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Abstract

Computational models of complex phenomena are an important resource for scientists
and engineers. However, many state-of-the-art simulations of physical systems are
computationally expensive to evaluate and are black box—meaning that they can be
run, but their internal workings cannot be inspected or changed. Directly applying
uncertainty quantification algorithms, such as those for forward uncertainty propaga-
tion or Bayesian inference, to these types of models is often intractable because the
analyses use many evaluations of the model. Fortunately, many physical systems are
well behaved, in the sense that they may be efficiently approximated with a modest
number of carefully chosen samples. This thesis develops global and local approxima-
tion strategies that can be applied to black-box models to reduce the cost of forward
uncertainty quantification and Bayesian inference.

First, we develop an efficient strategy for constructing global approximations using
an orthonormal polynomial basis. We rigorously construct a Smolyak pseudospectral
algorithm, which uses sparse sample sets to efficiently extract information from loosely
coupled functions. We provide a theoretical discussion of the behavior and accuracy of
this algorithm, concluding that it has favorable convergence characteristics. We make
this strategy efficient in practice by introducing a greedy heuristic that adaptively
identifies and explores the important input dimensions, or combinations thereof. When
the approximation is used within Bayesian inference, however, it is difficult to translate
the theoretical behavior of the global approximations into practical controls on the
error induced in the resulting posterior distribution.

Thus, the second part of this thesis introduces a new framework for accelerat-
ing MCMC algorithms by constructing local surrogates of the computational model
within the Metropolis-Hastings kernel, borrowing ideas from deterministic approxi-
mation theory, optimization, and experimental design. Exploiting useful convergence
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characteristics of local approximations, we prove the ergodicity of our approximate
Markov chain and show that it samples asymptotically from the exact posterior dis-
tribution of interest. Our theoretical results reinforce the key observation underlying
this work: when the likelihood has some local regularity, the number of model evalu-
ations per MCMC step can be greatly reduced, without incurring significant bias in
the Monte Carlo average. We illustrate that the inference framework is robust and
extensible by describing variations that use different approximation families, MCMC
kernels, and computational environments. Our numerical experiments demonstrate
order-of-magnitude reductions in the number of forward model evaluations used in
representative ODE or PDE inference problems, in both real and synthetic data ex-
amples.

Finally, we demonstrate the local approximation algorithm by performing param-
eter inference for the ice-ocean coupling in Pine Island Glacier, Antarctica. This
problem constitutes a challenging domain for inference and an important application
in climate science. We perform simulated inference, comparing synthetic data to pre-
dictions from the MIT General Circulation Model, a state-of-the-art ocean simulation.
The results reveal some information about parameter sensitivity, but we ultimately
conclude that richer data is necessary to constrain the model parameters. In this
example, applying our approximation techniques reduced the cost of the inference by
a factor of five to ten, taking weeks instead of months, providing evidence that our
techniques can make Bayesian inference on large-scale computational models more
tractable.
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Committee Member: Karen E. Willcox
Title: Professor, Department of Aeronautics and Astronautics

Committee Member: Patrick Heimbach
Title: Senior Research Scientist, Department of Earth, Atmospheric and Planetary
Sciences
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Chapter 1

Introduction

In a variety of scientific fields, researchers have developed detailed computational mod-
els that facilitate analysis of real-world systems; examples range from ocean modeling
and atmospheric science to chemical kinetics. Broadly, the field of uncertainty quan-
tification (UQ) is concerned with analyzing the predictions and implications of these
computational models as they interact with randomness or uncertainty. Although in-
creasing computational resources have dramatically improved the physical fidelity of
available models, state-of-the-art models tend to remain expensive—and hence uncer-
tainty quantification with these models can be prohibitively expensive. For example,
consider that Monte Carlo simulation, a foundation for many uncertainty quantifica-
tion algorithms, explores the response of a model by collecting many output samples;
this process multiplies the computational cost of a single model by several orders of
magnitude and makes Monte Carlo analyses infeasible for many systems of interest.

Fortunately, it is often possible to mitigate the expense of UQ analyses (e.g., un-
certainty propagation, global sensitivity analysis, Bayesian inference) by exploiting
the fact that many models are “well-behaved” in the sense of exhibiting some regular-
ity in their parameter dependence. So-called surrogate modeling techniques use this
regularity to efficiently approximate the model, e.g., by constructing an interpolant
or other functional approximation, and thereby reduce the overall cost of evaluating
the model’s behavior. We can understand the savings by splitting the algorithm into
two phases: first, use the structure of the model to efficiently construct an accurate
surrogate approximating the outputs of interest, and second, use the surrogate model
to inexpensively perform the desired UQ analysis. In principle, if the surrogate is
sufficiently accurate, the overall analysis can produce accurate results at dramatically
reduced cost. Moreover, the two phases need not be so distinctly separated, as we
will show in subsequent chapters. This work thus aims to design algorithms that con-
struct and use approximations to accelerate Bayesian inference, as motivated by an
application to the Pine Island glacier in Antarctica.
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1.1 Motivating example: Bayesian inference in the

Pine Island Glacier setting

The Pine Island Glacier (PIG) is an important outlet along the Amundsen coast of
the western Antarctic Ice Sheet (WAIS), which has become a focus for researching the
interaction of the ice and ocean systems [76, 62]. Recent efforts have modeled the ocean
flow in the cavity under Pine Island Ice Shelf and its thermal coupling to the floating
ice shelf within the MIT General Circulation Model (MITgcm), a state of the art ocean
simulator [29]. However, there are significant uncertainties in some parameter values
of this model; to make the model useful, we must infer these parameters from observed
data, in what is sometimes referred to as a calibration procedure.

Classical approaches typically solve an optimization problem to select a single set
of parameters to use with the computational model [67], and while such techniques are
widely used, the selection of a single parameter set can be limiting. In domains where
data is precious and the model is complex, such as the Pine Island setting, we argue
that Bayesian inference provides a richer analysis. Bayesian inference produces a dis-
tribution over the parameters, where the probability of a parameter set is interpreted
as our degree of belief in the parameters values. This distribution provides insights
into how much information is contained in the data, how certain the estimates are,
and what parameters of the system remain coupled.

Unfortunately, performing Bayesian inference on computationally expensive mod-
els, such as the MITgcm, is typically infeasibly expensive. Bayesian inference is com-
monly performed with Markov chain Monte Carlo (MCMC) algorithms, which require
many evaluations of the ocean model to compare the model outputs to observations.
Our objective for this work is to develop approximation algorithms that can be used
to accelerate Bayesian inference, as performed with MCMC, which can be applied to
the PIG problem.

To formally state the problem, begin by assuming that we would like to infer a
vector of parameters θ ∈ Θ ⊆ R

n. We have observed data d ∈ R
d, and a forward

model f : R
n → R

d that simulates the data for an input parameter configuration,
which is assumed to be a computationally expensive model. The computational task
in Bayesian inference is to draw samples from a posterior distribution that specifies
our belief in various possible parameters. The posterior distribution is written with
unnormalized density:

p(θ|d) ∝ L(θ|d, f(θ))p(θ)

where the likelihood, L : Rd × R
d → R

+, is a misfit density that compares the real
and simulated data, and the prior distribution, p : Rd → R

+, specifies our knowledge
of the parameter values before observing the data. MCMC algorithms repeatedly
evaluate p(θ|d) and therefore require many runs of our expensive forward model, f ,
which becomes computationally intractable. Surrogate approaches ameliorate this
cost by constructing an approximation of the forward model, f̃ , that is accurate, yet
inexpensive to construct and use, and then use f̃ during inference.
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1.2 Properties of approximation algorithms for

Bayesian inference

While a full description of the prior work on integrating surrogates into Bayesian
inference is postponed until later sections, we now highlight some important properties
of surrogate algorithms that help to shape the context of our work. In an effort to
select in a setting that is broadly applicable, we focus on approximations of black
box models using adaptive approximation algorithms. Approximation methods for
computational models can broadly be classified as intrusive or non-intrusive. Intrusive
approximations assume that the governing equations of a model may be inspected and
modified for the purposes of approximation. For example, reduced basis methods and
other projection-based reduced order models project the governing equations onto a
lower-dimensional subspace of the system state, and solve these modified equations [74,
82]. These approaches can be quite sophisticated and efficient, but are not applicable
in the general case.

The MITgcm is an example of a black box model: it can be run at desired inputs,
but it is a large, complex computational package, so it neither feasible to analyze
the structure of the model, nor to rewrite the solver. Therefore, we handle it non-
intrusively, assuming that we may only probe it by running the model and observing
the outputs pointwise. Electing to limit this work to non-intrusive models makes it
possible to link these techniques with essentially any computational model scientists
might provide. Common families of approximations used in a non-intrusive setting
include polynomial approximations, radial basis function approximation, and Gaussian
process regression, several of which are explored in this work.

We classify approximations as either local or global : we consider an approximation
to be local when only a limited collection of nearby samples is used to construct the
approximation at a particular point, and call it global when every available sample is
used, regardless of proximity. Global approximations can leverage high-order expan-
sions to provide rapid convergence over the entire input space, but typically impose
strict requirements on the regularity of the function over the entire space. For example,
global polynomials converge rapidly for smooth functions, but their convergence rate
deteriorates rapidly if the functions or its derivatives are discontinuous anywhere. In
contrast, local approximations typically converge more slowly, but do so under much
looser conditions. Some useful methods do not fall cleanly in either category, but
are hybrids: two examples from the Gaussian process literature are treed GPs [47],
which divide up the space over which models are constructed, or compactly supported
covariance kernels [68], which create global fits where a measure of locality is imposed.

Adaptivity is an important tool to making algorithms useful in practice, as it
helps circumvent paradoxical situations where the algorithm can only be efficient if
the answer is already known. Controlling the deployment of adaptivity is complex,
however, and this work deals with several important features of integrating adaptivity
into surrogate-based inference algorithms. First, the adaptivity of the approximation
can occur either during a pre-processing step or during the inference itself. Second,
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adaptation can occur with respect to the prior or the posterior; the prior is simpler
to work with, but the posterior is the actual target of interest. Third, there are many
features that an adaptive algorithm might seek to exploit, of which, we consider two
options: (1) identifying which parameters are important or tightly coupled can assist
in the efficient allocation of resources, or (2) the posterior often exhibits significant
concentration within the prior when the data is informative, allowing the approxi-
mation to focus on this small region of parameter space. Either exploits detailed
knowledge about the problem that is not generally accessible a priori. Adaptivity
makes it possible for the algorithm to discern the structure of the problem and to
tailor its ongoing efforts based on what it learns, which is a key feature of the methods
we propose.

1.3 Bayesian inference and global approximations

In a non-intrusive setting, a known strategy for reducing the overall cost of inference
is to separate the inference into two stages. First, design a sample set S := {θ, f(θ)},
from which we construct a surrogate model f̃ . Second, substitute this surrogate, which
may be cheaply evaluated, into the distribution to create an approximate posterior,

p̃(θ|d) ∝ L(θ|d, f̃(θ))p(θ),

which can be used instead during MCMC. Since performing MCMC requires no fur-
ther evaluations of the forward model and evaluating the surrogate is inexpensive by
design, the cost of inference is essentially dictated by the size of the sample set, |S|,
needed to make an accurate approximation. Thus, simulating long MCMC chains,
as is typically necessary to explore the posterior, becomes affordable whenever con-
structing the approximation is feasible. This approach has some formal justification,
in that under mild assumptions, a good approximation of the forward model implies
a good approximation of the posterior, and hence the samples are useful [23].

Within this framework, we modify existing non-intrusive techniques for building
global polynomial approximations, so-called polynomial chaos expansions, to build a
highly adaptive algorithm while proving that it maintains theoretical properties nec-
essary for its correctness. Smolyak algorithms are a general construction for extending
one dimensional algorithms into tensor product spaces, and can be make highly effi-
cient when the dimensions are loosely coupled by focusing on only the couplings that
are important. However, such information is not typically known a priori, so the
adaptive algorithm incrementally finds and explores the relevant couplings, allowing
for highly customized approximations.

Polynomial chaos expansions are a useful tool for many tasks in uncertainty quan-
tification, but are not ideally suited for use in inference. Although there are known
rates of convergence of these approximations in some cases, which allows us to con-
clude that the approximate posterior converges in the limit, it is difficult to control
the bias of a practical sampling algorithm. This difficulty arises because this strategy

14



creates two separate sources of error in the inference: the quality of the approxima-
tion and the finite length of the MCMC chain. Either error can be refined, by using
more samples or simulating a longer chain, respectively, but it is not obvious how to
efficiently tune the algorithms to collaborate. Furthermore, it is difficult to provide
adaptation to the specific demands of the posterior; whenever the data is informative,
the posteriors is constrained to a small region within the support of the prior, making
approximation with respect to the entire prior inefficient.

1.4 Bayesian inference and local approximations

To address the weaknesses of the global approximation described above, the primary
contribution of this work is a new framework for integrally combining local approxi-
mations into MCMC. The fundamental goal is to construct approximations that are
adapted to the posterior instead of the prior. Since determining the structure of the
posterior is the goal of the inference, it is naturally not feasible to perform this adapta-
tion in a pre-processing step, as with global approximations. Instead, the construction
of the approximation is interleaved with the inference, refining the regions the MCMC
determines to be important. Instead of adapting to information about which dimen-
sions are important, this work focuses on leveraging posterior concentration, aiming
to build an approximation over only the small region supported by the posterior.

In this framework, the sample set is no longer fixed, but is indexed with the
MCMC step, Si, and is possibly expanded by running the forward model at new points
selected by an experimental design procedure at each step. This produces a sequence
of approximate forward models, f̃i and a corresponding sequence of approximation
posterior densities p̃i(θ|d). Previous work has considered interleaving the experimental
design with MCMC in this fashion, but only during the initial, finite, burn-in portion
of the MCMC chain, after which the approximation is fixed. Instead, we propose
to continue this refinement forever, which allows us to take the novel and important
theoretical step of proving that the sampler produces exact samples asymptotically.
This theory also allows us to make claims about the error at finite length chains,
providing a control over the bias lacking in the previous efforts.

The construction of this framework is facilitated by the shift to local approxi-
mations, that is, those which are only constructing using a small set of neighboring
samples, rather than the entire set Si. Local approximations are appropriate because
they work well with highly adapted, unstructured, multi-scale sample sets. Further-
more, they converge under loose conditions, which makes our proof of the asymptotic
exactness of the sampler possible.

1.5 Summary of thesis contributions

The objective of this work is reduce the cost of performing Bayesian inference on
realistic, computationally expensive forward models. We develop a novel, adaptive
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algorithm for constructing theoretically sound, prior-adapted, global polynomial ap-
proximations. Then we develop a framework for using local surrogates in inference
that automatically refines the surrogate based on the specific needs of the inference.
Furthermore, we prove that a representative instance of the framework asymptotically
(as the number of MCMC samples approaches infinity) draws samples from the exact
posterior distribution, recovering a standard convergence result for MCMC even in
an approximation-based setting. We demonstrate the robustness of our framework
in practice by exploring a variety of instances of this algorithm, including differing
samplers and underlying approximation families. Finally, this approximation type is
applied to a difficult real-world inference problem, the Pine Island Glacier setting. We
summarize the contributions of this work as follows:

• Develop an adaptive and non-intrusive algorithm for constructing global poly-
nomial chaos expansions, proving that it maintains favorable theoretical error
properties and showing substantial efficiency gains due to the adaptive scheme.

• Describe a novel framework for using local approximations within MCMC and
a corresponding experimental design algorithm tailored to inference.

• Prove that the MCMC framework based on local approximations produces asymp-
totically exact samples.

• Demonstrate that the local approximation framework can be used successfully
with a variety of MCMC samplers and approximation families, and that it can
incorporate derivative information and parallel chains. Show order of magnitude
efficiency gains on representative problems.

• Apply local approximation methods to perform inference in the sub-ice shelf
cavity setting of Pine Island Glacier using the MIT General Circulation Model
(MITgcm) as the forward model.

1.6 Organization

The thesis is organized as follows. Chapter 2 develops an adaptive, theoretically sound
approach for constructing non-intrusive polynomial chaos expansions, which is shown
to perform well in numerical experiments. Chapter 3 motivates the shift to a local
approximations and develops our framework for integrating them into MCMC. It also
proves the exactness of the approximate samplers and demonstrates their effective-
ness on numerical examples. Then, Chapter 4 further explores the robustness of the
framework by proposing variations on the algorithm, exploring alternate approxima-
tion types, other samplers, and parallelism, and shows their usefulness with numerical
experiments. Next, Chapter 5 develops an inference problem in the Pine Island Glacier
setting and applies the local approximation algorithms to perform inference. Finally,
Chapter 6 summarizes this work and discusses potential future research.
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Chapter 2

Adaptive Smolyak pseudospectral

approximations1

A central issue in the field of uncertainty quantification is understanding the response
of a model to random inputs. When model evaluations are computationally intensive,
techniques for approximating the model response in an efficient manner are essential.
Approximations may be used to evaluate moments or the probability distribution of
a model’s outputs, or to evaluate sensitivities of model outputs with respect to the
inputs [73, 117, 107]. Approximations may also be viewed as surrogate models to be
used in optimization [89] or inference [80], replacing the full model entirely.

Often one is faced with black box models that can only be evaluated at designated
input points. We will focus on constructing multivariate polynomial approximations
of the input-output relationship generated by such a model; these approximations of-
fer fast convergence for smooth functions and are widely used. One common strategy
for constructing a polynomial approximation is interpolation, where interpolants are
conveniently represented in Lagrange form [4, 118]. Another strategy is projection,
particularly orthogonal projection with respect to some inner product. The results
of such a projection are conveniently represented with the corresponding family of
orthogonal polynomials [11, 73, 119]. When the inner product is chosen according
to the input probability measure, this construction is known as the (finite dimen-
sional) polynomial chaos expansion (PCE) [44, 104, 33]. Interpolation and projection
are closely linked, particularly when projection is computed via discrete model eval-
uations. Moreover, one can always realize a change of basis [38] for the polynomial
resulting from either operation. Here we will favor orthogonal polynomial representa-
tions, as they are easy to manipulate and their coefficients have a useful interpretation
in probabilistic settings.

This chapter discusses adaptive Smolyak pseudospectral approximation, an accu-
rate and computationally efficient approach to constructing multivariate polynomial
chaos expansions. Pseudospectral methods allow the construction of polynomial ap-
proximations from point evaluations of a function [11, 9]. We combine these methods

1The material in this chapter is adapted from [20].
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with Smolyak’s algorithm, a general strategy for sparse approximation of linear op-
erators on tensor product spaces, which saves computational effort by weakening the
assumed coupling between the input dimensions. Gerstner & Griebel [43] and Heg-
land [52] developed adaptive variants of Smolyak’s algorithm for numerical integration
and illustrated the effectiveness of on-the-fly heuristic adaptation. We extend their
approach to the pseudospectral approximation of functions. Adaptivity is expected to
yield substantial efficiency gains in high dimensions—particularly for functions with
anisotropic dependence on input parameters and functions whose inputs might not be
strongly coupled at high order.

Previous attempts to extend pseudospectral methods to multivariate polynomial
approximation with sparse model evaluations employed ad hoc approaches that are
not always accurate. A common procedure has been to use sparse quadrature, or
even dimension-adaptive sparse quadrature, to evaluate polynomial coefficients di-
rectly [115, 73]. This leads to at least two difficulties. First, the truncation of the
polynomial expansion must be specified independently of the quadrature grid, yet it is
unclear how to do this, particularly for anisotropic and generalized sparse grids. Sec-
ond, unless one uses excessively high-order quadrature, significant aliasing errors may
result. Constantine et al. [22] provided the first clear demonstration of these aliasing
errors and proposed a Smolyak algorithm that does not share them. That work also
demonstrated a link between Smolyak pseudospectral approximation and an extension
to Lagrange interpolation called sparse interpolation, which uses function evaluations
on a sparse grid and has well characterized convergence properties [83, 6].

The first half of this chapter performs a theoretical analysis, placing the solution
from [22] in the broader context of Smolyak constructions, and explaining the origin
of the observed aliasing errors for general (e.g., anisotropic) choices of sparse grid
and quadrature rule. We do so by using the notion of polynomial exactness, with-
out appealing to interpolation properties of particular quadrature rules. We establish
conditions under which tensorized approximation operators are exact for particular
polynomial inputs, then apply this analysis to the specific cases of quadrature and
pseudospectral approximation; these cases are closely related and facilitate compar-
isons between Smolyak pseudospectral algorithms and direct quadrature. Section 2.1
develops computable one-dimensional and tensorized approximations for these set-
tings. Section 2.2 describes general Smolyak algorithms and their properties, yielding
our principal theorem about the polynomial exactness of Smolyak approximations,
and then applies these results to quadrature and pseudospectral approximation. Sec-
tion 2.3 compares the Smolyak approach to conventional direct quadrature. Our error
analysis of direct quadrature shows why the approach goes wrong and allows us to
draw an important conclusion: in almost all cases, direct quadrature is not an appro-
priate method for constructing polynomial expansions and should be superseded by
Smolyak pseudospectral methods.

These results provide a rigorous foundation for adaptivity, which is the second focus
of this chapter. Adaptivity makes it possible to harness the full flexibility of Smolyak
algorithms in practical settings. Section 2.4 introduces a fully adaptive algorithm for
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Smolyak pseudospectral approximation, which uses a single tolerance parameter to
drive iterative refinement of both the polynomial approximation space and the cor-
responding collection of model evaluation points. As the adaptive method is largely
heuristic, Section 2.5 demonstrates the benefits of this approach with numerical ex-
amples.

2.1 Full tensor approximations

Tensorization is a common approach for lifting one-dimensional operators to higher
dimensions. Not only are tensor products computationally convenient, but they pro-
vide much useful structure for analysis. In this section, we develop some essential
background for computable tensor approximations, then apply it to problems of (i)
approximating integrals with numerical quadrature; and (ii) approximating projection
onto polynomial spaces with pseudospectral methods. In particular, we are interested
in analyzing the errors associated with these approximations and in establishing con-
ditions under which the approximations are exact.

2.1.1 General setting

Consider a collection of one-dimensional linear operators L(i), where (i) indexes the
operators used in different dimensions. In this work, L(i) will be either an integral
operator or an orthogonal projector onto some polynomial space. We can extend a
collection of these operators into higher dimensions by constructing the tensor product
operator

L(d) := L(1) ⊗ · · · ⊗ L(d). (2.1)

The one-dimensional operators need not be identical; the properties of the result-
ing tensor operator are constructed independently from each dimension. The bold
parenthetical superscript refers to the tensor operator instead of the constituent one-
dimensional operators.

As the true operators are not available computationally, we work with a convergent
sequence of computable approximations, L(i)

m , such that

‖L(i) − L(i)
m ‖ → 0 as m→∞ (2.2)

in some appropriate norm. Taking the tensor product of these approximations provides
an approximation to the full tensor operator, L(d)

m , where the level of the approxima-
tion may be individually selected in each dimension, so the tensor approximation is
identified by a multi-index m. Typically, and in the cases of interest in this work, the
tensor approximation will converge in the same sense as the one-dimensional approx-
imation as all components of m→∞.

An important property of approximation algorithms is whether they are exact for
some inputs; characterizing this set of inputs allows us to make useful statements at
finite order.

19



Definition 2.1.1 (Exact Sets). For an operator L and a corresponding approximation
Lm, define the exact set as E(Lm) := {f : L(f) = Lm(f)} and the half exact set
E2(Lm) := {f : L(f 2) = Lm(f 2)}.

The half exact set will help connect the exactness of a quadrature rule to that of
the closely related pseudospectral operators. This notation is useful in proving the
following lemma, which relates the exact sets of one-dimensional approximations and
tensor approximations.

Lemma 2.1.2. If a tensor approximation L(d)
m is constructed from one-dimensional

approximations L(i)
m with known exact sets, then

E(L(1)
m1

)⊗ · · · ⊗ E(L(d)
md

) ⊆ E(L(d)
m ) (2.3)

Proof. It is sufficient to show that the approximation is exact for an arbitrary mono-
mial input f(x) = f (1)(x(1))f (2)(x(2)) · · · f (d)(x(d)) where f (i)(x(i)) ∈ E(L(i)

mi
), because

we may extend to sums by linearity:

L(d)
m (f (1) · · · f (d)) = L(1)

m1
(f (1))⊗ · · · ⊗ L(d)

md
(f (d))

= L(1)(f (1))⊗ · · · ⊗ L(d)(f (d)) = L(d)(f).

The first step uses the tensor product structure of the operator and the second uses
the definition of exact sets.

2.1.2 Multi-indices

Before continuing, we must make a short diversion to multi-indices, which provide
helpful notation when dealing with tensor problems. A multi-index is a vector i ∈ N

d
0.

An important notion for multi-indices is that of a neighborhood.

Definition 2.1.3 (Neighborhoods of multi-indices). A forward neighborhood of a
multi-index k is the multi-index set nf (k) := {k + ei : ∀i ∈ {1 . . . d}}, where ei are
the canonical unit vectors. The backward neighborhood of a multi-index k is the
multi-index set nb(k) := {k− ei : ∀i ∈ {1 . . . d},k− ei ∈ N

d
0}.

Smolyak algorithms rely on multi-index sets that are admissible.

Definition 2.1.4 (Admissible multi-indices and multi-index sets). A multi-index k is
admissible with respect to a multi-index set K if nb(k) ⊆ K. A multi-index set K is
admissible if every k ∈ K is admissible with respect to K.

Two common admissible multi-index sets with simple geometric structure are total
order multi-index sets and full tensor multi-index sets. One often encounters total
order sets in the sparse grids literature and full tensor sets when dealing with tensor
grids of points. The total order multi-index set Kt

n comprises those multi-indices that
lie within a d-dimensional simplex of side length n:

Kt
n := {k ∈ N

d
0 : ‖k‖1 ≤ n} (2.4)
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The full tensor multi-index set Kf
n is the complete grid of indices bounded term-wise

by a multi-index n:

Kf
n := {k ∈ N

d
0 : ∀i ∈ {1 . . . d}, ki < ni} (2.5)

2.1.3 Integrals and quadrature

Let X(i) be an open or closed interval of the real line R. Then we define the weighted
integral operator in one dimension as follows:

I(i)(f) :=
∫

X(i)
f(x)w(i)(x) dx (2.6)

where f : X(i) → R is some real-valued function and w(i) : X(i) → R
+ is an integrable

weight function. We may extend to higher dimensions by forming the tensor product
integral I(d), which uses separable weight functions and Cartesian product domains.

