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Abstract. To successfully assimilate data from a new observ-

ing system, it is necessary to develop appropriate data selec-

tion strategies, assimilating only the generally useful data.

This development work is usually done by trial and error us-

ing observing system experiments (OSEs), which are very

time and resource consuming. This study proposes a new,

efficient methodology to accelerate the development using

ensemble forecast sensitivity to observations (EFSO). First,

non-cycled assimilation of the new observation data is con-

ducted to compute EFSO diagnostics for each observation

within a large sample. Second, the average EFSO condition-

ally sampled in terms of various factors is computed. Third,

potential data selection criteria are designed based on the

non-cycled EFSO statistics, and tested in cycled OSEs to

verify the actual assimilation impact. The usefulness of this

method is demonstrated with the assimilation of satellite pre-

cipitation data. It is shown that the EFSO-based method can

efficiently suggest data selection criteria that significantly

improve the assimilation results.

1 Introduction

Improvements in numerical weather prediction (NWP) de-

pend fundamentally on the efficient assimilation of avail-

able observations. Technological advances in remote sens-

ing have introduced a growing number of new observing sys-

tems. However, in most cases, assimilation of a new observ-

ing system is a difficult task: naively assimilating every ob-

servation usually degrades the forecasts. It is necessary to

implement an appropriate data selection process, such as se-

lection based on channels, locations, data quality flags, and

background conditions, to assimilate mostly useful data that

improve model forecasts. Sometimes this data selection pro-

cess is called, or overlapped with the process of, quality con-

trol (QC). However, the “intrinsic” quality of the observa-

tional data is usually not the only reason for their “useful-

ness” in data assimilation (DA). Therefore, in this article, we

use a more general term “data selection criteria” to refer to

all data selection processes prior to the assimilation of a data

set.

A common approach to test the impact of assimilating a

new set of observations is to perform observing system ex-

periments (OSEs), which compare two otherwise identical

experiments, one which includes the assimilation of the new

observing system (denoted TEST) and the other which does

not (denoted CONTROL). This approach has a serious short-

coming: the signal from new observations in TEST is ob-

scured by the presence of the many observations that are al-

ready assimilated in CONTROL, making it difficult to dis-

cern the impact of the newly assimilated observations. As a

result, in order to detect statistically significant signals, it is

usually required to conduct experiments over a long period

of time (Geer, 2016). This makes any trial-and-error tuning

of the data selection criteria by OSEs computationally very

expensive and slow. Methods to accelerate this assimilation

development processes are thus needed.

Forecast sensitivity to observations (FSO) is a diagnostic

technique that allows for estimating how much each individ-

ual observation improved or degraded the forecast. It was
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introduced by Langland and Baker (2004) for a variational

DA system using an adjoint formulation. This technique was

then adopted in many operational and research NWP sys-

tems (e.g., Cardinali, 2009; Gelaro and Zhu, 2009; Ishibashi,

2010; Lorenc and Marriott, 2014; Zhang et al., 2015) and

has turned out to be a powerful diagnostic tool. Its ensem-

ble formulation, ensemble forecast sensitivity to observations

(EFSO), was introduced by Liu and Kalnay (2008) and Li

et al. (2010) for the local ensemble transform Kalman filter

(LETKF; Hunt et al., 2007). It was then refined by Kalnay et

al. (2012) so that it is applicable to any formulation of ensem-

ble Kalman filter (EnKF), and it is simpler, easier to imple-

ment, and more accurate than the previous ensemble formu-

lations. Ota et al. (2013) successfully implemented this new

formulation in a quasi-operational global EnKF system of

National Centers for Environmental Prediction (NCEP), and

Sommer and Weissmann (2014, 2016) applied the method

to a regional convective-scale LETKF system. Compared to

the adjoint-based FSO, one great advantage of the ensemble-

based EFSO method is that it does not require the tangent

linear model, making implementation easier, especially for

moist processes that are very difficult to linearize. However,

the approximation of nonlinear error propagation using the

ensemble error covariance with a limited ensemble size may

introduce some errors. To suppress the spurious correlations,

spatial localization of the covariance is needed in EFSO. The

covariance localization further leads to the potential neces-

sity of advection of the localization function, although this

is technically easily solvable (Kalnay et al., 2012; Ota et al.,

2013).

Since the (E)FSO method can estimate the assimilation

impact of any each observation at the same time, it is

much more economical than conducting many OSEs, mak-

ing the idea of using (E)FSO to aid in assimilation devel-

opment attractive. However, several characteristics of FSO

may reduce the effectiveness of this approach. For exam-

ple, Todling (2013) pointed out that the typically used 24 h

forecast error reduction measured by a linearized total en-

ergy norm in FSO may not suitably reflect the general impact

on forecasts through the 6 h cycle DA. In addition, the use

of analyses made by the system itself as the verifying truth

and the validity of the linear assumption in the adjoint model

(or ensemble error covariance) can further make the (E)FSO

estimates inaccurate. Gelaro and Zhu (2009) also discussed

several differences between the FSO and OSEs. They com-

pared the observation impacts estimated by FSO with those

obtained from actual data-denial OSEs and concluded that

they were only in reasonable agreement if the relative impact

of a subset of observation to the total impact was considered.

Therefore, the (E)FSO methods have been used mostly to

monitor the performance of operational systems rather than

to aid the assimilation development.

However, recent studies have demonstrated that it is indeed

possible to use the EFSO information to detect and reject

detrimental observations and improve the forecasts. Ota et

al. (2013) showed that by applying EFSO to relatively small

horizontal regions, observations that cause significant fore-

cast degradation can be identified. Following their achieve-

ment, Hotta et al. (2017a) proposed a novel QC algorithm,

termed “Proactive QC”, which detects detrimental observa-

tions after only 6 h from the analysis using EFSO and then

repeats the analysis and forecast without using the identified

data. They also showed that EFSO is applicable not only to a

pure EnKF but also to hybrid variational-ensemble DA sys-

tems, and that the EFSO results are rather insensitive to the

choice of verifying truth and evaluation lead time. The proac-

tive QC is a method to apply EFSO online in DA cycles,

which can adapt to the latest changes of the observing sys-

tems. However, since it requires future observation to com-

pute the EFSO, it is applicable only to improve the “final

analysis” but not to improve the “early analysis” that pro-

vides initial conditions to the extended forecasts.

