Vol. 00 no. 00 2008
Pages 1-10

Accelerating and Focusing Protein-Protein Docking
Correlations Using Multi-Dimensional Rotational FFT

Generating Functions

David W. Ritchie '} Dima Kozakov ? and Sandor Vajda ?

!Department of Computing Science, University of Aberdeen, Aberdeen, Scotland, UK
2Department of Biomedical Engineering, University of Boston, Boston MA, USA

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT

Motivation: Predicting how proteins interact at the molecular level
is a computationally intensive task. Many protein docking algorithms
begin by using FFT correlation techniques to find putative rigid body
docking orientations. Most such approaches use 3D Cartesian grids
and are therefore limited to computing 3D translational correlations.
However, translational FFTs can speed up the calculation in only
three of the six rigid body degrees of freedom, and they cannot
easily incorporate prior knowledge about a complex to focus and
hence further accelerate the calculation. Furthemore, several groups
have developed multi-term interaction potentials and others use multi-
copy approaches to simulate protein flexibility, which both add to the
computational cost of FFT-based docking algorithms. Hence there is
a need to develop more powerful and more versatile FFT docking
techniques.

Results: This article presents a closed-form 6D spherical polar Fou-
rier correlation expression from which arbitrary multi-dimensional
multi-property multi-resolution FFT correlations may be generated.
The approach is demonstrated by calculating 1D, 3D, and 5D rota-
tional correlations of 3D shape and electrostatic expansions up to
polynomial order L=30 on a 2 Gb personal computer. As expec-
ted, 3D correlations are found to be considerably faster than 1D
correlations but, surprisingly, 5D correlations are often slower than
3D correlations. Nonetheless, we show that 5D correlations will be
advantageous when calculating multi-term knowledge-based inter-
action potentials. When docking the 84 complexes of the Protein
Docking Benchmark, blind 3D shape plus electrostatic correlations
take around 30 minutes on a contemporary personal computer and
find acceptable solutions within the top 20 in 16 cases. Applying a
simple angular constraint to focus the calculation around the recep-
tor binding site produces acceptable solutions within the top 20 in 28
cases. Further constraining the search to the ligand binding site gives
up to 48 solutions within the top 20, with calculation times of just a
few minutes per complex. Hence the approach described provides a
practical and fast tool for rigid body protein-protein docking, especially
when prior knowledge about one or both binding sites is available.
Availability: http://www.csd.abdn.ac.uk/hex/
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1 INTRODUCTION

Genome-wide proteomics studies (Uetzl., 2000; Itoet al., 2001,
Gavinet al., 2002; Hoet al., 2002) provide a growing list of puta-
tive protein-protein interactions, but understanding ftivection of
these predicted interactions requires further biochelnaied struc-
tural analysis. However, protein-protein hetero-comggesurrently
constitute less than 2% of the known protein structuresdrPttotein
Data Bank (PDB; Bermast al. 2002). Protein docking algorithms
aim to bridge this gap by using computational techniquesré p
dict the 3D structures of protein-protein complexes gtgrfiom the
unbound or model-built monomers. For recent reviews, s&hiRi
(2008) and references therein.

Proteins have intrinsically dynamical molecular struesuwhich
can often change conformation to some extent on complexatio
However, in order to make the calculation tractable, most pr
tein docking algorithms begin by assuming that the strestuo
be docked are rigid. This essentially reduces the problera to
six dimensional (6D) rotational-translational searchcgpaThe
Fast Fourier Transform (FFT) correlation approach, iniosl
by Katchalski-Katziret al. (1992), revolutionized this part of the
docking calculation by making it computationally feasitdesyste-
matically explore and evaluate in the order of billiof@(10°))
of trial orientations without using ang priori information on the
expected structure. The first FFT scoring function of Kalskia
Katzir et al. was based only on shape complementarity within a
Cartesian grid, but was later extended to include addititerans
representing electrostatic interactions (Gablal., 1997; Mandell
et al., 2001), or both electrostatic and desolvation contrimgio
(Chenet al., 2003). Each of these terms adds a new correlation
function to the potential. More recently, we have shown that
use of pairwise structure-based potentials can improvegéme-
ration of near-native docking predictions by up to 50% (Kaza
et al., 2006). Other investigators have also reported consitierab
success with knowledge-based docking potentials (Rit&@068).
To be used with FFT-based docking, all such potentials nedx t
expressed as sums of correlation functions. Furthermarerder
to simulate protein flexibility during docking calculati®nseveral
groups use FFT techniques to dock ensembles of rigid bodgtatr
res (Grunbergt al., 2004; Mustard and Ritchie, 2005; Sméhal.,
2005), which further increases the computational cost gtb&sed
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approaches. Hence there is a need to develop more powerdul ardefine one or two simple angular constraints with which taufoc

more versatile FFT docking techniques. docking searches around known or hypothesised binding, Sites
Several groups have demonstrated considerable succelss wihccelerates the calculation and can significantly redueatmber

“data-driven” docking techniques, perhaps best exemglifigthe  of false-positive predictions.

HADDOCK program (Domingueet al., 2003), which use external Here, the approach is applied to the 84 complexes of the iRrote

biochemical or biophysical knowledge about binding sitemter- Docking Benchmark (Mintserist al., 2005) using shape-only and

action residues to filter rigid body docking predictions.wéwer, shape plus electrostatic correlations. Blind 3D shapg-dotking

due to the translational nature of the Cartesian FFT, whaf ¢ correlations find acceptable solutions within the top 20 iceées,

not easily be constrained to search around a putative [jrglte,  whereas including electrostatics in the calculation gii@ssoluti-

data-driven filters generally cannot be used to focus andla@te  ons within the top 20. Applying a single loose angular caistrto

conventional Cartesian FFT-based approaches. focus the calculation around the receptor binding siteficsent to
The other disadvantage of Cartesian FFT-based approactieg i  produce acceptable solutions within the top 20 in 28 casashér

new FFT grids must be computed for each rotational incrementonstraining the search to the ligand binding site in a sinmianner

of the rotating molecule. Because fully covering the seaqfice  gives up to 48 solutions within the top 20.

requires many thousands of rotational samples, Cartesiekirdy

algorithms commonly take several hours to complete, ancffire

ciency of the approach decreases with increasing complekihe 2 METHODS

potential. On the other hand, thkiex spherical polar Fourier (SPF)

representation (Ritchie and Kemp, 2000) avoids the gridptiam } ) ] ] )

overhead of the Cartesian-based methods and naturalysalip ~ The main goal of Fourier-based docking algorithms is toulate

to two angular constraints to be used to constrain the semate.  'apidly and accurately multiple overlap integrals of therfo

