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ABSTRACT
Motivation: Predicting how proteins interact at the molecular level
is a computationally intensive task. Many protein docking algorithms
begin by using FFT correlation techniques to find putative rigid body
docking orientations. Most such approaches use 3D Cartesian grids
and are therefore limited to computing 3D translational correlations.
However, translational FFTs can speed up the calculation in only
three of the six rigid body degrees of freedom, and they cannot
easily incorporate prior knowledge about a complex to focus and
hence further accelerate the calculation. Furthemore, several groups
have developed multi-term interaction potentials and others use multi-
copy approaches to simulate protein flexibility, which both add to the
computational cost of FFT-based docking algorithms. Hence there is
a need to develop more powerful and more versatile FFT docking
techniques.
Results: This article presents a closed-form 6D spherical polar Fou-
rier correlation expression from which arbitrary multi-dimensional
multi-property multi-resolution FFT correlations may be generated.
The approach is demonstrated by calculating 1D, 3D, and 5D rota-
tional correlations of 3D shape and electrostatic expansions up to
polynomial order L=30 on a 2 Gb personal computer. As expec-
ted, 3D correlations are found to be considerably faster than 1D
correlations but, surprisingly, 5D correlations are often slower than
3D correlations. Nonetheless, we show that 5D correlations will be
advantageous when calculating multi-term knowledge-based inter-
action potentials. When docking the 84 complexes of the Protein
Docking Benchmark, blind 3D shape plus electrostatic correlations
take around 30 minutes on a contemporary personal computer and
find acceptable solutions within the top 20 in 16 cases. Applying a
simple angular constraint to focus the calculation around the recep-
tor binding site produces acceptable solutions within the top 20 in 28
cases. Further constraining the search to the ligand binding site gives
up to 48 solutions within the top 20, with calculation times of just a
few minutes per complex. Hence the approach described provides a
practical and fast tool for rigid body protein-protein docking, especially
when prior knowledge about one or both binding sites is available.
Availability: http://www.csd.abdn.ac.uk/hex/
Contact: d.w.ritchie@abdn.ac.uk
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1 INTRODUCTION
Genome-wide proteomics studies (Uetzet al., 2000; Itoet al., 2001;
Gavinet al., 2002; Hoet al., 2002) provide a growing list of puta-
tive protein-protein interactions, but understanding thefunction of
these predicted interactions requires further biochemical and struc-
tural analysis. However, protein-protein hetero-complexes currently
constitute less than 2% of the known protein structures in the Protein
Data Bank (PDB; Bermanet al. 2002). Protein docking algorithms
aim to bridge this gap by using computational techniques to pre-
dict the 3D structures of protein-protein complexes starting from the
unbound or model-built monomers. For recent reviews, see Ritchie
(2008) and references therein.

Proteins have intrinsically dynamical molecular structures which
can often change conformation to some extent on complexation.
However, in order to make the calculation tractable, most pro-
tein docking algorithms begin by assuming that the structures to
be docked are rigid. This essentially reduces the problem toa
six dimensional (6D) rotational-translational search space. The
Fast Fourier Transform (FFT) correlation approach, introduced
by Katchalski-Katziret al. (1992), revolutionized this part of the
docking calculation by making it computationally feasibleto syste-
matically explore and evaluate in the order of billions(O(109))
of trial orientations without using anya priori information on the
expected structure. The first FFT scoring function of Katchalski-
Katzir et al. was based only on shape complementarity within a
Cartesian grid, but was later extended to include additional terms
representing electrostatic interactions (Gabbet al., 1997; Mandell
et al., 2001), or both electrostatic and desolvation contributions
(Chenet al., 2003). Each of these terms adds a new correlation
function to the potential. More recently, we have shown thatthe
use of pairwise structure-based potentials can improve thegene-
ration of near-native docking predictions by up to 50% (Kozakov
et al., 2006). Other investigators have also reported considerable
success with knowledge-based docking potentials (Ritchie, 2008).
To be used with FFT-based docking, all such potentials need to be
expressed as sums of correlation functions. Furthermore, in order
to simulate protein flexibility during docking calculations, several
groups use FFT techniques to dock ensembles of rigid body structu-
res (Grünberget al., 2004; Mustard and Ritchie, 2005; Smithet al.,
2005), which further increases the computational cost of FFT-based
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approaches. Hence there is a need to develop more powerful and
more versatile FFT docking techniques.

Several groups have demonstrated considerable success with
“data-driven” docking techniques, perhaps best exemplified by the
HADDOCK program (Dominguezet al., 2003), which use external
biochemical or biophysical knowledge about binding sites or inter-
action residues to filter rigid body docking predictions. However,
due to the translational nature of the Cartesian FFT, which can-
not easily be constrained to search around a putative binding site,
data-driven filters generally cannot be used to focus and accelerate
conventional Cartesian FFT-based approaches.

The other disadvantage of Cartesian FFT-based approaches is that
new FFT grids must be computed for each rotational increment
of the rotating molecule. Because fully covering the searchspace
requires many thousands of rotational samples, Cartesian docking
algorithms commonly take several hours to complete, and theeffi-
ciency of the approach decreases with increasing complexity of the
potential. On the other hand, theHex spherical polar Fourier (SPF)
representation (Ritchie and Kemp, 2000) avoids the grid sampling
overhead of the Cartesian-based methods and naturally allows up
to two angular constraints to be used to constrain the searchspace.
HenceHex docking runs typically take from a few minutes to around
one hour, even though the original algorithm uses only a one-
dimensional (1D) FFT to accelerate the calculation. However, the
efficiency of theHex algorithm also decreases with the increasing
complexity of the potential.

Because the FFT allows a problem that formally requiresO(N2)
operations to be computed inO(N log N) steps, greater compu-
tational speed-ups should be expected when the FFT is applied
to as many degrees of freedom as possible. A five-dimensional
(5D) FFT rotational correlation technique was described byKovacs
et al. (2003) to superpose 3D electron microscopy (EM) density
maps. However, conventional FFT-based techniques requirethat
each FFT grid dimension be a power of two. Hence the approach
described was limited to relatively crude low order correlations for
the 5D FFT grid to fit into computer memory. Recently, multi-
dimensional mixed radix FFT implementations have become availa-
ble (e.g. MKL: http://www.intel.com/, FFTW: http://www.fftw.org/,
and Kiss FFT: http://sourceforge.net/projects/kissfft/), thereby eli-
minating the radix constraint on the FFT grid dimensions. None-
theless, no 5D FFT protein-protein docking algorithm has been
described to date, and it would appear that implementing a practical
5D EM density correlation also remains a challenge. For example,
Garzónet al. (2007) found it necessary to remove two FFT dimen-
sions from the 5D rotational space in order to implement a practical
3D EM density fitting algorithm.