Numerical quadrature approximates the action of an integral operator I(i) with a
weighted sum of point evaluations. For some family of quadrature rules, we write the
“level m” quadrature rule, comprised of p(i)(m) : N→ N points, as

I(i)(f) ≈ Q(i)
m (f) :=

p(i)(m)∑

j=1

w
(i)
j f(x

(i)
j ). (2.7)

We call p(i)(m) the growth rate of the quadrature rule, and its form depends on the
quadrature family; some rules only exist for certain numbers of points and others may
be tailored, for example, to produce linear or exponential growth in the number of
quadrature points with respect to the level.

Many quadrature families are exact if f is a polynomial of a degree a(i)(m) or
less, which allows us to specify a well-structured portion of the exact set for these
quadrature rules:

Pa(i)(m) ⊆ E(Q(i)
m ) (2.8)

Pfloor(a(i)(m)/2) ⊆ E2(Q(i)
m ), (2.9)

where Pa is the space of polynomials of degree a or less. It is intuitive and useful to
draw the exact set as in Figure 2-1. For this work, we rely on quadrature rules that
exhibit polynomial accuracy of increasing order, which is sufficient to demonstrate
convergence for functions in L2 [11].

Tensor product quadrature rules are straightforward approximations of tensor
product integrals that inherit convergence properties from the one-dimensional case.
The exact set of a tensor product quadrature rule includes the tensor product of the
constituent approximations’ exact sets, as guaranteed by Lemma 2.1.2 and depicted
in Figure 2-2.
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Figure 2-1: Consider, one-dimensional Gaussian quadrature rule with three points,
Q(i)

3 , which is exact for fifth degree polynomials. This diagram depicts the exact set,
E(Q1

3), and half exact set, E2(Q1
3), of this quadrature rule.
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Figure 2-2: Consider a two dimensional quadrature rule constructed from three point
Gaussian quadrature rules, Q(2)

(3,3). This diagram depicts the exact set, E(Q(2)
(3,3)), and

half exact set, E2(Q(2)
(3,3)).
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2.1.4 Polynomial projection

A polynomial chaos expansion approximates a function with a weighted sum of or-
thonormal polynomials [114, 119]. Let H(i) := L2

(
X(i), w(i)

)
be the separable Hilbert

space of square-integrable functions f : X(i) → R, with inner product defined by the
weighted integral 〈f, g〉 = I(i)(fg), and w(i)(x) normalized so that it may represent a
probability density. Let P(i)

n be the space of univariate polynomials of degree n or less.
Now let P(i)

n : H(i) → P
(i)
n be an orthogonal projector onto this subspace, written in

terms of polynomials {ψ(i)
j (x) : j ∈ N0} orthonormal with respect to the inner product

of Hi:

P(i)
n (f) :=

n∑

j=0

〈
f(x), ψ

(i)
j (x)

〉
ψ

(i)
j (x) =

n∑

i=0

fjψ
(i)
j (x). (2.10)

The polynomial space P
(i)
n is of course the range of the projection operator. These

polynomials are dense in H(i), so the polynomial approximation of any f ∈ H(i)

converges in the L2 sense as n→∞ [11, 119]. If f ∈ H(i), the coefficients must satisfy∑∞
i=0 f

2
i <∞.

Projections with finite degree n omit terms of the infinite series, thus incurring
truncation error. We can write this error as

∥∥∥f − P(i)
n (f)

∥∥∥
2

2
=

∥∥∥∥∥∥

∞∑

j=n+1

fjψ
(i)
j

∥∥∥∥∥∥

2

2

=
∞∑

j=n+1

f 2
j <∞. (2.11)

Hence, we may reduce the truncation error to any desired level by increasing n, re-
moving terms from the sum in (2.11) [11, 54].

The d-dimensional version of this problem requires approximating functions in the
Hilbert space H(d) := H(1) ⊗ · · · ⊗ H(d) via a tensor product basis of the univariate
polynomials defined above:

P(d)
n (f) =

n1∑

i1=0

. . .
nd∑

id=0

〈fΨi〉Ψi (2.12)

where Ψi(x) :=
∏d

j=1 ψ
(j)
ij

(
x(j)

)
. The multi-index n tailors the range of the projection

to include a rectangular subset of polynomials.
As in the one-dimensional case, truncation induces error equal to the sum of the

squares of the omitted coefficients, which we may similarly reduce to zero as ni →∞,
∀i. The multivariate polynomial expansion also converges in an L2 sense for any
f ∈ H(d) [11]

2.1.5 Aliasing errors in pseudospectral approximation

The inner products defining the expansion coefficients above are not directly com-
putable. Pseudospectral approximation provides a practical non-intrusive algorithm
by approximating these inner products with quadrature. Define the pseudospectral
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approximation in one dimension as

S(i)
m (f) :=

q(i)(m)∑

j=0

Q(i)
m

(
fψ

(i)
j

)
ψ

(i)
j (x)

=
q(i)(m)∑

j=0

f̃jψ
(i)
j (x) (2.13)

where q(i)(m) is the polynomial truncation at level m, to be specified shortly [11, 54].
Pseudospectral approximations are constructed around a level m quadrature rule, and
are designed to include as many terms in the sum as possible while maintaining accu-
racy. Assuming that f ∈ L2, we can compute the L2 error between the pseudospectral
approximation and an exact projection onto the same polynomial space:

∥∥∥P(i)

q(i)(m)
(f)− S(i)

m (f)
∥∥∥

2

2
=

∥∥∥∥∥∥

q(i)(m)∑

j=0

fjψ
(i)
j −

q(i)(m)∑

k=0

f̃kψ
(1)
k

∥∥∥∥∥∥

2

2

=
q(i)(m)∑

j=0

(fj − f̃j)
2 (2.14)

This quantity is the aliasing error [11, 54]. The error is non-zero because quadrature
in general only approximates integrals; hence each f̃i is an approximation of fi. The
pseudospectral operator also incurs truncation error, as before, which is orthogonal to
the aliasing error. We can expand each approximate coefficient as

f̃j = Q(i)
m

(
fψ

(i)
j

)

=
∞∑

k=0

fkQ(i)
m

(
ψ

(i)
j ψ

(i)
k

)

=
q(i)(m)∑

k=0

fkQ(i)
m

(
ψ

(i)
j ψ

(i)
k

)
+

∞∑

l=q(i)(m)+1

flQ(i)
m

(
ψ

(i)
j ψ

(i)
l

)
. (2.15)

The first step substitutes in the polynomial expansion of f , which we assume is con-
vergent, and rearranges using linearity. The second step partitions the sum around
the truncation of the pseudospectral expansion. Although the basis functions are or-
thonormal, 〈ψ(i)

j , ψ
(i)
k 〉 = δjk, we cannot assume in general that the approximation

Q(i)
m

(
ψ

(i)
j ψ

(i)
k

)
= δjk. Now substitute (2.15) back into the aliasing error expression:

q(i)(m)∑

j=0

(fj − f̃j)
2 =

q(i)(m)∑

j=0


fj −

q(i)(m)∑

k=0

fkQ(i)
m

(
ψ

(i)
j ψ

(i)
k

)
−

∞∑

l=q(i)(m)+1

flQ(i)
m

(
ψ

(i)
j ψ

(i)
l

)



2

(2.16)

This form reveals the intimate link between the accuracy of pseudospectral approx-
imations and the polynomial accuracy of quadrature rules. All aliasing is attributed
to the inability of the quadrature rule to determine the orthonormality of the basis
polynomials, causing one coefficient to corrupt another. The contribution of the first
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two parenthetical terms on the right of (2.16) is called internal aliasing, while the third

term is called external aliasing. Internal aliasing is due to inaccuracies in Q(ψ
(i)
j ψ

(i)
k )

when both ψ
(i)
j and ψ

(i)
k are included in the expansion, while external aliasing occurs

when only one of these polynomials is included in the expansion. For many practical
quadrature rules (and for all those used in this work), if j 6= k and ψ

(i)
j ψ

(i)
k /∈ E(Q),

and hence the discrete inner product is not zero, then ‖Q(ψ
(i)
j ψ

(i)
k )‖2 is O

(
1
)

[108].
As a result, the magnitude of an aliasing error typically corresponds to the magnitude
of the aliased coefficients.

In principle, both types of aliasing error are driven to zero by sufficiently powerful
quadrature, but we are left to select q(i)(m) for a particular quadrature level m. Exter-

nal aliasing is O
(
1
)

in the magnitude of the truncation error, and thus it is driven to

zero as long as q(i)(m) increases with m. Internal aliasing could be O
(
1
)

with respect
to the function of interest, meaning that the procedure neither converges nor provides
a useful approximation. Therefore, the obvious option is to include as many terms as
possible while setting the internal aliasing to zero.

For quadrature rules with polynomial exactness, we may accomplish this by setting
q(i)(m) = floor(a(i)(m)/2). This ensures that the internal aliasing of S(i)

m is zero,
because ∀j, k ≤ q(i)(m),

ψ
(i)
j ψ

(i)
k ∈ E(Q(i)

m ). Equivalently, a pseudospectral operator S(i)
m using quadrature Q(i)

m

has a range corresponding to the half exact set E2(Q(i)
m ). Alternatively, we may justify

this choice by noting that it makes the pseudospectral approximation exact on its
range, P

(i)

q(i)(m)
⊆ E(S(i)

m ).

Given this choice of q(i)(m), we wish to show that the pseudospectral approximation
converges to the true function, where the magnitude of the error is as follows:

∥∥∥f − S(i)
m (f)

∥∥∥
2

2
=

q(i)(m)∑

j=0




∞∑

k=q(i)(m)+1

fkQ
(
ψ

(i)
j ψ

(i)
k

)



2

+
∞∑

l=q(i)(m)+1

f 2
l . (2.17)

The two terms on right hand side comprise the external aliasing and the trunca-
tion error, respectively. We already know that the truncation error goes to zero as
q(i)(m) → ∞. The external aliasing also vanishes for functions f ∈ L2, as the trun-
cated portion of f likewise decreases [108]. In the case of Gaussian quadrature rules,
a link to interpolation provides precise rates for the convergence of the pseudospectral
operator based on the regularity of f [11].

As with quadrature algorithms, our analysis of pseudospectral approximation in
one dimension is directly extensible to multiple dimensions via full tensor products.
We may thus conclude that S(d)

m converges to the projection onto the tensor product
polynomial space in the same sense. The exact set follows Lemma 2.1.2, and hence the
tensor product approximation inherits zero internal aliasing if suitable one-dimensional
operators are used.
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2.2 Smolyak algorithms

Thus far, we have developed polynomial approximations of multivariate functions by
taking tensor products of one-dimensional pseudospectral operators. Smolyak algo-
rithms avoid the exponential cost of full tensor products when the input dimensions are
not fully coupled, allowing the use of a telescoping sum to blend different lower-order
full tensor approximations.

Example 2.2.1. Suppose that f(x, y) = x7 + y7 + x3y. To construct a polynomial
expansion with both the x7 and y7 terms, a full tensor pseudospectral algorithm would
estimate all the polynomial terms up to x7y7, because tensor algorithms fully couple
the dimensions. This mixed term is costly, requiring, in this case, an 8× 8 point grid
for Gaussian quadratures. The individual terms can be had much more cheaply, using
8×1, 1×8, and 4×2 grids, respectively. Smolyak algorithms help realize such savings
in practice.

This section reviews the construction of Smolyak algorithms and presents a new
theorem about the exactness of Smolyak algorithms built around arbitrary admissible
index sets. We apply these results to quadrature and pseudospectral approximation,
allowing a precise characterization of their errors.

2.2.1 General Smolyak algorithms

As in Section 2.1, assume that we have for every dimension i = 1 . . . d a convergent
sequence L(i)

k of approximations. Let L denote the collection of these sequences over
all the dimensions. Define the difference operators

∆
(i)
0 := L(i)

0 = 0, (2.18)

∆(i)
n := L(i)

n − L(i)
n−1. (2.19)

For any i, we may write the exact or “true” operator as the telescoping series

L(i) =
∞∑

k=0

L(i)
k − L(i)

k−1 =
∞∑

k=0

∆
(i)
k . (2.20)

Now we may write the tensor product of the exact operators as the tensor product of
the telescoping sums, and interchange the product and sum:

L(1) ⊗ · · · ⊗ L(d) =
∞∑

k1=0

∆
(1)
k1
⊗ · · · ⊗

∞∑

kd=0

∆
(d)
kd

=
∞∑

k=0

∆
(1)
k1
⊗ · · · ⊗∆

(d)
kd

(2.21)
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Smolyak’s idea is to approximate the tensor product operator with truncations of this
sum [102]:

A(K, d,L) :=
∑

k∈K

∆
(1)
k1
⊗ · · · ⊗∆

(d)
kd
. (2.22)

We refer to the multi-index set K as the Smolyak multi-index set, and it must be ad-
missible for the sum to telescope correctly. Smolyak specifically suggested truncating
with a total order multi-index set, which is the most widely studied choice. However,
we can compute the approximation with any admissible multi-index set. Although
the expression above is especially clean, it is not the most useful form for computa-
tion. We can reorganize the terms of (2.22) to construct a weighted sum of the tensor
operators:

A(K, d,L) =
∑

k∈K

ck L(1)
k1
⊗ · · · ⊗ L(d)

kd
, (2.23)

where ck are integer Smolyak coefficients computed from the combinatorics of the
difference formulation. One can compute the coefficients through a simple iteration
over the index set and use (2.22) to determine which full tensor rules are incremented
or decremented. In general, these coefficients are non-zero near the leading surface of
the Smolyak multi-index set, reflecting the mixing of the most accurate constituent
full tensor approximations.

If each sequence of one-dimensional operators converges, then the Smolyak ap-
proximation converges to the tensor product of exact operators as K → N

d
0. For the

isotropic simplex index set, some precise rates of convergence are known with respect
to the side length of the simplex [112, 113, 111, 100, 101]. Although general admis-
sible Smolyak multi-index sets are difficult to study theoretically, they allow detailed
customization to the anisotropy of a particular function.

2.2.2 Exactness of Smolyak algorithms

In the one-dimensional and full tensor settings, we have characterized approximation
algorithms through their exact sets—those inputs for which the algorithm is precise.
This section shows that if the constituent one-dimensional approximations have nested
exact sets, Smolyak algorithms are the ideal blending of different full tensor approx-
imations from the perspective of exact sets; that is, the exact set of the Smolyak
algorithm contains the union of the exact sets of the component full tensor approx-
imations. This result will facilitate subsequent analysis of sparse quadrature and
pseudospectral approximation algorithms. This theorem and our proof closely follow
the framework provided by Novak and Ritter [84, 85, 6], but include a generalization
to arbitrary Smolyak multi-index sets.

Theorem 2.2.2. Let A(K, d,L) be a Smolyak algorithm composed of linear operators

with nested exact sets, i.e., with m ≤ m′ implying that E(L(i)
m ) ⊆ E(L(i)

m′) for i = 1 . . . d,
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where K is admissible. Then the exact set of A(K, d,L) contains

E (A(K, d,L)) ⊇
⋃

k∈K

E
(
L(1)

k1
⊗ · · · ⊗ L(d)

kd

)

⊇
⋃

k∈K

E(L(1)
k1

)⊗ · · · ⊗ E(L(d)
kd

). (2.24)

Proof. We begin by introducing notation to incrementally build a multi-index set
dimension by dimension. For a multi-index set K of dimension d, let the restriction
of the multi-indices to the first i dimensions be K(i) := {k1:i = (k1, . . . , ki) : k ∈
K}. Furthermore, define subsets of K based on the ith element of the multi-indices,

K(i)
j := {k1:i : k ∈ K(i) and ki+1 = j}. These sets are nested, K(i)

j ⊇ K(i)
j+1, because K

is admissible. Also let kmax
i denote the maximum value of the ith component of the

multi-indices in the set K.

Using this notation, one can construct K inductively,

K(1) = {1, . . . , kmax
1 } (2.25)

K(i) =
kmax

i⋃

j=1

K(i−1)
j ⊗ j, i = 2 . . . d. (2.26)

It is sufficient to prove that the Smolyak operator is exact for an arbitrary f with
tensor structure, f = f1 × · · · × fd. Suppose there exists a k∗ such that f ∈ E(L(d)

k∗ ).
We will show that if K is an admissible multi-index set containing k∗, then A(K, d,L)
is exact on f . We do so by induction on the dimension i of the Smolyak operator and
the function.

First, consider the i = 1 case. A(K(1), 1,L) = L(1)
kmax

1
, where kmax

1 ≥ k∗
1. Hence

E(A(K(1), 1,L)) = E(L(1)
kmax

1
).

For the induction step, we construct the (i + 1)-dimensional Smolyak operator in
terms of the i-dimensional operator:

A(K(i+1), i+ 1,L) =

kmax
i+1∑

j=1

A(K(i)
j , i,L)⊗ (L(i+1)

j − L(i+1)
j−1 ). (2.27)

This sum is over increasing levels of accuracy in the i + 1 dimension. We know the
level required for the approximate operator to be exact in this dimension; this may be
expressed as

L(i+1)
j (fi+1) = L(i+1)

j−1 (fi+1) = L(i+1)(fi+1) when j − 1 ≥ k∗
i+1. (2.28)

Therefore the sum (2.27) can be truncated at the k∗
i+1 term, as the differences of higher
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terms are zero when applied to f :

A(K(i+1), i+ 1,L) =

k∗
i+1∑

j=1

A(K(i)
j , i,L)⊗ (L(i+1)

j − L(i+1)
j−1 ). (2.29)

Naturally, k∗
1:i ∈ K(i)

k∗
i+1

. By nestedness, k∗
1:i is also contained in K(i)

j for j ≤ k∗
i+1. The

induction hypothesis then guarantees

f1 ⊗ · · · ⊗ fi ∈ E(A(K(i)
j , i,L)), ∀j ≤ k∗

i+1. (2.30)

Applying the (i+1)-dimensional Smolyak operator to the truncated version of f yields

A(K(i+1), i+ 1,L)(f1 ⊗ · · · ⊗ fi+1)

=

k∗
i+1∑

j=1

A(K(i)
j , i,L)(f1 ⊗ · · · ⊗ fi)⊗ (L(i+1)

j − L(i+1)
j−1 )(fi+1). (2.31)

Since each of the i-dimensional Smolyak algorithms is exact, by the induction hypoth-
esis, we replace them with the true operators and rearrange by linearity to obtain

A(K(i+1), i+ 1,L)(f1 ⊗ · · · ⊗ fi+1) = L(i)(f1 ⊗ · · · ⊗ fi)⊗
k∗

i+1∑

j=1

(L(i+1)
j − L(i+1)

j−1 )(fi+1)

= L(i)(f1 ⊗ · · · ⊗ fi)⊗ L(i+1)
k∗

i+1
(fi+1). (2.32)

The approximation in the i + 1 dimension is exactly of the level needed to be exact
on the (i+ 1)th component of f . Then (2.32) becomes

L(i)(f1 ⊗ · · · ⊗ fi)⊗ L(i+1)(fi+1) = L(i+1)(f1 ⊗ · · · ⊗ fi+1) (2.33)

Thus the Smolyak operator is precise for f , and the claim is proven.

2.2.3 Smolyak quadrature

We recall the most familiar use of Smolyak algorithms, sparse quadrature. Consider a
family of one-dimensional quadrature rules Q(i)

k in each dimension i = 1 . . . d; denote
these rules by Q. The resulting Smolyak algorithm is written as:

A(K, d,Q) =
∑

k∈K

ckQ(d)
k . (2.34)

This approximation inherits its convergence from the one-dimensional operators.
The set of functions that are exactly integrated by a Smolyak quadrature algorithm
is described as a corollary of Theorem 2.2.2.

29



0 2 4 6 8
0

2

4

6

8

Order of x
1
 polynomial

O
rd

er
 o

f x
2 p

ol
yn

om
ia

l

 

 
Exact Set
Half Exact Set

(a) The exact set for a level-four Smolyak
quadrature in two dimensions, based on
linear growth Gaussian quadrature rules.
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(b) The exact set for a level-three
Smolyak quadrature in two dimensions,
based on exponential growth Gaussian
quadrature rules.

Figure 2-3: The exact set diagram for two Smolyak quadrature rules, and the corre-
sponding basis for a Smolyak pseudospectral approximation. E(Q) is shown in a solid
line, E2(Q) is the dashed line. The staircase appearance results from the superposition
of rectangular full tensor exact sets.

Corollary 2.2.3. For a sparse quadrature rule satisfying the hypotheses of Theorem
2.2.2,

E (A(K, d,Q)) ⊇
⋃

k∈K

E(Q(d)
k ) (2.35)

Quadrature rules with polynomial accuracy do have nested exact sets, as required
by the theorem. An example of Smolyak quadrature exact sets is shown in Figure 2-3.

2.2.4 Smolyak pseudospectral approximation

Applying Smolyak’s algorithm to pseudospectral approximation operators yields a
sparse algorithm that converges under similar conditions as the one-dimensional op-
erators from which it is constructed. This algorithm is written as

A(K, d,S) =
∑

k∈K

ckS(d)
k . (2.36)

The Smolyak algorithm is therefore a sum of different full tensor pseudospectral ap-
proximations, where each approximation is built around the polynomial accuracy of
a single full tensor quadrature rule. It is not naturally expressed as a set of formu-
las for the polynomial coefficients, because different approximations include different
polynomials. The term Ψj is included in the Smolyak approximation if and only if

∃k ∈ K : Ψj ∈ E2(Q(d)
k ). Here, Q(d)

k is the full tensor quadrature rule used by the full

tensor pseudospectral approximation S(d)
k . As in the full tensor case, the half exact
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set of a Smolyak quadrature rule defines the range of the Smolyak pseudospectral
approximation.

Once again, the Smolyak construction guarantees that the convergence of this
approximation is inherited from its constituent one-dimensional approximations. Our
choices for the pseudospectral operators ensure nestedness of the constituent exact
sets, so we may use Theorem 2.2.2 to ensure that Smolyak pseudospectral algorithms
are exact on their range.

Corollary 2.2.4. If the constituent one-dimensional pseudospectral rules have no in-
ternal aliasing and satisfy the conditions of Theorem 2.2.2, then the resulting Smolyak
pseudospectral algorithm has no internal aliasing.

We additionally provide a theorem that characterizes the external aliasing prop-
erties of Smolyak pseudospectral approximation, which the next section will contrast
with direct quadrature.

Theorem 2.2.5. Let Ψj be a polynomial term included in the expansion provided by
the Smolyak algorithm A(K, d,S), and let Ψj′ be a polynomial term not included in
the expansion. There is no external aliasing of Ψj′ onto Ψj if any of the following
conditions is satisfied: (a) there exists a dimension i for which j′

i < ji; or (b) there

exists a multi-index k ∈ K such that Ψj is included in the range of S(d)
k and Ψj′Ψj ∈

E(Q(d)
k ), where Q(d)

k is the quadrature rule used in S(d)
k .

Proof. If condition (a) is satisfied, then Ψj and Ψj′ are orthogonal in dimension i, and
hence that inner product is zero. Every quadrature rule that computes the coefficient
fj corresponding to basis term Ψj is accurate for polynomials of at least order 2j.
Since j′

i + ji < 2ji, every rule that computes the coefficient can numerically resolve
the orthogonality, and therefore there is no aliasing. If condition (b) is satisfied, then
the result follows from the cancellations exploited by the Smolyak algorithm, as seen
in the proof of Theorem 2.2.2.

These two statements yield extremely useful properties. First, any Smolyak pseu-
dospectral algorithm, regardless of the admissible Smolyak multi-index set used, has no
internal aliasing; this feature is important in practice and not obviously true. Second,
while there is external aliasing as expected, the algorithm uses basis orthogonality to
limit which external coefficients can alias onto an included coefficient. The Smolyak
pseudospectral algorithm is thus a practically “useful” approximation, in that one
can tailor it to perform a desired amount of work while guaranteeing reliable approx-
imations of the selected coefficients. Computing an accurate approximation of the
function only requires including sufficient terms so that the truncation and external
aliasing errors are small.
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2.3 Comparing direct quadrature to Smolyak pseu-

dospectral approximation

The current UQ literature often suggests a direct quadrature approach for construct-
ing polynomial chaos expansions [116, 73, 32, 60]. In this section, we describe this
approach and show that, in comparison to a true Smolyak algorithm, it is inaccurate
or inefficient in almost all cases. Our comparisons will contrast the theoretical error
performance of the algorithms and provide simple numerical examples that illustrate
typical errors and why they arise.

2.3.1 Direct quadrature polynomial expansions

At first glance, direct quadrature is quite simple. First, choose a multi-index set J to
define a truncated polynomial expansion:

f ≈
∑

j∈J

f̃jΨj. (2.37)

The index set J is typically admissible, but need not be. Second, select any d-
dimensional quadrature rule Q(d), and estimate every coefficient as:

f̃j = Q(d)(fΨj). (2.38)

Unlike the Smolyak approach, we are left to choose J and Q(d) independently, giving
the appearance of flexibility. In practice, this produces a more complex and far more
subtle version of the truncation trade-off discussed in Section 2.1. Below, we will be
interested in selecting Q and J to replicate the quadrature points and output range
of the Smolyak approach, as it provides a benchmark for achievable performance.

Direct quadrature does not converge for every choice of J and Q(d); consider the
trivial case where J does not grow infinitely. It is possible that including far too many
terms in J relative to the polynomial exactness of Q(d) could lead to a non-convergent
algorithm. Although this behavior contrasts with the straightforward convergence
properties of Smolyak algorithms, most reasonable choices for direct quadrature do
converge, and hence this is not our primary argument against the approach.

Instead, our primary concern is aliasing in direct quadrature and how it reduces
performance at finite order. Both internal and external aliasing are governed by the
same basic rule, which is just a restatement of how we defined aliasing in Section 2.1.5.

Remark 2.3.1. For a multi-index set J and a quadrature rule Q(d), the corresponding
direct quadrature polynomial expansion has no aliasing between two polynomial terms
if ΨjΨj′ ∈ E(Q(d)).

The next two sections compare the internal and external aliasing with both theory
and simple numeric examples.
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2.3.2 Internal aliasing in direct quadrature

As an extension of Remark 2.3.1, direct quadrature has no internal aliasing whenever
every pair j, j′ ∈ J has no aliasing. We can immediately conclude that for any basis
set J , there is some quadrature rule sufficiently powerful to avoid internal aliasing
errors. In practice, however, this rule may not be a desirable one.