HenceHex docking runs typically take from a few minutes to around

one hour, even though the original algorithm uses only a one- E= /¢(£)P(£)d£ 1)

dimensional (1D) FFT to accelerate the calculation. Howetre

efficiency of theHex algorithm also decreases with the increasingwheredr = r2drsin #dédé is the 3D volume element in polar

complexity of the potential. coordinatesg(r) andp(r) represent 3D scalar functions such as the
Because the FFT allows a problem that formally requida/®)  electrostatic potential and charge density, &hipresents the clas-

operations to be computed @(N log N) steps, greater compu- — sjcal electrostatic energy of the system, for example.dfiathape

tational speed-ups should be expected when the FFT is dppliecomplementarity may also be expressed as sums of overkapts

to as many degrees of freedom as possible. A five-dimensiongRitchie and Kemp, 2000). In the SPF approach, each reahrscal

(5D) FFT rotational correlation technique was describetkbyacs  property of interestA(r), is represented as a polynomial expansion
et al. (2003) to superpose 3D electron microscopy (EM) densityto orderN as

maps. However, conventional FFT-based techniques redjuae
each FFT grid dimension be a power of two. Hence the approach
described was limited to relatively crude low order cortielas for
the 5D FFT grid to fit into computer memory. Recently, multi-
dimensional mixed radix FFT implementations have becoradav ~ where a,.;,, are real expansion coefficients, calculated just once
ble (e.g. MKL: http://www.intel.com/, FFTW: http://wwwtfv.org/, for each property by numerical integratiog,., (0, ¢) are norma-
and Kiss FFT: http://sourceforge.net/projects/kisgfitiiereby eli-  lised real spherical harmonics (SHs), aRd;(r) are orthonormal
minating the radix constraint on the FFT grid dimensionsn&o  Gaussian-type orbital (GTO) or exponential-type orbit&ITQ)
theless, no 5D FFT protein-protein docking algorithm hasnbe radial basis functions (Ritchie and Kemp, 2000). Calcatatihe
described to date, and it would appear that implementingetioal expansion coefficients corresponds to performing a forwandier
5D EM density correlation also remains a challenge. For @@m transform in conventional FFT-based approaches. The ddkiso
Garzonet al. (2007) found it necessary to remove two FFT dimen- step scales linearly with the number of atoms or the volumihef
sions from the 5D rotational space in order to implement atfual protein. All subsequent calculations depend only on theesion
3D EM density fitting algorithm. order. For consistency with previous work (Ritchie and Ke&G0;
This article shows that by representing the properties toolee- Ritchie, 2005), the radial index, counts from unity. Hence the
lated as expansions of SPF basis functions, it is relatisebight-  highest harmonic order and highest polynomial power in aal-i
forward to develop an analytic 6D correlation master equain vidual coordinate id=N-1. Until now, Hex docking runs typically
which each pairwise interaction is concisely represented filly used 1D real correlations of a two-term (van der Waals plus su
factorised sum over a product of complex exponentials and SPface skin) shape density representation of each proteiny ust24
translation matrix elements. This master equation may bieemsed  (N=25) GTO expansions. Electrostatic interactions may beuta
to derive generating functions (GFs) for 5D, 3D, and 1D FH&+o ted similarly using the ETO basis functions. Figure 1 shoarses
tional correlations. Surprisingly, 5D shape-only and lodes shape  example SPF representations of the complex between the [FyyHe
plus electrostatic correlations are found to be slower 8wrorre-  antibody and hen egg lysozyme (PDB code 3HFL), calculataa fr
lations. However, due to the fully factorised form of the GB the GTO expansion coefficients at various orders.
FFTs are expected to be advantageous when correlating more ¢~ Here, it is convenient to use both real and complex SHs, \uith t
plex multi-term potentials. Nonetheless, regardless®tiimension  complex functions denoted as...(0, ¢). The two types of func-
of the FFT correlation, the SPF approach provides a natuagltey  tion are related by a unitary transformation matrix("), which

2.1 Spherical Polar Fourier Correlations

N
Ar) = ZanlmRnl (M) yim (0, @), m|<l<n<N, (2

nim




FFT Protein Docking

a0 §o o

So Ho B

Fig. 1. SPF steric density isosurfaces of various 3D GTO expandimns
the complex between the HyHel-5 antibody Fv domain (lefg) aen egg

lysozyme (right). The subunits are separated b)pk 1&r clarity. The bot-

tom right pair shows atomic Gaussian representations ofaheder Waals
surfaces from which the SPF expansions are derived.

mixes pairs of functions with the same absolute value of itteilar
frequency;n, (Biedenharn and Louck, 1981):

Yim (0,8) = > UL Y1 (0, ¢). (3)
Hence Eq 2 may be written in complex form as

nlm

where the complex coefficientsd,;.,, are related to the real
expansion coefficients by
Antm =Y U (5)

m,manlm/.

partition the search space into one translational and fitatiomal
degrees of freedom and to make the translational directiorcicle
with the intermolecular axis located on thexis. Figure 2 illustra-
tes this arrangement. Letting(r) and B(r) represent 3D scalar
properties of the receptor and ligand, respectively, arsdiragg
both molecules are initially co-located at the origin, ttiemoverlap
between these functions in a general orientation may beesezpd
s:

QD

E =E(Ba,va,aB, 08,78, R)

[ RO 5492 AW) (Rlan, 55, 75) Bw):

8
where the asterisk denotes complex conjugation, and wherepe-
rators R(0, B4,v4), R(ag,Bs,v8), andT(—R) represent the
actions of rotating the receptor and ligand about the origimd
translating the receptor along the negativexis, respectively. A
positive translation of the rotated ligand could equally used.
Figure 3 illustrates the main processing steps in this amro

SH expansions are useful in rotational problems because eadd- 2. Left: the relationship between the spherical pdlard, ¢) and Car-

group of SHs with the same ordétransform amongst themselves
under rotation according to the Wign&" matrices (Biedenharn
and Louck, 1981):

ST DY (o, 8,7) i (6, 9),

m/

R(a, 8,7)Yim(0,¢) = (6)

tesian(z, y, z) coordinate systems; right: schematic illustration of tie 6
rigid body search space in terms of one translational coatdjR, and five
Euler rotational coordinate$34,v4) and(ag, B5,vs), assigned to the
receptor and ligand, respectively. Following the usualeEangle conven-

tion, [ rotations refer to the axis, anda and~ rotations refer the: axis.