In this study, we also explore the use of EFSO for observa-

tion selection (or QC), but in an offline approach. In contrast

to the proactive QC, the EFSO is computed by offline as-

similation of the data from a new observing system over a

long period, and then the statistics of these EFSO samples

are used to efficiently determine optimal data selection cri-

teria for the new observing system. Section 2 describes the

EFSO algorithm. Section 3 outlines our proposed method-

ology using EFSO to avoid expensive trial-and-error OSEs

in the assimilation development. In Sect. 4, the method is

demonstrated with the assimilation of a global precipitation

data set, known as TRMM Multisatellite Precipitation Anal-

ysis (TMPA; Huffman et al., 2007, 2010). Section 5 summa-

rizes this study and concludes with a discussion.

2 EFSO formulation

This section briefly reviews the EFSO formulation follow-

ing Kalnay et al. (2012). Let us assume that our DA system

has an assimilation window of 6 h and that we wish to quan-

tify contributions from each of the observations assimilated

at time 0 to the reduction (or increase) of the error of the

forecast t hours later. Let xt |−6 and xt |0 denote the ensemble

mean forecasts valid at the evaluation time t that are initial-

ized, respectively, at time −6 and 0 (that is, before and after

the assimilation at time 0), x
v
t denote the verifying state at

time t , and C denote a positive definite matrix that defines

the forecast error norm. The change of the forecast errors

due to the assimilation is measured by

1e2 = e
T
t |0Cet |0 − e

T
t |−6Cet |−6, (1)

where

et |0 = xt |0 − x
v
t , (2)

et |−6 = xt |−6 − x
v
t (3)

are the forecast errors after and before the assimilation, re-

spectively. In the EnKF formulation, Kalnay et al. (2012)
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showed that Eq. (1) can be approximated as

1e2 ≈ δyT
∂
(

1e2
)

∂y
, (4)

where

∂
(

1e2
)

∂y
=

1

K − 1
R−1YaX

f T

t |0 C
(

et |0 + et |−6

)

(5)

(cf. Eq. 6 in Kalnay et al., 2012). Here K is the ensem-

ble size, and R is the observation error covariance matrix.

Ya = HXa is the matrix of analysis perturbations in observa-

tion space where H is the Jacobian of the observation oper-

ator H , and Xa is the matrix made up with K column vec-

tors representing the analysis perturbation at time 0. In prac-

tice, the Ya can be computed either by applying the obser-

vation operator to the analysis members, or by applying the

EnKF analysis equation to Yb = H(Xb
0|−6) when the former

method is not applicable. X
f

t |0 is like Xa but with each column

vector representing the ensemble forecast perturbation valid

at time t initialized at time 0. δy is the observation-minus-

background (O−B) innovation vector at time 0 defined by

δy = y
o − H(x0|−6), where y

o is the column vector com-

posed of the observations assimilated at time 0.

In practice, as with any EnKF with a small ensem-

ble size compared with the rank of the covariance, co-

variance localization is necessary. We need to localize

the (cross-)covariance 1
K−1

YaX
f T

t |0 so that Eq. (5) becomes

∂
(

1e2
)

∂y
=

1

K − 1
R−1

[

ρ ◦

(

YaX
f T

t |0

)]

C
(

et |0 + et |−6

)

,

(6)

where the symbol ◦ represents element-wise multiplication

(Schur product), and ρ is a matrix whose j th row is a local-

ization function around the j th observation.

Equation (4) can be interpreted as an inner product of the

innovation vector δy and the sensitivity vector
∂
(

1e2
)

∂y
, so that

the contribution from a single observation, say the lth ele-

ment of the observation vector y
o, can be expressed as

(

1e2
)∣

∣

∣

(yo)l

≈ (δy)l

[

∂
(

1e2
)

∂y

]

l

. (7)

This is the EFSO estimate of the impact of a single observa-

tion (yo)l onto the t hour forecast.

The EFSO can be computed based on different error

norms. In this study, we use both a dry total energy norm

and a moist total energy norm (Ehrendorfer et al., 1999). The

generic moist total energy norm is defined as

e
T Ce =

1

2

1

S

∫

S





1
∫

0

(

u′2 + v′2 +
Cp

Tr
T ′2 +

L2

CpTr
q ′2

)

dσ

+
RdTr

P 2
r

P ′2
s

]

dS, (8)

where S represents the target region, σ is the vertical sigma-

coordinate, and u′, v′, T ′, q ′, and P ′
s denote, respectively,

zonal and meridional wind, temperature, specific humidity,

and surface pressure of the perturbation e. Cp, Rd, and L

are the specific heat of the air at constant pressure, the gas

constant of the dry air, and the latent heat of condensation

per unit mass, respectively. Tr and Pr are the reference tem-

perature and surface pressure, for which we use constant val-

ues of 280 K and 1000 hPa, respectively. The dry total energy

norm is defined as in Eq. (8) but excluding the moisture term,
(

L2/CpTr

)

q ′2.

3 Methodology to use EFSO for developing data

selection criteria

The objective is to accelerate the process to determine obser-

vation selection criteria with which data from a new observ-

ing system can be effectively assimilated through an offline

EFSO calculation. To achieve this, some important charac-

teristics of the (E)FSO need to be first noted.