Example 2.3.2. Assume that for some function with two inputs, we wish to include
the polynomial basis terms (a, 0) and (0, b). By Remark 2.3.1, the product of these two
terms must be in the exact set; hence, the quadrature must include at least a full tensor
rule of accuracy (a, b). Although we have not asked for any coupling, direct quadrature
must assume full coupling of the problem in order to avoid internal aliasing.

Therefore we reach the surprising conclusion that direct quadrature inserts signif-
icant coupling into the problem, whereas we selected a Smolyak quadrature rule in
hopes of leveraging the absence of that very coupling—making the choice inconsis-
tent. For most sparse quadrature rules, we cannot include as many polynomial terms
as the Smolyak pseudospectral approach without incurring internal aliasing, because
the quadrature is not powerful enough in the mixed dimensions.

Example 2.3.3. Let X be the two-dimensional domain [−1, 1]2. Select a uniform
weight function, which corresponds to a Legendre polynomial basis. Let f(x, y) =
ψ0(x)ψ4(y). Use Gauss-Legendre quadrature and an exponential growth rule, such that
p(i)(m) = 2m−1. Select a sparse quadrature rule based on a total order multi-index set
Q2

Kt
5
. Figure 2-4 shows the exact set of this Smolyak quadrature rule (solid line) along

with its half-exact set (dashed line), which encompasses all the terms in the direct
quadrature polynomial expansion.

Now consider the j = (8, 0) polynomial, which is in the half-exact set. The product
of the (0, 4) and (8, 0) polynomial terms is (8, 4), which is not within the exact set
of the sparse rule. Hence, (0, 4) aliases onto (8, 0) because this quadrature rule has
limited accuracy in the mixed dimensions.

Using both the Smolyak pseudospectral and direct quadrature methods, we numer-
ically compute the polynomial expansion for this example. The resulting coefficients
are shown in Figure 2-5. Even though the two methods use the same information
and project f onto the same basis, the Smolyak result has no internal aliasing while
direct quadrature shows significant internal aliasing. Although both methods correctly
compute the (0, 4) coefficient, direct quadrature shows aliasing on (8, 0) as predicted,
and also on (10, 0), (12, 0), and (14, 0). In this case, direct quadrature is unable to
determine the order of the input function or even whether the input is function of x1

or x2. Alternating terms are computed correctly because of the parity of the functions.

The O
(
1
)

errors observed in this simple example demonstrate why it is crucial
to eliminate internal aliasing in the construction of one-dimensional pseudospectral
approximations and to ensure that the full tensor and Smolyak algorithms inherit
that property. More complex functions demonstrate the same type of error, except
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that the errors resulting from multiple source terms are superimposed. Examples of
the latter are given by Constantine et al. [22].
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Figure 2-4: The exact set and polynomials included in the direct quadrature construc-
tion from Example 2.3.3.

There are some choices for which direct quadrature has no internal aliasing: full
tensor quadrature rules and, notably, Smolyak quadrature constructed from one-
dimensional Gaussian quadrature rules with p(i)(m) = m, truncated according to
an isotropic total-order multi-index set. However, many useful sparser or more tai-
lored Smolyak quadrature rules, e.g., based on exponential growth quadrature rules
or adaptive anisotropic Smolyak index sets, will incur internal aliasing if the basis
selection matches the range of the Smolyak algorithm. This makes them a poor choice
when a comparable Smolyak pseudospectral algorithm uses the same evaluation points
and produces an approximation with the same polynomial terms, but is guaranteed by
construction to have zero internal aliasing. Alternately, it is possible to select a suf-
ficiently small polynomial basis to avoid internal aliasing, but this approach requires
unnecessary conservatism that could easily be avoided with a Smolyak pseudospectral
approximation.

2.3.3 External aliasing

The difference in external aliasing between direct quadrature and Smolyak pseudospec-
tral approximation is much less severe. Both methods exhibit external aliasing from
terms far outside the range of the approximation, as such errors are a necessary con-
sequence of using finite order quadrature. Since the methods are constructed from
similar constituent one-dimensional quadrature rules, aliasing is of similar magnitude
when it occurs.

Comparing Theorem 2.2.5, condition (b), and Remark 2.3.1, we observe that if
the direct quadrature method has no external aliasing between two basis terms, the
equivalent Smolyak pseudospectral algorithm will not either. Yet the two methods
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(b) Direct Quadrature

Figure 2-5: Numerical results for Example 2.3.3; each color square indicates the log of
the coefficient magnitude for the basis function at that position. The circle identifies
the correct non-zero coefficient.

perform differently because of their behavior on separable functions. Condition (a) of
Theorem 2.2.5 provides an additional condition under which external aliasing will not
occur under a Smolyak pseudospectral algorithm, and thus it has strictly less external
aliasing in general.

Example 2.3.4. If we repeat Example 2.3.3 but choose f to be a polynomial outside
the approximation space, f = ψ6(x)ψ6(y), we obtain the results in Figure 2-6. Now
every non-zero coefficient is the result of external aliasing. Direct quadrature correctly
computes some terms because of either parity or the few cases where Remark 2.3.1
is satisfied. However, the Smolyak approach has fewer errors because the terms not
between (0, 0) and (6, 6) are governed by condition (a) of Theorem 2.2.5, and hence
have no external aliasing.

This example is representative of the general case. Direct quadrature always incurs
at least as much external aliasing as the Smolyak approach, and the methods become
equivalent if the external term causing aliasing is of very high order. Although both
methods will always exhibit external aliasing onto coefficients of the approximation
for non-polynomial inputs, the truncation can in principle be chosen to include all the
important terms, so that the remaining external aliasing is acceptably small.

2.3.4 Summary of comparison

Compared to the Smolyak pseudospectral approach, direct quadrature yields larger
internal and external aliasing errors. Because of these aliasing errors, direct quadrature
is essentially unable to make efficient use of most sparse quadrature rules. The Smolyak
pseudospectral approach, on the other hand, is guaranteed never to have internal
aliasing if the one-dimensional pseudospectral operators are chosen according to simple
guidelines. We therefore recommend against using direct quadrature. The remainder
of the chapter will focus on extensions of the basic Smolyak pseudospectral approach.
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Figure 2-6: Numerical results for Example 2.3.4; each color square indicates the log of
the coefficient magnitude for the basis function at its position. The circle indicates the
correct non-zero coefficient. The Smolyak pseudospectral approach has fewer terms
corrupted by external aliasing in this case.

2.4 Adaptive polynomial approximations

When constructing a polynomial approximation of a black-box computational model,
there are two essential questions: first, which basis terms should be included in the
expansion; and second, what are the coefficients of those basis terms? The Smolyak
construction allows detailed control over the truncation of the polynomial expansion
and the work required to compute it. Since we typically do not have a priori infor-
mation about the functional relationship generated by a black-box model, we develop
an adaptive approach to tailor the Smolyak approximation to this function, follow-
ing the dimension-adaptive quadrature approaches of Gerstner & Griebel [43] and
Hegland [52].

The Smolyak algorithm is well suited to an adaptive approach. The telescoping
sum converges in the same sense as the constituent one-dimensional operators as the
index set grows to include N

d
0, so we can simply add more terms to improve the

approximation until we are satisfied. We separate our adaptive approach into two
components: local improvements to the Smolyak multi-index set and a global stopping
criterion.

2.4.1 Dimension adaptivity

Dimension adaptivity is responsible for identifying multi-indices to add to a Smolyak
multi-index set in order to improve its accuracy. A standard refinement approach is
simply to grow an isotropic simplex of side length n. [43] and [52] instead suggest
a series of greedy refinements that customize the Smolyak algorithm to a particular
problem.

The refinement used in [43] is to select a multi-index k ∈ K and to add the forward
neighbors of k that are admissible. The multi-index k is selected via an error indicator
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ǫ(k). We follow [43] and assume that whenever k contributes strongly to the result of
the algorithm, it represents a subspace that likely needs further refinement.

Let k be a multi-index such that K′ := K ∪ k, where K and K′ are admissible
multi-index sets. The triangle inequality (for some appropriate norm, see Section
2.4.3) bounds the change in the Smolyak approximation produced by adding k to K,
yielding a useful error indicator:

‖A(K′, d,L)− A(K, d,L)‖ ≤ ‖∆1
k1
⊗ · · · ⊗∆d

kd
‖ =: ǫ(k). (2.39)

Conveniently, this error indicator does not change as K evolves, so we need only
compute it once. At each adaptation step, we find the k that maximizes ǫ(k) and that
has at least one admissible forward neighbor. Then we add those forward neighbors.

2.4.2 Termination criterion

Now that we have a strategy to locally improve a multi-index set, it is useful to have
a global estimate of the error of the approximation, ǫg. We cannot expect to compute
the exact error, but even a rough estimate is useful. We follow Gerstner & Griebel’s
choice of global error indicator

ǫg :=
∑

ǫ(k), (2.40)

where the sum is taken over all the multi-indices that are eligible for local adaptation at
any particular step (i.e., that have admissible forward neighbors) [43]. The algorithm
may be terminated when a particular threshold of the global indicator is reached, or
when it falls by a specified amount.

2.4.3 Error indicators and work-considering algorithms

Thus far we have presented the adaptation strategy without reference to the problem
of polynomial approximation. In this specific context, we use the L2(X, w) norm in
(2.39), because it corresponds to the convergence properties of pseudospectral approx-
imation and thus seems an appropriate target for greedy refinements. This choice
is a heuristic to accelerate performance—albeit one that is simple and natural, and
has enjoyed success in numerical experiments (see Section 2.5). Moreover, the analy-
sis of external aliasing in Theorem 2.2.5 suggests that, in the case of pseudospectral
approximation, significant missing polynomial terms alias onto some of the included
lower-order coefficients, giving the algorithm a useful indication of which direction to
refine. This behavior helps reduce the need for smoothness in the coefficient pattern.
Section 2.5.1 provides a small fix that further helps with even or odd functions.

One is not required to use this norm to define ǫ(k), however, and it is possible
that other choices could serve as better heuristics for some problems. Unfortunately,
making definitive statements about the properties or general utility of these heuristic
refinement schemes is challenging. The approach described above is intended to be
broadly useful, but specific applications may require experimentation to find better
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choices.

Beyond the choice of norm, a commonly considered modification to ǫ(k) is to
incorporate a notion of the computational effort required to refine k. Define n(k) as
the amount of work to refine the admissible forward neighbors of k, e.g., the number
of new function evaluation points. [43] discusses an error indicator that provides a
parameterized sliding scale between selecting the term with highest ǫ(k) and the lowest
n(k):

ǫw,1(k) = max

{
w
ǫ(k)

ǫ(1)
, (1− w)

n(1)

n(k)

}
. (2.41)

Here w ∈ [0, 1] is the tuning parameter, and ǫ(1) and n(1) are the indicator and cost
of the first term. Putting w = 0 considers only the standard error indicator and w = 1
considers only the cost. A different indicator with a similar intent is

ǫw,2(k) = ǫ(k)− w̃n(k), (2.42)

where w̃ > 0 describes a conversion between error and work. Both of these methods
will sometimes select terms of low cost even if they do not appear to provide immediate
benefit to the approximation. Yet we find both methods to be challenging to use in
practice, because of the difficulty of selecting the tuning parameter. One can remove
this particular tuning requirement by taking a ratio:

ǫw,3(k) =
ǫ(k)

n(k)
. (2.43)

This indicator looks for “efficient” terms to refine—ones that are expected to yield
greater error reduction at less cost—rather than simply the highest-error directions.
We performed some numerical experiments with these methods, but none of the ex-
amples demonstrated significant improvement. Furthermore, poor choices of tuning
parameters can be harmful because they can essentially make the algorithm revert
to a non-adaptive form. We do not give detailed results here for those experiments
because they are not particularly conclusive; some types of coefficient patterns may
benefit from work-considering approaches, but this remains an open problem.

On a similar note, using ǫg as a termination criteria is also a heuristic. As our
experiments in Section 2.5 will show, for most smooth functions ǫg is an excellent
estimate of the approximation accuracy. In other cases, the indicator can be quite
poor; hence one should not rely on it exclusively. In practice, we typically terminate
the algorithm based on a combination of elapsed wall clock time, the global error
indicator, and an error estimate computed from limited ad hoc sampling.

2.5 Numerical experiments

Our numerical experiments focus on evaluating the performance of different quadra-
ture rules embedded within the Smolyak pseudospectral scheme, and on evaluating
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performance of the adaptive Smolyak approximation strategy. Aside from the numeri-
cal examples of Section 2.3, we do not investigate the performance of direct quadrature
any further. Given our theoretical analysis of aliasing errors and the numerical demon-
strations in [22], one can conclude without further demonstration that destructive
internal aliasing indeed appears in practice.

This section begins by discussing practical considerations in the selection of quadra-
ture rules. Then we evaluate convergence of Smolyak pseudospectral approximation
schemes (non-adaptive and adaptive) on the Genz test functions. Next, we approxi-
mate a larger chemical kinetic system, illustrating the efficiency and accuracy of the
adaptive method. Finally, we evaluate the quality of the global error indicator on all
of these examples.

2.5.1 Selection of quadrature rules

Thus far we have sidestepped practical questions about which quadrature rules exist or
are most efficient. Our analysis has relied only on polynomial accuracy of quadrature
rules; all quadrature rules with a given polynomial accuracy allow the same truncation
of a pseudospectral approximation. In practice, however, we care about the cumulative
cost of the adaptive algorithm, which must step through successive levels of refinement.

Integration over a bounded interval with uniform weighting offers the widest variety
of quadrature choices, and thus allows a thorough comparison. Table 2.1 summarizes
the costs of several common quadrature schemes. First, we see that linear-growth
Gaussian quadrature is asymptotically much less efficient than exponential-growth
in reaching any particular degree of exactness. However, for rules with fewer than
about ten points, this difference is not yet significant. Second, Clenshaw-Curtis shows
efficiency equivalent to exponential-growth Gaussian: both use n points to reach nth
order polynomial exactness [15]. However, their performance with respect to external
aliasing differs: Clenshaw-Curtis slowly loses accuracy if the integrand is of order
greater than n, while Gaussian quadrature gives O

(
1
)

error even on (n + 1)-order

functions [108]. This may make Clenshaw-Curtis Smolyak pseudospectral estimates
more efficient. Finally, we consider Gauss-Patterson quadrature, which is nested and
has significantly higher polynomial exactness—for a given cumulative cost—than the
other types [86]. Computing the quadrature points and weights in finite precision
(even extended-precision) arithmetic has practically limited Gauss-Patterson rules to
255 points, but we recommend them whenever this is sufficient.

For most other weights and intervals, there are fewer choices that provide polyno-
mial exactness, so exponential-growth Gaussian quadrature is our default choice. In
the specific case of Gaussian weight, Genz has provided a family of Kronrod extensions,
similar to Gauss-Patterson quadrature, which may be a useful option [42].

If a linear growth rule is chosen and the domain is symmetric, we suggest that
each new level include at least two points, so that the corresponding basis grows by at
least one even and one odd basis function. This removes the possibility for unexpected
effects on the adaptive strategy if the target function is actually even or odd.
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Lin. G Exp. G C-C G-P
Order p a t p a t p a p a

1 1 1 1 1 1 1 1 1 1 1
2 2 3 3 2 3 3 3 3 3 5
3 3 5 6 4 7 7 5 5 7 10
4 4 7 10 8 15 15 9 9 15 22
5 5 9 15 16 31 31 17 17 31 46
6 6 11 21 32 63 63 31 31 63 94

m m 2m− 1 m2 −m/2 2m−1 2m − 1 2m − 1 2m−1 + 1 2m−1 + 1

Table 2.1: The cost of four quadrature strategies as their order increases: linear growth
Gauss-Legendre quadrature (Lin. G), exponential growth Gauss-Legendre quadrature
(Exp. G), Clenshaw-Curtis quadrature (C-C), and Gauss-Patterson quadrature (G-
P). We list the number of points used to compute the given rule (p), the polynomial
exactness (a), and the total number of points used so far (t). For nested rule, (p) =
(t), so the total column is omitted.

2.5.2 Basic convergence: Genz functions

The Genz family [40, 41] comprises six parameterized functions, defined from [−1, 1]d →
R. They are commonly used to investigate the accuracy of quadrature rules and in-
terpolation schemes [6, 71]. The purpose of this example is to show that different
Smolyak pseudospectral strategies behave roughly as expected, as evidenced by de-
creasing L2 approximation errors as more function evaluations are employed. These
functions are as follows:

oscillatory: f1(x) = cos

(
2πw1 +

d∑

i=1

cixi

)

product peak: f2(x) =
d∏

i=1

(
c−2

i + (xi − wi)
2
)−1

corner peak: f3(x) =

(
1 +

d∑

i=1

cixi

)−(d+1)

Gaussian: f4(x) = exp

(
−

d∑

i=1

c2
i (̇xi − wi)

2

)

continuous: f5(x) = exp

(
−

d∑

i=1

c2
i (̇|xi − wi|)2

)

discontinuous: f6(x) =





0 if x1 > w1 or x2 > w2

exp
(∑d

i=1 cixi

)
otherwise

Our first test uses five isotropic and non-adaptive pseudospectral approximation
strategies. The initial strategy is the isotropic full tensor pseudospectral algorithm,
based on Gauss-Legendre quadrature, with order growing exponentially with level.
The other four strategies are total-order expansions of increasing order based on the
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following quadrature rules: linear growth Gauss-Legendre, exponential growth Gauss-
Legendre, Clenshaw-Curtis, and Gauss-Patterson. All the rules were selected so that
the final rule would have around 104 points.

We consider 30 random realizations of each Genz function in d = 5 dimensions;
random parameters for the Genz functions are drawn uniformly from [0, 1], then nor-
malized so that ‖w‖1 = 1 and ‖c‖1 = bj, where j indexes the Genz function type and
the constants bj are as chosen in [6, 71]. This experiment only uses the first four Genz
functions, which are in C∞, as pseudospectral methods have well known difficulties on
functions with discontinuities or discontinuous derivatives [11]. Each estimate of L2

approximation error is computed by Monte Carlo sampling with 104 samples. Figure
2-7 plots L2 error at each stage, where each point represents the mean error over the
30 random functions.

Relatively simple conclusions can be drawn from this data. All the methods show
fast convergence, indicating that the internal aliasing issues have indeed been re-
solved. In contrast, one would expect direct quadrature to suffer from large aliasing
errors for the three super-linear growth rules. Otherwise, judging the efficiency of
the different rules is not prudent, because differences in truncation and the struc-
ture of the test functions themselves obscure differences in efficiency. In deference
to our adaptive strategy, we ultimately do not recommend this style of isotropic and
function-independent truncation anyway.

To test our adaptive approach, Figure 2-8 shows results from a similar experiment,
now comparing the convergence of an adaptive Smolyak pseudospectral algorithm with
that of a non-adaptive algorithm. To make the functions less isotropic, we introduce
an exponential decay, replacing each ci with cie

i/5, where the ci are generated and
normalized as above. For consistency, both algorithms are based on Gauss-Patterson
quadrature. As we cannot synchronize the number of evaluations used by the adap-
tive algorithm for different functions, we plot individual errors for the 30 random
functions instead of the mean error. This reveals the variability in difficulty of the
functions, which was hidden in the previous plot. We conclude that the adaptive algo-
rithm also converges as expected, with performance comparable to or better than the
non-adaptive algorithm. Even though we have included some anisotropy, these func-
tions include relatively high degrees of coupling; hence, in this case the non-adaptive
strategy is a fairly suitable choice. For example, the “product peak” function shows
little benefit from the adaptive strategy. Although omitted here for brevity, other
quadrature rules produce similar results when comparing adaptive and non-adaptive
algorithms.

2.5.3 Adaptivity: chemical kinetics

To further illustrate the benefits of an adaptive Smolyak approach, we build a sur-
rogate for a realistic simulation of a combustion kinetics problem. Specifically, we
consider the auto-ignition of a methane-air mixture given 14 uncertain rate parame-
ters. Governing equations for this process are a set of stiff nonlinear ODEs expressing
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Figure 2-7: Mean L2 convergence of the non-adaptive isotropic total-order Smolyak
pseudospectral algorithm with various quadrature rules, compared to the full tensor
pseudospectral algorithm, on the Genz test functions.

conservation of energy and of chemical species [69]. The uncertain rate parameters rep-
resent activation energies of reactions governing the conversion of methane to methyl,
each endowed with a uniform distribution varying over [0.8, 1.25] of the nominal value.
These parameters appear in Arrhenius expressions for the species production rates,
with the reaction pathways and their nominal rate parameters given by the GRIMech
3.0 mechanism [48]. The output of interest is the logarithm of the ignition time, which
is a functional of the trajectory of the ODE system, and is continuous over the selected
parameter ranges. Simulations were performed with the help of the TChem software
library [98], which provides convenient evaluations of thermodynamic properties and
species production rates, along with Jacobians for implicit time integration.

Chemical kinetics are an excellent testbed for adaptive approximation because,
by the nature of detailed kinetic systems, we expect strong coupling between some
inputs and weak coupling between others, but we cannot predict these couplings a
priori. We test the effectiveness of adaptive Smolyak pseudospectral methods based
on the four quadrature rules discussed earlier. As our earlier analysis suggested that
Gauss-Patterson quadrature should be most efficient, our reference solution is a non-
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Figure 2-8: L2 convergence of the adaptive and non-adaptive Gauss-Patterson Smolyak
pseudospectral algorithm. Individual results for 30 random instances of the Genz
functions are shown.

adaptive Gauss-Patterson total-order Smolyak pseudospectral expansion. We ran the
non-adaptive algorithm with a total order index set truncated at n = 5 (which includes

monomial basis terms up through ψ
(i)
23 ), using around 40000 point evaluations and

taking over an hour to run. We tuned the four adaptive algorithms to terminate with
approximately the same number of evaluations.

Figure 2-9 compares convergence of the five algorithms. The L2 errors reported on
the vertical axis are Monte Carlo estimates using 104 points. Except for a small de-
viation at fewer than 200 model evaluations, all of the adaptive methods significantly
outperform the non-adaptive method. The performance of the different quadrature
rules is essentially as predicted in Section 2.5.1: Gauss-Patterson is the most efficient,
exponential growth Gauss-Legendre and Clenshaw-Curtis are nearly equivalent, and
linear growth Gauss-Legendre performs worse as the order of the polynomial approxi-
mation increases. Compared to the non-adaptive algorithm, adaptive Gauss-Patterson
yields more than two orders of magnitude reduction in the error at the same num-
ber of model evaluations. Linear growth Gaussian quadrature is initially comparable
to exponential growth Gaussian quadrature, because the asymptotic benefits of ex-
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ponential growth do not appear while the algorithm is principally using very small
one-dimensional quadrature rules. At the end of these experiments, a reasonable
number of higher order quadrature rules are used and the difference becomes visible.
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Figure 2-9: L2 convergence of ignition delay in a 14-dimensional chemical kinetic sys-
tem; comparing a non-adaptive isotropic total-order Gauss-Patterson-based Smolyak
pseudospectral algorithm to the adaptive algorithm with various quadrature rules.

We conclude by illustrating that the adaptive algorithm is effective because it suc-
cessfully focuses its efforts on high-magnitude coefficients—that is, coefficients that
make the most significant contributions to the function. Even though the non-adaptive
expansion has around 37,000 terms and the final adaptive Gauss-Patterson expansion
only has about 32,000 terms, the adaptive expansion exhibits much lower error be-
cause most of the additional terms in the non-adaptive expansion are nearly zero. By
skipping many near-zero coefficients, the adaptive approach is able to locate and esti-
mate a number of higher-order terms with large magnitudes. Figure 2-10 depicts this
pattern by plotting the difference between the numbers of included terms in the final
adaptive Gauss-Patterson and non-adaptive expansions. The adaptive algorithm does
not actually add any higher order monomials; neither uses one-dimensional basis terms
of order higher than ψ

(i)
23 . Instead, the adaptive algorithm adds mixed terms of higher

total order, thus capturing the coupling of certain variables in more detail than the
non-adaptive algorithm. The figure shows that terms through 30th order are included
in the adaptive expansion, all of which are products of non-constant polynomials in
more than one dimension.
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Figure 2-10: The plot depicts the difference between the number of coefficients of a
particular magnitude and order in the final adaptive and non-adaptive Gauss-Patterson
based expansions. The horizontal axis is the order of the term and the vertical axis
specifies log10 of the coefficient value. The color represents log10 of the difference
between the two methods, where positive values indicate more terms in the non-
adaptive expansion. Hence, the dark blue at (6,−10) indicates that the non-adaptive
expansion includes around 3,000 extra terms of magnitude 10−10 and the dark red at
(10,−8) indicates that the adaptive expansion includes about 1,000 extra terms of
magnitude 10−8. Grey squares are the same for both expansions and white squares
are not present in either.

2.5.4 Performance of the global error indicator

To evaluate the termination criterion, we collected the global error indicator during
runs of the adaptive algorithm for all of the test functions described above, including
the slowly converging non-smooth Genz functions omitted before. The discontinuous
Genz function does not include the exponential coefficient decay because the dis-
continuity already creates strong anisotropy. Results are shown for Gauss-Patterson
quadrature. The relationship between the estimated L2 error and the global error
indicator ǫg is shown in Figure 2-11. For the smooth test functions, ǫg is actually
an excellent indicator, as it is largely within an order of magnitude of the correct
value and essentially linearly related to it. However, the non-smooth Genz functions
illustrate the hazard of relying too heavily on this indicator: although the adaptive
algorithm does decrease both the errors and the indicator, the relationship between
the two appears far less direct.
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Figure 2-11: Relationship between the termination criterion (2.40) and the estimated
L2 error for every function tested.