This article shows that by representing the properties to becorre-
lated as expansions of SPF basis functions, it is relativelystraight-
forward to develop an analytic 6D correlation master equation in
which each pairwise interaction is concisely represented as a fully
factorised sum over a product of complex exponentials and SPF
translation matrix elements. This master equation may thenbe used
to derive generating functions (GFs) for 5D, 3D, and 1D FFT rota-
tional correlations. Surprisingly, 5D shape-only and low order shape
plus electrostatic correlations are found to be slower than3D corre-
lations. However, due to the fully factorised form of the GF,5D
FFTs are expected to be advantageous when correlating more com-
plex multi-term potentials. Nonetheless, regardless of the dimension
of the FFT correlation, the SPF approach provides a natural way to

define one or two simple angular constraints with which to focus
docking searches around known or hypothesised binding sites. This
accelerates the calculation and can significantly reduce the number
of false-positive predictions.

Here, the approach is applied to the 84 complexes of the Protein
Docking Benchmark (Mintseriset al., 2005) using shape-only and
shape plus electrostatic correlations. Blind 3D shape-only docking
correlations find acceptable solutions within the top 20 in 6cases,
whereas including electrostatics in the calculation gives16 soluti-
ons within the top 20. Applying a single loose angular constraint to
focus the calculation around the receptor binding site is sufficient to
produce acceptable solutions within the top 20 in 28 cases. Further
constraining the search to the ligand binding site in a similar manner
gives up to 48 solutions within the top 20.

2 METHODS

2.1 Spherical Polar Fourier Correlations
The main goal of Fourier-based docking algorithms is to calculate
rapidly and accurately multiple overlap integrals of the form

E =

Z

φ(r)ρ(r)dr (1)

wheredr = r2dr sin θdθdφ is the 3D volume element in polar
coordinates,φ(r) andρ(r) represent 3D scalar functions such as the
electrostatic potential and charge density, andE represents the clas-
sical electrostatic energy of the system, for example. Protein shape
complementarity may also be expressed as sums of overlap integrals
(Ritchie and Kemp, 2000). In the SPF approach, each real scalar
property of interest,A(r), is represented as a polynomial expansion
to orderN as

A(r) =
N

X

nlm

anlmRnl(r)ylm(θ, φ), |m| ≤ l < n ≤ N, (2)

whereanlm are real expansion coefficients, calculated just once
for each property by numerical integration,ylm(θ, φ) are norma-
lised real spherical harmonics (SHs), andRnl(r) are orthonormal
Gaussian-type orbital (GTO) or exponential-type orbital (ETO)
radial basis functions (Ritchie and Kemp, 2000). Calculating the
expansion coefficients corresponds to performing a forwardFourier
transform in conventional FFT-based approaches. The cost of this
step scales linearly with the number of atoms or the volume ofthe
protein. All subsequent calculations depend only on the expansion
order. For consistency with previous work (Ritchie and Kemp, 2000;
Ritchie, 2005), the radial index,n, counts from unity. Hence the
highest harmonic order and highest polynomial power in any indi-
vidual coordinate isL=N -1. Until now,Hex docking runs typically
used 1D real correlations of a two-term (van der Waals plus sur-
face skin) shape density representation of each protein using L=24
(N=25) GTO expansions. Electrostatic interactions may be calcula-
ted similarly using the ETO basis functions. Figure 1 shows some
example SPF representations of the complex between the HyHel-5
antibody and hen egg lysozyme (PDB code 3HFL), calculated from
the GTO expansion coefficients at various orders.

Here, it is convenient to use both real and complex SHs, with the
complex functions denoted asYlm(θ, φ). The two types of func-
tion are related by a unitary transformation matrix,U (l), which
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Fig. 1. SPF steric density isosurfaces of various 3D GTO expansionsfor
the complex between the HyHel-5 antibody Fv domain (left) and hen egg
lysozyme (right). The subunits are separated by 15Å for clarity. The bot-
tom right pair shows atomic Gaussian representations of thevan der Waals
surfaces from which the SPF expansions are derived.

mixes pairs of functions with the same absolute value of the circular
frequency,m, (Biedenharn and Louck, 1981):

ylm(θ, φ) =
X

m′

U
(l)

mm′Ylm′(θ, φ). (3)

Hence Eq 2 may be written in complex form as

A(r) =
N

X

nlm

AnlmRnl(r)Ylm(θ, φ) (4)

where the complex coefficients,Anlm, are related to the real
expansion coefficients by

Anlm =
X

m′

U
(l)

m′manlm′ . (5)

SH expansions are useful in rotational problems because each
group of SHs with the same orderl transform amongst themselves
under rotation according to the WignerD(l) matrices (Biedenharn
and Louck, 1981):

R̂(α, β, γ)Ylm(θ, φ) =
X

m′

D
(l)
m′m(α, β, γ)Ylm′(θ, φ), (6)

whereR̂(α, β, γ) represents a rotation operator expressed in terms
of the Euler rotation anglesα, β, and γ about thez, y, and z
axes, respectively, with theγ rotation being applied first. Equation 6
essentially says that a rotated SH function can always be expressed
as a linear combination of unrotated SH functions. Consequently,
once the SPF expansion coefficients have been calculated, the effect
of rotating a protein may be simulated by transforming only the ori-
ginal coefficients. Because the SPF basis functions are orthonormal,
the overlap between a pair of SPF expansions may be calculated as
the scalar product of the expansion coefficients using, for example,

E =

N
X

nlm

aφ
nlm.aρ

nlm = Re(

N
X

nlm

Aφ
nlm.Aρ

nlm) ≡ Re(A.B). (7)

In a rigid body docking search, the overall aim is to compute the
overlap between such representations over a given range of coor-
dinate transformations. In the SPF representation, it is natural to

partition the search space into one translational and five rotational
degrees of freedom and to make the translational direction coincide
with the intermolecular axis located on thez axis. Figure 2 illustra-
tes this arrangement. LettingA(r) and B(r) represent 3D scalar
properties of the receptor and ligand, respectively, and assuming
both molecules are initially co-located at the origin, thenthe overlap
between these functions in a general orientation may be expressed
as:

E ≡E(βA, γA, αB , βB , γB, R)

=

Z

(T̂ (−R)R̂(0, βA, γA)A(r))∗(R̂(αB , βB , γB)B(r))dr

(8)
where the asterisk denotes complex conjugation, and where the ope-
rators R̂(0, βA, γA), R̂(αB, βB , γB), and T̂ (−R) represent the
actions of rotating the receptor and ligand about the origin, and
translating the receptor along the negativez axis, respectively. A
positive translation of the rotated ligand could equally beused.
Figure 3 illustrates the main processing steps in this approach.
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Fig. 2. Left: the relationship between the spherical polar(r, θ, φ) and Car-
tesian(x, y, z) coordinate systems; right: schematic illustration of the 6D
rigid body search space in terms of one translational coordinate,R, and five
Euler rotational coordinates,(βA, γA) and(αB , βB , γB), assigned to the
receptor and ligand, respectively. Following the usual Euler angle conven-
tion, β rotations refer to they axis, andα andγ rotations refer thez axis.