It has been shown that relative values of the (E)FSO

among different sets of observations can be reasonably ac-

curate compared to the true forecast impact (Gelaro and Zhu,

2009; Ota et al., 2013), despite some limitations (Gelaro and

Zhu, 2009; Todling, 2013; Kalnay et al., 2012). However, it is

important to note that the EFSO calculation assumes a given

background state (first guess) x0|−6, a given set of observa-

tions y
o assimilated at the analysis time, and a given verify-

ing state x
v
t at the evaluation time. If any of them change, the

EFSO for individual observations also changes. Therefore,

we should not consider EFSO some kind of “intrinsic prop-

erty” or “quality” of the observation itself. The EFSO de-

pends on the background state and the other observations as-

similated at the same time. Adding a new type of observation

may decrease the impact of the others. Particularly, an impor-

tant consideration for our objective is that if cycled DA ex-

periments are performed with different sets of observations,

the changes in the background state can accumulate and thus

one cycled DA experiment becomes different from another.

In these circumstances, the EFSO value of a single obser-

vation is subject to stochastic fluctuations. To extract useful

information, computing statistics over a sufficient number of

observations becomes necessary.

In the method of proactive QC (Hotta et al., 2017a), since

the EFSO is computed following each (online) DA cycle,

the above conditions are mostly met. Specifically, the back-

ground state does not change when the data that passed
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the EFSO-based QC are assimilated again, which makes the

EFSO for individual observations useful. However, when the

EFSO is computed offline (i.e., independent of the cycled

OSEs), EFSO statistics over many observations need to be

made. In addition, to make the EFSO as close to the true

forecast impact as possible, the changes of such conditions

should be minimized. With these caveats in mind, we pro-

pose the procedure for using EFSO in the assimilation devel-

opment as follows.

3.1 Step 1: computing EFSO samples for the new

observing system using an offline DA

The flowchart in this step is shown in Fig. 1. Firstly, the

CONTROL experiment is conducted, running DA cycles

without using the new observing system, just as in the OSE

framework. The ensemble first guesses (blue lines in Fig. 1)

have to be saved at this time. Next, initiated from every one or

several cycles in CONTROL, an “offline” (i.e., non-cycled)

DA is performed (purple dotted lines in Fig. 1), assimilating

all data from the new observing system (with no or mini-

mal data screening) in addition to those assimilated in the

CONTROL. Using a 6 h evaluation time, EFSO for each sin-

gle observation from the new observing system is then com-

puted using the formulation described in Sect. 2, which in-

volves additional 6 h ensemble forecasts from the non-cycled

analyses (red lines in Fig. 1) and an ensemble mean forecast

from the first guess (cyan lines in Fig. 1). Hotta et al. (2017a)

showed that a short 6 h evaluation time for EFSO is sufficient,

which is good for saving computational cost and minimiz-

ing the nonlinear effects. Note that screening (QC) the new

observations should be avoided in this offline assimilation

because we want to obtain EFSO for all new observations,

whether they improve the forecast or not. The offline assim-

ilation in each cycle is independent: once the EFSO compu-

tation is done, the offline analyses are dropped (not cycled).

A large sample of the single-observation EFSO data is thus

collected from these multiple offline assimilation cycles.

3.2 Step 2: investigating the EFSO statistics for

possible data selection strategies

Having the samples of EFSO for the new observations, we

assess their average impacts, such as the average EFSO for a

single observation (hereafter “per-obs EFSO”) or the rate of

observations having positive impact (negative change in fore-

cast errors), conditionally sampled based on various factors

that could affect the assimilation impact of the observations.

These factors should be simple so that they can be poten-

tially used to formulate regular data selection criteria in the

assimilation process. Examples of these factors can include:

(1) geographical or vertical locations, (2) local time or phase

of the diurnal/seasonal cycles, (3) channels for satellite radi-

ance observations, (4) any kind of data quality flags provided

with the data, (5) observed values or O−B departures, (6) in

an ensemble DA system, statistical properties from the back-

ground ensemble, such as the number of precipitating mem-

bers if assimilating precipitation, and (7) other meteorolog-

ical conditions such as presence or absence of precipitation

or clouds. Taking the average impacts from large samples

reduces the stochastic fluctuations. These results tell us the

relative usefulness in the assimilation among the new obser-

vations in terms of the chosen factors. Note that, as discussed

before, the EFSO, which can be computed with various error

norms, is not precisely identical to the actual forecast impact

in the NWP, so it should not be expected that a set of pre-

cise optimal data selection criteria can be readily determined

from the EFSO results. However, based on the comprehen-

sive EFSO information with respect to many different fac-

tors, we can propose some data selection strategies that can

be used in the assimilation of the new data, by keeping ob-

servations leading to larger beneficial average EFSO impacts

and rejecting observations leading to smaller or even detri-

mental average EFSO impacts.

3.3 Step 3: verifying the actual forecast impact by

OSEs

The data selection criteria proposed from Step 2 using the

EFSO statistics need to be finally tested in regular OSEs,

where subsets of new observations passing the criteria are

assimilated in addition to those assimilated in CONTROL

with DA cycles. The development is thought to be successful

if the forecasts in TEST are better than that in CONTROL.

If the forecasts are not improved, fine tuning of the selec-

tion criteria or other possible selection strategies suggested

from Step 2 can be tried. This step is similar to running trial-

and-error TEST experiments described in Sect. 1 without

any EFSO information; however, with the valuable guidance

from the EFSO statistics, the numbers of trials needed to ob-

tain the optimal data selection criteria should be considerably

reduced.

3.4 Notes on the methodology

We note that the above design is intended to increase the

representativeness of the offline computed EFSO. The si-

multaneous assimilation of all observations already used in

CONTROL minimizes the change in the observation set y
o,

and the non-cycled design minimizes the change in the back-

ground state x0|−6 due to potentially many detrimental obser-

vations in the new observing system. At this initial develop-

ment stage, it is assumed that we do not know a good way to

effectively assimilate the new data, so it is better to avoid ac-

cumulating their possibly detrimental effects to background

states with cycled DA. In addition, it would be desirable, if

possible, to use another analysis data set that is independent

of CONTROL as the verifying truth to compute the EFSO, so

that the errors caused by the undesirable correlations between
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Figure 1. Flowchart of the offline non-cycled EFSO computation.

the forecasts and the verifying analyses are avoided (Todling,

2013).