2.6 Conclusions

This chapter gives a rigorous development of Smolyak pseudospectral algorithms, a
practical approach for constructing polynomial chaos expansions from point evalua-
tions of a function. A common alternative approach, direct quadrature, has previously
been shown to suffer from large errors. We explain these errors as a consequence of
internal aliasing and delineate the exact circumstances, derived from properties of the
chosen polynomial basis and quadrature rules, under which internal aliasing will oc-
cur. Internal aliasing is a problem inherent to direct quadrature approaches, which
use a single (sparse) quadrature rule to compute a set of spectral coefficients. These
approaches fail because they substitute a numerical approximation for only a portion
of the algorithm, i.e., the evaluation of integrals, without considering the impact of
this approximation on the entire construction. For almost all sparse quadrature rules,
internal aliasing errors may be overcome only through an inefficient use of function
evaluations. In contrast, the Smolyak pseudospectral algorithm computes spectral co-
efficients by assembling tensor-product pseudospectral approximations in a coherent
fashion that avoids internal aliasing by construction; moreover, it has smaller external
aliasing errors. To establish these properties, we extend the known result that the
exact set of a Smolyak pseudospectral approximation contains a union of the exact
sets of all its constituent tensor-product approximation operators to the case of arbi-
trary admissible Smolyak multi-index sets. These results are applicable to any choice
of quadrature rule and generalized sparse grid, and are verified through numerical
demonstrations; hence, we suggest that the Smolyak pseudospectral algorithm is a
superior approach in almost all contexts.

A key strength of Smolyak algorithms is that they are highly customizable through
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the choice of admissible multi-index sets. To this end, we describe a simple alter-
ation to the adaptive sparse quadrature approaches of [43, 52], creating a correspond-
ing method for adaptive pseudospectral approximation. Numerical experiments then
evaluate the performance of different quadrature rules and of adaptive versus non-
adaptive pseudospectral approximation. Tests of the adaptive method on a realistic
chemical kinetics problem show multiple order-of-magnitude gains in accuracy over a
non-adaptive approach. Although the adaptive strategy will not improve approxima-
tion performance for every function, we have little evidence that it is ever harmful and
hence widely recommend its use.
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Chapter 3

Asymptotically exact MCMC

algorithms via local

approximations1

3.1 Introduction

An important strategy for mitigating the computational cost of inference is to recognize
that the forward model may exhibit regularity in its dependence on the parameters of
interest, such that the model outputs may be approximated with fewer samples than
are needed to characterize the posterior via MCMC. Replacing the forward model with
an approximation or “surrogate” decouples the required number of forward model
evaluations from the length of the MCMC chain, and thus can vastly reduce the
overall cost of inference [97, 70]. Successful existing approaches typically create high-
order global approximations for either the forward model outputs or the log-likelihood
function, using, for example, global polynomials [80, 79], radial basis functions [8, 63],
or Gaussian processes [97, 70, 91, 99]. Most of these approaches assume that the
forward model is deterministic and available only as a black box. We will make the
same assumptions here, thus focusing our attention on “non-intrusive” approximation
methods that are based only on evaluations of the forward model at selected input
points.

Although current methods can provide significant empirical performance improve-
ments, they tend to sacrifice either exact sampling or potential speedups, by either
over- or under-utilizing the surrogate. For example, many methods fix the likeli-
hood or forward model approximation after a finite degree of refinement, then use
an MCMC algorithm to analyze the resulting posterior without further reference to
the true model. The resulting samples are thus necessarily drawn from an approx-
imate posterior distribution. In principle, one might require only that the bias of
any posterior expectation computed using samples from this approximate posterior
be small relative to the variance introduced by the finite length of the MCMC chain.

1The material in this chapter is adapted from [21].
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But current methods lack a rigorous approach to controlling this bias [7, 34]. While
there do exist theoretical results that allow the convergence rates of the forward model
approximation to be transferred to the posterior distribution [23, 79], assessing and
controlling the magnitude of the error in the posterior remains a challenge. Conversely,
other methods limit potential performance improvement by failing to “trust” the sur-
rogate even when it is accurate. Delayed-acceptance schemes, for example, evaluate
the full model in a second Metropolis acceptance step within an MCMC iteration, thus
screening proposals that have been accepted according to the approximate posterior
[91, 14, 28]. These schemes achieve exact sampling while eliminating the need for error
analysis of the surrogate, but may require almost as much effort as running MCMC
with the full model directly.

Analyzing the error of a forward model approximation would seem to be a useful
route towards more efficient exact sampling, or sampling with controlled errors, but
this can be quite challenging for the global approximation methods used in previous
work. Adding to the difficulty of analysis are the complex experimental design heuris-
tics with which these approximations are often paired [91, 7, 34]. Efficiently construct-
ing a surrogate within an inference problem requires that the sample set be tailored
simultaneously to the approximation family, the function to be approximated, and
the posterior distribution itself. As several of these components are unknown a priori,
these requirements favor sequential design approaches that interleave characterization
of the posterior with refinement of the surrogate. Methods for sequential design in
this context are inevitably ad hoc, however. Even when the design heuristics perform
well, it is not clear how to establish rigorous error bounds for finite samples or even
how to establish convergence for infinite samples, given relatively arbitrary point sets.
In contrast, polynomial chaos expansions simplify the experimental design problem by
designing sample grids [118, 83, 22, 20] with respect to the prior distribution, which is
known to induce a convergent approximation of the posterior density [79]. However,
using only prior information is likely to be inefficient; in situations whenever the data
are informative such as in large samples, the posterior concentrates on a small fraction
of the parameter space relative to the prior. Creating a surrogate that is accurate over
the entire prior support thus wastes considerable computational effort. Overall there
is a need for efficient approaches with provable convergence properties—such that one
can achieve exact sampling while making full use of the surrogate model.

3.1.1 Our contribution

This chapter resolves the above-mentioned issues by proposing a new framework that
integrates local approximations into Metropolis-Hastings kernels, producing a Markov
chain that asymptotically (in the number of MCMC steps) samples from the exact pos-
terior distribution. As examples of this approach, we will employ approximations of
either the log-likelihood function or the forward model, using local linear, quadratic, or
Gaussian process regression. To produce the sample sets used for these local approxi-
mations, we will introduce a sequential experimental design procedure that interleaves
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infinite refinement of the approximation with the Markov chain’s exploration of the
posterior. The overall experimental design reflects a combination of guidance from
MCMC (so that samples are focused on the posterior) and local space filling heuris-
tics (to ensure well-poised sample sets for local approximation), triggered both by
random refinement and by local error indicators of model quality. The result is a
practical approach that also permits rigorous error analysis. This concept is inspired
by the use of trust region methods in derivative-free optimization [18, 19], wherein
local models similarly allow the reuse of model evaluations while enabling refinement
until convergence. Optimization and posterior sampling place different requirements
on their underlying approximations, however, and thus our integration of local models
into MCMC departs from the experimental design procedures used in derivative-free
optimization.

Although local approximations cannot be expected to converge as quickly as global
(e.g., spectral) approximations of smooth functions, they are simpler to analyze in
the present context and provably convergent under relatively straightforward condi-
tions. We use these properties to prove that the resulting MCMC algorithm converges
asymptotically to the posterior distribution induced by the exact forward model and
likelihood. In this chapter we focus on the specific case of a random-walk Metropolis
algorithm coupled with local quadratic approximations of the log-likelihood. We show
ergodicity of the MCMC chain with respect to the exact posterior. The proof involves
demonstrating that the transition kernel converges quickly as the posterior distribu-
tion is explored and as the surrogate is refined. Our arguments are not limited to
the random-walk Metropolis algorithm; they apply quite broadly and can be adapted
to most other Metropolis-Hastings algorithms and local approximation schemes. Al-
though we do not focus our attention on finite-time error bounds, it is straightforward
to propagate such bounds through our arguments. Broadly, our theoretical results
reinforce the notion that it is possible to greatly reduce the number of evaluations of
the forward model per MCMC step when the likelihood has some local regularity. We
complement the theory by demonstrating experimental performance improvements of
up to several orders of magnitude on inference problems involving ordinary differen-
tial equation and partial differential equation forward models, using several different
MCMC algorithms and local approximation schemes.

The remainder of this chapter is organized as follows. We describe the new MCMC
approach in Section 3.2. A more detailed discussion of related work is deferred to
Section 3.2.6, to allow concrete comparisons with our method. Theoretical results,
including a proof of ergodicity, are provided in Section 3.3. Section 3.4 then provides
empirical assessments of performance in several examples. We emphasize that, while
the examples demonstrate strong computational performance, the present implemen-
tation is merely a representative of a class of asymptotically exact MCMC algorithms.
Section 3.5 discusses several variations on the core algorithm that may be pursued in
future work.

51



3.2 Algorithm description

This section describes our framework for Metropolis-Hastings algorithms based on
local approximations, which incrementally and infinitely refine an approximation of
the forward model or likelihood as inference is performed. We consider a Bayesian
inference problem with posterior density

p(θ|d) ∝ L(θ|d, f)p(θ),

for inference parameters θ ∈ Θ ⊆ R
d, data d ∈ R

n, forward model f : Θ → R
n,

and probability densities specifying the prior p(θ) and likelihood function L. The
forward model may enter the likelihood function in various ways. For instance, if
d = f(θ) + η, where η ∼ pη represents some measurement or model error, then
L(θ|d, f) = pη(d− f(θ)). Assume that a forward model evaluation is computationally
expensive—requiring, for example, a high resolution numerical solution of a partial
differential equation (PDE). Also assume that given the parameters and the forward
model evaluation, the prior density and likelihood are inexpensive to evaluate, e.g.,
Gaussian. In such a setting, the computational cost of MCMC is dominated by forward
model evaluations, rather than proposal construction or density evaluations.

3.2.1 Overview

Our approach is to use local models in a strategy inspired by work in derivative-
free optimization [19] and also related to the LOESS procedure for local regression
[16]. To compute the approximation f̃ at a target point θ, we gather a collection
of existing evaluation pairs (θi, f(θi)) at nearby points, then fit a local model using
those examples. To control the error of the approximation, the model may need to be
refined; this is accomplished by running f at additional points. We restrict ourselves
to the case of incorporating local approximations into Metropolis-Hastings proposals
with translation-invariant kernels; other possibilities (e.g., combining local and global
approximations, or Hamiltonian Monte Carlo) are left as future work and are briefly
described in Section 3.5. We initially describe the framework using local linear or
quadratic models; Section 3.2.5 then explains the simple changes required to replace
these models with local Gaussian process approximations.

The literature is divided between so-called direct and indirect surrogate meth-
ods [7]—that is, approximations of log p(θ|d) or of f , respectively.2 Both the direct
and indirect approaches have certain advantages, and the algorithm presented here
can switch between them merely by relabeling the terms subject to approximation.
Indeed, it is not obvious whether either approach is superior in general. Practical
differences between them include the following: (1) the indirect method produces a
higher-order approximation of the posterior density when substituted into the like-

2We propose that in direct methods it might be advantageous to approximate only the log-
likelihood and to evaluate the prior density without approximation, whenever the latter is inexpensive
to evaluate.
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lihood; (2) indirect approximation creates surrogates for each model output, which
may be numerous and whose errors may accumulate; (3) direct approximation, on
the other hand, must only contend with a scalar output; (4) choosing one approach
or the other affects which derivatives can be provided to the MCMC algorithm, as
well as what kind of adjoint or derivative information from the forward model can be
incorporated into the approximation. The numerical experiments performed in this
chapter will demonstrate both the direct and indirect approaches. Without loss of
generality, we will cast the algorithm description below in terms of approximating the
forward model.

In Metropolis-Hastings (MH) algorithms, the forward model is used to compute
the probability α of accepting a proposal. In the present context, evaluating the
acceptance probability invokes evaluations of the forward model surrogate at both
the current and proposed points, θ− and θ+, respectively. In keeping with standard
reversibility arguments for MH kernels, we consider refinements at either point. Re-
finement is triggered via two separate criteria: randomly with probability βm; or when
acceptance probability error indicators ǫ− or ǫ+ exceed a threshold γm. Both refine-
ment thresholds βm and γm decrease asymptotically to zero as the length of the MCMC
chain m→∞. When refinement is triggered, an experimental design phase selects a
new point at which to evaluate the forward model. This point is generally near, but
distinct from, either the current or proposed points. Intuitively, this procedure should
produce a sample set that is space-filling with respect to the high posterior probability
regions. Figure 3-1 contrasts this approach with a prior-based sparse grid [20], which
can produce approximations that converge quickly with respect to a prior-weighted
norm, but is inefficient in this context because it places so few samples in the region
of high posterior probability.

Algorithm 3.1 formally describes our approach. The main method, LocallyAp-

proximate, takes as its arguments the function f to approximate and a pair of points
θ+, θ− ∈ Θ ⊆ R

d, and returns local approximations of f at those two points for use
in MCMC. It also takes the existing set of true model evaluations S := {θ, f(θ)},3 a
specification of the posterior (represented as the likelihood L, data d, and prior p),
and two constants that govern refinement, βm, γm ∈ [0, 1]. The algorithm proceeds
in three phases: lines 3–4 compute the best approximation using existing samples,
lines 5–7 estimate the error in the acceptance probability using cross validation, and
lines 8–16 evaluate the model at new points, as necessary. The algorithm uses two
supporting subroutines: ConstructApproximation forms a local approximation,
optionally withholding a sample for cross validation, and RefineNear performs ex-
perimental design to select new points. The details of these steps are given in the
following subsections, followed by a discussion of previous work on related algorithms.

3Before MCMC begins, S needs to be seeded with a sufficient number of samples for the first run.
Two simple strategies are to draw these samples either from the prior or near the MCMC starting
point, which is often the posterior mode as found by optimization.
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Algorithm 3.1 Construct Local Approximation

1: procedure LocallyApproximate(f , θ+, θ−,S,L,d, p, βm, γm)
2: while forever do

3: f̃+ ← ConstructApproximation(θ+,S, ∅)
⊲ Compute nominal approximations

4: f̃− ← ConstructApproximation(θ−,S, ∅)
5: α← min

(
1, L(θ|d,f̃+)p(θ+)

L(θ|d,f̃−)p(θ−)

)

⊲ Compute nominal acceptance ratio

6: ǫ+ ← max
j

∣∣∣α−min
(
1, L(θ+|d,ConstructApproximation(θ+,S,j))p(θ+)

L(θ−|d,f̃−)p(θ−)

)∣∣∣

7: ǫ− ← max
j

∣∣∣α−min
(
1, L(θ+|d,f̃+)p(θ+)

L(θ−|d,ConstructApproximation(θ−,S,j))p(θ−)

)∣∣∣

8: if ǫ+ ≥ ǫ− and ǫ+ ≥ γm then

⊲ If needed, refine near the larger error

9: S ← RefineNear(θ+,S)
10: else if ǫ− > ǫ+ and ǫ− ≥ γm then

11: S ← RefineNear(θ−,S)
12: else if u ∼ U(0, 1) < βm then

⊲ Refine with small probability βm

13: Randomly, S ← RefineNear(θ+,S) or S ← RefineNear(θ−,S)
14: else ⊲ Accept approximations

15: return(f̃+, f̃−,S)
16: end if

17: end while

18: end procedure

19: procedure ConstructApproximation(θ,S, j)
20: Select R so that |B(θ, R)| = N , where
B(θ, R) := {{θi, f(θi)} ∈ S : ‖θi − θ‖2 ≤ R} ⊲ Select ball of points

21: B(θ, R)← EnsurePoisedness(B(θ, R))
22: f̃ ← A∼j

B(θ,R) ⊲ Form approximation,

⊲ possibly without sample j

23: return f̃

24: end procedure

25: procedure RefineNear(θ,S)
26: θ∗ ← max‖θ′−θ‖≤R minθi∈S ‖θi − θ′‖ ⊲ Optimize near θ

27: S ← S ∪ {θ∗, f(θ∗)} ⊲ Grow the sample set

28: end procedure

54



Prior contours

Posterior contours

(a) Prior-based sparse grid samples.

Prior contours

Posterior contours

(b) Posterior-adapted samples.

Figure 3-1: Schematic of an inference problem with a Gaussian prior and a posterior
concentrated therein, with two experimental design approaches superimposed. Points
are locations in the parameter space where the forward model is evaluated.

3.2.2 Local polynomial approximation

First, we explain the subroutine ConstructApproximation, which produces an
approximation at θ, using a fixed set of samples S, optionally omitting sample j.
This section follows Conn et al. [19] in constructing either linear or quadratic local
models. We construct these models using samples of S drawn from a ball of radius
R centered on θ, B(θ, R) := {(θi, f(θi)) ∈ S : ‖θi − θ‖2 ≤ R}. If this set contains
sufficient samples, the low order polynomials are regression models that may easily
be fit using least squares. We write the operators that produce the fitted linear or
quadratic approximations as L∼j

B(θ∗,R) or Q∼j
B(θ∗,R), respectively. The superscript ∼j, if

non-empty, indicates that sample j should be omitted; this option is used to support
the cross-validation error indicators, described below. The pseudocode uses A∼j

B(θ∗,R)

to represent either polynomial fitting algorithm.
It can be shown that the following error bounds hold independently for each output

component, for every θ′ in the ball [19]:

∣∣∣fi(θ
′)−

(
L∼j

B(θ,R)(θ
′)
)

i

∣∣∣ ≤ κl(ν1, λ, d)R2, (3.1a)
∣∣∣fi(θ

′)−
(
Q∼j

B(θ,R)(θ
′)
)

i

∣∣∣ ≤ κq(ν2, λ, d)R3, (3.1b)

where the constants κ are a functions of the Lipschitz constants ν1, ν2 of the gradient
or Hessian of f , respectively; a constant λ reflecting the geometry of the input sample
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set; and the parameter dimension d. Intuitively, λ is small if the points are well
separated, fill the ball from which they are drawn, and do not lie near any linear or
quadratic paths (for the linear and quadratic approximations, respectively). As long
as λ is held below some fixed finite value, the model is said to be λ-poised, and these
bounds show that the approximations converge as R → 0. The value of λ can be
computed, and algorithms exist that can make any set λ-poised by adding a finite
number of new points [19]. These simple but rigorous local error bounds form the
foundation of our theoretical analysis, and are the reason that we begin with local low
order polynomials. Usefully, they are representative of the general case, in that most
reasonable local models converge in some sense as the ball size falls to zero.

It remains to precisely specify the choice of radius, R, and the weights used in the
least squares regression. The radius R is selected to include a fixed number of points
N . A linear model is fully defined by Ndef = d+1 points and a quadratic is defined by
Ndef = (d + 1)(d + 2)/2 points; hence, performing a least squares regression requires
at least this many samples. Such models are interpolating, but the associated least
squares system is often poorly conditioned unless the geometry of the sample set is
carefully designed. Conn et al. [19] show that adding additional samples can only
stabilize the regression problem, so we select N =

√
dNdef, which seems to provide a

reasonable balance.

We depart from [19] by performing a weighted regression. If the radius that con-
tains the inner Ndef samples is Rdef, then R > Rdef and the weight of each sample
is:

wi =





1 ‖θi − θ‖2 ≤ Rdef

0 ‖θi − θ‖2 > R
(

1−
(

‖θi−θ‖2−Rdef

R−Rdef

)3
)3

else

(3.2)

This is a variation of the tricube weight function sometimes used with LOESS, a local
regression framework [16]. Setting the inner points to have unity weight ensures that
the regression is full rank, while subsequently decreasing the weights to zero puts
less emphasis on more distant samples. Additionally, this weight function has three
continuous derivatives at ‖θi−θ‖2 = R, which ensures that even though f̃ is generated
independently at each point, it will have two continuous derivatives [3].

To satisfy the geometric constraint of the bounds above, Line 21 of Algorithm
3.1 checks that the sample set is at least λ-poised, and adds samples as needed. In
practice, the choice of N > Ndef and the experimental design procedure used for
selecting new points ensures that this constraint is almost never violated, and the
error indicator would likely trigger refinement if it is. Hence, we may omit this step
in our implementation.

Appendix A precisely details the regressor and the corresponding least squares
problem. Multiple outputs are handled by constructing a separate approximation for
each one. Fortunately, the expensive step of the least squares problem is identical
for all the outputs, so the cost of constructing the approximation scales well with the
number of observations.
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3.2.3 Triggering model refinement

We separate the model refinement portion of the algorithm into two stages. This
section discusses when refinement is needed, while Section 3.2.4 explains how the
refinement is performed.

Refinement is triggered by either of two criteria. The first is random: with proba-
bility βm, the model at the current point θ− or the proposed point θ+ is refined. This
process fits naturally into MCMC and is essential to establishing the theoretical con-
vergence results in the next section. The second criterion, based on a cross-validation
error indicator, is intended to make the approximation algorithm efficient in prac-
tice. We compute separate error indicators, ǫ+ and ǫ−, that represent error in the
acceptance probability due to errors in the local approximations at the proposed and
current points, respectively, as computed by cross validation. Refinement is performed
whenever these indicators exceed γm, at the point whose error indicator is larger. This
second criterion is more difficult to analyze, however, and hence the two criteria are
complementary.

For a Metropolis-Hastings algorithm, the acceptance probability computed from
the forward model approximation f̃ is

α = min

(
1,
L(θ+|d, f̃)p(θ+)

L(θ−|d, f̃)p(θ−)

)
.

(For simplicity, we assume a symmetric proposal distribution above; the generalization
to non-symmetric proposals is straightforward.) The error indicators are computed
as the maximum change in α that occurs when the jth sample is left out of either
local approximation, f̃+ or f̃−, respectively. For each indicator, the maximum is taken
over all j = 1 . . . N samples used in the weighted approximation; these definitions are
written precisely in Algorithm 3.1. We emphasize that the acceptance probability is a
natural quantity of interest in this context; it captures the entire impact of the forward
model and likelihood on the MH kernel. The cross-validation error indicator is easily
computable, summarizes a variety of error sources, and is easily interpretable as an
additive error in a probability; these features make it possible for the user to exercise
a problem-independent understanding of the threshold to which it is compared, γm.
In contrast, attempting to control the error in either the forward model outputs or
log-likelihood at the current or proposed point is not generically feasible, as their scale
and the sensitivity of the MH kernel to their perturbations cannot be known a priori.

3.2.4 Refining the local model

If refinement of the local model at a point θ is required, SelectNewPoint selects a
single new nearby point θ∗, computes f(θ∗), and inserts the new pair into S. This new
model evaluation should improve the sample set for the local model B(θ, R), either by
allowing the radius R to decrease or by improving the local geometry of the sample
set.
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In previous work on derivative-free optimization, [19] attempts to select a new point
optimally to improve a local model based on properties of polynomial interpolation,
but is not concerned with the quality of the global set S because the samples are used
to compute a single path to an optimum. In contrast with optimization, however,
MCMC will revisit much of the parameter space many times, so our algorithm must
ensure that local refinements maintain the global quality of the sample set, that is,
the local quality at every nearby location.

Intuitively, local polynomial regression becomes ill-conditioned if the points do not
fill the whole ball, or if some points are clustered much more tightly than others. The
obvious strategy of simply adding θ to S is inadvisable because it often introduces
tightly clustered points, inducing poorly conditioned regression problems. Instead, a
straightforward and widely used type of experimental design is to choose points in
a space-filling fashion; doing so near θ naturally fulfills our criteria. Specifically, we
select the new point θ∗ by finding a local maximizer of the problem:

θ∗ = arg max
θ′

min
θi∈S
‖θ′ − θi‖2,

subject to ‖θ′ − θ‖2 ≤ R

which places a point within the ball but well separated from all existing samples.
Optimization iterations are initialized at θ′ = θ. The constraint ensures that the new
sample is used in the improved model, yet the inner minimization operator considers
the entire set S in order to ensure the sample’s global quality. Inspection of the
constraints reveals that the search in the inner minimization may be simplified to θi ∈
B(θ∗, 3R), as points outside a ball of radius 3R have no impact on the optimization.
We seek a local optimum of the objective because it is far easier to find than the
global optimum but also because it is more likely to be useful, as the global optimum
will often be at radius R, which means that the revised model cannot be built over a
smaller ball.

Although there is a close relationship between the set of samples where the forward
model is evaluated and the posterior samples produced by MCMC, they are distinct
and in general the two sets do not overlap. A potential limitation of the optimization
approach above is that it might select points outside the support of the prior. This is
only problematic if the model is not feasible outside the prior, in which case additional
constraints can easily be added.

3.2.5 Local Gaussian process surrogates

Gaussian process (GP) regression underlies an important and widely used class of com-
puter model surrogates, so it is natural to consider its application in the present local
approximation framework. Local Gaussian processes have been previously explored
in [109, 27, 106, 103, 46]. This section explains how local Gaussian process approxi-
mations may be substituted for the polynomial approximations described above, and
incrementally refined during MCMC.
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The adaptation is quite simple: we define a new approximation operator G∼j
B(θ,R)

that may be substituted for the abstract operator A∼j
B(θ,R) in Algorithm 3.1. The

samples are unweighted, and as in the polynomial case, the number of samples used
for each approximation is a fixed constant N . This choice is relatively unconstrained;
in the numerical examples to be shown later, we choose N = d5/2, mimicing the choice
for quadratic approximations, which performs well in practice. In contrast with low
order polynomials, Gaussian processes involve several implementation decisions that
can impact the quality of the approximation: one must choose a mean function, a
covariance kernel, and a hyperparameter selection strategy. The choices we make here
are intended to be simple, not to explore the entire space of options considered in the
literature. We select a constant mean function and an anisotropic squared-exponential
covariance kernel, that is:

C(x,y) = σ2 exp

(
−

d∑

i=1

ξi(xi − yi)
2

)
,

with variance σ2 and inverse-squared correlation lengths ξi > 0. Here xi and yi are the
ith components of x,y ∈ Θ. The length scale parameters are chosen by maximizing the
marginal likelihood, as a fully Bayesian approach to inferring these hyperparameters
would be prohibitively expensive. Given the inverse length parameters, the mean
function is chosen by least squares and the variance σ2 is estimated from the remaining
misfit. In practice, care must be taken in performing these steps to ensure that a high
quality surrogate is produced; our implementation borrows from the DACE toolbox
[75], which uses parameter rescaling and a custom optimization algorithm to mitigate
the impact of local minima, which can cause difficulties in fitting Gaussian processes.

A powerful feature of Gaussian process regressors is that they directly attempt
to quantify the variance of their predictions, in the sense that at any point θ, the
approximation yields a predictive distribution f̃(θ) ∼ N (µ(θ), σ̃2(θ)) for the model
outputs [97]. This renders the leave-one-out error estimation procedure unnecessary.
Instead, we define G∼j

B(θ,R) to be the mean µ(θ) of the local Gaussian process when j = ∅
and a draw from the Gaussian predictive distribution otherwise. This definition allows
the existing algorithm to leverage the natural uncertainty quantification of Gaussian
processes in computing the error indicators ǫ+ and ǫ−, without further modification.