Now it can be shown (Ritchie, 2005) that a positive translation of
the SPF basis functions by an amountR along the positivez axis
may be expressed as:

T̂ (R)Rnl(r)Ylm(θ, φ) =

∞
X

kj

T
(|m|)
kj,nl (R)Rkj(r)Yjm(θ, φ) (9)

whereT
(|m|)
kj,nl (R) represents a matrix element of the translation ope-

rator. These real quantities are independent of the sign ofm, but they
vanish if |m| > l or |m| > j, and also ifj ≥ k or l ≥ n. From
the orthogonality of the basis functions, it follows that translated
expansion coefficients may be calculated as:

Anlm(R) =

∞
X

kj

T
(|m|)
nl,kj (−R)Akjm =

∞
X

kj

T
(|m|)
kj,nl (R)Akjm.

(10)
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(a) Sampling protein properties

(b) Docking pairs of proteins
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Fig. 3. Conceptual flowcharts showing the main processing steps in the SPF approach to protein-protein docking. In practice, the rotations for the ligand or
for both the ligand and receptor are computeden masse in 3D or 5D FFT rotational grids, respectively.

Similarly, it can be shown that rotated expansion coefficients may
be calculated using the WignerD(l) matrices:

Akjm(α, β, γ) =
X

s

D(j)
ms(α, β, γ)Akjs, −l ≤ s ≤ l. (11)

Hence the overlap expression becomes

E =
X

kjsmnlv

D(j)∗
ms (0, βA, γA)A∗

kjsT
(|m|)
kj,nl (R) ×

D(l)
mv(αB , βB , γB)Bnlv .

(12)

Summing over thek andn radial subscripts then gives

E =
X

jsmlv

D(j)∗
ms (0, βA, γA)S

(|m|)
js,lv (R)D(l)

mv(αB, βB, γB) (13)

whereS(R) is a reduced translation/overlap matrix given by

S
(|m|)
js,lv (R) =

X

kn

A∗
kjsT

(|m|)
kj,nl (R)Bnlv, k > j; n > l. (14)

The Wigner rotation matrix elements are defined as

D
(l)

mm′ (α, β, γ) = e−imαdl
mm′(β)e−im′γ (15)

where the realdl
mm′(β) are often expressed in terms of Jacobi poly-

nomials (Biedenharn and Louck, 1981). Here, it is convenient to
expanddl

mm′ (β) as a product of complex exponentials (Edmonds,
1957):

dl
mm′(β) =

X

t

eimπ/2dl
mt(−π/2)e−itβdl

tm′(π/2)e−im′π/2.

(16)
Then, writing

∆l
tm = dl

tm(π/2) = dl
mt(−π/2) (17)

and collecting constants

Γtm
lm′ = ei(m−m′)π/2∆l

tm∆l
tm′ = im−m′

∆l
tm∆l

tm′ (18)

gives

D
(l)
mm′ (α, β, γ) =

X

t

Γtm
lm′e−imαe−itβe−im′γ . (19)

Substituting Eq 19 twice into Eq 13 gives the fully factorised result

E =
X

jsmlvrt

Γrm
js S

(|m|)
js,lv (R)Γtm

lv e−i(rβA−sγA+mαB+tβB+vγB)

(20)
where the summation ranges over all subscript values that satisfy
|r| ≤ j, |s| ≤ j, |t| ≤ l, |v| ≤ l, and |m| ≤ min(l, j) ≤ L. In
this equation,r andt enumerate azimuthal frequency components,
ands, v, andm enumerate circular frequencies. We call Eq 20 the
docking correlation master equation.

2.2 An Analytic 5D FFT Generating Function
Equation 20 gives a compact analytic recipe for calculatingthe over-
lap function for an arbitrary point in the 6D docking space from the
initial SPF expansion coefficients. However, considering the number
of subscripts in Eq 20, performing point-wise summations ata given
set of coordinates would clearly costO(N7) arithmetic operations
per point. Hence it is essential to use FFT techniques to accelerate
the calculation. However, because Euler rotation angles have the
ranges0 ≤ α, γ < 360o and0 ≤ β < 180o, it is useful to change
the sign of theγA rotation and to scale theβ rotation angles so that
all rotational coordinates map to the natural phase and period of the
FFT. If this is not done, the FFT calculation will over-sample theβ
coordinates to give duplicate solutions, each at half the desired reso-
lution. Scaling theβ coordinates eliminates this effect and allows a
smaller FFT grid to be used, thus halving the amount of computer
memory required for eachβ dimension and speeding up the FFT
calculation.

Dealing with the sign ofγA is straight-forward. For example,
puttingγ′

A = −γA, and writing

eisγA =
X

q

ηsqe
−iqγ′

A , (21)

and using the orthogonality of the exponentials to solve forthe
coefficients,ηsq, gives

ηsq = δsq (22)

where δ is the Kronecker delta, andq ≡ −q. Similarly, theβ
rotations may be scaled by puttingβ′ = 2β and writing

e−itβ =
X

u

λtue−iuβ′

, (23)

and again using the orthogonality of the exponentials to solve for
the coefficientsλtu. In this case, it can be shown using basic
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trigonometric relations that the coefficients are given by

λtu =

8

>

<

>

:

2i/π(2u − t) if t is odd,

1 if t = 2u,

0 otherwise.

(24)

In other words, there exist exact solutions whent is even, and
convergent power series solutions whent is odd. However, for cur-
rent purposes, the coefficientsλtu may be determined to reproduce
exactly a finite set ofMβ rotational samples by treating Eq 23 as a
discrete Fourier transform analysis equation:

λtu =
1

Mβ

Mβ−1
X

n=0

e−πitn/Mβ e2πiun/Mβ . (25)

Other angular ranges may be scaled onto the natural FFT period in
a similar manner. Substituting the above changes of variable into
Eq 20 and applying an inverse Fourier transform to the resultgives

E[p, q, m, u, v; R] =
X

rt

X

jl

Γrm
jq S

(|m|)
jq,lv (R)Γtm

lv λrpλtu. (26)

Collecting coefficients as

Λum
lv =

X

t

Γtm
lv λtu (27)

gives the final recipe for calculating the FFT grid:

E[p, q, m, u, v; R] =
X

jl

Λpm
jq S

(|m|)
jq,lv (R)Λum

lv . (28)

Applying a forward Fourier transform to this expression will pro-
duce a 5D array ofE(βA, γA, αB , βB , γB, R) function values for
unique combinations of Euler rotation angles. Hence Eq 28 may be
interpreted as an analytic GF for 5D FFT docking correlations. This
is the main theoretical contribution of this paper.