We further note that if the OSE results are not satisfactory,

an iteration of the entire three-step procedure can be con-

sidered. The procedure is repeated by letting the new CON-

TROL assimilate the observations used in the previous CON-

TROL plus the new observations that pass the first-order data

selection criteria derived in the previous time. This brings the

new background state x0|−6 in the EFSO calculation closer

to that in actual OSEs, allowing for more accurate estimation

of the observation impacts, which should benefit the deter-

mination of the final optimal data selection criteria.

4 A demonstration with TMPA precipitation

assimilation

In order to test the methodology proposed above, we use a

global satellite precipitation data set, TMPA (Huffman et al.,

2007, 2010), as an example of a new observing system, and

demonstrate how this method can work to efficiently formu-

late appropriate data selection criteria for the new data.

4.1 Background on the precipitation assimilation

studies

Satellite precipitation estimates, such as TMPA, have not

been widely used in DA because of several problems, in-

cluding the non-Gaussian error distribution associated with

precipitation, the error covariance between precipitation and

other model variables, and the substantial model and obser-

vation errors (e.g., Errico et al., 2007; Tsuyuki and Miyoshi,

2007; Bauer et al., 2011; Lien et al., 2016a). Assimilation

of all precipitation data without special treatments usually

leads to no impacts or negative impacts. In spite of these

issues, Lien et al. (2013, 2016b) and Kotsuki et al. (2017)

conducted a series of experiments, from an idealized config-

uration to realistic systems, to show that it is possible to im-

prove the medium-range forecasts in a global model by the

assimilation of global precipitation data. The keys in their

experiments are to use

1. an LETKF to exploit the flow-dependent background

error correlation between prognostic variables and di-

agnosed precipitation;

2. a Gaussian transformation of the precipitation variable,

which mitigates the inherent non-Gaussianity of precip-

itation data;

3. proper data selection criteria to exclude the “bad” obser-

vations that we cannot effectively use, including the im-

portant requirement that enough ensemble background

members should have non-zero precipitation (Lien et

al., 2013).

The great difficulty of assimilating precipitation data makes

it an ideal example to demonstrate our proposed method to

accelerate the assimilation development for a new observing

system.

4.2 Experimental design

We use the same system as in Lien et al. (2016b), assimi-

lating the global TMPA data into a low-resolution version

of the NCEP Global Forecast System (GFS) model with the

LETKF. The model resolution is spectral T62 with 64 verti-

cal levels. Thirty-two ensemble members and the 6 h assim-

ilation cycle are used. The CONTROL experiment assimi-

lates the rawinsonde observations processed in the NCEP

Global Data Assimilation System (i.e., contained in the

NCEP PREPBUFR data set). It is conducted for 13 months

from 00:00 UTC 1 December 2007 to 00:00 UTC 1 Jan-

uary 2009. It is identical to the “RAOBS” experiment in Lien

et al. (2016b), where more details can be found. This CON-

TROL serves as the basis of the following non-cycled EFSO

calculation (Step 1), and as the reference of the cycled OSEs

(Step 3). We note that in an operational system already as-

similating more data, the improvement that additional assim-

ilation of precipitation can achieve should be smaller.

www.nonlin-processes-geophys.net/25/129/2018/ Nonlin. Processes Geophys., 25, 129–143, 2018
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For the TMPA precipitation assimilation, we also em-

ploy all the techniques developed in Lien et al. (2016a, b).

Namely, the TMPA data are upscaled to the low-resolution

T62 GFS grids and temporally integrated into 6 h accu-

mulation amounts. The Gaussian transformations for the

model/observation precipitation variables (i.e., the “GTbz”

method in Lien et al., 2016b) are applied. Other details of the

experimental configuration and the Gaussian transformation

method are discussed in Lien et al. (2016b). These techniques

are essential to achieve basic satisfactory performance of the

TMPA assimilation; however, even with them, assimilating

all available data does not lead to an optimal result. Lien et

al. (2013, 2016b) determined the data selection criteria that

can further improve the assimilation results using many trial-

and-error OSEs. Here we assume no knowledge of the selec-

tion criteria, and we derive them using the proposed offline

EFSO methodology.

4.3 Step 1: computing EFSO samples for the new

observing system using an offline DA

As described above, the CONTROL experiment is cycled

assimilation of rawinsonde observations. We then perform

non-cycled offline assimilation of both the rawinsonde and

TMPA to compute EFSO samples of the TMPA data, fol-

lowing the schematic in Fig. 1. Almost all available TMPA

data are assimilated except those few whose innovation (dif-

ference between the observation and the model background

value,

∣

∣

∣
y

o − H(xb)

∣

∣

∣
) is 5 times greater than the observa-

tion errors. The European Centre for Medium-range Weather

Forecasts (ECMWF) ERA-Interim reanalysis is used as an

independent verifying truth for EFSO computation. We fol-

low the suggestion in Hotta et al. (2017a) to evaluate the

forecast sensitivity at 6 h forecast time, while the localization

function is not advected in this study. We assume that the 6 h

forecast window is short enough so that the impact of local-

ization advection is not essential. EFSO measured by both

the moist total energy and dry total energy norms are com-

puted. We note that for this purpose, EFSO has an advantage

with respect to FSO, because FSO requires an adjoint model

which has difficulties with moist processes (Janiskova and

Cardinali, 2016); in addition, the use of the Gaussian trans-

formation for assimilating precipitation in our experiments

should also cause difficulties if using an adjoint method. We

perform the offline assimilation and collect EFSO samples

once every five cycles (30 h) over the entire year of 2008.

