may be prone to
artifacts due to imperfect CS reconstruction, but it does tend
to contain the rapidly varying phase information, while the
low spatial resolution phase map does not. A drawback of the

PC-II CS reconstruction is an increased reconstruction time
because of the need for an additional iterative CS reconstruc-
tion just for the phase estimate.

The use of TV regularization was effective at improving
the depiction of air-tissue boundaries and suppressing
noise-like aliasing artifacts, and was more effective when
combined with the phase-constrained reconstruction tech-
nique. The de-noising and edge-preserving characteristics
can improve the performance of the subsequent image
processing tasks (e.g., Canny edge detection, image seg-
mentation) for the quantification process such as the mea-
surement of the vocal tract area function. The degree of the
influence of TV regularizer was controlled by the choice of
the regularization parameter . The L-curve analysis pro-
vided the insight of choosing an appropriate . Moreover,
the wavelet or curvelet transform can be used as another
sparsifying basis and the reconstruction may be improved
by incorporating an additional regularizer into the optimi-
zation function.

A drawback of the method is that reconstruction is com-
putationally intensive and requires a considerable recon-
struction time. The convergence speed of the algorithm
was observed to decrease as either a higher acceleration
factor or a large value of the regularization parameter is
used. For the generation of a 3D volume of the upper

FIG. 4. Axial slice reconstructions from retrospective subsampling of fully sampled data. a: Magnitude images reconstructed by use of

inverse Fourier transform (iFT), non–phase-constrained compressed sensing (CS), PC-I CS, and PC-II CS reconstructions of 1�, 1.3�, 3�,

4�, 5� subsampled data. b: (i) Full-resolution phase map from fully sampled 1� data. (ii) Low- resolution phase map from fully sampled

low-frequency data. (iii) Phase difference between phase maps (i) and (ii). (iv) Phase map from non-PC CS reconstruction of 5� subsampled

data. (v) Phase difference between phase maps (i) and (iv). c: Magnified ROIs inside the rectangle in (a). Notice the sharp depiction of the

air tissue boundaries in 5� PC-II CS reconstructed image (see the white arrows in c).
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airway, 100 iterations were used to reconstruct a single
image and this iterative reconstruction was processed for
65 contiguous slices of interest along x. The generation of
a 3D volume when using PC CS took approximately
4 hours on a 3.4 GHz of CPU with 3.0 GB of RAM.

In this work, the CS reconstructions were performed in
two dimensions (y, z) after 1D IFT along kx. If computation
time and memory size were not issues, there are potential
benefits to solving the CS optimization in 3D directly.
Sparsity along x would allow for some additional de-
noising, and there would be an opportunity to correct
shifts in x-position due to off-resonance if the different
sources of image phase could be separated.

Although not shown here, the use of coil arrays can
improve the SNR in 3D upper airway imaging. If the com-
bined use of parallel imaging and compressed sensing
were adopted, significantly higher accelerations would be
achievable (20,21,25,26). Linguistically relevant high res-
olution features such as tongue tip constrictions and the
epiglottis would be easily resolved. Moreover, it may be
possible to measure the vocal tract area function with
greater precision, therefore improving the accuracy of the
quantitative analysis of vocal tract shaping in both normal
and disordered speech production.

CONCLUSIONS

We have demonstrated the application of compressed
sensing (CS) MRI to high-resolution 3D imaging of the
vocal tract during a single sustained sound production
task (no repetitions needed). Phase constrained CS outper-

FIG. 5. Reformatted 2D midsagittal and coronal images after the PC-II CS reconstructions of the 5� undersampled 3DFT data set. The

prospective use of accelerated 3DFT scanning required just 7 s of scan time during which one trained subject produced each sustained

English consonant /s/, /�/, /l/, and /r/. This achieved 1.5 � 1.5 � 2.0 mm3 resolution over a 24 � 24 � 10 cm3 FOV. Representative 2D

midsagittal images are shown in the leftmost column. Eight representative coronal slices of interest are shown that are ordered from lips

to pharyngeal wall. Important articulatory features provided by the 3D vocal tract data set include: (1) groove of the tongue surface for

fricative sound /s/ (see the arrow in the /s/ row) and (2) wider shaping of the vocal tract between the hard palate and the tongue front for

/l/ indicating the curving of the tongue sides to allow airflow along the sides (for the comparison, see the arrows in the /�/ and /l/ rows)

although their 2D midsagittal slices exhibit similar shaping patterns.

FIG. 6. A 3D visualization of the tongue and lower jaw after the PC-II

CS reconstructions from the data set prospectively acquired with

5� acceleration. Tongue grooves are seen for /s/ and /�/, further

forward in /s/ than /�/, but not for /l/ (see the arrows in /s/, /�/, and

/l/). Cupping of the tongue (i.e., cavity behind the tongue front) is

seen for /r/ (see the arrow in /r/).
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formed conventional CS in spatial locations with large
phase variations (lateral edges of the tongue). We have
demonstrated that 5� acceleration is achievable with PC
CS, with negligible loss of tissue boundary information
that is relevant to speech production research. We have
demonstrated a 3D upper airway imaging using an under-
sampled 3DFT gradient echo acquisition with a 1.5 �

1.5 � 2.0 mm3 spatial resolution in 7 s, which is a duration
practical for sustained sound production.
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