2.3 Multi-Dimensional FFTs
In Eq 28 it can be seen that the double sum over thejl subscripts
means that the cost of initialising each 5D FFT grid cell scales as
O(N2) and therefore the overall cost of setting up a 5D FFT scales
asO(N7). Hence it is expedient to calculating Eq 28 as

W pqm
lv (R) =

X

j

Λpm
jq S

(|m|)
jq,lv (R) (29)

and

E[p, q, m, u, v; R] =
X

l

W pqm
lv (R)Λum

lv . (30)

Thus, by using a temporary array,W , theO(N7) “set-up” cost of a
5D FFT can be computed practically using twoO(N6) steps. The
double sum in the expression for the reduced overlap matrix,Eq 14,
may be calculated efficiently in a similar way. However, using a
large intermediate array makes significant additional demands on
the available computer memory. One way to reduce the memory
requirement is to setγA = 0 in the correlation expression and to

explicitly rotate the receptor expansion coefficients before applying
the FFT to obtain the 4D GF:

E[p, m, u, v; R, γA] =
X

jql

Λpm
jq S

(|m|)
jq,lv (R,γA)Λum

lv (31)

where

S
(|m|)
jq,lv (R, γA) =

N
X

kn

A∗
kjq(γA)T

(|m|)
kj,nl (R)Bnlv (32)

andAkjq(γA) represents a rotated expansion coefficient. In princi-
ple, a 6D docking search could be performed by iterating overpairs
of (R, γA) samples and by calculating 4D FFTs of the remaining
rotation angles. However, this approach can immediately beseen to
be impractical because the triple sum in Eq 31 indicates thatthe set-
up cost of initialising a 4D FFT grid is stillO(N7). On the other
hand, the GF complexity falls significantly if theβA rotation angle
is dropped from the FFT. For example, by explicitly transforming
the receptor expansion coefficients using Eq.s 10 and 11:

Anlm(R,βA, γA) =
X

kjq

T
(|m|)
nl,kj (−R)D(l)

mq(0, βA, γA)Akjq,

(33)
the 3D GF is found to be:

E[m, u, v; R, βA, γA] =
X

l

Sm
lv (R,βA, γA)Λum

lv (34)

where

Sm
lv (R, βA, γA) =

X

n

A∗
nlm(R,βA, γA)Bnlv, n > l. (35)

Hence it can be seen that the set-up cost for a 3D rotational FFT
essentially scales asO(N4) per receptor orientation. For the sake
of completeness, the 2D GF has the same structure and set-up
complexity as above, and may be stated as

E[m, u; R, βA, γA, γB ] =
X

lv

Sm
lv (R,βA, γA, γB)Λum

lv . (36)

Therefore, like the 4D case, 2D correlations may be dismissed as
being computationally impractical. The 1D GF (FFT set-up comple-
xity O(N3) perαB twist angle search) was implemented previously
in real form (Ritchie and Kemp, 2000) and is given by

E[m;R, βA, γA, βB , γB] =
X

nl

A∗
nlm(R, βA, γA)Bnlm(βB , γB).

(37)

2.4 Multi-Property FFTs
It is well known that the correlation between two pairs of real
properties may be calculated simultaneously using one complex
FFT. For example, if thein vacuo electrostatic potential and charge
density of a system of two proteins,A andB, are written as

φ(r) = φA(r) + φB(r)

ρ(r) = ρA(r) + ρB(r),
(38)

and if linear combinations of the SPF expansions are formed as

A = UT (aφ + iaρ)

B = UT (bρ + ibφ),
(39)

whereUT is the transpose of the complex-to-real unitary transfor-
mation matrixU (c.f. Equations 1, 3, and 5), then the electrostatic
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interaction energy for a pairwise orientation may be calculated as:

E = Re(A∗B). (40)

Similarly, dropping summation subscripts and using matrixnotation
for the 6D electrostatic interaction energy GF (Eq 28) gives:

E[p, q, m, u, v; R] = ΛpqmSqmv(R)Λuvm. (41)

However, it follows from the linearity of this expression that multi-
ple interaction energy correlationse = 0, 1, 2, ... may be computed
simultaneously by first summing the distance-dependent part of
each potential/density interaction:

`

Sqmv
e (R)

´

jl
=

X

kn

Ae∗
kjqT

(|m|)
kj,nl (R)Be

nlv, (42)

to give

E[p, q, m, u, v; R] = Λpqm`

X

e

Sqmv
e (R)

´

Λuvm. (43)

Thus, arbitrary combinations of correlations may be evaluated
together in a single 5D FFT with very little additional cost.

2.5 Multi-Resolution FFTs
It is worth noting that there is no requirement for the FFT grid
dimensions to correspond exactly to the polynomial order ofthe SPF
basis functions. For example, a low order GF may be evaluatedon
a high order FFT grid andvice-versa. This corresponds to padding
the FFT grid with zeros or excluding components that exceed the
grid boundaries, respectively. Therefore, it is importantto consi-
der carefully both the polynomial expansion order and the FFT grid
dimensions, as each can significantly influence overall performance.
It was shown previously (Ritchie and Kemp, 2000; Ritchie, 2003)
that the use of polynomial expansion orders in the rangeL=24 to
30 is often sufficient to give satisfactory resolution when docking
globular protein domains. According to Shannon sampling theory,
this implies an angular FFT grid dimension of at leastM=2L=48
should be used for thorough rotational sampling. This corresponds
to using an angular search increment of360o/48=7.5o, which is
somewhat finer than the rotational step sizes conventionally used
in Cartesian FFT algorithms. Nonetheless, because two of the five
rotational degrees of freedom can be described using Euler angles
which range from 0 to 180◦, it is evident that a 5D FFT grid of e.g.
483×242 cells can be accommodated in less than one gigabyte (Gb)
of computer memory if grid values are stored as single precision
complex numbers (8 bytes per grid cell). Because 1 Gb of memory
is normally available on contemporary 32-bit computers, this level
of angular resolution will be used in the following calculations.

3 RESULTS AND DISCUSSION

3.1 FFT Performance Comparison
As a first test of the utility of the multi-dimensional FFT approach,
the HyHel-5/lysozyme complex (Figure 1) was docked at a range of
expansion orders,L, using the conformation of the bound antibody
Fv fragment and unbound lysozyme. Table 1 presents a comparison
of the accuracy and execution times of shape-only and shape plus
electrostatic correlations for this example. All calculations sampled

53 translational steps of±0.75Å from the initial orientation of the
complex. To facilitate comparison of the 3D and 5D correlations
with the existing 1D radix-2 FFT implemented inHex, Mα = 64
was used for the twist angle dimension. The 3D and 5D grids each
usedMγ=48 andMβ=24 to give(β, γ) increments of7.5o. The
remaining rotational degrees of freedom in the 3D and 1D cases
respectively used one and two icosahedral tesselations of the sphere,
each of 812 vertices, to generate rotational samples with anave-
rage angular separation of around7.7o. Considering that the Euler
grids tend to over-sample near the poles, this scheme gives broadly
equivalent sampling densities with around 1.7, 2.5, and 3.5billion
docking orientations for the 1D, 3D, and 5D cases, respectively.