whereR(a, 3,~) represents a rotation operator expressed in terms Now it can be shown (Ritchie, 2005) that a positive transtatf

of the Euler rotation angles, 3, and~y about thez, y, and z
axes, respectively, with therotation being applied first. Equation 6
essentially says that a rotated SH function can always beessed
as a linear combination of unrotated SH functions. Consettyye
once the SPF expansion coefficients have been calculateeffétt
of rotating a protein may be simulated by transforming ohby dri-
ginal coefficients. Because the SPF basis functions aremmtmal,
the overlap between a pair of SPF expansions may be calddate
the scalar product of the expansion coefficients using,¥amgple,

N
_E : ] P } :
E= At Cnim = Anlm Anlm

nlm nlm

= Re(A.B). (7)

In a rigid body docking search, the overall aim is to comptte t
overlap between such representations over a given rangeoof ¢
dinate transformations. In the SPF representation, it farakto

the SPF basis functions by an amoubialong the positive: axis
may be expressed as:

T(R) Ry (1) Yim (6, 6) = ZT&"L?(R)RM )Yim (0, ¢)

kj

©)

whereT,g‘jﬁ'l) (R) represents a matrix element of the translation ope-
rator. These real quantities are independent of the sign bt they
vanish if|m| > l or |m| > j, and also ifj > k orl > n. From
the orthogonality of the basis functions, it follows thartslated
expansion coefficients may be calculated as:

Z Z

T(lm‘)

(i) ("D (R

nlm kj, nl

(10)
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(a) Sampling protein properties

Convert Cartesian
(x,y,z)coordinate
samples to SPF (1,6,0)

Sample protein
properties onto 3D
Cartesian grid

Calculate real
SPF property
coefficients, anim

Convert real
anim coefficients
to complex Anim

(b) Docking pairs of proteins

/

Rotate/translate
complex receptor
coefficients, Anim

Rotate complex
ligand
coefficients, Bnim

—

Calculate product
of transformed
coefficients:

‘no

Save yes |Rank and
— |real |— — |save docking
A.B score predictions

Fig. 3. Conceptual flowcharts showing the main processing stepg®ilsPF approach to protein-protein docking. In practice ratations for the ligand or
for both the ligand and receptor are compugadnasse in 3D or 5D FFT rotational grids, respectively.

Similarly, it can be shown that rotated expansion coeffisienay
be calculated using the Wigné&r matrices:

Apjm(a, 8, 7) ZD<J) (o, B,7) Akjs, —1<s<l. (11)
Hence the overlap expression becomes
DY*(0 Ar 1UmD (R
ﬂA7'YA) kjs+tkjnl ( )
kjsmnlv (12)

DY) (a5, B8,v8)Bniv-

Summing over thé andn radial subscripts then gives

E= ) D’

jsmlv

g(mD

0,84,74)S\ ) (R) DY, (s, BB, v8)  (13)

whereS(R) is a reduced translation/overlap matrix given by

(WL\)

JS lq; Z AkjsT]i‘;r:Jl) ) nlv, k > _7, n > l. (14)
The Wigner rotation matrix elements are defined as
DY (a,B,7) = e dL i (B)e ™ (15)

where the read’, . (3) are often expressed in terms of Jacobi poly-
nomials (B|edenharn and Louck, 1981). Here, it is convenien
expandd’,,, (/) as a product of complex exponentials (Edmonds
1957):

(—7/2)e P d,, (71'/2)6_””/”/2.

imm /2 4l
Ze dm

mm’

(16)
Then, writing
Aty = dign (7/2) = drp(—7/2) (17)
and collecting constants
rpm, = O 2AL AL =T AL AL (18)
gives
ffL)M, (o, B,y ZF eima il gmimy (19)

Substituting Eq 19 twice into Eq 13 gives the fully factodsesult

P ¥

jsmlort

Frms(\M\)

tm _—i(rBa—sya+map+tBp+vyp)
js,lv ( )Flv €

(20)
where the summation ranges over all subscript values tliafysa
Ir] < g,0s] < 4, 0¢t] < L |v] <1, and|m| < min(l,5) < L. In
this equationy andt enumerate azimuthal frequency components,
ands, v, andm enumerate circular frequencies. We call Eq 20 the
docking correlation master equation.

2.2 An Analytic 5D FFT Generating Function

Equation 20 gives a compact analytic recipe for calculatiegpver-
lap function for an arbitrary point in the 6D docking spaaenfrthe
initial SPF expansion coefficients. However, consideriregrtumber
of subscripts in Eq 20, performing point-wise summatiorsgiten
set of coordinates would clearly caS{ N”) arithmetic operations
per point. Hence it is essential to use FFT techniques tdeate
the calculation. However, because Euler rotation angles liae
ranges) < a,v < 360° and0 < 3 < 180°, it is useful to change
the sign of they 4 rotation and to scale the rotation angles so that
all rotational coordinates map to the natural phase andgefithe
FFT. If this is not done, the FFT calculation will over-sampihes
coordinates to give duplicate solutions, each at half tisérele reso-
lution. Scaling the3 coordinates eliminates this effect and allows a
smaller FFT grid to be used, thus halving the amount of coerput
memory required for each# dimension and speeding up the FFT

,calculation.

Dealing with the sign ofya is straight-forward. For example,
puttingy’y = —~a, and writing

Zn e ZqWA

and using the orthogonality of the exponentials to solvetfar
coefficientsy)sq, gives

eisrA

(1)

Nsq = Os7 (22)
where ¢ is the Kronecker delta, ang = —q. Similarly, the 3
rotations may be scaled by puttigy = 23 and writing

Z At eﬂ“ﬁ ,

and again using the orthogonality of the exponentials toestbr
the coefficientsA.,. In this case, it can be shown using basic

e P (23)
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trigonometric relations that the coefficients are given by

2i/7(2u —t) if tis odd
A =< 1 if t = 2u, (24)
0 otherwise

In other words, there exist exact solutions whers even, and
convergent power series solutions wher odd. However, for cur-
rent purposes, the coefficients, may be determined to reproduce
exactly a finite set ofMz rotational samples by treating Eq 23 as a
discrete Fourier transform analysis equation:

| Mat
Apyp = —— —7\"Lt7’L/1V13 27r1un/M5 25

Other angular ranges may be scaled onto the natural FFTdp@rio
a similar manner. Substituting the above changes of variatib
Eq 20 and applying an inverse Fourier transform to the regpuits

Elp,q,m,u,v; R] = ZZFrmS](lﬁL) T ArpAtu.  (26)
rt
Collecting coefficients as
AR Zr}mtu (27)
gives the final recipe for calculating the FFT grid:
Elp,q,m,u,v; R] = ZA’"”SJ“Q”}L) JAL™.(28)

Applying a forward Fourier transform to this expressionlgiio-
duce a 5D array off(84,v4, as, Bz, vg, R) function values for
unique combinations of Euler rotation angles. Hence Eq 28 may b
interpreted as an analytic GF for 5D FFT docking correlatidrhis

is the main theoretical contribution of this paper.