As with local polynomials, multiple outputs of the forward model are handled by
constructing a separate approximation for each one. Using this simple approach, pa-
rameters of the Gaussian process covariance kernel must be inferred independently for
each output. Hence, indirect approximation with GPs is not immediately practical for
large n; one might instead employ GP approximations designed for high-dimensional
outputs [55].
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3.2.6 Related work

Having explained our algorithm, we can now provide a more detailed comparison with
related work. Previous efforts at mitigating the cost of MCMC with computationally
intensive models have focused primarily on global approximations. Gaussian process
emulators are perhaps the most widely studied non-intrusive surrogate of this kind, as
in Sacks et al. [97] and Kennedy & O’Hagan [70]. Samples are typically selected by a
space-filling design over the prior (e.g., a Latin hypercube design), possibly followed
by sequential design to further refine the approximation in regions of interest. Con-
structing a GP emulator for a complex computer model may require a large sample set
wherein not all the points are well separated, however. Haaland and Qian [49] discuss
the difficulties of constructing GPs in this context and analyze a numerically stable
and accurate multi-step procedure for doing so. Gramacy and Lee [47] introduce treed
Gaussian processes as a strategy for allowing GPs to capture nonstationarity. They de-
velop fully Bayesian methods for partitioning the parameter space, but this approach
is likely to be too expensive to interleave with an outer loop of MCMC. Rasmussen
[91], on the other hand, employs Gaussian process approximations specifically for the
purpose of making Hybrid Monte Carlo (HMC) more affordable, by integrating the
associated Hamiltonian dynamics using evaluations of the approximation. The full
model is run on the final proposal to correct for errors in the simulated trajectory,
but this step limits possible performance improvements. The GP approximation is
refined a finite number of times by observing HMC trajectories and triggering new
model evaluations whenever the accumulated error estimate exceeds a threshold. This
coupling with HMC implicitly introduces an experimental design strategy, but lacks
any guarantee of good global approximation properties of the sample set.

Closely related to Gaussian process emulators are radial basis function (RBF)
or kernel approximations. Bliznyuk et al. construct an RBF interpolant of the log-
posterior density directly [7, 8], and explicitly map the high posterior density region,
which aids in the experimental design process. Then MCMC is restricted to this high
posterior density region, as it is the only region where the approximated density is
intended to be accurate; this is a practical, but limiting, solution. Fielding et al. [34]
extend the approach in [91] by including parallel tempering and by allowing evaluations
of the GP surrogate to determine the Metropolis acceptance ratio, at least for higher-
temperature chains. Samples are confined to the region of accurate approximation via
a penalty introduced into the posterior. The DoIt approximation [63, 64] observes that
carefully constructed Gaussian radial basis function approximations of the posterior
(or square-root posterior density) can be cheaply and analytically processed to directly
evaluate posterior summaries, avoiding MCMC altogether. Experimental design is
accomplished by locally optimizing the maximum predicted variance near an existing
sample with large leave-one-out cross-validation error.

Another family of approximations involves constructing global polynomial surro-
gates with respect to the prior measure, referred to as polynomial chaos expansions
[80, 117, 118, 44]. These approximations can be constructed non-intrusively and ef-
ficiently through the use of adaptive Smolyak methods, which evaluate the model on
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tailored sparse grids [22, 20]. But these grids are typically not adapted to the posterior,
making them inefficient if the data are informative.

Almost all of the approaches above involve creating a single, essentially “global,”
approximation of the forward model or posterior density. The use of local models
as surrogates for inference, on the other hand, has been relatively unexplored. Lo-
cal models have a long heritage, as typified by LOESS (locally weighted scatterplot
smoothing or local regression) [16], which uses local weights to fit low order polyno-
mials [17, 51]. Another well known approximation is multivariate adaptive regression
splines (MARS) [37], which computes a global model composed of local functions that
are introduced, shifted, and scaled as needed to fit the data. Some advantages of
local models as they apply to artificial intelligence were identified in [3] and more re-
cently in an approach that attempts to scale LOESS to high-dimensional spaces [110].
Recent work has also coupled high-order global surrogates with local models derived
from MARS [13]. Local models are particularly important in optimization, as they
are used in many derivative-free trust region methods [18, 19]. Although this issue is
not fully explored in the present work, we also note that local models tend to handle
non-smooth functions well, in that the consequent regions of poor approximation can
be contained within a decreasing radius of a discontinuity or other non-smooth fea-
ture. This behavior contrasts sharply with that of global polynomials, for example,
which are known to converge slowly if there is a loss of regularity anywhere in the
input domain.

While the present work focuses entirely on “black-box” forward models, where only
evaluations of the forward model are available, some interesting approaches leverage
the structure of the forward model to reduce the cost of inference. For example, if
coarsened versions of a PDE forward solver are available, they can be used to run a
family of parallel MCMC chains, where the coarse-scale chains are used to increase the
mixing speed of the fine-scale chains [56], or to delay evaluating the fine-scale model
until the coarse model suggests that a proposed point should be accepted [14, 31].
Unfortunately, these methods still run the fine-scale model at least once for every
new posterior sample, so that the overall cost of inference cannot be dramatically
reduced. In two slightly different settings, [72] and [5] observe that sometimes the
forward model can be computed incompletely, while still allowing MCMC to decide
whether to accept or reject a proposal: the former attempts to process only some of
the data in the likelihood computation and the latter tunes the accuracy of a Monte
Carlo simulation within the forward model. For certain types of forward models, e.g.,
particular classes of PDEs or ODEs, reduced order modeling can produce high-quality
approximations at significantly reduced computational cost via a pre-processing step
that projects the governing equations onto a low-dimensional subspace of the original
system state [36, 74].

These previous efforts at creating efficient surrogate-based inference procedures
show enormous potential for reducing the computational cost of inference, but also
illustrate the subtlety of the problem—as none manage the delicate balance required
to achieve practical performance while ensuring exact sampling, or sampling with
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known error bounds. While some of the approaches discussed above achieve exact
posterior sampling by using the original forward model in a correction step, most
other approaches do not sample from the original posterior. Some relevant theory is
provided by Cotter et al. [23], who prove that good approximation (in a particular
global sense) of the forward model or likelihood can ensure that the corresponding
approximate posterior is close to the true posterior. These results should apply to a
broad range of forward model approximation techniques, but without useful strategies
to quantify or control the approximation error, the theory does not necessarily provide
practical guidance. The present local approximation scheme, on the other hand, lets us
tie construction and refinement of the approximation to the MCMC transition kernel
itself. Then, by relying on the convergence properties of local models, we will be able
to guarantee asymptotically exact posterior sampling.

3.3 Theory

In this section we show that, under natural assumptions, Algorithm 3.1 converges to
the target posterior p(θ|d) asymptotically. We focus only on the symmetric random
walk Metropolis algorithm, although our arguments can be adapted to more sophis-
ticated variants such as the Langevin algorithm, the Hybrid Monte Carlo algorithm,
and the Gibbs sampler.

Denote by L(x, ·) the kernel on R
d used to generate new proposals in Algorithm

3.1 and let ℓ(x, dy) denote its density. Assume that L(x, ·) satisfies

L(x, S) = L(x+ y, S + y) (3.3)

for all points x, y ∈ Θ and all sets S ⊂ Θ ⊂ R
d. Similarly, denote by P (x, ·) the

Metropolis-Hastings kernel (with density p(x, dy)) associated with proposal kernel L
and target distribution p(θ|d).

Let P̃t(Xt, ·) and p̃t(x, dy) respectively denote the transition distribution and den-
sity associated with the stochastic process Xt evolving according to Algorithm 3.1,
ignoring at step t any refinements that would normally be made. Here we assume that
log p(θ|d) is approximated by quadratic interpolation on the N = Ndef nearest points.
Denote by α(x, y) and α̃t(x, y) the Metropolis-Hastings acceptance ratios associated
with P and P̃ respectively. Finally, let Rt be the value of Rdef at time t and denote
by q1

t , . . . , q
N
t the points in S within distance Rt of Xt.

3.3.1 Assumptions

Fix βt, γ, and λ to be as in Algorithm 3.1. For θ ∈ Θ, define the sets

A(θ) =
{
y : p(y|d) ≥ p(θ|d)

}
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and

Rr(θ) =
{
y : 2θ − y /∈ A(θ)

}
.

Assumptions 3.3.1. The proposal kernel L and the target p(θ|d) satisfy the following:

1. lim inf |θ|→∞

∫ [
1−

(
min

(
1,
√

p(θ+z|d)
p(θ|d)

))2]
ℓ(θ, θ + dz) > 0.

2. lim sup|θ|→∞

∫
Rr(θ)−θ

[(
min

(
1,
√

p(θ|d)
p(θ+z|d)

))
−
√

p(θ−z|d)
p(θ|d)

]
ℓ(θ, θ + dz) ≤ 0.

3. p(θ|d) is bounded away from 0 on compact sets.

4. There exist δ, ǫ > 0 so that, for every x, |x− y| < δ implies ℓ(x, y) > ǫ.

Next we assume that the posterior density p(θ|d) satisfies the following Gaussian
envelope condition:

Assumptions 3.3.2. The posterior density p(θ|d) satisfies:

lim
r→∞

sup
|θ|=r
| log p(θ|d)− log p∞(θ)| = 0 (3.4)

where p∞(θ) = p∞(θ1, θ2, . . . , θd) has the form

log p∞(θ1, θ2, . . . , θd) =
∑

1≤i≤j≤d

aijθiθj

with the matrix [aij] being negative definite.

For x ∈ Θ, define the Lyapunov function

V (x) =
1√
p∞(x)

. (3.5)

Assumptions 3.3.3. Let V be as defined in (3.5) and set Vǫ(x) = V (x)
1

1+ǫ for ǫ > 0.
Assume that there exists some ǫ0 > 0 so that, for all ǫ > ǫ0 and all x > X sufficiently
large, there exists a constant Cǫ such that

| ∫z(Vǫ(x)− Vǫ(z))ℓ(x, dz)|
Vǫ(x)

≤ Cǫ <∞. (3.6)

Before giving the main result, we briefly discuss the assumptions above.

1. Assumption 3.3.1 constitutes a widely used set of natural conditions which ensure
that the Metropolis-Hastings algorithm associated with proposal L is geometri-
cally ergodic [94]. This assumption is easy to verify for a large class of target
densities p(θ|d) and proposal kernels L. Furthermore, Assumption 3.3.1 also
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implies that the function V is a Lyapunov function for the chain with proposal
distribution L and target p∞. Indeed, by Theorem 3.2 of [94], we have that a
Markov chain Zt evolving in this way satisfies the inequality

E[V (Zt+1)|Zt = x] ≤ αV (x) + b

for some 0 < α < 1 and some b > 0.

2. Assumption 3.3.2 signifies a delicate interplay between the deterministic approx-
imation algorithm (in our case, a quadratic interpolation) and the stability of
the corresponding MCMC algorithm. This assumption can be much weakened;
see Remark 3.3.6 for more elaboration of this point.

3. Assumption 3.3.3 is a mild technical assumption. For example, in one dimension,
(3.6) holds if ℓ(x, dy) is Gaussian with variance small compared to p∞.

3.3.2 Ergodicity

We are ready to give the main result of this section. Recall that Xt is the Markov
chain on Θ ⊂ R

d. The state space Θ need not be compact.

Theorem 3.3.4. Suppose Assumptions 3.3.1, 3.3.2, and 3.3.3 hold. Then we have

lim
t→∞
‖L(Xt)− p(θ|d)‖TV = 0.

Now, if we assume that Θ is indeed compact, we have the same result under much
weaker assumptions:

Theorem 3.3.5. Suppose Θ is compact and p(θ|d) is bounded away from 0 on compact
sets. Then we have

lim
t→∞
‖L(Xt)− p(θ|d)‖TV = 0.

Remark 3.3.6. As mentioned before, the Gaussian envelope assumption made in
Assumption 3.3.2 can be weakened. We mention without proof that results analogous
to Theorem 3.3.4 hold when log p∞(x) from Equation (3.4) is a polynomial of degree
m if we also change Algorithm 3.1 to use an approximating polynomial of degree at
least m. We also conjecture that this modification to Algorithm 3.1 is not necessary.
The only difficulty is in establishing some control over our estimates of p(Xt|d) when
Xt is very far from all points of S, as will happen occasionally during real runs. If
the approximations made in our algorithm are globally poor, as when we approximate
a degree-m polynomial with one of lower degree, an analogue to Lemma 3.3.15 below
will not hold.

Finally, it is easy to check that results analogous to Theorem 3.3.4 hold under the
very mild condition that log p∞(x) from Equation (3.4) is concave, if we also change
Algorithm 3.1 to use a linear approximation.
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Our main tool will be the following consequence of the main Theorem from [88]:

Theorem 3.3.7 (Ergodicity of Adaptive Chains). Fix a sequence of kernels {Kt}t∈N

and a kernel of interest K∞ with stationary distribution π. Assume that K∞ satisfies

‖Kt
∞(x, ·)− π(·)‖TV ≤ Cx(1− α)t (3.7)

for some α > 0 and all t > 0, with CU ≡ supx∈U Cx <∞ for all compact sets U ⊂ Θ.
Also assume that ∀ǫ > 0, there exist compact sets Aǫ ⊂ Bǫ ⊂ Θ with the property:

sup
x∈Aǫ,t∈N

Kt
∞(x,Bc

ǫ) ≤
ǫ log(1− α)

4 log
(

ǫ
4CAǫ

) . (3.8)

Furthermore, assume that ∀ǫ > 0, there exists T (ǫ) so that

sup
x∈Aǫ

P[Xs /∈ Aǫ ∀ s ∈ (S, S + T )|XS ∈ Aǫ] ≤
ǫ

4
(3.9)

for all T > T (ǫ) and so that

sup
t≥T (ǫ), x∈Bǫ

‖Kt(x, ·)−K∞(x, ·)‖TV ≤
ǫ log(1− α)

4 log
(

ǫ
4CAǫ

) . (3.10)

Then, for all x ∈ Aǫ and all T > 2T (ǫ) +
log

(
ǫ

4CAǫ

)

log(1−α)
, we have that:

‖L(XT )− π‖TV < ǫ

when X0 = x.

Remark 3.3.8. Although there are many assumptions in Theorem 3.3.7, they effec-
tively serve two purposes:

• Condition (3.7) implies that the Markov chain corresponding to the kernel K∞ is
geometrically ergodic. Inequalities (3.7) and (3.10) ensure that, on compact sets,
the limiting chain mixes quickly and the chain of interest remains quite close to
it.

• The remaining assumptions are a fairly weak collection of inequalities that, taken
together, ensure that the chain of interest will eventually spend most of its time
in a sufficiently large compact set.

Taken together, Theorem 3.3.7 says that an approximating chain will converge to its
limiting chain if the limiting chain mixes well, the approximation is good on an in-
creasing sequence of compact sets, and eventually the approximating chain remains
within these compact sets.
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3.3.3 Proof of ergodicity for compact parameter space

In this section we give the proof of Theorem 3.3.5, which is slightly simpler than the
proof of Theorem 3.3.4. The main requirement is the following lemma:

Lemma 3.3.9 (Convergence of Kernels). Consider a chain following the same as-
sumptions as Theorem 3.3.5. For all ǫ, δ > 0 and compact sets A ⊂ Θ, there exists
T (ǫ, δ,A) > 0 so that:

P

(
sup

t>T (ǫ,δ,A)
sup
x∈A
‖P (x, ·)− P̃t(x, ·)‖TV < ǫ

)
> 1− δ.

Proof of Lemma 3.3.9. This follows from two short arguments. First:

Lemma 3.3.10 (Grid Refinements Help). Fix a compact set A ⊂ Θ, a measure
ν that is not singular with respect to Lebesgue measure, and ǫ, δ > 0. Then there
exists M(ǫ, δ, ν) ∈ N so that any approximation p̂ (θ|d) based on at least M(ǫ, δ, ν)
independent draws from ν satisfies:

P[sup
θ∈Θ
|p(θ|d)− p̂(θ|d)| > ǫ] < δ.

Proof of Lemma 3.3.10. Say that a collection of points F covers a compact set A up
to distance r > 0 if every point in A is within r of some point in F . Next, let {Xi}M

i=1

be a collection of i.i.d. draws from ν, and let Er be the event that they cover A up to
distance r. By the multidimensional version of the Glivenko-Cantelli theorem,

lim
M→∞

P[Er] = 1 (3.11)

for all r > 0.
By results in [19]4, for any λ, α > 0, there exists a r = r(α, λ) > 0 so that the

approximation p̂ (θ|d) based on any λ-poised collection of points that covers A up
to distance r is within α of p(θ|d). Setting α = ǫ and combining this with (3.11)
completes the proof.

Next,

Lemma 3.3.11 (Grid Refinements Occur). There exist an increasing sequence of
compact sets An ⊂ Θ, with Θ = ∪n>0An, with the properties:

• ∑∞
t=0 1Xt∈An

=∞ with probability 1.

• For every n, there exist k = k(n) > 0, ǫ = ǫ(n) > 0 and measure µ = µn with
support equal to An so that, for all x ∈ An, we have:

Kk
∞(x, ·) = ǫµ(·) + (1− ǫ)rx(·)

4The required result is a combination of Theorems 3.14 and 3.16, as discussed in the text after
the proof of Theorem 3.16.
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for some remainder measure rx.

Proof of Lemma 3.3.11. Since Θ is compact, we can just set An = Θ for all n ∈
N. Since the t’th step of the chain is added to S in step 12 of Algorithm 3.1 with
probability β, independently of the previous steps of the algorithm, the first claim
follows from the Borel-Cantelli lemma. The second claim is an immediate consequence
of item 4 of Assumption 3.3.1.

We are now ready to prove Lemma 3.3.9: Choose n so that A ⊂ An; such an
n exists by the compactness of A. By Lemma 3.3.11, we can construct an infinite
sequence of random times {τi}i∈N so that Xτi

are an i.i.d. sequence of random draws
from some fixed measure µ that is not singular with respect to Lebesgue measure.
The result then follows immediately from an application of Lemma 3.3.10.

We finally prove Theorem 3.3.5:

Proof. Fix some ǫ > 0. It is sufficient to find sets Aǫ ⊂ Bǫ and time T (ǫ) that satisfy
the conditions of Corollary 3.3.7. Inequality (3.7) follows from Theorem 3.2 of [94]
and Assumptions 3.3.1. We set Aǫ = Bǫ = Θ for all ǫ > 0; thus inequalities (3.8) and
(3.9) hold automatically. Finally, the existence of some time T (ǫ) satisfying inequality
(3.10) follows from Lemma 3.3.9.

Remark 3.3.12. Lemma 3.3.11 is the only place in the proof of Theorem 3.3.5 in
which we use the assumption β > 0. Since the proof remains correct as stated as long
as we have

∑
t βt = ∞, Theorem 3.3.5 holds whenever βt ≥ C/t for some constant

C > 0. As will be seen in Example 3.3.17 below, this condition is sharp.

3.3.4 Drift at infinity

In this section, we show that under the assumptions of Theorem 3.3.4, the chain Xt

satisfies a drift condition when |Xt| and t are both sufficiently large. We begin by
showing that the approximation p̂t(Xt|d) of the posterior used at time t is close to
p∞(Xt) when |Xt| and |Xt| −Rt are sufficiently large:

Lemma 3.3.13 (Approximation at Infinity). For all ǫ > 0, there exists a constant

X = X (ǫ) > 0 so that, if |Xt| −Rt > X and the set {q(1)
t , . . . , q

(N)
t } is λ-poised, then

| log p̂t(Xt|d)− log p∞(Xt)| < ǫ.

Proof. Fix ǫ > 0. By (3.4) in Assumption 3.3.2, there exists some X = X (ǫ) so that
x > X implies | log(p(x|d))− log(p∞(x))| < ǫ

ℓλ
. We use this constant in the remainder

of the proof.
Denote by {fi}ℓ(t)

i=1 the Lagrange polynomials associated with the set {q(1)
t , . . . , q

(N)
t }.

By Lemma 3.5 of [19], we have

|log(p̂t(Xt|d))− log(p∞(Xt))| = |
∑

i

fi(Xt) log(p(q
(i)
t |d))− log(p∞(Xt))|
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≤ |
∑

i

log(p∞(q
(i)
t ))fi(Xt)− log(p∞(Xt))|

+
∑

i

| log(p(q
(i)
t |d))− log(p∞(q

(i)
t ))| |fi(Xt)|

≤ 0 + ℓλ sup
i
| log(p(q

(i)
t |d))− log(p∞(q

(i)
t ))|,

where the first equality of the last line is from the definition of Lagrange polynomials
and the second is from Definition 4.7 of [19]. The conclusion now follows from the
definition of X above.

Next, we show that a good approximation in total variation implies drift:

Lemma 3.3.14 (Drift at Infinity). For any ǫ > ǫ0 and Y > 0, there exists some
δ,X , b > 0 and 0 < α < 1 so that, if

sup
|y|>Y

| log(p̃t(y|d))− log(p(y|d))| < δ, (3.12)

then for all |x| > X , we have:

E[Vǫ(Xt+1)|Xt = x] ≤ αVǫ(x) + b. (3.13)

Proof. Let Zt be a Metropolis-Hastings Markov chain with the same proposal distri-
bution as Xt but target distribution p∞, and acceptance probability α∞. By Theorem
3.2 of [94], Zt satisfies inequality (3.13) above in the sense that

E[V (Zt+1)|Zt = x] ≤ αV (x) + b

for some 0 < α < 1 and some b > 0. By Jensen’s inequality, for all ǫ > 0, we also have

E[Vǫ(Zt+1)|Zt = x] ≤ αǫVǫ(x) + bǫ

for some 0 < αǫ < 1 and some bǫ > 0.
We introduce some general notation to help with the definition of a coupling. For

a generic Metropolis-Hastings kernel Q with density q(x, y) and target density p(θ|d),
we represent the associated Metropolis-Hastings chain {Zt}t∈N by:

Zt+1 = qt : α(Zt, qt) < Ut (3.14)

Zt+1 = Zt : α(Zt, qt) ≥ Ut,

where α(x, y) = min
(
1, p(y|d)q(y,x)

p(x|d)q(x,y)

)
is the acceptance ratio, qt is drawn from Q(Xt, ·),

and {Us}s∈N is an i.i.d. sequence of uniform random variables on [0, 1].

Continuing with the proof, assume Xt = x. Also, let {Ys}s∈N be a copy of
the Metropolis-Hastings chain with proposal kernel L and target distribution p(θ|d),
started at Yt = x. Couple Xt+1, Yt+1, Zt+1 so that they both make the same choices of
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update variables in the representation (3.14). Then, for any ǫ > 0, we have:

E[Vǫ(Xt+1)|Xt = x] = E[Vǫ(Zt+1)|Zt = x] + E[Vǫ(Xt+1)− Vǫ(Zt+1)|Xt = Zt = x]

≤ αǫVǫ(z) + bǫ + E[Vǫ(Xt+1)− Vǫ(Zt+1)|Xt = Zt = x]. (3.15)

By Assumption 3.6 and Equation (3.12), we have for ǫ > ǫ0:

|E[Vǫ(Xt+1)− Vǫ(Zt+1)]|
=
∣∣∣∣
∫

z:α∞(x,z)>α̃t(x,z)
(α∞(x, z)− α̃t(x, z)) (V (x)− V (z))ℓ(x, dz)

+
∫

z:α∞(x,z)<α̃t(x,z)
(α̃t(x, z)− α∞(x, z)) (V (z)− V (x))ℓ(x, dz)

∣∣∣∣

+ 2L(x,BX (0)) sup
|p|<X

Vǫ(p)

≤ ‖P∞(x, ·)− P̃t(x, ·)‖TV|
∫

z
(V (x)− V (z))ℓ(x, dz)|+ 2L(x,BY(0)) sup

|p|<Y
Vǫ(p)

≤ CδVǫ(x) + 2L(x,BY(0)) sup
|p|<Y

Vǫ(p). (3.16)

Equations (3.15) and (3.16) together imply that

E[Vǫ(Xt+1)|Xt = x] ≤ αǫVǫ(z) + bǫ + CδVǫ(x) + 2L(x,BY(0)) sup
|p|<Y

Vǫ(p)

= (αǫ + Cδ)Vǫ(x) + bǫ + 2L(x,BY(0)) sup
|p|<Y

Vǫ(p).

We note that

lim
X →∞

sup
|x|>X

L(x,BY(0)) = 0, lim
X →∞

sup|p|<Y Vǫ(p)

sup|q|>X Vǫ(q)
= 0.

Thus, choosing δ sufficiently small and X sufficiently large for any fixed Y , the lemma
follows immediately.

Next, we need to show that, for |Xt| and t sufficiently large, we can also have
|Xt| −Rt arbitrarily large:

Lemma 3.3.15 (Approximations At Infinity Ignore Compact Sets). Fix any X > 0,
and define

τX = sup
{
t : |Xt| > 2X , |Xt| −Rt < X

}
.

Then

P[τX <∞] = 1.

Proof. Fix 0 < r2 < r1. Next, define θt to be the ray from the origin to Xt. Also
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define Br(x) to be the ball of radius r around x. Note that, for any 0 < α < 1,

B
α|Xt|−

r1+r2
2

(αXt) ⊂ B|Xt|−
r1+r2

2
(Xt). (3.17)

We also note that there exists some δ = δ(r1, r2) so that, if p ∈ Br2(0) and Xt /∈
Br1(0) and the angle between the ray p and θt is less than δ, then p ∈ B

|Xt|−
r1+r2

2
(Xt).

Next, fix a finite covering {Pi} of the surface of B r1+r2
2

(0) with the property that

any ball B of radius at least δ in r1+r2

2
Sd contains at least one entire set in the covering.

We will show that, for every element Pi of the cover, either |Pi∩S| is eventually larger
than N or |Pi ∩ {Xt}t∈N| <∞.

To see this, we introduce a representation of the random variables used in step
12 of Algorithm 3.1. Recall that in this step, Xt is added to S with probability β,
independently of the rest of the history of the walk. We split up the sequence Bt

of Bernoulli(β) random variables according to the covering. In particular, for each

element Pi of the covering, let {B(i)
t }t∈N be an i.i.d. sequence of Bernoulli random

variables with success probability β. The k’th time that Xt is in Pi, we use B
(i)
k as

the indicator function in step 12 of Algorithm 3.1. This does not affect the steps that
the algorithm takes.