As expected, Table 1 shows that high order expansions gene-
rally assign a better rank to near-native orientations thanlow order
expansions, but this trend is not necessarily monotonic. The best
combination of a good rank and low ligand root mean squared
(RMS) deviation from the complex is typically obtained withL=28
or L=30. This table also shows that shape-only 3D FFTs are around
three times faster than the 1D calculation and, surprisingly, are also
generally faster than 5D FFTs. However, due to the linearityof the
GF, the cost of including electrostatics in 3D and 5D correlations
is low compared to the cost of computing 1D shape plus electro-
static FFTs. Indeed, 5D FFTs of shape plus electrostatics are faster
than 3D FFTs whenL ≥26. These differences would become more
pronounced if more potentials were included in the calculation.

Nonetheless, considering the enormous size of the search space,
the vast majority of the orientations computed in the FFT are
vacuous. As it is reasonable to expect that good docking orienta-
tions should score well at all expansion orders, one way to reduce
the amount of computation is to perform an initial scan of thesearch
space using low order expansions and to re-score only the best ori-
entations at high order. Table 2 shows the results obtained using this
approach in which the best 30,000 partial(βA, γA, βB , γB, R) ori-
entations are each re-sampled using up to four translational steps of
±0.2Å and re-scored using 1D correlations inαB usingL=30. To
avoid over-sampling rotations near the(β, γ) poles in the 3D and
5D scans, all orientations from the FFT grids were mapped to ico-
sahedral tesselation samples using a look-up table, and only distinct
pairs of tesselation orientations were retained for re-scoring. Table 2
shows that this two-stage scoring approach finds comparableorien-
tations to high order searches in considerably less time, with only
a small drop in the quality of the solutions. Because higher order
scans tend to give better RMS deviations, we useL=20 as a good
compromise between speed and accuracy.

3.2 Protein Docking Benchmark Performance
In order to evaluate the approach more exhaustively, the above cor-
relation protocol was applied to the 84 complexes of version2 of
the Protein Docking Benchmark (Mintseriset al., 2005). To pro-
vide a consistent pseudo-random starting orientation, allproteins
were initially oriented by least-squares fitting to the complex, and
a small off-grid rotation,R̂(α, β, γ)=R̂(11◦, 9◦, 0), was then app-
lied to the ligand. The orientations calculated in each docking run
were clustered using a greedy algorithm with a 9Å clustering thres-
hold (Kozakovet al., 2005), and the lowest energy member of each
cluster was selected as the “solution” for that cluster. Allother
members of each cluster were discarded.
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Table 1. Comparison of shape-only and shape plus electrostatic docking correlation for the HyHel-5/lysozyme complex.

1D Shape-Only 1D Shape+Electro 3D Shape-Only 3D Shape+Electro 5D Shape-Only 5D Shape+Electro

L Rank (RMS) Time/m Rank (RMS) Time/m Rank (RMS) Time/m Rank (RMS) Time/m Rank (RMS) Time/m Rank (RMS) Time/m

16 646 (6.8) 28.7 428 (8.0) 52.0 864 (7.1) 15.1 254 (8.2) 18.1 – 37.5 669 (6.0) 40.3
20 336 (1.2) 52.7 20 (1.3) 102.7 410 (1.2) 23.5 17 (1.3) 29.2 336 (7.9) 39.3 29 (1.3) 46.5
24 417 (1.2) 92.4 52 (1.2) 184.2 501 (1.2) 33.2 53 (1.2) 51.2 833 (1.2) 53.0 82 (1.2) 56.2
26 49 (1.2) 123.3 15 (1.2) 243.1 48 (1.2) 43.5 15 (1.6) 69.0 45 (1.2) 58.7 13 (1.6) 63.1
28 54 (1.5) 158.1 8 (1.2) 315.6 22 (5.2) 54.2 11 (1.3) 92.2 19 (5.5) 64.5 13 (1.2) 71.7
30 113 (2.2) 203.5 43 (1.3) 403.0 47 (1.6) 69.8 20 (1.6) 122.5 61 (1.6) 74.3 19 (1.6) 108.0

In this table,L is the polynomial order of the expansion, Rank is the rank of the first orientation found in which the ligand is within 10Å RMS (shown in parentheses) of
the crystal structure after clustering with the defaultHex clustering threshold. A hyphen indicates no near-native orientation found within the top 2000 solutions. Time
is the total computation time in minutes on a single processor 1.8GHz Pentium Xeon PC. The 3D and 5D FFT calculations used Kiss FFT. For those calculations, the
time spent within the FFT library is essentially constant at13.1 and 34.3 minutes, respectively. All timings exclude the calculation of the translation matrix elements.

Table 2. Two-stage shape plus electrostatic docking results for HyHel-
5/lysozyme.

1D 3D 5D

L Rank (RMS) Time/m Rank (RMS) Time/m Rank (RMS) Time/m

16 23 (1.5) 27.7 19 (1.5) 21.3 26 (1.6) 30.3
18 27 (1.3) 37.2 22 (1.3) 27.5 27 (1.3) 29.7
20 32 (1.3) 45.2 29 (1.3) 29.5 17 (1.3) 37.5

This table shows the results obtained by performing blind low order shape-only scans
of the search space at the given order, followed by 1DL=30 shape plus electrostatic
refinement of the top 30,000 orientations.

Seven different docking runs were performed for each complex to
assess the shape-based and electrostatic components of thescoring
function, and to investigate the difference between blind docking
and the use of prior knowledge of one or both protein’s binding sites.
The results are shown in Table 3. The first set of figures in thistable
give the results for blind shape-only docking of bound subunits, pre-
sented as the rank and deviations of the first solution found within
10Å RMS deviation of the complex (here called a “hit”) along with
the total number of such hits found within the top 2000 solutions.
This threshold broadly corresponds to the definition of an “accepta-
ble” prediction under the CAPRI assessment criteria (Méndezet al.,
2003). Although the final goal is to dock unbound subunits, conside-
ration of bound docking results provides a practical way to identify
complexes which willa priori be expected to be difficult to dock
acceptably in the unbound case. Encouragingly, acceptablesoluti-
ons are found within the top 10 in 33 cases, and within the top 20 in
37 cases. This shows that theHex shape-based scoring function can
often identify near-native crystallographic orientations.

However, these results also show thatHex fails to find an accep-
table bound-bound solution for 22 of the Benchmark complexes.
Visual inspection of these complexes shows that several (1AK4,
1GHQ, 1KTZ, 1BJ1, 1QFW, 2QFW, and 1ATN) have particularly
small interface areas, which would therefore be expected tobe diffi-
cult for any shape-based docking algorithm to identify. Furthermore,

several of the other failing complexes include at least one large pro-
tein domain (e.g. 1KLU, 1ML0, 1KKL, 1HE8, 1N2C, 1DE4, 1H1V,
and 2HMI) which cannot accurately be encoded in the standardHex
radial function. Hence, these cases will also be difficult for theHex
scoring function. Of the remaining failing complexes, several are
antibody/antigen complexes (e.g. 1DQJ, 1E6J, 1WEJ, 2VIS),and
it is generally not necessary to perform completely blind docking
calculations on such well understood systems.