2.3 Multi-Dimensional FFTs

In Eq 28 it can be seen that the double sum overjithgubscripts
means that the cost of initialising each 5D FFT grid cell ssas

O(N?) and therefore the overall cost of setting up a 5D FFT scales

asO(NT). Hence it is expedient to calculating Eq 28 as

W) = DA S () (29)

and
E[p7 q, m,u,v; R] = Z le;;qm(R)Azlvm

l

(30)

Thus, by using a temporary arrdy;, theO(N") “set-up” cost of a
5D FFT can be computed practically using tWg¢N°®) steps. The
double sum in the expression for the reduced overlap m&cx,4,
may be calculated efficiently in a similar way. However, gsm
large intermediate array makes significant additional detsan

explicitly rotate the receptor expansion coefficients befpplying
the FFT to obtain the 4D GF:

Elp,m,u,0; R,va] = > APPSR ya) A" (31)
Jaql
where
Sj(t‘ﬁl‘)) ;74) ZAqu v4) Tk_‘jn:z‘l)(R)BnlU (32)

andAygjq(va) represents a rotated expansion coefficient. In princi-
ple, a 6D docking search could be performed by iterating paés

of (R,~v4) samples and by calculating 4D FFTs of the remaining
rotation angles. However, this approach can immediateelea to

be impractical because the triple sum in Eq 31 indicatesigeget-

up cost of initialising a 4D FFT grid is stilD(N"). On the other
hand, the GF complexity falls significantly if th&, rotation angle

is dropped from the FFT. For example, by explicitly transiorg

the receptor expansion coefficients using Eqg.s 10 and 11:

At (R, Ba,74) = Y T30 (= R)DYL (0, B4, 74) Arja,
e (33)
the 3D GF is found to be:
Elm,u,v; R, Ba,ya] = Y SIi (R, Ba,va)AL"  (34)
1
where
Sy (R, Ba,va) = > 1. (35)

Z A:,lm(R7 ﬂA7 ’YA)BW«Z’W

Hence it can be seen that the set-up cost for a 3D rotation&l FF
essentially scales a8(N*) per receptor orientation. For the sake

of completeness, the 2D GF has the same structure and set-up
complexity as above, and may be stated as

> SR, Ba,va,78) AL

lv

E[m,u; R, Ba,v4,7B) = (36)

e‘I’herefore, like the 4D case, 2D correlations may be disrdisse

being computationally impractical. The 1D GF (FFT set-umpte-
xity O(N*®) pera s twist angle search) was implemented previously
in real form (Ritchie and Kemp, 2000) and is given by

E[ma R7 /81477147/83773] = ZA:le(R7 ﬂAfYA)Bnlm(ﬂB,’YB)-
nl
37

2.4 Multi-Property FFTs

It is well known that the correlation between two pairs oflrea
properties may be calculated simultaneously using one mp
FFT. For example, if thén vacuo electrostatic potential and charge
density of a system of two proteind,and B, are written as

¢(r) = da(r) + ¢5(r)

p(r) = pa(r) + pa(r),
and if linear combinations of the SPF expansions are forrsed a

A=U"(a’ +ia")
=U" (b +ib?),

(38)

(39)

the available computer memory. One way to reduce the memorwhereU” is the transpose of the complex-to-real unitary transfor-

requirement is to sef4a = 0 in the correlation expression and to

mation matrixU (c.f. Equations 1, 3, and 5), then the electrostatic
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interaction energy for a pairwise orientation may be caltad as:

E = Re(A"B). (40)
Similarly, dropping summation subscripts and using matatation
for the 6D electrostatic interaction energy GF (Eq 28) gives
Elp,q,m,u,v; R] = AP™ ST (R)A""™. (41)
However, it follows from the linearity of this expressioratrmulti-
ple interaction energy correlatioas= 0, 1, 2, ... may be computed
simultaneously by first summing the distance-dependerit qfar
each potential/density interaction:
Z Ak]qugn:L‘l (42)

) nlv7

(ﬁgmv
to give

Elp,q,m, u,v; R] = )AL (43)

qum Z Sqmv

Thus, arbitrary combinations of correlations may be evallia
together in a single 5D FFT with very little additional cost.

2.5 Multi-Resolution FFTs

It is worth noting that there is no requirement for the FFTdgri
dimensions to correspond exactly to the polynomial ordéneSPF
basis functions. For example, a low order GF may be evaluated
a high order FFT grid andice-versa. This corresponds to padding
the FFT grid with zeros or excluding components that excéed t
grid boundaries, respectively. Therefore, it is importentonsi-
der carefully both the polynomial expansion order and th€ &id
dimensions, as each can significantly influence overalbperdnce.
It was shown previously (Ritchie and Kemp, 2000; RitchieQ20
that the use of polynomial expansion orders in the rahg24 to
30 is often sufficient to give satisfactory resolution whertkdng
globular protein domains. According to Shannon samplirgpiti
this implies an angular FFT grid dimension of at leAgt21.=48
should be used for thorough rotational sampling. This cpoeds
to using an angular search increment36f)°/48=7.5°, which is
somewhat finer than the rotational step sizes conventipnesiéd
in Cartesian FFT algorithms. Nonetheless, because twoeofith
rotational degrees of freedom can be described using Entges
which range from 0 to 180 it is evident that a 5D FFT grid of e.g.

53 translational steps a0.75A from the initial orientation of the
complex. To facilitate comparison of the 3D and 5D correlasi
with the existing 1D radix-2 FFT implemented fihex, M, = 64
was used for the twist angle dimension. The 3D and 5D gridk eac
used M., =48 and Mz=24 to give(3,~) increments of7.5°. The
remaining rotational degrees of freedom in the 3D and 1D<ase
respectively used one and two icosahedral tesselatiohe sphere,
each of 812 vertices, to generate rotational samples witavan
rage angular separation of around®. Considering that the Euler
grids tend to over-sample near the poles, this scheme giveslly
equivalent sampling densities with around 1.7, 2.5, ancb8lion
docking orientations for the 1D, 3D, and 5D cases, respaytiv