Only every five cycles are computed for EFSO diagnostics

in order to save computational cost while avoiding sampling

the same hour in all the diurnal cycles. In total, we collect

EFSO diagnostics for every single precipitation observation

in 293 offline cycles, amounting to about 2.9 × 106 samples.

The EFSO is computed using naturally the same number of

ensemble members, 32, as in the DA experiments. It may

be speculated whether such a small ensemble size is enough

to produce useful EFSO results; thus, we also compute the

EFSO with even fewer ensemble members to examine if the

results significantly change, which will be discussed later.

4.4 Step 2: investigating the EFSO statistics for

possible data selection strategies

The EFSO statistics can be conditionally computed based

on various factors that can be potentially used to formulate

data selection criteria. Based on the characteristics of the pre-

cipitation data, Lien et al. (2013) suggested that when there

are too many non-precipitating background members, the en-

semble background error covariance may not contain enough

useful information for effective DA. Other factors that may

affect the effectiveness of assimilation include the observed

precipitation values, particularly whether they are zero or

not, and the geographic locations of the observations. There-

fore, we calculate the EFSO statistics based on these factors.

Figure 2 shows the per-obs EFSO (Fig. 2a, b) and the rate

of observations with positive impacts (Fig. 2c, d), grouped

by the number of precipitating members in the background.

The temporally averaged total EFSO (i.e., total EFSO di-

vided by the number of offline cycles, 293) in one cycle is

also shown (bars in Fig. 2e, f), as well as the total observa-

tion numbers (in all 293 times) in each group (red lines in

Fig. 2e, f). First, it is found that the EFSO measured by the

moist total energy norm shows both larger per-obs forecast

error reductions and higher positive impact rates than that

measured by the dry total energy norm. This is an encour-

aging result, but it is not unexpected because the precipita-

tion observation should contain useful information related to

moisture. However, the results also show that the assimila-

tion of precipitation can also improve the other dynamical

variables if there are at least several (greater than about 10)

precipitating background members, as seen in the EFSO val-

ues with the dry total energy norm. An explanation of these

results is that when fewer members are precipitating, the as-

similation is more difficult because there are fewer ensem-

ble members with dynamics closer to the truth, and therefore

the analysis increment is more uncertain. For both norms,

the per-obs EFSO reaches its maximum when the number

of precipitating members is around 22 (Fig. 2a, b). When

the precipitating members are too many, the per-obs EFSO

slightly reduces, possibly because the background states are

already on average more accurate in this situation. Measured

with the moist (dry) total energy norm (Fig. 2c, d), the per-

centages of beneficial observations increase gradually from

about 52 % (50 %) when the number of precipitating mem-

bers is less than 16 to about 54 % (53 %) when it is more

than 20, and the overall beneficial rate for all precipitation

observations is 53.5 % (51.8 %), which is consistent with the

general experience that this rate is usually slightly above 50%

(e.g., Gelaro et al., 2010). When accumulating all observa-

tions in one cycle, the total beneficial impact shown by the

total EFSO (i.e., per-obs EFSO times observation numbers;
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bars in Fig. 2e, f) increases roughly monotonically with the

number of precipitating members, due to the effect of obser-

vation numbers: except for the case of no precipitation in all

members, there are more observations when there are many

precipitating members (red lines in Fig. 2e, f).

In addition, the EFSO statistics using the moist total en-

ergy norm are also computed separately under the condition

of nonzero precipitation in the observation (hereafter R > 0;

first column in Fig. 3) and zero precipitation in the obser-

vation (hereafter R = 0; second column in Fig. 3). For R > 0

observations, the average per-obs EFSO (Fig. 3a) is entirely

beneficial (in terms of error reduction), but it is most bene-

ficial when about half of the ensemble forecasts are precip-

itating and half are not, indicating that the observations of

precipitation are most useful when there is high uncertainty

in the forecasts. The percentage of the R > 0 observations

that are beneficial (Fig. 3c) is astonishingly high, reaching

almost 70 % under the condition that the number of precipi-

tating members is between 5 and 13. Similarly it shows lower

percentages with fewer or more precipitating members, but

still much above 50 %. We note that in a realistic data assim-

ilation system such very high beneficial rates should only be

found when taking subsets of observations as in this example.

In addition, the relatively inaccurate rawinsonde-only CON-

TROL, which allows the precipitation observations to con-

tribute a larger amount of information, would be another rea-

son for this high beneficial rate. With a modern operational

system, such extremely high rates would be more difficult to

see. The situation is quite different for R = 0 observations:

if the number of precipitating ensemble members is 20 or

less, assimilating the R = 0 observations has a detrimental

effect, and it only becomes beneficial when most of the en-

semble members are (wrongly) precipitating (Fig. 3b). The

percentage of beneficial R = 0 observations is less than 50 %

unless essentially all the ensemble members are precipitating

(Fig. 3d).

To validate if these EFSO statistics computed based on

the 32-member ensemble are robust, we compute the same

EFSO statistics using only the first 8, 16, and 24 members.

We note that this verification only varies the number of en-

semble members for the EFSO computation but not that in

the (offline) DA; namely, the precipitation observations are

still assimilated using 32 members, but the EFSO is com-

puted (Eq. 6) using ensemble forecasts of fewer members to

the evaluation time (X
f

t |0). Figures like Fig. 3 but computed

from fewer members are shown in Supplement. Comparing

Fig. 3 and Figs. S1–S3 in the Supplement, we conclude that

the average per-obs EFSO statistics over the large samples

hardly change even with a very small ensemble size, 8 mem-

bers, but the rates of beneficial observations become gener-

ally closer to 50 % with fewer members. We think that the

insensitivity of per-obs EFSO to the ensemble sizes is due to

the average over large samples from multiple cycles, which

overcomes the errors in individual observations. In contrast,

the beneficial rates are more sensitive to the ensemble size

because small errors in near-neutral impact observations can

easily change their signs. However, for the purpose of this

work, since the important information we would like to know

from these EFSO statistics is just the qualitative usefulness

among different groups of observations, an ensemble size of

32 or even fewer is shown to be enough for the EFSO com-

putation given the sufficient sample size.