The rest of Table 3 presents results for docking unbound struc-
tures. As expected, the rank of the best shape-only blind docking
solution is often considerably poorer compared to docking bound
components, with only 6 complexes being ranked within the top 20.
On the other hand, including the ETO electrostatic interaction term
in the correlation often improves the rank of the best solution, giving
16 complexes within the top 20. However, using electrostatic corre-
lations can worsen the prediction in some cases, but it is notclear
how to predictab initio which those cases might be.

Nonetheless, in practice, it is becoming increasingly rarethat
completely blind docking is necessary because, like the antibody
families, biochemical or biophysical knowledge is often available
to indicate the identities of key interaction residues. Hence, four
further constrained docking runs were performed for each complex
to simulate such data-driven docking scenarios. Here, the range
of the FFT searches were constrained by applying the restriction
βA ≤ 45◦ to simulate using knowledge of the receptor binding site
(tabulated as “One Constraint”), and additionallyβB ≤ 45◦ corre-
sponding to using knowledge of both the receptor and ligand binding
sites (“Two Constraints”). These constraints each reduce the size of
the search space and corresponding FFT grid dimensions by a fac-
tor of about four, and speed up the FFT scan correspondingly.Thus,
for constrained docking runs, overall calculation times ofjust a few
minutes arise largely from theL=30 re-scoring stage. Specifying a
receptor constraint ofβA = 45◦ would physically correspond to
spinning an antigen over the antibody hypervariable loop region in
an antibody/antigen complex, as illustrated in Figure 2, for exam-
ple. In general,Hex allows a given receptor and ligand residue to be
rotated onto thez axis before each docking run. Hence, for exam-
ple, by setting small values for theβA andβB angular ranges, it is
straight-forward to focus a docking calculation around a given pair
of residues in a known or hypothesised protein-protein interface.
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Table 3. Hex Results for the Docking Benchmark (version 2).

B-B Shape-Only U-U Shape-Only U-U Shape+Elec U-U Shape-Only U-U Shape+Elec U-U Shape-Only U-U Shape+Elec
Blind Search Blind Search Blind Search One Constraint One Constraint Two Constraints Two Constraints

Code Rank (RMS) Hits Rank (RMS) Hits Rank (RMS) Hits Rank (RMS) Hits Rank (RMS) Hits Rank (RMS) Hits Rank (RMS) Hits

Rigid-Body (63)
1AVX 46 (4.8) 20 108 (8.9) 7 111 (8.9) 4 40 (8.9) 12 75 (9.0) 14 18(9.0) 43 12 (9.0) 45
1AY7 40 (8.9) 16 645 (9.9) 4 – – 99 (3.5) 20 234 (9.8) 1 17 (6.7) 39 17 (9.7) 18
1BVN 1 (1.1) 29 63 (9.1) 20 389 (9.6) 7 29 (9.6) 35 3 (6.6) 36 4 (5.1) 49 2 (9.6) 39
1CGI 1 (0.7) 24 42 (9.4) 17 47 (4.6) 9 20 (9.4) 14 42 (9.8) 11 4 (9.4) 31 4 (4.6) 24
1D6R 273 (1.3) 24 447 (7.7) 1 119 (7.6) 4 49 (7.7) 8 31 (7.7) 8 8 (7.7) 37 5 (7.7) 31
1DFJ 167 (4.2) 14 17 (9.5) 14 1 (4.2) 30 3 (9.5) 24 1 (4.2) 30 2 (9.5) 32 1 (4.2) 35
1E6E 1 (2.1) 14 109 (5.6) 10 5 (2.2) 24 24 (5.6) 19 3 (1.5) 29 5 (5.6) 38 1 (7.7) 49
1EAW 1 (1.0) 17 9 (5.0) 20 1 (4.0) 37 7 (5.0) 25 1 (4.0) 35 1 (5.0) 42 1 (4.0) 42
1EWY 19 (7.7) 16 76 (9.1) 12 24 (9.7) 14 114 (8.1) 12 103 (6.8) 7 9(8.1) 37 9 (7.6) 23
1EZU 2 (0.9) 13 – – – – – – – – 86 (6.7) 10 287 (6.2) 4
1F34 1 (1.4) 25 124 (6.7) 11 – – 48 (7.1) 15 – – 11 (5.4) 22 26 (6.5)11
1HIA 3 (1.2) 30 51 (8.7) 6 8 (8.9) 15 72 (8.7) 21 15 (9.9) 22 15 (6.7) 33 6 (8.3) 32
1MAH 1 (0.9) 16 2 (1.2) 20 1 (1.1) 28 1 (1.2) 27 1 (1.2) 30 1 (1.2) 33 1 (1.2) 30
1PPE 1 (1.0) 42 2 (9.7) 47 4 (3.0) 31 1 (9.7) 49 1 (3.0) 46 1 (3.0) 43 1 (3.0) 45
1TMQ 1 (2.1) 19 356 (5.9) 9 427 (6.0) 6 45 (5.9) 21 264 (2.3) 7 7 (5.9) 39 10 (6.6) 38
1UDI 1 (1.6) 17 8 (6.2) 9 20 (6.2) 10 4 (6.2) 22 7 (6.2) 25 1 (6.2) 32 5 (6.2) 37
2MTA 11 (1.4) 18 136 (9.0) 4 79 (9.8) 20 38 (9.0) 17 12 (8.4) 24 15(7.7) 33 15 (8.7) 31
2PCC 1007 (9.1) 1 – – 18 (6.9) 33 14 (9.3) 20 12 (5.1) 31 5 (9.3) 37 14 (6.3) 44
2SIC 3 (0.7) 10 57 (8.8) 8 – – 21 (8.9) 10 44 (1.0) 9 4 (8.9) 31 4 (1.0) 35
2SNI 1 (1.5) 18 256 (9.6) 7 101 (9.6) 6 39 (7.1) 15 40 (4.4) 11 5 (7.1) 31 5 (4.4) 25
7CEI 5 (1.3) 17 61 (8.7) 5 4 (8.4) 19 11 (8.7) 17 3 (8.4) 22 2 (8.7)29 1 (8.4) 35
1AHW 6 (1.9) 10 234 (8.0) 3 7 (8.0) 12 31 (8.0) 12 5 (8.0) 40 3 (8.0) 42 5 (8.0) 38
1BVK 44 (1.5) 6 – – 508 (6.7) 7 134 (9.4) 7 184 (6.8) 10 71 (9.9) 23 22 (6.8) 24
1DQJ – – – – – – 216 (8.6) 6 440 (9.9) 2 22 (8.6) 24 73 (8.1) 11
1E6J – – – – – – 26 (8.9) 12 16 (8.4) 22 2 (8.9) 37 4 (8.4) 41
1JPS 24 (1.3) 5 – – 36 (8.8) 11 170 (6.6) 9 14 (6.6) 27 15 (6.6) 29 1(8.8) 30
1MLC 62 (1.2) 5 408 (3.6) 2 – – 25 (3.6) 13 22 (3.7) 28 3 (3.6) 29 2 (3.7) 23
1VFB 23 (1.1) 3 – – – – 97 (9.1) 14 51 (7.1) 10 14 (9.1) 36 12 (7.1) 35
1WEJ – – – – – – 26 (1.7) 13 2 (1.7) 20 8 (1.7) 29 1 (1.7) 37
2VIS – – – – – – – – – – – – – –
1A2K 29 (5.4) 12 – – – – – – – – 186 (9.3) 5 274 (9.1) 4
1AK4 – – – – – – – – – – – – – –
1AKJ 30 (8.4) 25 209 (9.6) 10 17 (9.4) 27 110 (6.3) 15 23 (2.7) 35 23 (9.6) 36 5 (9.6) 48
1B6C 3 (1.8) 19 593 (9.0) 2 755 (8.9) 2 88 (9.0) 5 133 (8.5) 5 19 (9.0) 27 7 (9.7) 36
1BUH 28 (1.0) 9 743 (7.7) 2 289 (7.8) 4 52 (7.7) 14 19 (7.7) 13 28 (7.7) 19 8 (7.7) 18
1E96 133 (1.1) 5 – – 302 (8.6) 2 246 (9.4) 6 119 (8.6) 8 37 (9.7) 13 43 (8.5) 20
1F51 3 (1.4) 21 371 (9.6) 5 – – 149 (9.6) 12 58 (9.3) 3 9 (7.6) 19 8 (7.5) 27
1FC2 605 (6.5) 2 – – – – – – – – – – 297 (7.7) 10
1FQJ 7 (1.0) 14 41 (8.0) 12 7 (7.9) 14 14 (8.0) 21 7 (7.7) 28 5 (7.8) 31 4 (7.7) 41
1GCQ 1 (1.0) 16 – – – – – – – – 92 (6.2) 6 – –
1GHQ – – – – – – 828 (8.9) 2 – – 30 (8.9) 13 175 (6.7) 6
1HE1 1 (1.5) 24 37 (6.4) 18 88 (6.3) 15 10 (6.4) 26 28 (7.2) 25 2 (7.6) 39 9 (7.2) 39
1I4D 31 (1.5) 19 – – – – – – – – 505 (8.1) 1 481 (9.4) 1
1KAC 36 (1.2) 7 687 (8.7) 1 271 (8.9) 5 7 (4.4) 19 4 (4.4) 26 4 (4.4) 33 2 (4.4) 32
1KLU – – – – – – – – – – 591 (9.7) 2 – –
1KTZ – – – – – – – – – – 238 (9.4) 4 25 (6.0) 10
1KXP 1 (1.1) 22 36 (9.4) 13 1 (7.5) 13 15 (9.4) 19 1 (6.9) 30 7 (9.4) 24 1 (6.9) 29
1ML0 – – – – – – 7 (9.1) 8 33 (7.0) 11 1 (9.1) 22 3 (5.6) 27
1QA9 86 (5.9) 7 – – 161 (9.9) 3 587 (7.5) 8 481 (6.8) 4 25 (5.3) 28 23 (4.5) 28
1RLB 409 (8.8) 2 – – – – – – – – 305 (6.3) 7 384 (6.3) 6
1SBB – – – – – – – – – – – – – –
2BTF 5 (0.8) 8 – – – – 133 (8.6) 13 16 (6.7) 22 32 (8.6) 19 4 (6.7) 34
1BJ1 – – – – – – – – – – 7 (6.7) 13 10 (6.9) 10
1FSK 10 (1.3) 16 5 (1.8) 16 6 (1.4) 10 1 (1.8) 31 1 (1.8) 31 1 (1.8)43 1 (1.8) 46