As expected, Table 1 shows that high order expansions gene-
rally assign a better rank to near-native orientations tbanorder
expansions, but this trend is not necessarily monotoni@ dést
combination of a good rank and low ligand root mean squared
(RMS) deviation from the complex is typically obtained with28
or L=30. This table also shows that shape-only 3D FFTs are around
three times faster than the 1D calculation and, surprigiregke also
generally faster than 5D FFTs. However, due to the lineafitihe
GF, the cost of including electrostatics in 3D and 5D cotietes
is low compared to the cost of computing 1D shape plus electro
static FFTs. Indeed, 5D FFTs of shape plus electrostatefaater
than 3D FFTs whet, >26. These differences would become more
pronounced if more potentials were included in the calouhat

Nonetheless, considering the enormous size of the seaacle sp
the vast majority of the orientations computed in the FFT are
vacuous. As it is reasonable to expect that good dockingiiarie
tions should score well at all expansion orders, one waydaae
the amount of computation is to perform an initial scan ofgéarch
space using low order expansions and to re-score only theobes
entations at high order. Table 2 shows the results obtaisied this
approach in which the best 30,000 partigh, v, 85, VB, R) ori-
entations are each re-sampled using up to four translattegs of
+0.2A and re-scored using 1D correlationsdts using L=30. To
avoid over-sampling rotations near tf@, v) poles in the 3D and
5D scans, all orientations from the FFT grids were mappedde i
sahedral tesselation samples using a look-up table, agdistinct
pairs of tesselation orientations were retained for retsgoTable 2
shows that this two-stage scoring approach finds compacaige-
tations to high order searches in considerably less timg ovily
a small drop in the quality of the solutions. Because highiden
scans tend to give better RMS deviations, we 0s20 as a good

483 x 242 cells can be accommodated in less than one gigabyte (GHjOMPromise between speed and accuracy.

of computer memory if grid values are stored as single pi@tis

complex numbers (8 bytes per grid cell). Because 1 Gb of mgmor

is normally available on contemporary 32-bit computerss kbvel
of angular resolution will be used in the following calcideis.

3 RESULTS AND DISCUSSION
3.1 FFT Performance Comparison

As a first test of the utility of the multi-dimensional FFT appch,
the HyHel-5/lysozyme complex (Figure 1) was docked at aganfg

3.2 Protein Docking Benchmark Performance

In order to evaluate the approach more exhaustively, theeabar-
relation protocol was applied to the 84 complexes of ver@af
the Protein Docking Benchmark (Mintse®s al., 2005). To pro-
vide a consistent pseudo-random starting orientationpraleins
were initially oriented by least-squares fitting to the céempand
a small off-grid rotation,R(«, 3,~)=R(11°,9°,0), was then app-
lied to the ligand. The orientations calculated in each darkun

expansion orderd,, using the conformation of the bound antibody were clustered using a greedy algorithm Withﬁa@ustering thres-

Fv fragment and unbound lysozyme. Table 1 presents a cosapari

hold (Kozakovet al., 2005), and the lowest energy member of each

of the accuracy and execution times of shape-only and shiage p cluster was selected as the “solution” for that cluster. dther

electrostatic correlations for this example. All calcidas sampled

members of each cluster were discarded.




FFT Protein Docking

Table 1. Comparison of shape-only and shape plus electrostatidmipchorrelation for the HyHel-5/lysozyme complex.

1D Shape-Only 1D Shape+Electro 3D Shape-Only 3D Shape+Electro 5D Shape-Only 5D Shape+Electro

L Rank (RMS) Time/m Rank (RMS) Time/m Rank (RMS) Time/m RaRMS) Time/m Rank (RMS) Time/m Rank (RMS) Time/m

16  646(6.8) 28.7 428(8.0) 520 864(7.1) 151 254(8.2) 18.1 - 375 669(6.0) 40.3
20 336(L2) 527 20(1.3) 102.7 410(1.2) 235 17(1.3) 292 6(@3F®) 393  29(1.3) 465
24 417(1.2) 924  52(1.2) 1842 501(1.2) 332  53(1.2) 512 3@®) 530 82(12) 56.2
26 49(1.2) 1233  15(1.2) 2431  48(1.2) 435 15(1.6) 69.0 14F( 58.7 13(1.6) 63.1
28  54(15) 158.1 8(1.2) 3156  22(5.2) 54.2 11(1.3) 922 1®)(5 645  13(L2) 717
30 113(2.2) 2035  43(1.3) 403.0 47(16) 69.8  20(1.6) 1225 1(16) 74.3 19(1.6) 108.0

In this table,L is the polynomial order of the expansion, Rank is the rankefirst orientation found in which the ligand is withinA®RMS (shown in parentheses) of
the crystal structure after clustering with the defaigk clustering threshold. A hyphen indicates no near-natiientation found within the top 2000 solutions. Time
is the total computation time in minutes on a single proce$®GHz Pentium Xeon PC. The 3D and 5D FFT calculations usssl IRFT. For those calculations, the
time spent within the FFT library is essentially constartatl and 34.3 minutes, respectively. All timings excludedhlculation of the translation matrix elements.

Table 2. Two-stage shape plus electrostatic docking results for étyH
5/lysozyme.

1D 3D 5D

L Rank (RMS) Time/m Rank (RMS) Time/m Rank (RMS) Time/m

several of the other failing complexes include at least angel pro-
tein domain (e.g. 1KLU, 1MLO, 1KKL, 1HES8, 1N2C, 1DE4, 1H1V,
and 2HMI) which cannot accurately be encoded in the staridexd
radial function. Hence, these cases will also be difficultthe Hex
scoring function. Of the remaining failing complexes, saleare
antibody/antigen complexes (e.g. 1DQJ, 1E6J, 1WEJ, 2\4&),
it is generally not necessary to perform completely blindkilog
calculations on such well understood systems.

16 23(15) 27.7 19(1.5) 21.3 26 (1.6) 30.3 )
18 27(1.3) 37.2 22(1.3) 275 27(1.3) 297 The rest of Table 3 presents results for docking unbound-stru
20 32(1.3) 452 29(1.3) 295 17(1.3) 375 tures. As expected, the rank of the best shape-only blin#idgc

This table shows the results obtained by performing blimddeder shape-only scans
of the search space at the given order, followed bylZEBO shape plus electrostatic
refinement of the top 30,000 orientations.