By the Borel-Cantelli lemma, we have for each i that P[B
(i)
t = 1, infinitely often] =

1. We note that, if B
(i)
t = 1 infinitely often, then |Pi ∩ {Xt}t∈N| =∞ implies that for

all M <∞, we have |Pi ∩ S| > M eventually. Let Ci be the event that |Pi ∩ S| > N
eventually and let Di be the event that |Pi ∩ {Xt}t∈N| = ∞ . Then this argument
implies that

P[Ci|Di] = 1.

Since there are only finitely many parts Pi of the partition, we have

P[∩i (Ci ∪ Dc
i )] = 1. (3.18)

Thus, on the almost sure event ∩i (Ci ∪ Dc
i ), all sets Pi that Xt visits infinitely

often will also contribute points to S infinitely often.

Let I = {i : |Pi ∩ {Xt}t∈N}, and let τ−
r1,r2

= inf{t : ∀i ∈ I, |Pi ∩ S| ≥ N}. Then,
by the above discussion, τX is bounded from above by max(τ−

2|X |,|X |, τ
+
2|X |,|X |). Since

both of those times are almost surely finite by inequality (3.18), τX is also almost
surely finite. This completes the proof.

Finally, we put these arguments together to show that some compact set is returned
to infinitely often:

Lemma 3.3.16 (Infinitely Many Returns). There exists a compact set which is re-
current with probability 1. Furthermore, for all δ > 0, there exists some compact set
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Aδ ⊂ Θ and time Tδ so that, for all S sufficiently large,

sup
x∈Aδ

P[Xs /∈ Aδ ∀s ∈ (S, S + Tδ)|XS ∈ Aδ] ≤
δ

4
.

Proof. Combining Lemmas 3.3.15 and 3.3.14, there exists some number X > 0 and
almost surely finite random time τX so that Xt satisfies a drift condition for all t > τX

and Xt outside of the compact set BX (0). The existence of a recurrent compact set
then follows immediately from Lemma 4 of [95].
The second part of the result follows from noting that the exponential bounds on the
return time in Lemma 4 of [95] depend on the starting point x ∈ Aδ only through
Vǫ(x), which is uniformly bounded in Aδ by a constant, and the proof is finished.

3.3.5 Proof of ergodicity with Gaussian envelopes

Let us now assume that Θ need not be compact. This section proceeds as in Section
3.3.3, with the results of Section 3.3.4 filling in the gaps. First, note that Lemma
3.3.11 holds as stated, with a slightly different proof:

Proof of Lemma 3.3.11 for non-compact Θ. For any compact setAn, the second claim
follows from item 4 of Assumptions 3.3.1. The first claim follows immediately from
Lemma 3.3.16.

Lemma 3.3.10 holds in the Gaussian envelope case exactly as stated, with the same
proof. Lemma 3.3.9 now follows for the Gaussian envelope case exactly as stated. We
are finally ready to prove Theorem 3.3.4:

Proof of Theorem 3.3.4. Fix ǫ > 0. We will show that the conditions of Corollary
3.3.7. Inequality (3.7) follows from Theorem 5 of [95], Assumptions 3.3.1 and Theorem
3.2 of [94]. Inequality (3.8) follows for t sufficiently large from Markov’s inequality,
Lemma 3.3.14 and Lemma 3.3.15. Inequality (3.9) follows for S sufficiently large by
Lemma 3.3.16. Finally, inequality (3.10) follows from Lemma 3.3.9.

Example 3.3.17 (Decay Rate for β). We note that if βt decays too quickly, our
sampler may not converge. Consider the proposal distribution L that draws i.i.d.
uniform samples from [0, 1]d and let λ(·) denote the Lebesgue measure. Consider a
target distribution of the form p(θ|d) ∝ 1θ∈G for set G with 0 < λ(G) < 1 in Lebesgue
measure. If

∑
t βt < ∞, then by Borel-Cantelli, the probability p = p ({βt}t∈N) that

no points are added to S except during the initial choice of reference points or failed
cross-validation checks is strictly greater than 0. With probability λ(G)k > 0, the first
k reference points are all in G. But if both these events happen, all cross-validation
checks are passed for any γ > 0, and so the walk never converges; it samples from the
measure λ forever.

As pointed out in Remark 3.3.12, we have a converse to this example in the case
that Θ is compact and our proposal distribution is bounded from below on Θ. In that
situation, we have ergodicity whenever

∑
t βt diverges.
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Example 3.3.18 (Decay Rate for γ). We note that we have not used the assumption
that γ <∞ anywhere. As pointed out in Example 3.3.17, in a way this is justified—we
can certainly find sequences {βt}t∈N and walks that are not ergodic for any sequence
γt > 0 converging to zero at any rate.

In the other direction, there exist examples for which having any reasonable fixed
value of γ gives convergence, even with β = 0. We point out that this depends on
the initially selected points; one could be unlucky and choose points with log-likelihoods
that happen to lie exactly on some quadratic that does not match the true distribution.
Consider a target density π(x) ∝ 1 +C1x> 1

2
on [0, 1] with independent proposal moves

from the uniform measure on [0, 1]. To simplify the discussion, we assume that our
approximation of the density at each point is linear and based exactly on the three
nearest sampled points. Denote by St the points which have been evaluated by time t,
and let S0 = {1

8
, 2

8
, 3

8
, 5

8
, 6

8
, 7

8
}. Write x1, . . . , xm(t) = St ∩ [0, 1

2
] and xm(t)+1, . . . , xn(t) =

St ∩ [1
2
, 1]. It is easy to check that

‖L(Xt+1)− π‖TV ≤ xm(t)+3 − xm(t)−2. (3.19)

It is also easy to see that with probability one, for any γ < 1
2
, there will always

be a subinterval of [xm(t)−2, xm(t)+3] with strictly positive measure for which a cross-
validation check will fail. Combining this with inequality (3.19) implies that the algo-
rithm will converge in this situation, even with β = 0.

3.4 Numerical experiments

Although the theoretical results in Section 3.3 establish the ergodicity and asymptotic
exactness of our MCMC framework, it remains to demonstrate that it performs well
in practice. This section provides three examples in which local surrogates produce
accurate posterior samples using dramatically fewer evaluations of the forward model
than standard MCMC. Additionally, these examples explore parameter tuning issues
and the performance of several algorithmic variations.

For each of these examples, we compare the number of evaluations of the forward
model to the accuracy of samples from the chain. In the absence of analytical char-
acterizations of the posterior, the error in the chain is estimated by comparing the
posterior covariance estimated from a reference MCMC chain—composed of multiple
long chains computed without any approximation—to posterior covariance estimates
computed from chains of Algorithm 3.1. The number of forward model evaluations is a
problem-independent proxy for the overall running time of the algorithm, and should
be representative of the algorithm’s scaling for sufficiently expensive models. Although
we presented Algorithm 3.1 in the context of non-adaptive Metropolis-Hastings pro-
posals, here we substitute the delayed-rejection adaptive Metropolis approach of [50],
which often performs well without laborious tuning of the proposal distribution. Note
that the error indicator for the acceptance probability still reflects the form used in
simple MH proposals.
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The first example infers six parameters of an ODE model of a genetic circuit, using
real experimental data, and suggests how to select values and decay rates for β and
γ. The second example inverts for the parameters of the FitzHugh-Nagumo ODE
and the third infers the diffusivity field in an elliptic PDE. These latter examples
are used to investigate the performance of different types of local approximations
(linear, quadratic, Gaussian process) and the difference between direct and indirect
approximation.

3.4.1 Genetic toggle switch

This example infers the parameters of a genetic “toggle switch” synthesized in E. coli
plasmids by Gardner et al. [39], and previously used in an inference problem by [79].
This genetic circuit has a bistable response to the concentration of an input chemical,
[IPTG]. Figure 3-2 illustrates these high and low responses, where the vertical axis
corresponds to the expression level of a particular gene. [39] proposed the following
differential-algebraic model for the switch:

du

dt
=

α1

1 + vβ
− u, (3.20)

dv

dt
=

α2

1 + wγ
− v,

w =
u

(1 + [IPTG]/K)η
.

The model contains six unknown parameters Zθ = {α1, α2, β, γ,K, η} ∈ R
6, while the

data correspond to observations of the steady-state values v(t = ∞) for six different
input concentrations of [IPTG], averaged over several trials each. As in [79], the
parameters are centered and scaled around their nominal values so that they can be
endowed with uniform priors over the hypercube [−1, 1]6. The measurement errors
are independent and Gaussian, with zero mean and variances that differ between the
“low” and “high” states of the switch. Further details on the inference problem are
given in Appendix B. Figure 3-3 shows marginal posterior densities of the parameters
Zθ in normalized coordinates. These results broadly agree with [79] and indicate that
some directions are highly informed by the data while others are largely defined by
the prior, with strong correlations among certain parameters.

Now we examine the efficiency and accuracy of the local approximation algorithm
in exploring this target posterior. The baseline configuration to which we compare
Algorithm 3.1 comprises 30 chains, each run for 105 MCMC steps using the true
forward model (i.e., with no approximation). In all of the numerical experiments
below, we discard the first 10% of a chain as burn-in when computing its covariance.
The reference chain used to produce the “truth” covariance is the union of the 30
baseline chains, with the burn-in portion of each removed. The chains are all initialized
at the same point in the high posterior density region.

To use the local approximation framework, we must select values for the refinement
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Figure 3-2: Response of the pTAK117 genetic toggle switch to the input concentration
of IPTG [39]. The plot shows the mean and standard deviation of the experimentally-
observed gene expression levels over a range of input concentrations. Expression levels
are normalized by the mean response at the largest IPTG concentration.

θ
1

θ
2

0.1

0.2

θ
3

−0.5

0.5

θ
4

−0.4

0

θ
5

−0.5

0.5

−0.5 0.5

θ
6

−0.5 0.5

−0.5

0.5

0.1 0.2 −0.5 0.5 −0.4 0 −0.5 0.5

Figure 3-3: One- and two-dimensional posterior marginals of the six parameters in the
genetic toggle switch.

74



parameters β and γ. While the theory does not rely on a particular setting for γ, it
suggests that β can decay. Accordingly, we set βn = c1n

−c2 and γn = c3n
−c4 , where

c1, c3 > 0 and 0 < c2, c4 < 1, and n is the MCMC step index. Intuitively, the chain will
be inexpensive when β is small and when γ is large, and hence if βn decays relatively
quickly and if γn decays relatively slowly.

First, we attempt to understand the scale of the refinement parameters by putting
the decay rates to zero and setting only one of βn or γn to be nonzero, choosing
from βn ∈ {10−3, 10−2, 10−1} and γn ∈ {10−2, 10−1, 0.5}. With these settings, we
run Algorithm 3.1 using local quadratic approximations of the forward model outputs
(i.e., indirect approximation). Thirty independent chains are run for each parameter
setting, with each chain containing 105 MCMC steps—identical to the baseline chains.
From each chain, we discard 104 burn-in samples and compute an estimate of the
posterior covariance. We compare this estimate to the covariance of the reference chain
by evaluating the Frobenius norm of the difference, then dividing by the Frobenius
norm of the reference to provide a relative error measure. The results are summarized
in Figure 3-4.

The distribution of errors obtained with the baseline chains, shown in red, reflects
both the finite accuracy of the reference chain and the variance resulting from finite
baseline chain lengths. Looking at the results produced by Algorithm 3.1, we see
that smaller values of β and larger values of γ result in fewer evaluations of the
forward model; these values trigger fewer random refinements and allow larger errors
in the acceptance probability, respectively. When β-refinement is set to occur at a
very low rate, the resulting chain is of poor quality. But higher values of β produce
errors that are indistinguishable from those of the baseline chains. Similarly, tighter
thresholds on γ produce high-accuracy posterior estimates, yet they use an order of
magnitude fewer model evaluations than the baseline cases. Interestingly, even though
γn = 0.5 corresponds to a relatively loose constraint on the acceptance probability, it
still performs reasonably well. Based on these experiments, βn = 10−2 and γn = 10−1

appear to provide a reasonable balance between stable reproduction of the posterior
and computational effort. Note that the true model is actually run less than once
per MCMC step, even in the baseline results, because proposals falling outside the
support of the prior are rejected without actually running the forward model.

Next, we explore possible decay rates for the refinement coefficients. We fix the
constants in the expressions for βn and γn to the values determined from the previous
numerical experiments: c1 = 0.01 and c3 = 0.1. Then we run experiments for different
values of the exponents, using c2, c4 ∈ {0.1, 0.5, 0.9}. The performance of the resulting
chains is shown in Figure 3-5. When γn decays relatively quickly (e.g., for c4 = 0.5
or 0.9), the computational costs are much higher and do not improve the results;
hence we choose c4 = 0.1. For these parameter settings, the overwhelming majority
of refinements are initiated by γ-refinement and the decay rate of βn appears to have
little effect. Thus we chose the relatively faster decay rate c2 = 0.9. These choices yield
complete expressions for the refinement parameters: βn = 0.01n−0.9 and γn = 0.1n−0.1.
These decaying rules produce more expensive chains than some of the constant values
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Figure 3-4: Approximate relative covariance errors in MCMC chains for the genetic
toggle switch posterior, using constant values of the refinement parameters βn and
γn and local quadratic approximations. The parameter given in the legend has the
specified value, while the other parameter is zero.

employed earlier because the cross-validation criterion tightens as the chain lengthens,
but this approximation strategy should be more robust for difficult problems than one
based on a constant threshold. The following numerical examples use these refinement
parameters without further tuning. As we will demonstrate, they work quite well in
practice.

3.4.2 FitzHugh-Nagumo ODE

This numerical example explores the performance of local linear, quadratic, and
Gaussian process approximations. We perform inference for the parameters of the
FitzHugh-Nagumo model, a two-dimensional ODE system with three parameters, used
to describe the activation and deactivation dynamics of a neuron. The model has been
used as a test case for inference by [90, 45]. The governing equations are:

dV

dt
= V − V 3

3
+R,

dR

dt
= −1

c
(V − a+ bR).

In contrast with the previous example, the data now are transient: both states are
observed at 100 times equally spaced from t = 0 to t = 20. The observational error in
the likelihood function is a zero-mean Gaussian, where the standard deviation of each
component is equal to one-tenth the standard deviation of the 100 observations of that
component during the reference run. The data are synthetic, produced by running the
model at the nominal parameter values a = 0.3, b = 0.3, and c = 2 and perturbing
with a realization of the observation error. The prior on θ = (a, b, c) is uniform over
the box [0, 10]3.

As there are 200 observations, it would be relatively slow to approximate each
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Figure 3-5: Approximate relative covariance errors in MCMC chains for the genetic
toggle switch posterior, using decaying refinement parameters and local quadratic
approximations. The parameters are βn = 0.01n−c2 and γn = 0.1n−c4 , where the
legend specifies (c2, c4).
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Figure 3-6: One- and two-dimensional posterior marginals of the three parameters in
the FitzHugh-Nagumo ODE. We superimpose probability density contours computed
via three methods. The “true model” (in blue) refers to the reference chain comprising
30 subchains, while the purple and red lines are obtained from a single run of Algorithm
3.1, using direct approximation via local quadratic or Gaussian process models.
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Figure 3-7: Approximate relative covariance errors in the MCMC chains for the
FitzHugh-Nagumo parameter posterior, using three different types of local approx-
imations.

corresponding model output individually; instead, the approximation operators are
applied to the log-likelihood, i.e., using the direct approach. We run Algorithm 3.1
using the decay schedule for βn and γn found in the previous example. Thirty inde-
pendent chains are run for each approximation method—local linear, quadratic, and
Gaussian process regression—with each chain containing 105 samples. A reference
chain employing the true model is produced in the same manner described in the
previous section (Section 3.4.1). The posterior distribution is illustrated in Figure
3-6. Reconstructions from the reference chain and from single realizations of the ap-
proximate chains (produced with quadratic and Gaussian process approximations) are
visually indistinguishable.

The computational efficiency and accuracy of the various samplers are summarized
in Figure 3-7. For chains of 105 samples each, we evaluate the relative error in the
posterior covariance as a function of the number of forward model evaluations, exactly
as in the previous example. In this case, the linear approximation slightly reduces the
number of model evaluations over the non-approximated chains. The quadratic and
Gaussian process approximations, on the other hand, reduce the required number of
model evaluations by over two orders of magnitude, with no apparent loss of accuracy.

3.4.3 Elliptic PDE inverse problem

We now turn to a canonical inverse problem, involving inference of the diffusion coeffi-
cient in an elliptic PDE [30]. As an application of Algorithm 3.1, the goal of this exam-
ple is to compare direct and indirect approximations, using local linear, quadratic, and
Gaussian process approximations, on a non-compact parameter domain. The forward
model is given by the solution of an elliptic PDE in two spatial dimensions

∇s · (k(s, θ)∇su(s, θ)) = 0, (3.21)
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where s = (s1, s2) ∈ [0, 1]2 is the spatial coordinate. The boundary conditions are

u(s, θ)|s2=0 = s1,

u(s, θ)|s2=1 = 1− s1,

∂u(s, θ)

∂s1

∣∣∣∣∣
s1=0

= 0,

∂u(s, θ)

∂s1

∣∣∣∣∣
s1=1

= 0.

This PDE serves as a simple model of steady-state flow in aquifers and other subsurface
systems; k can represent the permeability of a porous medium while u represents hy-
draulic head. Our numerical solution of (3.21) uses the standard continuous Galerkin
finite element method with bilinear basis functions on a uniform 30-by-30 quadrilateral
mesh.

The log-diffusivity field log k(s) is endowed with a Gaussian process prior, with
mean zero and an isotropic squared-exponential covariance kernel,

C(s1, s2) = σ2 exp

(
−‖s1 − s2‖2

2ℓ2

)
,

for which we choose variance σ2 = 1 and a length scale ℓ = 0.2. This prior allows the
field to be easily parameterized with a Karhunen-Loève (K-L) expansion [1]:

k(s, θ) ≈ exp

(
d∑

i=1

θi

√
λiki(s)

)
,

where λi and ki(s) are the eigenvalues and eigenfunctions, respectively, of the integral
operator on [0, 1]2 defined by the kernel C, and the parameters θi are endowed with
independent standard normal priors, θi ∼ N (0, 1). These parameters then become
the targets of inference. In particular, we truncate the Karhunen-Loève expansion at
d = 6 modes and condition the correponding mode weights (θ1, . . . , θ6) on data. Data
arise from observations of the solution field on a uniform 11 × 11 grid covering the
unit square. The observational errors are taken to be additive and Gaussian:

dj = u(sj, θ) + ǫj,

with ǫj ∼ N (0, 0.12).

Because the data in this problem are relatively informative, the posterior shifts
and concentrates significantly with respect to the standard normal prior, as shown
in Figure 3-8. We also emphasize that even though the PDE is linear, the forward
model—i.e., the map from k to u—is nonlinear and hence the posterior is not Gaus-
sian. We also note that, while the design of effective posterior sampling strategies for
inverse problems is an enormous and important endeavor [24], the K-L truncation ren-
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Figure 3-8: One- and two- dimensional posterior marginals of the parameters in the
elliptic PDE inverse problem.

ders this problem relatively low-dimensional and the simple delayed rejection adaptive
Metropolis sampler used to obtain our results mixes well.

Now we evaluate the performance of various local approximation schemes, using
the framework of Algorithm 3.1. We fix the decay schedule of the parameters βn and
γn as in the previous examples. Figure 3-9 summarizes the results, which are obtained
from the same kind of comparison employed earlier: 30 independent chains of 105

samples each, for each approximation scheme and for no approximation, all compared
to a reference chain. Within these results, we also contrast the performance of direct
approximations with the performance of indirect approximations.

The indirect quadratic approximation shows the best performance, using only 600
model evaluations for 105 MCMC samples, instead of 2.4×105 evaluations for the true
model. This is a 400-fold reduction in computational effort, with no apparent loss in
accuracy. For both the linear and quadratic local models, indirect approximation
significantly outperforms direct approximation. Indirect Gaussian process regression
is not immediately feasible because of the large number of observations, and direct
GP approximation produces accurate results for cost roughly equivalent to that of
running the true model directly. Linear direct approximation gives inaccurate results
even though it uses a large number of evaluations of the true forward model. We take
this as evidence that local linear approximations of the log-likelihood are untenably
weak in practice, but not that it contradicts the argument in Remark 3.3.6 that this
configuration converges in the limit under some assumptions.
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Figure 3-9: Approximate relative covariance errors in the MCMC chains for elliptic
inverse problem, using several different local approximation strategies.

3.5 Discussion

We have proposed a new class of MCMC algorithms that construct local surrogates to
reduce the cost of Bayesian inference in problems with computationally expensive for-
ward models. These algorithms introduce local approximations of the forward model
or log-likelihood into the Metropolis-Hastings kernel and refine these approximations
incrementally and infinitely. The resulting Markov chain thus employs a sequence of
transition kernels, but asymptotically samples from the exact posterior distribution.
We describe variations of the algorithm that employ either local polynomial or lo-
cal Gaussian process regression, thus spanning two widely-used classes of surrogate
models. Numerical experiments demonstrate significant reductions in the number of
forward model evaluations used for posterior sampling in ODE and PDE model prob-
lems.

Our theoretical and numerical results underscore the notion that local regularity in
the forward model or log-likelihood should be harnessed for computational efficiency,
and that the number of model evaluations needed to approach exact sampling from
the posterior can be much smaller than the number of MCMC samples themselves.
Although our convergence arguments can easily be made quantitative, we believe
that doing so in a straightforward manner does not capture the largest strength of
our algorithm. Looking at the process described in Example 3.3.18, we see that a
well-chosen start results in a bias bound that decays almost exponentially in the
number of likelihood evaluations and that the number of likelihood evaluations will
grow approximately logarithmically in the running time of the process. Our general
bounds, however, show only that the bias decays at least as quickly as one over the
number of likelihood evaluations. There is a discrepancy here primarily because our
general bounds do not take advantage of the fact that the cross-validation approach
allows us to evaluate the likelihood primarily in regions where refinement is important.
Taking advantage of this fact is not hard to do for particular examples; a more general
theory would need to avoid the problems that arise in Example 3.3.17 and similar
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constructions.
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Chapter 4

Variations on local

approximation-based samplers:

derivative information and parallel

chains

In this chapter, we explore the flexibility of local surrogate-based MCMC by developing
three extensions that correspond to important recent trends within the computational
science and MCMC literature. First, we loosen the black-box assumption by supply-
ing derivatives of the forward model. Derivatives provide a rich source of information
for constructing approximations, and if available cheaply, can reduce the cost of sur-
rogate models. Second, we demonstrate the compatibility of our framework with the
important class of modern MCMC algorithms that use derivatives to construct better
proposal distributions. As a representative example, we adapt the simplified metric
Metropolis adjusted Langevin algorithm (MALA) to use local approximations, pro-
ducing an algorithm broadly similar to the one for Metropolis-Hastings proposals, but
which differs in some important details. Finally, we explore how local approximations
can be integrated into a parallel computational environment by sharing the set of
samples between parallel chains.

While these extensions are useful and practical in their own right, they serve as
case studies that further demonstrate the modularity and stability of the local ap-
proximation framework. For example, we show that the MALA sampler can be used
successfully in combination with any of the approximation types, whether derivative-
based or not. Interestingly, no radical changes to the framework for error indicators or
refinement are needed; the obvious translation of cross validation and the acceptance
probability based error indicators into these settings is appropriate, and the refinement
constants, βm and γm, do not need to be re-tuned. This robustness strengthens the
argument that the experimental design process is targeted to natural steps of MCMC.

As the new variations described in this chapter are largely modular, and may be
combined with the options from the previous chapter, there is such a large configu-
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ration space of algorithms that we cannot exhaustively compare all the possibilities.
Furthermore, such an effort would touch on highly problem-dependent, open questions,
such as whether DRAM or MALA is more efficient. Instead, we revisit the examples
from the last chapter and attempt to provide a small set of illustrative examples to
establish that the algorithms are correct and perform as expected.

4.1 Local quadratic models using Jacobians

We have placed our work thus far in a non-intrusive setting because it is a simple
and practical model. Often, scientifically interesting computational models are only
available as black-box models, and reimplementing them to construct an intrusive
approximation is simply not feasible. However, an interesting relaxation to this as-
sumption is to assume that the gradient of the model is available. Although not always
available, modern adjoint techniques for PDE solvers allows for the computation of a
gradient of the model at a cost approximately equal to an additional linearized forward
solve. As the gradient provides d elements for a model with d-dimensional input, the
adjoint provides excellent value for the computational effort. Recently, effort has been
directed to implementing adjoints for scientific models and using this additional infor-
mation in analysis algorithms, for an example in an inference context, see [78]. In some
cases, automatic differentiation tools can generate adjoints corresponding to existing
implementations with relatively little additional work. For example, this strategy is
used by the MIT general circulation model (MITgcm) [77], which we use for the Pine
Island problem in Chapter 5.

Using derivative information in function approximation is a common idea, for ex-
ample, classical Hermite polynomial interpolation matches the first m derivatives, and
co-kriging fits a Gaussian process to the function evaluations and corresponding gra-
dients [35]. As a representative of this type of approximation, we explore the specific
case of quadratic regressors using Jacobians of the model. These approximations are
constructed using a simple extension of the quadratic approximations of Section 3.2.2;
much of the structure least squares problem is unchanged, except that additional
rows are appended to supply the derivative information. Jointly fitting approximation
for multiple outputs may allow the use of less derivative information than the entire
Jacobian, but we do not explore this additional complexity.

Jacobians are a rich source of information for approximation, but are not always
affordable. An adjoint model makes a single gradient inexpensive, but the cost of
forming the entire Jacobian using an adjoint technique scales linearly with the output
dimension of the model. Considering these costs, we use these approximations in
three contexts. First, in the FitzHugh-Nagumo model, the package performing the
time integration computes the entire Jacobian of the forward model for reasonable
additional cost, hence an indirect approximation is appropriate. Second, some MCMC
methods, such as the simplified manifold MALA [45], use the Jacobian of the forward
model, as described in the next section. In such cases, the algorithm already needs to
pay for the expensive construction of Jacobians of the forward model, and applying
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indirect approximations may reduce the number required. Third, direct approximation
of the log-likelihood requires a Jacobian of the log-likelihood, which is computable with
only a single adjoint computation on the forward model, making it the most generally
applicable strategy.