Next, Fig. 4a, b shows the EFSO statistics (using the moist

total energy norm) with respect to the geographic locations.

Overall, the areas which benefitted the most from the pre-

cipitation assimilation are the storm-track regions, located

within 30–50◦ N and ◦ S over the three major oceans. Most

of the ocean regions show positive impacts and positive im-

pact rates of greater than 50%. The marine stratocumulus

regions are an exception, showing detrimental impacts over

the ocean. The land regions show marginal or negative im-

pacts. These two different measures show generally similar

patterns, but the detrimental regions over the land are more

clearly highlighted with the positive impact rate. Here we

show an interesting comparison of these EFSO maps to the

correlation map between the 6 h accumulated precipitation

in the 3 to 9 h T62 GFS model forecasts and the TMPA ob-

servations at the corresponding times (Fig. 4c), which was

obtained in Lien et al. (2016a). Note that Fig. 4c is similar

to Fig. 10 in Lien et al. (2016a), but for all seasons com-

bined. This correlation score represents a simple measure of

the statistical “consistency” between the model and the ob-

servation climatology; details on this correlation calculation

are described in Lien et al. (2016a). It was hypothesized in

Lien et al. (2016a) that the precipitation observations dis-

tributed over the regions with higher correlations could be

more useful for data assimilation, but that the data over very

low correlation regions would be difficult to use mainly be-

cause of large model errors. Here a great similarity is found

between the average EFSO map (Fig. 4a) and the correla-

tion map (Fig. 4c), indicating that the hypothesis in Lien et

al. (2016a) was reasonable, and that the effectiveness of the

precipitation assimilation is in fact strongly dependent on the

geographic locations, which can be explained by the sys-

tematic inconsistency between model and observed precip-

itation (Lien et al., 2016a). We note again that the intrinsic

quality of each observation is not the only reason for its good

or bad EFSO or assimilation impact.

4.5 Step 3: verifying the actual forecast impacts by

OSEs

With the guidance from the EFSO statistics obtained in

Step 2, we propose several data selection criteria and ver-

ify their actual forecast impact by OSE. We focus on the two

factors on which the EFSO largely depends: the number of

precipitating members in the background and whether the ob-

served precipitation values are zero or not. First, only the im-

pact of the number of precipitating members is considered.

We know from the EFSO statistics (Figs. 2 and 3) that the
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Figure 2. EFSO statistics for TMPA observations grouped by the number of precipitating members in the background and measured by (a,

c, e) the moist total energy norm, and (b, d, f) the dry total energy norm in 6 h forecasts during the year 2008. (a, b) Average per-obs EFSO

(10−4 J kg−1). (c, d) Percentage of observations with positive impacts. (e, f) Total EFSO per cycle (J kg−1). Also shown in red curves in (e,

f) are the total numbers of observations (i.e., EFSO samples) in all 293 offline cycles (104; secondary y axis).

precipitation assimilation may be effective only when there

are enough precipitating members in the model background.

Therefore, a series of OSEs using different thresholds of the

number of background precipitating members for data selec-

tion are performed:

– ALL: all the precipitation observations are assimilated

irrespective of the number of precipitating members.

– 8mR: the precipitation observations are assimilated if at

least eight members are precipitating.

– 16mR: as 8mR but with at least 16 members precipitat-

ing.

– 24mR: as 8mR but with at least 24 members precipitat-

ing.

The experimental settings are summarized in Table 1. The

additional 1mR/24mR experiment guided by the EFSO

statistics and its results will be described later. All these ex-

periments are conducted for the same 13-month period as in

CONTROL, and 5-day forecasts are done every cycle and

verified against the ERA-Interim reanalysis. Considering the

adjustment time required for the changing observation net-

work, the results in the first month are discarded so that the

1-year (2008) results are verified.

Figures 5 and 6 show that the assimilation of precipitation

gives significant positive impacts in the global average for

all these experiments, reducing the errors compared to CON-

TROL. In terms of global root-mean-square errors (RMSEs)

in 24 h forecasts (Fig. 5), it is found that assimilating all

the observations under the requirement that having at least

a subgroup of members be precipitating improves the fore-

casts further, especially in the 500 hPa zonal wind and tem-

perature. The 24mR seems to be the optimal threshold, while

assimilating too many observations (i.e., 8mR and ALL) re-

duces the improvement. We note that although the globally

average per-obs EFSO estimates suggest mostly beneficial

or neutral impacts when at least one member is precipitating

(Fig. 2), especially with the moist total energy norm, using a

stricter criterion (i.e., 24mR) is actually more advantageous

as verified in these cycled OSEs. The 24mR criterion used in

Lien et al. (2016b) was obtained by the trial-and-error ap-

proach; here we re-investigate this data selection criterion

from the EFSO perspective.
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Figure 3. Same as Fig. 2, but for EFSO measured by the moist total energy norm and computed separately for (first column) non-zero

precipitation observations (R > 0) and (second column) zero precipitation observations (R = 0).

Table 1. Settings of CONTROL and all TEST (i.e., ALL, 8mR, 16mR, 24mR, 1mR/24mR) experiments.

Experiment Observation Data selection criteria: minimum

assimilated number of precipitating

background members

For non-zero For zero

Rawinsonde TMPA precip. obs. precip. obs.