Seven different docking runs were performed for each coxtple
assess the shape-based and electrostatic componentssobthey
function, and to investigate the difference between blinodkihg
and the use of prior knowledge of one or both protein’s bigdiites.
The results are shown in Table 3. The first set of figures intéie
give the results for blind shape-only docking of bound sutisypre-
sented as the rank and deviations of the first solution fouitioirw
10A RMS deviation of the complex (here called a “hit”) along it
the total number of such hits found within the top 2000 solusi
This threshold broadly corresponds to the definition of aicépta-
ble” prediction under the CAPRI assessment criteria (Mzmetlal .,
2003). Although the final goal is to dock unbound subunitasade-
ration of bound docking results provides a practical waydemntify
complexes which willa priori be expected to be difficult to dock
acceptably in the unbound case. Encouragingly, accepsaihli-
ons are found within the top 10 in 33 cases, and within the @in 2
37 cases. This shows that tHex shape-based scoring function can
often identify near-native crystallographic orientagon

However, these results also show thik fails to find an accep-
table bound-bound solution for 22 of the Benchmark compexe
Visual inspection of these complexes shows that severakK4lA
1GHQ, 1KTZ, 1BJ1, 1QFW, 2QFW, and 1ATN) have particularly
small interface areas, which would therefore be expectée iffi-
cultfor any shape-based docking algorithm to identify.tRemmore,

solution is often considerably poorer compared to dockiagnil
components, with only 6 complexes being ranked within tpe2@.
On the other hand, including the ETO electrostatic intéoaderm
in the correlation often improves the rank of the best soiytgiving
16 complexes within the top 20. However, using electrostaiire-
lations can worsen the prediction in some cases, but it i<leatr
how to predictab initio which those cases might be.

Nonetheless, in practice, it is becoming increasingly rthgg
completely blind docking is necessary because, like thibaay
families, biochemical or biophysical knowledge is ofteraitable
to indicate the identities of key interaction residues. ¢tenfour
further constrained docking runs were performed for eachptex
to simulate such data-driven docking scenarios. Here, dnge
of the FFT searches were constrained by applying the réstric
Ba < 45° to simulate using knowledge of the receptor binding site
(tabulated as “One Constraint”), and additionafly < 45° corre-
sponding to using knowledge of both the receptor and ligamditg
sites (“Two Constraints”). These constraints each redueesize of
the search space and corresponding FFT grid dimensionsdny a f
tor of about four, and speed up the FFT scan correspondifglys,
for constrained docking runs, overall calculation timefust a few
minutes arise largely from thB=30 re-scoring stage. Specifying a
receptor constraint of 4 45° would physically correspond to
spinning an antigen over the antibody hypervariable logorein
an antibody/antigen complex, as illustrated in Figure 2,efkam-
ple. In generalHex allows a given receptor and ligand residue to be
rotated onto the axis before each docking run. Hence, for exam-
ple, by setting small values for th&y and 35 angular ranges, it is
straight-forward to focus a docking calculation around\eegipair
of residues in a known or hypothesised protein-proteirriate.
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Table 3. Hex Results for the Docking Benchmark (version 2).