4.1.1 Fitting the gradient-based quadratic

The Jacobian-based quadratic model is fit using the operator D∼j
B(θ,R), which we now

describe. As before, assume that the local model has the form

f̃j(θ̂) = cj + l⊤
j θ̂ +

1

2
θ̂⊤Hj θ̂,

which is stated in coordinates shifted and scaled so that the point of interest is centered
and the samples are drawn from a ball of radius one. Thus, the shifted samples are
θ̂i = (θi − θ)/R. The regression model is constructed from samples θi, evaluations
yi = f(θi), and Jacobians J(θi), where

J(θi) =




∇f1(θi)
...

∇fd(θi)


 .

By application of the chain rule, Ĵ(θ̂i) = J(θ̂i)/R. The quadratic approximation has
gradient

∇f̃j(θ̂i) = lj +Hj θ̂i.

The weighted least squares problem is augmented with additional rows that attempt
to match this gradient to the observed gradients, written compactly as:

W ′




Φ
Ψ1
...

ΨN



Z = W ′




Y

Ĵ(θ1)
...

Ĵ(θN)




where Φ, Y, and Z are defined as in Appendix A. Just as Φ is the Vandermonde-like
matrix for f̃(θi), Ψi is the Vandermonde-like matrix of ∇f̃(θi). Recall that

Z⊤
j =

(
cj (lj)1 · · · (lj)d (Hj)1,1 · · · (Hj)d,d (Hj)1,2 · · · (Hj)d−1,d

)
.

Hence,

Ψi =
(
0d×1 Id×d A(θ̂i) B(θ̂i)

)
,
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where the zero vector corresponds to the constant term, I is the identity matrix
corresponding to the linear coefficients, A(θi) is the diagonal matrix

A(θ̂i) =




θ̂i,1 0 . . . 0

0 θ̂i,2 . . . 0
...

...
. . .

...

0 0 · · · θ̂i,d



,

corresponding to the squared terms, and B(θ̂i) corresponds to the mixed terms. Each

row of B(θ̂i) is the partial derivative of the mixed coefficient terms with respect to an

element of θ̂i, hence is either zero or an element of θ̂i:

B(θ̂i) =




∂
∂θ̂i,1

(
θ̂i,1θ̂i,2 · · · θ̂i,d−1θ̂i,d

)

...
. . .

...
∂

∂θ̂i,d

(
θ̂i,1θ̂i,2 · · · θ̂i,d−1θ̂i,d

)


 =




θ̂i,2 . . . . . . 0

θ̂i,1
. . . 0

...
. . .

...

0 · · · · · · θ̂i,d−1



.

The samples are weighted by diagonal matrix W ′, where the weight for sample i is
wi, as computed by our variant of the tri-cube weight function. Now the ith point
appears in several rows, hence the weights appear repeatedly in the complete weight
matrix. The diagonal values of the weight matrix are written:

diag(W ′) =
(
w1 · · · wN w11

⊤
d · · · wN1⊤

d

)
,

which shares the same block structure as the least squares problem.
For this model, because of the extra information provided by the derivatives, the

number of points necessary to produce an interpolating model is linear in the input
dimension, specifically Ndef = d + 1, and the total number of points to use in a
regression is unchanged, N =

√
dNdef.

This new approximation operator, D∼j
B(θ,R), may be used in Algorithm 3.1 almost

without change. Since S contains the outputs of the model for the evaluated points,
it is enriched to hold the Jacobians as well. The procedures for refining the model
are unchanged, except that when a new point is added to S, the Jacobian is also
computed and stored. The cross validation procedure still omits a single sample,
which requires removing the rows for the evaluation and Jacobian at that point; this
may be accomplished by setting wj = 0.

4.1.2 Experimental results

We explore the performance of Jacobian-based quadratic approximations by repeating
the three experiments introduced in Chapter 3 for DRAM samplers. Since we are
interested in providing derivative information in a settings where the computational
effort needed to compute the derivatives is comparable to the cost of a run of the model,
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as in the case of adjoint methods, we simply expand the cost of one model evaluation
to include computing both the output and the derivative. Otherwise, the experimental
configuration remains unchanged from Chapter 3. Intuitively, we expect that allowing
the Jacobian-based approximation access to this extra information should reduce the
number of evaluations.

The genetics model is simple enough that we simply derive the Jacobian of the
forward model using symbolic differentiation and compute it directly. This is not
typically affordable, but it is still a useful test. The results are shown in Figure
4-1, where the Jacobian-based quadratic provides significant additional savings as
compared to the equivalent quadratic approximation.
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Figure 4-1: Approximate relative covariance errors of the genetic toggle switch example
with DRAM based sampler, comparing indirect approximations using quadratic and
Jacobian-based quadratic approximations.

In the second example, the package used for solving the FitzHugh-Nagumo ODE,
Sundials [57], can be configured to inexpensively compute Jacobians of forward model
given analytically specified derivatives of the model, which can easily be formed in
this case using symbolic differentiation. Therefore, it is feasible to compute indirect
approximations using Jacobian information, and Figure 4-2 demonstrates improved
performance.

Finally, the elliptic PDE is self-adjoint, making it simple to provide an adjoint
of this model. However, this only allows us to build direct approximations using
Jacobian-based quadratic approximations. Figure 4-3 shows improved results when
compared to the closest option, direct, quadratic approximation. This result also indi-
cates the effectiveness of indirect approximation, though, as this improved result does
not surpass indirect, quadratic approximation without derivatives, as in the previous
chapter.
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Figure 4-2: Approximate relative covariance errors of the Fitz example with DRAM
based sampler, comparing indirect approximations using quadratic and Jacobian-based
quadratic approximations.

4.2 An approximate Metropolis Adjusted Langevin

sampler

Thus far, we have focused on approximate MCMC algorithms based on the DRAM
algorithm, neglecting the important class of MCMC kernels that use derivative infor-
mation. The two most popular such methods are the Metropolis-adjusted Langevin
algorithm (MALA) [45] and Hamiltonian Monte Carlo (HMC) [81, 58]. The goal of
these methods is to use derivatives of the posterior density to produce an improved
proposal, thus reducing the mixing time of the chain and improving the efficiency of
the MCMC algorithm. There are two situations in which local approximations can be
usefully combined with derivative-based MCMC. First, when derivatives of the model
are not available, we can make these methods feasible by supplying derivatives from
local approximations. Second, if derivatives are available, then we may form local
approximations using that additional information, as in the Section 4.1, to reduce the
number of model and derivative evaluations.

Hamiltonian Monte Carlo typically proposes long-range moves and avoids random-
walk behavior of the chain, but does so by taking many sub-moves according to a
simulated particle trajectory; this process is quite expensive and reducing this cost
motivated Rasmussen’s use of approximations [91]. MALA proposes a single step
move based on Langevin flows, which biases the proposal towards regions of higher
posterior density, and applies a Metropolis correction [92]. We choose to restrict our
discussion to MALA for two reasons. First, it is closer in structure to DRAM, so
while adapting it to use local approximations requires additional work, much of the
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Figure 4-3: Approximate relative covariance errors of the elliptic PDE example
with DRAM based sampler, comparing direct approximations using quadratic and
Jacobian-based quadratic approximations.

approach is similar. Second, it remains an open question whether the extra effort
expended by HMC during the sub-steps is cost-effective in practice [45]. We do not
rigorously prove convergence of the sampler developed here, but expect that similar
arguments to those in Chapter 3 can be made.

4.2.1 The Metropolis Adjusted Langevin algorithm

We begin by describing the standard Metropolis Adjusted Langevin algorithm (MALA)
and a recent variant based on Riemannian manifolds [45]. Consider the Langevin diffu-
sion with stationary distribution p(θ|d), defined by the stochastic differential equation
(SDE),

dθ(t) = ∇θ(L(θ|d, f)p(θ)) + db(t),

where b is a d-dimensional Brownian motion. Discretizing this SDE with a first-order
Euler strategy suggests a proposal

qt = Xt−1 +
ǫ2

2
M(X)∇θ(L(θ|d, f)p(θ)) + ǫ

√
M(X)z,

where z ∼ N (0, Id×d), for integration step size, ǫ, and position-dependent mass matrix,
M(X), which we may treat as preconditioner. The discretization implies that this
proposal is not exact, but it may be corrected with a standard Metropolis step. Hence,
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the proposal density is

q(x, y) = N
(
y;x+

ǫ2

2
∇θ(L(x|d, f)p(x)), ǫ2M(x)

)
,

and the acceptance ratio is

α(x, y) = min

(
1,
p(y|d)q(y, x)

p(x|d)q(x, y)

)
.

We are relatively unconstrained in our choice of the preconditioner, for example,
standard MALA corresponds to choosing the identity matrix, M(θ) = I, or we might
use domain knowledge to design a useful rescaling or rotation of the parameters. Re-
cent work suggests a sophisticated mechanism for selecting a position-based matrix
based on a Riemannian metric induced by the posterior distribution [45]. This method
aims to use geometric arguments to extract rich structure of the inference problem,
thereby producing high quality proposals. We consider the so-called simplified mani-
fold MALA, which chooses to set the mass matrix to have the value of the following
metric,

M(θ) =

[
−Ed|θ

(
∂2

∂θ2
log p(θ,d)

)]−1

=

[
−Ed|θ

(
∂2

∂θ2
[log p(d|θ, f) + log p(θ)]

)]−1

.

which is decomposed into the expected Fisher information plus the negative Hessian
of the log-prior. In general, computing the expected Fisher information is not trivial,
but it is relatively simple for Gaussian likelihoods and priors, that is, when

p(d|θ, f) = N (d; f(θ),ΣL),

p(θ) = N (θ;µ,Σp)

for some covariance matrices ΣL ∈ R
d×d, Σp ∈ R

n×n and mean vector µ ∈ R
n. In this

case,

M(θ) =
[
J(θ)⊤Σ−1

L J(θ) + Σp

]−1
.

Girolami et al. [45] observe that choosing the preconditioner in this manner can im-
prove the practical performance of MALA. Even standard MALA can be difficult to
apply in practice because the needed derivatives must be available and inexpensive;
using the Jacobian in the manifold variant potentially makes it prohibitively expen-
sive for many problems of interest. Therefore, this method is a particularly interesting
one to adapt into the local approximation framework, as the surrogates can cheaply
provide these derivatives. This method is also closely related to the preconditioning
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performed in the Stochastic Newton method [78].

Thus far, we have not discussed how to select the step size ǫ; as with MH algorithms,
the practical performance of MALA algorithms is highly dependent upon the step size.
Scaling results suggest that the optimal step size is one that achieves an acceptance
rate for standard MALA algorithms is 0.574 [93]; in practice, we use this theoretical
result as a guide for adaptive algorithms that search for a good step size at run-
time. For example, the step size may be refined continuously during MCMC, without
altering the convergence of the chain, by stochastic approximation [2] or dual weighted
averaging [58].

We follow [45] in performing finite, batch adaptation, which is a simple, yet effec-
tive strategy: begin by computing the average acceptance probability for a batch of
samples, ᾱ. If the average acceptance probability deviates too far from optimal, the
step size is altered. Specifically, if ᾱ > 0.7, then ǫ is multiplied by 1.2 and if ᾱ < .4,
then ǫ is multiplied by 0.8. In the examples below, we choose batches of 50 samples
and halt adaptation after the first 5,000 samples, which appears to be a reasonable
choice in practice.

4.2.2 Approximate MALA

Now we can discuss why introducing local approximations into MALA is more complex
than the MH case discussed earlier. Before, the selection of θ+ and θ− was invariant
with respect to f̃ , so both could be passed into Algorithm 3.1 as fixed values. Addition-
ally, we assumed that the proposal ratio q(y,x)

q(x,y)
portion of the acceptance probability

computation cancels, as it does for MH algorithms, even though the delayed rejection
component of DRAM violates this assumption. As the MALA proposal depends upon
f̃ and is highly non-symmetric, neither of these assumptions is possible. Algorithm
4.1 precisely states how the simplified manifold MALA algorithm may be adapted to
use and refine local approximations. This algorithm is stated for the most complex
case considered, the simplified manifold MALA with Gaussian likelihoods and priors,
as simpler variants are easily formed.

The most subtle aspect of the algorithm is that the randomness used within the
kernel, z, is drawn before the approximations are built and remains constant even if
the model is refined. This means that even though the proposed point θ+ changes
when the approximation is refined, so that under infinite refinement it converges to
the proposed point computed with the true model. If z is re-sampled upon model
refinement, samples are effectively rejected because the of the quality of the approxi-
mation, whereas acceptance or rejection of samples should only depend upon value of
the approximate posterior density.

Cross validation error indicators are computed essentially as before, except that
the acceptance probability includes the MALA proposal density. This computation
requires carrying the leave-one-out computation through the posterior density, pre-
conditioning matrix, and proposal density, which is compactly accomplished by the
subroutines, p̃∼j, M̃∼j, and q̃∼j. When the superscript ∼ j is omitted, this im-
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plies that j = ∅. This algorithm also calls the subroutines from Algorithm 3.1,
ConstructApproximation and RefineNear, which are unchanged. Once the
error indicators are computed, the refinement strategy described here is identical to
that used in the previous algorithm.

Naturally, other preconditioning matrices may be substituted, and the choice of
the manifold metric used here would need to be altered for non-Gaussian likelihoods
or priors, but in principle this is straightforward. If the manifold metric precondition-
ing is not desired, for example, because the Fisher information matrix is not easily
computable, simply replace the computed matrix in M̃∼j with an identity matrix.
This is also necessary if the approximation is built on the log-likelihood instead of the
forward model, as the Jacobian of the forward model would not be available, and the
method p̃∼j is easily adjusted to reflect that difference.

4.2.3 Experimental results

Once more, we return to our three standard examples to explore the performance of
the approximate MALA samplers. We do not expect MALA to outperform DRAM
in this setting, as the chains are sufficiently long for either to perform well. Instead,
we simply want to demonstrate that the chains mix using a comparable number of
samples. We do not present results from the genetic toggle switch example, because
the posterior is largely defined by the compact support of the prior, which causes
MALA to perform poorly. The discontinuous prior behavior does not appear in the
inputs to MALA, so the step size becomes quite small to avoid proposing too many
moves outside the prior, but this induces unacceptably slow mixing in the MCMC
chain.

The elliptic PDE problem is sampled with the simplified manifold MALA using
indirect, quadratic approximations. As shown in Figure 4-4, this sampler uses a small
number of samples and accurately reproduces the posterior. This example illustrates
the usefulness of the simplified manifold correction. Figure 4-5 depicts the trace of
two MCMC chains, one using the manifold correction and the other using standard
MALA. The parameters are not scaled uniformly, in that the width of the posterior
band is much larger for some parameters than others. In standard MALA, the step size
must be set small enough to ensure that the parameter with the smallest posterior
range mixes well, but the parameters with larger bands are explored slowly. The
ranges are essentially correct, and given a much longer chain and significantly increased
computational cost, standard MALA would probably compute the moments correctly.
The simplified manifold preconditioning rescales these parameters so that they all
mix rapidly, regardless of whether approximations are used. Although it would not
typically be affordable to construct indirect approximations using the entire Jacobian,
this model is inexpensive enough to make it feasible; Figure 4-6 demonstrates that for
both manifold MALA and DRAM, the addition of the Jacobian information reduces
the number of model evaluations needed, as expected.

For the FitzHugh-Nagumo problem, we simulate chains using simplified manifold
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Algorithm 4.1 Simplified manifold MALA with local approximations

1: procedure ApproximateMALAKernel(θ−,S,L,d, p, βm, γm)
2: z ∼ N (0, Id×d) ⊲ Draw randomness

3: while forever do

4: θ+ ← θ− + ǫ2

2
M̃(θ−)∇θp̃(θ

−|d) + ǫ
√
M̃∼j(θ)z
⊲ Compute proposal

5: α = min
(
1, p̃(θ+|d)q̃(θ+,θ−)

p̃(θ−|d)q̃(θ−,θ+)

)
⊲ Nominal acceptance probability

6: ǫ+ ← maxj

∣∣∣α−min
(
1, p̃∼j(θ+|d)q̃(θ+,θ−)

p̃(θ−|d)q̃∼j(θ−,θ+)

)∣∣∣

7: ǫ− ← maxj

∣∣∣α−min
(
1, p̃(θ+|d)q̃∼j(θ+,θ−)

p̃∼j(θ−|d)q̃(θ−,θ+)

)∣∣∣
8: if ǫ+ ≥ ǫ− and ǫ+ ≥ γm then ⊲ If needed, refine near larger error

9: S ← RefineNear(θ+,S)
10: else if ǫ− > ǫ− and ǫ− ≥ γm then

11: S ← RefineNear(θ−,S)
12: else if u ∼ U(0, 1) < βm then ⊲ Refine with small probability

13: Randomly, S ← RefineNear(θ+,S) or S ← RefineNear(θ−,S)
14: else ⊲ Accept approximations

15: Accept move θ+ with probability α
16: end if

17: end while

18: end procedure

19: procedure p̃∼j(θ|d)
20: return L(θ|d,ConstructApproximation(θ,S, j))p(θ)
21: end procedure

22: procedure M̃∼j(θ)
23: f̃ ← ConstructApproximation(θ,S, j)
24: return

[
(∇f̃)Σ−1

L (∇f̃) + Σp

]−1

25: end procedure

26: procedure q̃∼j(x, y)

27: return N
(
y;x+ ǫ2

2
M̃(θ−)∇xp̃

∼j(x|d), ǫ2M̃∼j(x)
)

28: end procedure
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Figure 4-4: Approximate relative covariance errors of the elliptic PDE example, com-
pares reference solution from a DRAM sampler using the true model with manifold
MALA using indirect quadratic approximation.

MALA. Using the manifold correction again requires indirect approximation, but this
model supports either quadratic or Jacobian-based quadratic approximations. The re-
sults are shown in Figure 4-7, showing that the MALA chains accurately draw samples
from the posterior. Curiously, the introduction of Jacobian information increases the
cost of MALA chains, whereas we expect the extra derivative information to reduce
the cost. In this problem, the Jacobians provided are estimated by the Sundials pack-
age, and are not guaranteed to be numerically consistent with the forward solution,
as in an adjoint method. It is possible that the manifold methods are more sensitive
to this inaccuracy than DRAM, hence the poorer performance in that case.

4.3 Sharing local approximations for parallel

MCMC

Many computational methods are made useful in practice by running them in a par-
allel computing environment. Unfortunately, approaches for scaling MCMC to take
advantage of a large number of processors are limited by the serial nature of MCMC
[96]. Although it is trivial to run multiple, independent chains in parallel, conver-
gence results for MCMC only apply as the chain lengthens, not as more chains are
simulated. Hence, each chain must duplicate the effort required for burn-in and must
be sufficiently long for its samples to be drawn roughly from its limiting distribution.
For more complex distributions, relatively long chains and burn-in periods are needed,
and hence simulating many chains becomes less efficient.
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(a) Standard MALA.
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(b) Simplified Manifold MALA.

Figure 4-5: Traces of the parameter values for two MCMC chains sampling the poste-
rior distribution of the elliptic PDE example, comparing the impact of the simplified
manifold correction.
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Figure 4-6: Approximate relative covariance errors of the elliptic PDE example, com-
pares reference solution from DRAM sampler using the true model with DRAM or
manifold MALA using indirect quadratic and Jacobian-based quadratic approxima-
tions.

Although MCMC does not parallelize perfectly, it is often advisable to run a mod-
est number of chains for the purposes of validation. It is difficult to tell whether a
single chain has converged enough to become representative of its stationary distribu-
tion, but if multiple chains all appear to sample the same distribution, then it becomes
much more feasible to conclude that their results are usable [25, 10]. Additionally, ex-
ploration of the parameter space can be increased by exchanging information between
the chains - if one finds a high posterior density region of interest, this information
may be shared with the others [26]. Population MCMC algorithms explore a family
of tempered distributions with parallel chains, so that swapping states of the chains
can provide long-range moves [12].

Just as in single chain MCMC, any of these parallel approaches requires repeated
evaluations of the forward model, which can dominate the overall cost of the algo-
rithm. Direct application of the Algorithm 3.1 as described thus far would require
each parallel chain to compute its own approximation, running the forward model
as required. However, as each chain eventually needs an accurate approximation of
the same function, building them independently appears inefficient. Instead, an obvi-
ous improvement is for the parallel chains to collaborate by sharing a common set of
evaluations, S. The initialization of S may be performed in parallel, and thereafter,
whenever a refinement occurs, the result is shared with all the chains. Fortunately,
this strategy should not alter the theory regarding the convergence of the sampler and
requires no fundamental changes to the proposed algorithms, but can be an important
improvement in practice, as we discuss subsequently.
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Figure 4-7: Approximate relative covariance errors of the FitzHugh-Nagumo exam-
ple with indirect approximation, comparing the performance of DRAM or simplified
manifold MALA, as combined with quadratic or Jacobian-based quadratic approxi-
mations.

Our implementation does not synchronize the chains that are run in parallel. In-
stead, each chain is free to compute and accept samples at its own speed, sharing
forward model evaluations whenever they are completed. This means that the differ-
ent chains may have slightly different sample sets, for example, if one completes early.
Since the refinement criteria is unchanged, the correctness of each chain remains de-
coupled from the others, so this discrepancy should have little impact on the overall
results.

To compare the performance of sharing evaluations in parallel, we again return to
the elliptic PDE and FitzHugh-Nagumo models. We compute ten chains in parallel
with shared evaluations and compare the collection of chains to ten of the chains
computed without shared evaluations. For the elliptic PDE example, we compare
DRAM based chains using indirect, quadratic approximation. The results are shown
in Figure 4-8. The non-synchronization of the chains causes the parallel chains to have
used slightly differing numbers of evaluations, but all ten chains were constructed for
the cost of the maximum sample. This contrasts with the serial chains, where cost of
each chain is independent and must be summed, therefore, these collections of chains
cost 3350 evaluations in serial and 655 in parallel. For the FitzHugh-Nagumo problem,
we simulate DRAM chains with indirect Jacobian-based quadratic approximation, as
shown in Figure 4-9. In this case the serial chains cost 4098 evaluations and in parallel
the cost is reduced to 1087 evaluations. Both examples show that the serial and
parallel collections of approximate chains are of similar quality to the true model.
The parallel configuration is somewhat more expensive than a single chain, but is

97



significantly cheaper than a collection of chains of the same size computed without
sharing evaluations.
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Figure 4-8: Approximate relative covariance errors of elliptic PDE example with a
DRAM based sampler and indirect quadratic approximations, comparing chains com-
puted serially or in parallel with shared evaluations.

4.4 Discussion

This chapter seeks to enrich our development of approximate samplers by exploring
variations on our framework, showing that a variety of useful algorithms are feasible.
Specifically, we introduced derivative-based approximations, MALA-based samplers,
and how to construct approximations in parallel. Broadly, these techniques produce
correct results and in some cases further improve on the existing performance. Per-
haps most interesting is that the adaptation strategies remain essentially unchanged,
even with combinations of these variants. Although MALA does not sample all these
problems well, the issues discussed with the genetic toggle switch and elliptic PDE
problems occur regardless of approximation, and are easily diagnosable as failures of
the sampler. This indicates that the proposed framework is widely applicable, is ro-
bust, and that future work should be able to develop a rich class of algorithms in this
family.
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Figure 4-9: Approximate relative covariance errors of FitzHugh-Nagumo example with
a DRAM based sampler and indirect Jacobian-based quadratic approximations, com-
paring chains computed serially or in parallel with shared evaluations.
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Chapter 5

Inference in the Pine Island Glacier

setting

Pine Island Glacier is an important outlet along the Amundsen coast of the Western
Antarctic Ice Sheet (WAIS), which has recently accelerated and thinned [76]. It is a
fast flowing ice stream draining the relatively slow flowing Antarctic interior, termi-
nating in a floating ice shelf. Antarctica primarily loses ice mass through such flow
into the ocean, and Pine Island Glacier serves to regulate the discharge, making it a
primary research interest.

The dynamics of the system and the loss of ice mass demonstrate important cou-
plings to the ocean [62]. Surface water is either frozen or near-freezing year-round,
thus contributes little to melting the ice shelf. However, the so-called Circumpolar
Deep Water (CDW) is a mass of warm, salty, dense water that resides in the lower
portion of the water column. Currents introduce this warm water beneath the ice
shelf, where it contributes to melting the glacier [62]. Of particular interest is the
interaction of the CDW with the grounding line, the region where the ice transitions
from grounded on bedrock to floating; the sharp difference between the dynamics on
either side of the grounding line mean that its evolution has a large impact on the
overall system [65]. When the salty, warm water is brought into contact with the
glacier, it melts ice, cooling and freshening the water. Reduced density causes this
fresher, near-freezing water to rise along the underside of the ice shelf, creating a melt
plume that has a boundary layer effect at the ice-ocean interface and which emerges
at the edge of the glacier at the ocean’s surface [105].

Pine Island Glacier has become a widely studied example, as shown by recent
modeling efforts [87] and field campaigns to deploy autonomous submarines [62] or
drill through the ice [105]. Although these efforts have yielded important results, they
also reveal the difficulty of obtaining observations and the large uncertainties in our
understanding of the coupling between the ice and the ocean.

In this work, we perform a Bayesian analysis in the Pine Island setting, inferring
parameters and computing the predicted melt-rate, which is made feasible by apply-
ing our approximate MCMC sampler. Our model is the ocean model for the Pine
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Island system developed in [29], and we infer a small number of scalars governing the
coupling of the ice and ocean. For this initial work, we restrict ourselves to synthetic
observations in a steady-state model, as it is difficult to provide the type of accu-
rate time-varying forcings needed to work with real observations. Even so, this is an
important step towards large scale parameter inversion using real data and accurate
models. Although the observations are synthetic, their spatial distribution is realistic,
hence interesting conclusions can be made, such as how informative different types of
observations are and how coupled parameters are given measurement.

5.1 Constructing a Pine Island inference problem

We perform inferences using a model for Pine Island developed by [29], which we briefly
review. This model is based on the Massachusetts Institute of Technology general
circulation model (MITgcm), a “state-of-the-art scalable finite-volume numerical ocean
general circulation model” [53]. This model has been configured to support cavity
flow with realistic bathymetry and ice shelf geometry from surveys of the Pine Island
Glacier ice shelf and the immediately surrounding bay. The model is available in a
fine-resolution (1× 1 km2) and coarse-resolution (4× 4 km2) mode, both of which are
used in this study. Figure 5-1 depicts the bathymetry of the fine resolution cavity and
Figure 5-2 shows a simulated flow.