CONTROL X

TEST

ALL X X 0 0

8mR X X 8 8

16mR X X 16 16

24mR X X 24 24

1mR/24mR X X 1 24

Figure 6 shows the 5-day forecast RMSEs and biases ver-

sus the forecast time for a subset of experiments. Compared

to CONTROL, the ALL (green) and 24mR (blue) experi-

ments improve the forecasts over the entire 5-day period in

all variables except for 500 hPa temperature at the analy-

sis time in ALL, and the improvement in 24mR compared

to ALL is also clearly seen. The improvement in wind and

temperature is large throughout the 5-day forecasts, while

the benefit of not using the precipitation observations with

fewer precipitating background members (i.e., 24mR) is sig-

nificant in these dynamical variables (Fig. 6d, e). For the

moisture variable, the difference between ALL and 24mR

is much smaller in early forecasts, indicating that the 24mR

criterion is less important for the moisture variable (Fig. 6f).

This is consistent with what we found by investigating the

EFSO statistics with different energy norms: achieving ef-

fective forecast error reduction measured by the dry total

energy norm (which is associated only with the dynamical

variables) requires more background precipitating members

than that measured by the moist total energy norm. Note that

these results are statistically significant as seen by the lighter

color shading associated with each experiment indicating the
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Figure 4. The maps of (a) the average per-obs EFSO (10−4 J kg−1) and (b) the rate (percent) of observations having positive impacts from

the same precipitation EFSO sample (measured by the moist total energy norm) used in Fig. 2. (c) The maps of correlation between the

6 h accumulated precipitation in the 3 to 9 h T62 GFS model forecasts and the TMPA observations at the corresponding times during the

2001–2010 period. This correlation map is similar to Fig. 10 in Lien et al. (2016a), but for all seasons combined. Details on this correlation

calculation are described in Lien et al. (2016a).

95 % significance interval compared to CONTROL based on

a paired-difference t test (e.g., Geer, 2016).

We mentioned that the “24mR” criterion based on the

background members using a single threshold for all ob-

servations was proposed and studied in Lien et al. (2013,

2016b) without employing this offline EFSO guidance, but

the results of the current study clearly show that the EFSO

statistics can indeed help our understanding of why this cri-

terion is so useful. Furthermore, here we will demonstrate the

power of the offline EFSO approach by introducing another

experiment with more detailed data selection criteria which

could only be derived with the information from the EFSO

statistics. Since Fig. 3 indicates that R > 0 observations have

particularly larger beneficial impacts compared to the other

cases, we assimilate all R > 0 observations as long as at least

one member is precipitating (1mR). For R = 0 observations,

these EFSO results suggest that they should not be assimi-

lated unless most of the ensemble members are incorrectly

predicting precipitation (Fig. 3b, d), so we assimilate them

only if at least 24 members are precipitating (24mR). This

experiment is therefore named 1mR/24mR (Table 1).
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Figure 5. One-year global RMSE (verified against the ERA-Interim reanalysis) of (a) 500 hPa u wind (m s−1), (b) 500 hPa temperature (K),

and (c) 700 hPa specific humidity (g kg−1) in the 24 h forecasts for the cycled OSEs. The left axes show the absolute values; the right axes

show the relative improvement to CONTROL in percentage. The thick horizontal lines indicate the RMSE in CONTROL as a reference.

Figure 6. (a–c) RMSE, (d–f) RMSE relative to CONTROL (percent), (g–i) standard deviations of errors (i.e., random errors) relative to

CONTROL (percent), and (j–l) biases during the 5-day forecasts of (a, d, g, j) 500 hPa u wind, (b, e, h, k) 500 hPa temperature, and (c, f, i,

l) 700 hPa specific humidity for the cycled OSEs. They are verified globally against the ERA-Interim reanalysis over a 1-year period. The light

color shading associated with each experiment indicates the 95 % significance interval compared to CONTROL based on a paired-difference

t test.
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The OSE result (5-day global forecast impact) of this two-

threshold data selection criteria can also be seen in Figs. 5

and 6. This 1mR/24mR experiment based on the offline

EFSO guidance outperforms any single-threshold experi-

ment and also all the results obtained in Lien et al. (2016b)

without employing the EFSO guidance. The improvement is

particularly large in the 500 hPa temperature forecast, show-

ing an additional ∼ 3 % reduction in the RMSE compared to

24mR in the 24 h forecasts (Fig. 5b). Furthermore, although

the EFSO only estimates the 6 h forecast error reduction,

the forecast improvement from using this data selection lasts

throughout the 5 days (Fig. 6).

To investigate further the impact of the 1mR/24mR exper-

iments, we show the biases compared to the ERA-Interim

reanalysis in Fig. 6j–l. The magnitudes and changes of bi-

ases from the precipitation assimilation are rather small com-

pared to the RMSE for 500 hPa u wind and 700 hPa moisture.

However, the magnitude of 500 hPa temperature bias is large

in our model compared to its RMSE, and the precipitation

assimilation corrects it in the longer forecast time. This can

be additionally examined by looking at the standard devia-

tion of errors which represents “debiased RMSEs” or “ran-

dom errors”, shown in Fig. 6g–i. In this bias-free verifica-

tion, the 500 hPa temperature improvement in all the precip-

itation assimilation experiments over CONTROL becomes

smaller than that measured by the RMSE, and the improve-

ment of 1mR/24mR over 24mR also becomes smaller, be-

cause a portion of this improvement in the RMSE is achieved

by reducing the bias. For 500 hPa u wind and 700 hPa mois-

ture, their errors are much less affected by removing their

biases, meaning that their biases are negligibly small com-

pared to the RMSEs. It is also noted that the magnitude

of the improvement in 500 hPa temperature becomes simi-

lar to that in 500 hPa u wind, which might be implied by

geostrophic balance. Nonetheless, the 1mR/24mR is still bet-

ter than 24mR in all variables, indicating the usefulness of

our EFSO methodology, despite the existence of the model

bias.