(continued)
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Table 3. (continued)

B-B Shape-Only U-U Shape-Only U-U Shape+Elec U-U Shape-Only U-U Shape+Elec U-U Shape-Only U-U Shape+Elec
Blind Search Blind Search Blind Search One Constraint One Constraint Two Constraints Two Constraints

Code Rank (RMS) Hits Rank (RMS) Hits Rank (RMS) Hits Rank (RMS) Hits Rank (RMS) Hits Rank (RMS) Hits Rank (RMS) Hits

1I9R 5 (5.7) 14 82 (2.1) 8 4 (2.1) 15 23 (2.1) 19 13 (2.1) 26 7 (2.1) 29 5 (2.1) 26
1IQD 42 (0.7) 8 – – 760 (1.4) 3 276 (6.1) 7 5 (6.1) 16 5 (9.4) 27 3 (6.1) 29
1K4C 24 (0.7) 4 21 (9.6) 1 – – 4 (9.6) 3 311 (9.6) 2 2 (9.6) 17 46 (9.6) 19
1KXQ 6 (5.5) 10 488 (7.1) 5 35 (6.3) 12 48 (7.1) 16 27 (7.1) 15 27 (7.1) 18 24 (7.1) 16
1NCA 1 (1.1) 11 116 (1.2) 5 139 (1.9) 3 20 (1.2) 13 8 (0.9) 16 2 (9.9) 22 3 (0.9) 30
1NSN 11 (1.7) 8 142 (1.5) 6 – – 18 (1.5) 19 14 (1.5) 12 6 (1.5) 22 3 (1.5) 23
1QFW – – – – – – – – – – 333 (6.3) 3 37 (6.3) 6
2QFW – – – – – – – – – – 522 (9.7) 1 – –
2JEL 10 (1.1) 10 164 (6.0) 3 – – 7 (6.0) 27 4 (5.6) 29 6 (6.0) 39 2 (6.0) 38
Mean 25 (4.1) 11 242 (8.4) 5 156 (8.1) 7 66 (7.6) 13 46 (7.0) 14 15(7.3) 25 13 (6.7) 25