B-B Shape-Only

U-U Shape-Only

U-U Shape+Elec

U-U ShaperOnlU-U Shape+Elec

U-U Shape-Only

U-U Shape+Elec

Blind Search Blind Search Blind Search One Constraint  One Constraint Two Constraints  Two Constraints
Code Rank (RMS) Hits Rank (RMS) Hits Rank (RMS) Hits Rank (RM3its Rank (RMS) Hits Rank (RMS) Hits Rank (RMS) Hits
Rigid-Body (63)
1AVX 46 (4.8) 20 108 (8.9) 7 111(8.9) 4 40 (8.9) 12 75(9.0) 14 (4®) 43 12(9.0) 45
1AY7 40 (8.9) 16 645(9.9) 4 - - 99(3.5) 20 234 (9.8) 1 17(6.7) 39 17(9.7) 18
1BVN 1(1.1) 29 63(9.1) 20 389 (9.6) 7 29(9.6) 35 3(6.6) 36 4)5. 49 2(9.6) 39
1CGlI 1(0.7) 24 42 (9.4) 17 47 (4.6) 9 20(9.4) 14 42 (9.8) 11 4)9.31 4(4.6) 24
1D6R 273 (1.3) 24 447 (71.7) 1 119 (7.6) 4 49(7.7) 8 31(7.7) 8 .8)(7 37 5(7.7) 31
1DFJ 167 (4.2) 14 17(9.5) 14 1(4.2) 30 3(9.5) 24 1(4.2) 30 2)(9.32 1(4.2) 35
1E6E 1(21) 14 109 (5.6) 10 5(2.2) 24 24 (5.6) 19 3(1.5) 29 6)(5.38 1(7.7) 49
1EAW 1(1.0) 17 9(5.0) 20 1(4.0) 37 7(5.00 25 1(4.0) 35 1(5.02 4 1(4.0) 42
1EWY 19(7.7) 16 76 (9.1) 12 24(9.7) 14 114 (8.1) 12 103 (6.8) 7 (8.9) 37 9(7.6) 23
1EZU 2(0.9) 13 - - - - - - - - 86 (6.7) 10 287 (6.2) 4
1F34 1(1.4) 25 124 (6.7) 11 - - 48 (7.1) 15 - - 11(5.4) 22 26 (6.51
1HIA 3(1.2) 30 51(8.7) 6 8(8.9) 15 72(8.7) 21 15(9.9) 22 15)6. 33 6(8.3) 32
1IMAH 1(0.9) 16 2(1.2) 20 1(1.1) 28 1(1.2) 27 1(1.2) 30 1(1.2)3 3 1(1.2) 30
1PPE 1(1.0) 42 2(9.7) 47 4(3.00 31 1(9.7) 49 1(3.0) 46 1(3.08 4 1(3.0) 45
1TMQ 1(2.1) 19 356 (5.9) 9 427 (6.0) 6 45(5.9) 21 264 (2.3) 7 .9)5 39 10 (6.6) 38
1UDI 1(1.6) 17 8(6.2) 9 20(6.2) 10 4(6.2) 22 7(6.2) 25 1(6.2)2 3 5(6.2) 37
2MTA 11(1.4) 18 136 (9.0) 4 79(9.8) 20 38(9.0) 17 12(8.4) 24 (%) 33 15(8.7) 31
2PCC 1007 (9.1) 1 - - 18 (6.9) 33 14(9.3) 20 12(5.1) 31 5(9.3) 37 14(6.3) 44
2SIC 3(0.7) 10 57 (8.8) 8 - - 21(8.9) 10 44 (1.0) 9 4(8.9) 31 @)(1.35
2SNI 1(1.5) 18 256 (9.6) 7 101(9.6) 6 39(7.1) 15 40 (4.4) 11 JB)(7 31 5(4.4) 25
7CEl 5(1.3) 17 61 (8.7) 5 4(8.4) 19 11(8.7) 17 3(8.4) 22 2(8.29 1(8.4) 35
1AHW 6(1.9) 10 234 (8.0) 3 7(8.0) 12 31(8.00 12 5(8.0) 40 3)8.12 5(8.0) 38
1BVK 44 (1.5) 6 - - 508 (6.7) 7 134 (9.4) 7 184 (6.8) 10 71(9.9) 23 22(6.8) 24
1DQJ - - - - - - 216 (8.6) 6 440 (9.9) 2 22 (8.6) 24 73(8.1) 11
1E6J - - - - - - 26 (8.9) 12 16 (8.4) 22 2(8.9) 37 4(8.4) 41
1JPS 24(1.3) 5 - - 36(8.8) 11 170(6.6) 9 14 (6.6) 27 15(6.6) 29 (8.8 30
1MLC 62(1.2) 5 408 (3.6) 2 - - 25(3.6) 13 22(3.7) 28 3(3.6) 29 37 23
1VFB 23(1.1) 3 - - - 97 (9.1) 14 51(7.1) 10 14 (9.1) 36 12 (7.1 3
1WEJ - - - - - - 26 (1.7) 13 2(1.7) 20 8(1.7) 29 1(17) 37
2VIS - - - - - - - - - - - - - -
1A2K 29(5.4) 12 - - - - - - - - 186 (9.3) 5 274(9.1) 4
1AK4 - - - - - — - - - — — - — -
1AKJ 30(8.4) 25 209 (9.6) 10 17 (9.4) 27 110(6.3) 15 23(2.7) 35 23(9.6) 36 5(9.6) 48
1B6C 3(1.8) 19 593 (9.0) 2 755 (8.9) 2 88(9.0)0 5 133(8.5) 5 10)(9 27 7(09.7) 36
1BUH 28(1.0) 9 743 (7.7) 2 289(7.8) 4 52(7.7) 14 19(7.7) 13 28 19 8(7.7) 18
1E96 133 (1.1) 5 - - 302 (8.6) 2 246 (9.4) 6 119(8.6) 8 37(9.7) 13 43(8.5) 20
1F51 3(1.4) 21 371 (9.6) 5 - - 149 (9.6) 12 58(9.3) 3 9(7.6) 19 7.8)( 27
1FC2 605 (6.5) 2 - - - - - - - - - - 297 (7.7) 10
1FQJ 7(1.0) 14 41(8.0) 12 7(79) 14 14(8.0) 21 7(7.7) 28 5(7.81 4(7.7) 41
1GCQ 1(1.0) 16 - - - - - - - - 92 (6.2) 6 - -
1GHQ - - - - - - 828(8.9) 2 - - 30(8.9) 13 175 (6.7) 6
1HE1 1(1.5) 24 37(6.4) 18 88(6.3) 15 10(6.4) 26 28(7.2) 25 .8)(7 39 9(7.2) 39
114D 31(15) 19 - - - - - - - - 505 (8.1) 1 481 (9.4) 1
1KAC 36 (12 7 687(8.7) 1 271(8.9) 5 7(4.4) 19 4(4.4) 26 4Y4.83 2(4.4) 32
1KLU - - - - - - - - - - 591 (9.7) 2 - -
1KTZ - — — - - - - - - - 238(9.4) 4 25(6.0) 10
1KXP 111 22 36(9.4) 13 1(75) 13 15(9.4) 19 1(6.9) 30 7)9.24 1(6.9) 29
1MLO - - - - - - 7(9.1) 8 33(7.00 11 1(9.1) 22 3(5.6) 27
1QA9 86(5.9 7 - - 161 (9.9) 3 587 (7.5) 8 481(6.8) 4 25(5.3) 28 3(45) 28
1RLB 409 (8.8) 2 - - - - - - - - 305(6.3) 7 384 (6.3) 6
1SBB - - - - - - - - - - - - - -
2BTF 5(0.8) 8 - - - - 133(8.6) 13 16 (6.7) 22 32(8.6) 19 4(6.7) 34
1BJ1 - - - - - - - - - - 7(6.7) 13 10(6.9) 10
1FSK 10(1.3) 16 5(1.8) 16 6(1.4) 10 1(1.8) 31 1(1.8) 31 1(1.88 1(1.8) 46

(continued)
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Table 3. (continued)

B-B Shape-Only
Blind Search

U-U Shape-Only
Blind Search

U-U Shape+Elec
Blind Search

U-U ShaperOnlU-U Shape+Elec
One Constraint  One Constraint

U-U Shape-Only
Two Constraints

U-U Shape+Elec
Two Constraints

Code Rank (RMS) Hits Rank (RMS) Hits Rank (RMS) Hits Rank (RMdits Rank (RMS) Hits Rank (RMS) Hits Rank (RMS) Hits
1I9R 5(5.7) 14 82(2.1) 8 4(2.1) 15 23(2.1) 19 13(2.1) 26 7)(2.29 5(2.1) 26
11QD 42 (0.7) 8 - - 760 (1.4) 3 276 (6.1) 7 5(6.1) 16 5(9.4) 27 .3)6 29
1K4C 24(0.7) 4 21(9.6) 1 - - 4(09.6) 3 311(9.6) 2 2(9.6) 17 46)(9.19
1KXQ 6(5.5 10 488(7.1) 5 35(6.3) 12 48 (7.1) 16 27(7.1) 15 21) 18 24(7.1) 16
INCA 1(1.1) 11 116 (1.2) 5 139(1.9) 3 20(1.2) 13 8(0.9) 16 2)9. 22 3(0.9) 30
1NSN 11(1.7) 8 142 (1.5) 6 - - 18(1.5) 19 14 (1.5) 12 6(1.5) 22 1.8)( 23
1QFW - - - - - - - - - - 333(6.3) 3 37(6.3) 6
2QFW - - - - - - - - - - 522(9.7) 1 - -
2JEL 10(1.1) 10 164 (6.0) 3 - - 7(6.00 27 4(5.6) 29 6(6.0) 39 .@)(6 38
Mean 25(4.1) 11 242(8.4) 5 156 (8.1) 7 66 (7.6) 13 46 (7.0) 14 (7118) 25 13(6.7) 25
Medium Difficulty (13)