The regional verifications are shown in Fig. 7. The im-

provement from using 1mR/24mR is seen in most of the ver-

ification regions and variables within the entire 5-day fore-

cast period, so we believe that the optimality of 1mR/24mR

is robust. Note that most of these differences in forecast RM-

SEs are statistically significant (shown by the light color

shading). However, for tropical regions, the 1mR/24mR does

not analyze well the 500 hPa u wind and 700 hPa moisture

(at the analysis time; Fig. 7g, i), but it becomes better than

the other experiments with forecast length, possibly due to

the improvement in other variables/regions at the analysis

time. The improvements in the tropical forecasts made with

1mR/24mR after day 2 are remarkable.

These experiments demonstrate the power of the EFSO ap-

proach to guide the development of the data selection strate-

gies in assimilating new observing systems. We only need

to compute the EFSO from the offline assimilation experi-

ments once, over a sufficiently long period to collect a large

sample, and then the statistics can be done comprehensively

based on many different factors. These statistics can provide

much useful information. For example, it would be unlikely

that one could formulate the 1mR/24mR criteria with just a

few trial-and-error experiments without knowing the EFSO

statistics.

Lastly, we note that we also tried to make use of the geo-

graphical dependence (Fig. 4) of EFSO to formulate the data

selection criteria used in OSEs, such as (1) applying con-

stant geographic masks defined by single thresholds of aver-

age per-obs EFSO values in Fig. 4, used in addition to the

current 24mR or 1mR/24mR criteria and (2) further separat-

ing EFSO statistics in Figs. 2 and 3 to different latitudinal

bands and defining different data selection criteria for them.

However, although the results from these experiments are

similarly good, none of them could outperform 1mR/24mR,

which produces the best results we have obtained.

5 Summary and discussion

A common approach to develop the data selection strate-

gies and criteria for assimilating a new observing system is

to perform OSEs, which is usually very time and resource

consuming. Here, we propose a new methodology based on

the EFSO method that allows us to estimate the forecast im-

pact of each observation. We propose that the EFSO statistics

from a large sample can be used to guide the development of

the data selection criteria in a more straightforward manner

and thus accelerate the development work.

The proposed method consists of three steps:

1. Conducting an offline (not cycled) DA experiment, as-

similating most of available new observational data with

no or minimal screening or QC. From the offline assimi-

lation, compute large samples of per-obs EFSO data for

the new observing system.

2. Computing the average per-obs EFSO and/or the per-

centage of beneficial observations conditionally sam-

pled based on various factors that can be potentially

used to formulate criteria for data selection, such as lo-

cation, time, satellite channels, data quality flags, and

model background conditions. Based on these statistics

indicating the relative forecast impacts by the assimi-

lation of the new observations under different condi-

tions, potential data selection criteria can be proposed

for keeping more beneficial observations.

3. Verifying the actual forecast impact of the data selection

criteria by applying them in cycled OSEs.

We demonstrate this method with the assimilation of TMPA

global satellite precipitation data, which have been studied

by Lien et al. (2016a, b). It is shown that the EFSO ap-

proach supports the data selection criterion proposed in Lien
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Figure 7. Same as Fig. 6, but for RMSE relative to CONTROL (percent) in different verification regions: (a–c) Northern Hemisphere

extratropics (NH; 20–90◦ N), (d–f) Southern Hemisphere extratropics (SH; 20–90◦ S), and (g–i) tropics (TR; 20◦ N–20◦ S).

et al. (2013, 2016b) based on the number of precipitating

members in the model background. In addition, it further pro-

vides useful information for refining the data selection crite-

ria, so that in this study we obtain a result significantly better

than the best obtained by Lien et al. (2016b). This example

shows how the EFSO method can be used to accelerate the

development of an optimal data selection strategy for assim-

ilating new observing systems.

The setup of this demonstrative experiment is intermedi-

ate; compared with the modern operational configuration,

the resolution is too low, and the observation data used in

the CONTROL experiment are much limited, consisting of

just rawinsondes. We believe that the use of this intermedi-

ate setup does not hinder the objective of this study, which

is to demonstrate the methodology of using EFSO to accel-

erate the development of the quality control in data assimila-

tion. However, in an operational system already assimilating

more data, the improvement that additional assimilation of

precipitation can achieve will be smaller. Regarding this as-

pect, we think that this method could indeed still be useful

when abundant observations are already used in CONTROL,

because the guidance provided by EFSO statistics is relevant,

independent information that is not obscured by the existing

observations. Nevertheless, experiments with more realistic

configurations are required to convincingly prove the useful-

ness of this method in the assimilation development with a

state-of-the-art operational NWP system.

Moreover, since this EFSO-based methodology provides

an efficient way to clarify under what conditions observa-

tions are helpful or not, we believe that it should be useful

for instrument and algorithm developers to collaborate with

DA scientists, so that the EFSO information can be used to

improve the quality of the assimilated observations. Such a

collaboration is taking place between scientists at the Univer-

sity of Maryland and the University of Wisconsin, with the

aim of identifying the origin of occasional negative EFSO

impacts of high-latitude MODIS winds.

We note that this method works offline based on the static

data selection criteria derived with the aid of EFSO statistics

in advance of the cycling DA, whereas Proactive QC (Ota et

al., 2013; Hotta et al., 2017a) works online based on the dy-

namical criteria decided by the flow-dependent EFSO diag-

nostics. An important issue that is not covered in this study

is how to assign appropriate observation error variance for

the new observation data. Using an idea similar to EFSO,

Hotta et al. (2017b) presented a new ensemble sensitivity

technique, called ensemble forecast sensitivity to observation

error covariance (EFSR), that allows for estimating how fore-

cast errors would change by perturbing a prescribed obser-

vation error covariance matrix, thereby enabling systematic

tuning of the observation error covariance for new observ-

ing systems. The EFSO-based data selection presented in this

study together with EFSR can thus provide a framework for
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accelerating assimilation development of new observations

aided by the ensemble forecast sensitivity diagnostics.
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