Medium Difficulty (13)
1ACB 36 (0.9) 8 694 (8.3) 3 674 (8.5) 2 156 (8.3) 7 163 (8.3) 1 10 (8.3) 33 88 (8.4) 14
1KKL – – – – – – 48 (8.6) 18 94 (8.4) 10 8 (8.7) 40 14 (8.0) 31
1BGX 1 (3.0) 3 – – – – – – – – – – – –
1GP2 – – – – 419 (6.9) 5 – – 137 (7.1) 8 113 (5.6) 12 68 (7.1) 17
1GRN 1 (1.3) 13 914 (9.1) 2 586 (2.5) 5 661 (7.1) 4 27 (6.3) 23 14 (7.4) 31 20 (6.3) 29
1HE8 – – – – – – – – – – – – – –
1I2M 1 (1.8) 17 – – 29 (5.4) 24 754 (8.5) 3 15 (8.5) 24 107 (6.7) 14 21 (8.5) 24
1IB1 10 (5.0) 13 – – – – – – – – 14 (9.8) 13 22 (9.9) 7
1IJK 189 (3.0) 10 1012 (8.7) 3 – – 145 (8.7) 5 383 (8.7) 1 14 (8.7)18 70 (8.7) 5
1K5D 406 (5.9) 4 – – 146 (7.6) 3 – – 128 (9.1) 5 377 (7.6) 4 21 (9.7)17
1M10 429 (9.1) 4 514 (9.5) 2 48 (9.2) 4 130 (9.5) 4 46 (9.3) 6 13 (9.5) 8 124 (8.4) 12
1N2C – – – – – – – – – – – – – –
1WQ1 1 (1.5) 26 125 (7.1) 10 16 (7.2) 17 34 (7.1) 14 13 (7.1) 20 6 (7.1) 27 3 (7.1) 33
Mean 50 (5.5) 8 782 (9.5) 1 329 (8.2) 5 306 (8.8) 5 153 (8.7) 8 58 (8.4) 15 66 (8.6) 15

Difficult (8)
1ATN – – – – – – – – – – – – – –
1DE4 – – 946 (8.6) 1 15 (8.4) 3 164 (8.6) 3 – – 184 (8.5) 8 35 (9.9) 8
1EER 1 (4.0) 25 609 (9.2) 8 43 (9.2) 16 106 (7.6) 18 30 (7.7) 18 34(7.6) 23 39 (7.7) 13
1FAK – – – – – – – – – – 768 (7.0) 2 221 (7.0) 8
1FQ1 162 (5.6) 5 – – – – 469 (8.4) 2 – – 82 (8.4) 5 508 (8.4) 3
1H1V – – – – – – – – – – – – – –
1IBR 4 (3.0) 27 – – – – – – – – 314 (8.8) 4 68 (8.4) 6
2HMI – – – – – – – – – – – – – –
Mean 168 (7.8) 7 933 (9.7) 1 399 (9.7) 2 549 (9.3) 3 359 (9.3) 3 325 (8.8) 5 238 (8.9) 5

In this table, B-B and U-U denote bound-bound and unbound-unbound docking, respectively. A hyphen denotes no acceptable solution within the top 2000, in which case a value
of 10Å is used when calculating the mean RMS deviation. Means of ranks were calculated using the MLR formula, Eq. 44. For the antibody/antigen complexes (1AHW, 1BVK,
1DQJ, 1E6J, 1DQJ, 1JPS, 1MLC, 1VFB, 1WEJ, 2VIS, 1BJ1, 1FSK, 1I9R, 1IQD, 1K4C, 1KXQ, 1NCA, 1NSN, 1QFW, 2QFW, 2JEL, 1BGX, 2HMI), the Cα coordinates of
heavy chain residue 37 were used as the the antibody coordinate origin. For all other structures, the centre of mass was used as the coordinate origin. It should be noted that
the Docking Benchmark includes several antibody complexes(1BJ1, 1FSK, 1I9R, 1IQD, 1K4C, 1KXQ, 1NCA, 1NSN, 1QFW, 2QFW,2JEL, 2HMI) for which only thebound
antibody Fab coordinates are available.

As can be seen from Table 3, the above rather loose constraints are
often sufficient to improve considerably the rank of near-native solu-
tions. For example, using only the receptor constraint is sufficient to
increase the rate of acceptable solutions from 6 to 17 withinthe top
20. Adding theHex electrostatic correlation term boosts this impro-
vement to 28 within the top 20. Applying a similar ligand constraint
further improves the success rate to 48 in the top 20 and 35 in the
top 10 for shape only correlations, or 45 in the top 20 and 37 inthe
top 10 for shape plus electrostatics. In other words, the electrostatic
component helps significantly to identify the general orientation of

the binding mode, and it can also help to distinguish a near-native
orientation from amongst high ranking shape-based orientations,
although the improvement in the latter is less dramatic. It is worth
noting that constrained docking also improves the results for several
complexes that the rigid-body docking runs indicated wouldbe int-
rinsically difficult to dock predictively (specifically 1GHQ, 1KTZ,
1ML0, 1BJ1, 1QFW, 1KKL, and 1DE4).

In order to compare such trends more objectively, Table 3 pres-
ents overall average results for each set of calculations. Here, we
calculate the mean rank using the mean of the logarithm of therank
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(MLR) of each first acceptable hit according to:

MLR = exp{
1

NC

NC
X

i=1

ln(min(Ranki, 1000))}, (44)

whereNC is the number of complexes in each Benchmark cate-
gory. Limiting poor results to a value of 1000 in this formulahelps
to prevent outliers from adversely biasing the overall score. Hence
the MLR score ranges from 1 (rank 1 hits for all complexes) to 1000
(no hits for any complex). The MLR figures in Table 3 readily show
the benefit of using just one, or preferably two, loose constraints
to enrich the number of high ranking predictions in each Bench-
mark category. This benefit is most dramatic in the Rigid-Body
category, although using two constraints also significantly enhances
the results for both the Medium Difficulty and Difficult categories.

4 CONCLUSION
Analytic GF expressions have been presented for calculating multi-
dimensional multi-property rotational FFT docking correlations.
Scaling Euler angle ranges onto the natural period of the FFTprovi-
des a straight-forward way to accelerate the calculation and to focus
the correlation around the region(s) of interest. This alsoreduces
overall memory requirements and, for the first time, allows 5D FFT
docking to be performed on an ordinary PC. Here, 3D shape-only
and shape plus electrostatic FFTs are found to be around three times
faster than the 1D FFT previously implemented inHex but, surpri-
singly, 3D FFTs are also often faster than 5D FFTs. On the other
hand, multiple properties may be correlated simultaneously in the
5D FFT, and this is expected to be particularly advantageouswhen
calculating high order correlations of multi-term knowledge-based
protein-protein interaction potentials.

Currently, a two-stage search protocol using 3D shape-onlyrota-
tional FFT scans withL=20 followed by 1D shape plus electrostatic
re-scoring withL=30 gives a good trade-off between speed and
accuracy. When biochemical or biophysical knowledge abouta
complex is available, this information may easily be exploited to
constrain the angular search to the interface region(s), and docking
times are reduced to just a few minutes. For a clear majority of the
Docking Benchmark examples, constraining the docking search in
this way dramatically improves the quality of the predictions, pro-
ducing acceptable predictions in the top 20 in 28 cases usingone
constraint, and giving up to 45 in the top 20 and 37 in the top 10
using two constraints. Hence the approach provides a practical and
fast tool for rigid body protein-protein docking, especially when
some prior knowledge about one or both binding sites is available.
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