1ACB 36(09 8 694 (8.3) 3 674 (8.5) 2 156 (8.3) 7 163(8.3) 1 a6y 33 88(8.4) 14
1KKL - - - - - - 48 (8.6) 18 94(8.4) 10 8(8.7) 40 14 (8.0) 31
1BGX 1(3.0) 3 - - - - - - - - - - - -
1GP2 - - - - 419(6.9) 5 - - 137(7.1) 8 113 (5.6) 12 68 (7.1) 17
1GRN 1(1.3) 13 914(9.1) 2 586 (2.5) 5 661 (7.1) 4 27(6.3) 283 74)( 31 20(6.3) 29
1HES8 - - - - - - - - - - - - - -
112M 1(1.8) 17 - - 29 (5.4) 24 754 (85) 3 15(8.5) 24 107 (6.7) 14 21(85) 24
11B1 10(5.0) 13 - - - - - - - - 14(9.8) 13 2299 7
113K 189 (3.0) 10 1012(8.7) 3 - - 1458.7) 5 383(8.7) 1 14 (8.18 708.7) 5
1K5D 406 (5.9) 4 - - 146 (7.6) 3 - - 128(9.1) 5 377(7.6) 4 21 (9.1y
1M10 429 (9.1) 4 514 (9.5) 2 48(09.2) 4 130(9.5) 4 46(9.3) 6 18)9 8 124 (8.4) 12
1IN2C - - - - - - - - - - - - - -
1WQ1 1(1.5) 26 125(7.1) 10 16 (7.2) 17 34(7.1) 14 13(7.1) 20 7.8)( 27 3(7.1) 33
Mean 50(5.5) 8 782(9.5) 1 329(8.2) 5 306(8.8) 5 153(8.7) 8 &) 15 66 (8.6) 15
Difficult (8)

1ATN - - - - - - - - - - - - - -
1DE4 - - 946 (8.6) 1 15(38.4) 3 164 (8.6) 3 - - 184(85) 8 35099 8
1EER 1(4.0) 25 609(9.2) 8 43(9.2) 16 106 (7.6) 18 30(7.7) 18 (73) 23 39(7.7) 13
1FAK - - - - - - - - - - 768 (7.0) 2 221(7.00 8
1FQ1 162 (5.6) 5 - - - - 469 (8.4) 2 - - 82(8.4) 5 508 (8.4) 3
1H1V - - - - - - - - - - - - - -
1IBR 4(3.00 27 - - - - - - - - 314(88) 4 68(84) 6
2HMI - - - - - - - - - - - - - -
Mean 168 (7.8) 7 933(9.7) 1 399 (9.7 2 549 (9.3) 3 359(9.3) 3 5@8) 5 238(8.9) 5

In this table, B-B and U-U denote bound-bound and unbourmbund docking, respectively. A hyphen denotes no accepsaiilition within the top 2000, in which case a value
of 10A is used when calculating the mean RMS deviation. Meansrdfsavere calculated using the MLR formula, Eq. 44. For théadt/antigen complexes (1AHW, 1BVK,
1DQJ, 1E6J, 1DQJ, 1JPS, IMLC, 1VFB, 1IWEJ, 2VIS, 1BJ1, 1FS8R11IQD, 1K4C, 1KXQ, INCA, INSN, 1QFW, 2QFW, 2JEL, 1BGX, #H), the Ca coordinates of
heavy chain residue 37 were used as the the antibody cotedingin. For all other structures, the centre of mass wasl @s the coordinate origin. It should be noted that
the Docking Benchmark includes several antibody complé¢kBd1, 1FSK, 1I9R, 11QD, 1K4C, 1KXQ, INCA, INSN, 1QFW, 2QFRIEL, 2HMI) for which only thebound
antibody Fab coordinates are available.

As can be seen from Table 3, the above rather loose consteamt
often sufficient to improve considerably the rank of nedivessolu-
tions. For example, using only the receptor constraintficéent to although the improvement in the latter is less dramatics Worth
increase the rate of acceptable solutions from 6 to 17 witlértop ~ noting that constrained docking also improves the resoitsdveral
20. Adding theHex electrostatic correlation term boosts this impro- complexes that the rigid-body docking runs indicated wdédnt-
vement to 28 within the top 20. Applying a similar ligand coast rinsically difficult to dock predictively (specifically 1G8l, 1KTZ,
further improves the success rate to 48 in the top 20 and 3%ein t 1MLO, 1BJ1, 1QFW, 1KKL, and 1DE4).
top 10 for shape only correlations, or 45 in the top 20 and 3%en In order to compare such trends more objectively, Table 8-pre
top 10 for shape plus electrostatics. In other words, thetrelstatic ~ ents overall average results for each set of calculatiorse Hve
component helps significantly to identify the general diagion of calculate the mean rank using the mean of the logarithm afathie

the binding mode, and it can also help to distinguish a nativa
orientation from amongst high ranking shape-based otients
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(MLR) of each first acceptable hit according to:

No

MLR = exp{NL > In(min(Rank;, 1000))},  (44)
c i=1

Ravichandran, V., Schneider, B., Thanki, N., Weissig, Hestbrook, J. D., and
Zardecki, C. (2002). The protein data baricta. Cryst., D58, 899-907.
Biedenharn, L. C. and Louck, J. C. (1983ngular Momentum in Quantum Physics.
Addison-Wesley, Reading, MA.
Chen, R., Li, L., and Weng, Z. (2003). ZDOCK: an initial-stagrotein-docking
algorithm. Proteins: Sruct. Func. Genet., 52, 80-87.

where N¢ is the number of complexes in each Benchmark cate-bominguez, C., Boelens, R., and Bonvin, A. M. J. J. (2003).CHYOCK: a protein-

gory. Limiting poor results to a value of 1000 in this formielps
to prevent outliers from adversely biasing the overall scétence
the MLR score ranges from 1 (rank 1 hits for all complexes)oQl
(no hits for any complex). The MLR figures in Table 3 readilpwsh
the benefit of using just one, or preferably two, loose camnsts
to enrich the number of high ranking predictions in each Benc
mark category. This benefit is most dramatic in the RigidyBod
category, although using two constraints also signifigagrthances
the results for both the Medium Difficulty and Difficult categes.

4 CONCLUSION

Analytic GF expressions have been presented for calcglatunti-
dimensional multi-property rotational FFT docking coat@ns.
Scaling Euler angle ranges onto the natural period of thegtBVi-
des a straight-forward way to accelerate the calculatiaitafocus
the correlation around the region(s) of interest. This atshuces
overall memory requirements and, for the first time, allo®sF-T

docking to be performed on an ordinary PC. Here, 3D shapg-onl

and shape plus electrostatic FFTs are found to be aroureltimres
faster than the 1D FFT previously implementedHex but, surpri-

singly, 3D FFTs are also often faster than 5D FFTs. On therothe

hand, multiple properties may be correlated simultangoinsthe
5D FFT, and this is expected to be particularly advantagedien
calculating high order correlations of multi-term knowdedbased
protein-protein interaction potentials.

Currently, a two-stage search protocol using 3D shape-mbay

tional FFT scans wittiL=20 followed by 1D shape plus electrostatic
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