The ocean model has been augmented to simulate the exchange of heat and fresh
water between the ocean and ice, based on the model given by [59], described in
detail by [29]. This combined model uses several constant parameters whose values
are the target of our inference and serve as the input to the model, for example, drag
coefficients and the bulk parameters governing the exchange of heat and salt near the
ice-ocean boundary. Although proposed values exist in the literature, there remains
considerable uncertainty, which can result in considerable changes in model predictions
[29]. We perform this inference in a synthetic environment, using converged steady-
state results using fixed boundary conditions and forcings informed by data from Pine
Island.

Collecting oceanographic measurements near the Pine Island ice-shelf is a difficult
task, hence data is typically sparse in both space and time. In an effort to simulate
realistic inferences, we consider point measurements of temperature and salinity, which
are basic oceanographic measurements, collected from two realistic sources. First,
research vessels have collected observations from the water column at several locations
along the ice front [61, 76]; we simplify this data source to include observations from
just below the surface at eight locations along the ice front, similar to those shown
in Figure 1 of [61]. Second, a recent expedition drilled through the ice shelf to place
sensors in the cavity just below the ice shelf [105]. We simulate this type of data
with two observations from the top of the cavity, again similar in location to the
actual drilling sites. Both sets of locations are depicted in Figure 5-1. The drilling
observations are believed to be especially useful because the behavior of the boundary
layer, formed in the ocean near the ice interface, has significant impact on the overall
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Figure 5-1: A top down view of PIG, depicting locations of observations; white is the
ocean surface, dark blue is grounded ice, and the color represents ocean floor depth in
meters. The surface measurements are shown with purple dots and the drilling sites
with green.

dynamics of the coupled ice-ocean system [105]. We will investigate this by comparing
the results of inference with only the surface observations to results of inference using
both surface and drilling observations.

When performing evaluations of inference techniques in a synthetic setting, it is
important not to simulate the data from the same model as is used during inference.
This is known as an “inverse crime” and will produce optimistic predictions about
the quality of feasible inferences because of the unrealistically strong match between
the data and model [66]. Therefore, we use the fine resolution model to produce the
synthetic observations and perform the inference using the coarse scale model.

A fully Bayesian methodology uses the posterior distribution over the parameters
to characterize the likely parameters and to induce distributions over predictions. In
the Pine Island setting, the principle prediction of interest is how quickly the ice sheet
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Figure 5-2: Simulated ocean circulation under Pine Island Ice Shelf with the MIT
general circulation model

will melt from below, as represented by the instantaneous melt-rate in our model. As
with parameter estimates, the difference between prior and posterior distributions of
the prediction will help investigate how much about the melt-rate has been learned
through the inference.

5.2 Prior and likelihood selection

To conduct our Bayesian inference, we must precisely specify prior and likelihood
distributions. The prior summarizes our knowledge of the parameter values without
considering the data. We selected nine scalar parameters governing the coupling of the
ice to the ocean in our simulation, but three pairs of parameters are set to be equal,
leaving six independent quantities to infer. As these parameters are positive and their
values are relatively unknown, we endow them with independent log-normal priors.
That is, for parameter i, under the prior, θi ∼ expN (µ, σ). The literature suggests,
along with some expert judgment, nominal values µ′ and width parameters σ′. We
may relate these as µ = log µ′ and σ = log(µ′ + σ′/4) − µ. The scaling factor, 1/4,
makes the prior fairly restrictive within these bounds, and is selected to avoid large
parameter changes that induce the numerical solver to diverge. Longer simulations
and a smaller time-step should resolve this issue, allowing the inference to proceed
over a wider prior, but this would make the forward model more expensive to run and
is not explored here.

The simulated data are generated from the fine grid model, run at the prior mode,
that is, the µ′ values. At the coarse scale, the data will simply be the temperature
or salinity at the center of the grid cell at the locations of interest, but we have some
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Table 5.1: The inference parameters and their priors.

Parameter Nominal value, µ′ Prior “width” σ′

Drag coefficients 1.5E-3 1.5E-3

Heat & Salt transfer 1.0E-4 0.5E-4

Prandtl Number 13.8 1.

Schmidt Number 2432. 200.

Horizontal Diffusion 5.0E-5 5.0E-5

ZetaN 5.2E-2 0.5E-3

choice in creating corresponding data from the finer scale simulation. The grids of the
coarse and fine scales are aligned, so each coarse scale cell contains 4 × 4 fine scale
cells. We create the observation by averaging the results from the center 2 × 2 fine
scale cells. We have not corrupted these observations with pointwise noise, so the
complexity of the inference stems from the difference between the two models; this is
often the case, so the comparison is still interesting.

The fine scale data is generated from two years of simulation, which is sufficient
to create equilibrium, given that the boundary conditions are constant. Much of the
effort of the model is spent adjusting the arbitrary initial conditions into physically
realistic conditions. Therefore, we speed up the coarse model by creating an initial
state for the prior mode, brought into equilibrium with a two year simulation. Then
the model used during inference evolves this state forward for three months further
with the set of parameters of interest, and observations are collected from the final
state.

The likelihood is an uncorrelated normal distribution centered on the perturbed
data generated from the fine scale model. This distribution encompasses measurement
errors, short-term variability, model error, and sensor location error. From their sub-
surface observations, [105] provides time-series of the observed temperatures, demon-
strating that they vary slowly. Therefore, we only simulate a single observation at each
location with relatively low error, which in practice would correspond to short-term
averages of measurements drawn from each location. The temperature and salinity
measurements have differing variances, σ2

t = (0.04 ◦C)2 and σ2
s = (0.1 psu)2, respec-

tively. These variances are derived from observed data [105] and the variation within
the model; it is reasonable to have small variance in the temperature observations in
this case, because the observations are all drawn water masses that must be very close
to the local freezing conditions. The fine scale data are perturbed with an uncorre-
lated, zero mean Gaussian, with standard deviations equal to one-half of the likelihood
standard deviations.
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5.3 Computational results

We infer the six parameters of Table 5.1, using the open surface data and the combined
open and drilling data. We run 30 chains in parallel with a shared pool of evaluations.
The MCMC kernel is DRAM and an indirect approximation is constructed, given the
evidence from the previous chapters that suggests this strategy is more efficient. As
before, the parallel chains are not synchronized, and since the inference is expensive, we
do not wait for a specified length of the chains. Instead, we allowed the MCMC chains
to proceed for approximately two weeks and then collected the state of the chains. The
first 1,000 samples of each chain is discarded as burn-in, and the remaining chains are
kept, which range between lengths of around 8,000-15,000 steps. All of the chains
are initialized with an approximation of the maximum a posteriori point, as found by
numerical derivative-free optimization; this optimization is relatively inexpensive as
compared to the cost of MCMC and contributed to our ability to use such a short
burn-in.

5.3.1 MCMC convergence and posterior distribution

As a first step, we must establish that the MCMC chains have converged. We be-
gin by plotting the traces of the combined chains for both data sets in Figure 5-3,
which appear well mixed; visual inspection of the chain is often a good preliminary
diagnostic. The parameters are plotted in normalized coordinates, that is, where the
prior is a standard normal, N (0, 1). Additionally, we check that the various chains
all compute the same result by comparing the covariances of the 30 individual chains
to the covariance of the merged chain. We plot the result in Figure 5-4, as in pre-
vious experiments, observing that all the constituent chains are consistent with the
combined result for both data sets.

With burn-in removed, the combined, usable chains are approximately 225,000 and
450,000 steps long and were computed with around 53,000 and 52,000 samples, for
drilling and surface only, respectively. Therefore, the approximation appears to have
reduced the necessary number of model runs by a factor of five to ten, even without
considering that DRAM typically uses several model runs per step.

Plotting the marginals in normalized coordinates allows us to easily compare to
the circular contours of the standard normal prior, as shown in Figure 5-5. We see
that both data types have posteriors of similar size and exhibit little correlation in the
two dimensional marginals. They roughly coincide on the inferred distribution of the
drag coefficients, which are very similar to the prior. The posterior of the latter four
parameters appear to be the prior, regardless of which data set is used, implying that
the data provides little information about these parameters. However, the inferred
heat and salt transfer coefficient is much higher than suggested by the prior, and
varies somewhat between the two observations. As both are far outside the prior
range of a standard normal, there must be a significant signal in the data, although
the posterior is still not highly concentrated in this parameter value either. Although
the parameters are intended to be scale-independent, which would imply that the
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(a) Drilling and surface observations.
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(b) Surface observations only.

Figure 5-3: Traces of the first two components of the combined MCMC chains in
normalized coordinates, thinned for visual clarity.
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(a) Drilling and surface observations.
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(b) Surface observations only.

Figure 5-4: The relative covariance error between the 30 individual MCMC chains and
chain formed by merging all 30 chains.
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ideal result is for the posterior to concentrate around the values used in the fine-
scale, the response of the model to the parameters may have some scale dependence,
implying that a shift is appropriate. Figure 5-6 shows the posterior distribution of the
parameters in their natural values, which illustrates their non-Gaussianity after the
exponential transform.
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Figure 5-5: Marginals of the Pine Island Glacier posterior in normalized coordinates,
for both data sets.

5.3.2 Prior and posterior model predictions

To help interpret these results, we now explore the model outputs of the fine scale
model, and the coarse model at the prior mean parameters and the posterior mean
parameters for the combined observations 1. We are interested in the behavior of three
fields, the temperature and salinity of the ocean, and the melt-rate under the ice shelf.
We plot the temperature and salinity at the highest point in the water column, as

1We do not repeat the exercise for the surface-only observations for brevity.
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Figure 5-6: Marginals of the Pine Island Glacier posterior in the natural parameter
values, for both data sets.

this is representative of the observations provided here for inference, while providing
a richer sense of the model output; the melt-rate is naturally a two dimensional field.

Figure 5-7 shows the temperature field. The fine scale results clearly show bands
created by the discrete jumps in depth. Both coarse scale models show colder tem-
peratures at the open surface, on the top-left of the domain. Figure 5-8 depicts the
salinity fields; the coarse scale models overall appear to have higher salinity and show
a pocket of low salinity near the bottom of the domain that is not present in the fine
scale. This salinity difference is larger than expected for realistic variations and may
suggest inaccuracy in the coarse scale model.

To allow a more detailed comparison, we plot the difference in these fields between
the fine scale and the prior mean, which depicts the signal present in the data that
is not explained by the prior. Similarly, we plot the difference between the posterior
mean and the prior mean; if the shift from the prior to posterior mean perfectly
explained the data, these two difference fields would be identical. The temperature
differences shown in Figure 5-9 indicate that the posterior mean parameters induce
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overall cooler temperatures, which is in agreement with both the drilling locations and
the border of the ice front, although there is also evidence of significant differences for
most of the open surface and near the grounding line on the right of the domain. The
salinity differences in Figure 5-10 suggests that the posterior actually makes progress
towards recovering the observed data, for example increased salinity in the center,
reduced salinity at the top and right; much of the pattern appears similar, but the
magnitude of the posterior correction is smaller overall.

An important Bayesian analysis is to examine the predictive distributions for the
observations under the prior and posteriors, as compared to the likelihood distribution,
which is centered at the observed data. Figures 5-11 and 5-12 show distributions for
the temperature and salinity, respectively, each at two observation locations on the
surface. The prior distribution is computed by constructing a high-order, adapted
polynomial chaos expansion, constructed as in Chapter 2, which is then sampled under
the prior. The posterior values are taken from the approximate observations computed
by the MCMC chains. These graphs indicate that the posterior predictive distribution
is closer to the likelihood center than the prior, but neither is in strong agreement with
the data. The salinity likelihood is much wider than the actual observed variation in
the model.

As mentioned earlier, our primary motivation for performing inference on the pa-
rameters is to inform our predictions of the melt-rate of Pine Island glacier. Figure
5-13 illustrates the pattern of melting induced in the fine scale, prior mean, and pos-
terior mean cases. While the prior mean and fine scale figures are relatively similar,
the posterior mean melt-rates are overall much higher, as a result of the increased salt
and heat transfer.

Reducing the target of interest to the integration of the melt rate over the entire
ice shelf, we can again plot the predicted distributions, as in Figure 5-14. The pos-
terior values are estimated by the quadratic approximation along with the observed
quantities, using the same sample set; the only difference is that because the melt-
rate was not directly observed, it does not appear in the computations determining
when refinement occurs. The fine scale result lies within the high density region of
the prior, but both posteriors are shifted to suggest much higher melt-rates. Our aim
in performing inference is to construct a posterior for the parameters that produces
good agreement between the posterio predicted melt-rates and the fine-scale truth.
Although the observation distributions indicated better agreement with the data un-
der the posterior than the prior, the inference appears to have significantly reduced
the quality of this prediction.

5.4 Discussion

We have successfully applied our approximate samplers to the challenging domain of
ice-ocean coupling in Pine Island Glacier. In approximately two weeks, the chains
appear to have converged to a usable degree, reducing the computational cost by a
factor of five or more. Unfortunately, the data appears to be uninformative, in that
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(b) Coarse scale, prior mean.
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(c) Coarse scale, drilling and surface ob-
servation posterior mean.

Figure 5-7: The temperature in degrees Celsius at the top of the water column for
several configurations.
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servation posterior mean.

Figure 5-8: The salinity at the top of the water column for several configurations.
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(a) The difference between the fine scale and prior
mean.
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(b) The difference between the posterior mean and prior
mean.

Figure 5-9: Comparisons of the temperature at the top of the water column for several
configurations.
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Figure 5-10: Comparison of the salinity at the top of the water column for several
configurations.
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(b) Center of the ice front.

Figure 5-11: Predictive temperature distributions for two surface observation loca-
tions.
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Figure 5-12: Predictive salinity distributions for two surface observation locations.
The likelihood height is not normalized for visual clarity.
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Figure 5-13: The melt-rate at the top of the water column for several configurations.

118



0 0.2 0.4 0.6 0.8 1
Melt rate

D
en

si
ty

 

 
Drill and Surface
Surface only
Prior predictive
Fine scale

Figure 5-14: Distributions of integrated melt-rate for Pine Island Glacier.

the posterior volume is similar to that of the prior. The posterior is shifted in the
transfer coefficients, as compared to the prior, which suggests a strong signal in the
data. The drilling data seems to contribute to the inference, in that the two additional
observation locations introduce a noticeable difference in the posterior, although the
large change in the posterior suggests that the inference result is still sensitive to the
choice of observations. We conclude that performing inference with such limited data
would be infeasible with real data, but this work serves as an important proof of
concept. Including richer data sources, such as the entire water column observations
or those from autonomous submarines might improve the quality of the inference. In
addition, a richer characterization of model error in the inference might help produce
results that produce better consistency between the inferred parameters and melt-rate
predictions and those taken from the fine-scale model used at the truth model.

Although the approximation does provide a meaningful improvement in the per-
formance, it is not as favorable as in the previous examples. In initial exploration,
we attribute this to small-scale, spurious non-smooth behavior of the model, likely
stemming to numeric issues. This makes the model response appear quite challeng-
ing to approximate, and when combined with the large posterior volume, induces
more refinements than seem necessary given the simplicity of the resulting posterior
distribution. Future work may be able to adjust the refinement and approximation
procedures to handle this behavior more efficiently.
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Chapter 6

Summary and future work

6.1 Summary

Bayesian inference is an important tool for comparing complex models to real-world
data, but can be quite expensive in practice when combined with state of the art com-
putational models. Standard Markov chain Monte Carlo algorithms are not efficient
in their use of model evaluations in the context of well-behaved models, as the model
is called anew at every step, regardless of whether the model has already been called
nearby. This work has explored adaptive techniques for constructing approximations
of black-box models that are suitable for use within MCMC; constructing surrogate
models allow the reuse of model evaluations, reducing the number of times the forward
model must be evaluated to perform inference.

We described a theoretically sound approach to non-intrusively constructing global
polynomial approximations using a Smolyak pseudospectral algorithm. We provided
a clear theoretical statement about the precision of this algorithm, which provided a
basis for an adaptive approach that can efficiently allocate resources to explore the
important input dimensions or subspaces. This produces a widely applicable algorithm
for constructing polynomial chaos expansions in practice, as demonstrated on practical
examples.

To produce a theoretically convergent approximate MCMC algorithm, we turned
to local approximations that can be interleaved with the exploration performed by
MCMC. We proposed a framework for approximate samplers and the corresponding
experimental design procedure responsible for determining when new samples of the
forward model are needed and for selecting new points. We proved that a repre-
sentative instance of this framework asymptotically produces samples from the exact
posterior distribution. Then we performed a variety of experiments showing that the
approach is robust and efficient in practice, showing orders of magnitude improvement
in the run-time on sample problems. Critically, we tuned the parameters of the algo-
rithm once and showed that they need not be adjusted even with significant changes in
the problem or algorithm, which we argue is feasible because guiding the refinement
process based on the acceptance probability is relatively problem- and algorithm-
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invariant. For example, we successfully used approximations based on polynomials
or Gaussian processes, and samplers based on DRAM or MALA. Furthermore, we
extended our framework to incorporate two important tools for large-scale computa-
tion: the use of parallelism and derivative information. These techniques provide a
foundation for new explorations into MCMC methods that will scale to computation-
ally expensive forward models, which should help their wider adoption throughout the
scientific community.

Finally, we demonstrated our techniques by performing inference in the complex
scenario of the circulation and melting in the cavity under Pine Island Glacier. The
MIT General Circulation Model is an expensive computational model that must be
handled as a black box, and hence is not suitable for many standard MCMC tech-
niques. While the inference is successful and the approximation produces significant
cost savings, and is an important and successful proof of concept, we primarily con-
clude that a greater volume of more informative data is necessary to more tightly
constrain the parameters of interest.

6.2 Future Work

While the approach to adaptivity in the Smolyak pseudospectral algorithm is deliber-
ately simple, many extensions are possible. For instance, as described in Section 2.4.3,
measures of computational cost may be added to the dimension refinement criterion.
One could also use the gradient of the L2 error indicator to identify optimal directions
in the space of multi-indices along which to continue refinement, or to avoid adding
all the forward neighbors of the multi-index selected for refinement.

If the virtue of local models is that they readily facilitate analysis, their pitfall is
that it can be difficult to navigate the wide variety of options carrying similar theo-
retical guarantees. One could certainly envision using radial basis functions, wavelets,
or many other families of approximations within the framework of Algorithm 3.1.
Judging from the significant cost reductions exhibited in our numerical experiments,
polynomials and Gaussian processes are useful options, but neither is clearly superior
in all cases. Furthermore the use of local models offers the opportunity to explore the
impact of other relevant inputs, including the choice of weight function, bandwidth,
and variable model order, cf. [17, 46]. Much more work is needed to understand the
entire “design space” of algorithms. Additionally, we have mostly neglected the cost
of building local models, as this is independent of the cost of evaluating the forward
model. In practice, the computational effort of constructing a local approximation
(given model evaluations) is not always negligible and can increase quickly with the
dimension of the parameter space.

We propose several lines of future work to remedy possible limitations of the frame-
work for local approximation for inference. Perhaps the most pressing issue is that the
local methods as described will not scale to performing inference in high dimensional
spaces. It may be possible to devise sparse approximations that will scale to higher
dimensions, as this is a common theme in recent algorithms for working with high di-
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mensional functions. In addition, many inference problems are dominated by the prior
in all but a few dimensions, which new algorithms attempt to leverage; the approxima-
tion could be constructed principally in directions where the posterior is informed by
the likelihood, again reducing the number of forward model evaluations required. In
some sense, this is similar to the dimension-adaptivity of the pseudospectral approx-
imations, and might serve as a means to reintroduce it into the local approximation
framework. Another issue of scaling is the use of derivative information; the current
approach can only build approximations from Jacobians, hence adjoints can only be
used in direct approximation. Instead, it would be more efficient if adjoints, or possibly
even the action of Hessians, could be used in indirect approximations, since we have
shown the indirect approach to perform much better. Additionally, further research
is needed to understand the impact of noisy function evaluations or derivatives, such
as non-adjoint derived Jacobians, and how to safely incorporate them.

Although the theory provides a useful guide that the algorithm behaves well, in
practice, determining whether an MCMC algorithm has converged to be representative
of the posterior distribution remains a challenge. We have argued that the framework
we propose is robust enough that the standard types of tests for chain convergence
would reveal any issues in the approximation, just as they identify when the chain is
having difficulty exploring the posterior. However, deeper understanding of this be-
havior is still needed, and the development of practically computable error indicators,
perhaps guided by the theoretical finite-sample behavior of the approximate sampler,
would be beneficial.

While we have mostly discussed the local approximations as an alternative to global
approximations, it is, of course, possible to create hybrids. For example, [13] suggests
that it is possible to construct a fixed global approximation as a pre-processing step,
then use local approximations to refine it. This type of strategy could combine the
high-order convergence of global approximations with the theoretical guarantees and
highly adaptive nature of local approximation.

Finally, there are many important types of MCMC kernels we have not combined
with approximation strategies. For example, Hamiltonian Monte Carlo is an impor-
tant derivative based algorithm, but it is not obvious how to adapt the refinement
process to the multi-step proposal. Second, the parallel tempering algorithm creates
a family of synthetic distributions that are jointly explored, which helps to promote
mixing in multi-modal distributions. Finally, the equi-energy sampler is a member
of a fascinating class of recently developed adaptive algorithms that appear to have
favorable theoretical properties. This sampler revisits previous samples of comparable
density to produce long-range moves, which is a reuse of samples that may integrate
well with our techniques.

Our study of inference in the Pine Island setting can be improved on both the com-
putational and scientific aspects of the inference. If the computational performance
is limited by the small scale behavior of the forward model, as discussed earlier, an
approximation family that is designed to be robust to noise may restore the strong
results seen on simpler problems. The limited quality of the inference is independent
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of the computational approach, and stems from limited data and model error. Future
efforts should determine the benefits of including all available data, including full water
column observations and autonomous submarine observations. Furthermore, it would
be useful to understand how dense the observations must be to tightly constrain the
inference and to perform experimental design to select observation locations. Attempt-
ing to reduce the model error, or else to infer it from observations, should improve the
agreement between the posterior and the true model, and will help us understand the
feasible performance if these methods were applied to real data.
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Appendix A

Local polynomial regression

Here we provide additional detail about the polynomial regression scheme described in
Section 3.2.2. We consider the quadratic case, as the linear case is a simple restriction
thereof. For each component fj of f , the quadratic regressor is of the form

f̃j(θ̂) := aj + bT
j θ̂ +

1

2
θ̂THj θ̂,

where aj ∈ R is a constant term, bj ∈ R
d is a linear term, andHj ∈ R

d×d is a symmetric
Hessian matrix. Note that aj, bj, and Hj collectively contain M = (d + 2)(d + 1)/2

independent entries for each j. The coordinates θ̂ ∈ R
d are obtained by shifting and

scaling the original parameters θ as follows. Recall that the local regression scheme
uses N samples {θ1, . . . , θN} drawn from the ball of radius R centered on the point of
interest θ, along with the corresponding model evaluations yi

j = fj(θ
i).1 We assume

that the components of θ have already been scaled so that they are of comparable
magnitudes, then define θ̂i = (θi−θ)/R, so that the transformed samples are centered
at zero and have maximum radius one. Writing the error bounds as in (3.1) requires
this rescaling along with the 1/2 in the form of the regressor above [19].

Next, construct the diagonal weight matrix W = diag(w1, . . . , wN) using the sam-
ple weights in (3.2), where we have R = 1 because of the rescaling. Then compute the
N -by-M basis matrix Φ:

Φ =




1 θ̂1
1 · · · θ̂1

d
1
2

(
θ̂1

1

)2 · · · 1
2

(
θ̂1

d

)2
θ̂1

1 θ̂
1
2 · · · θ̂1

d−1θ̂
1
d

...
...

1 θ̂N
1 · · · θ̂N

d
1
2

(
θ̂N

1

)2 · · · 1
2

(
θ̂N

d

)2
θ̂N

1 θ̂
N
2 · · · θ̂N

d−1θ̂
N
d




where we ensure that N > M . Finally, solve the n least squares problems,

ΦTWΦZ = ΦTWY, (A.1)

1To avoid any ambiguities, this appendix departs from the rest of the narrative by using a super-
script to index samples and a subscript to index coordinates.
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where each column of the N -by-n matrix Y contains the samples
(
y1

j , . . . , y
N
j

)T
, j =

1 . . . n. Each column zj of Z ∈ R
M×n contains the desired regression coefficients

for output j. The least squares problem may be solved stably using a thin SVD of
WΦZ, which may be computed once and reused for all n least squares problems. The
cross-validation fit omitting sample i simply removes row i from both sides of (A.1).
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Appendix B

Genetic toggle switch inference

problem

Here we provide additional details about the setup of the genetic toggle switch infer-
ence problem from Section 3.4.1. The six parameters of interest are normalized around
their nominal values to have the form

Zi = θ̄i(1 + ζiθi), i = 1 . . . 6

so that each θi has prior U(−1, 1). The values of θ̄i are and ζi are given in Table B.1.
The data are observed at six different values of [IPTG]; the first corresponds to the
“low” state of the switch while the rest are in the “high” state. Multiple experimental
observations are averaged without impacting the posterior by correspondingly lowering
the noise; hence, the data comprise one observation of v/vref at each concentration,
where vref = 15.5990. The data are modeled as having independent Gaussian errors,
i.e., as draws from N (di, σ

2
i ), where the high- and low-state observations have different

standard deviations, specified in Table B.2. The forward model may be computed by
integrating the ODE system (3.21), or more simply by iterating until a fixed point for
v is found.

Table B.1: Normalization of the parameters in the genetic toggle switch example.

α1 α2 β γ K η

θ̄i 156.25 15.6 2.5 1 2.0015 2.9618e-5

ζi 0.20 0.15 0.15 0.15 0.30 0.2
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Table B.2: Data and obervation error variances for the likelihood of the genetic toggle
switch example.

[IPTG] 156.25 15.6 2.5 1 2.0015 2.9618e-5

di 0.00798491 1.07691684 1.05514201 0.95429837 1.02147051 1.0

σi 4.0e-5 0.005 0.005 0.005 0.005 0.005

128



Bibliography

[1] R. J. Adler, The geometry of random fields, SIAM, 1981.

[2] C. Andrieu and J. Thoms, A tutorial on adaptive MCMC, Statistics and
Computing, 18 (2008), pp. 343–373.

[3] C. G. Atkeson, A. W. Moore, and S. Schaal, Locally Weighted Learning,
Artificial Intelligence Review, 11 (1997), pp. 11–73.

[4] I. Babuska, F. Nobile, and R. Tempone, A stochastic collocation method
for elliptic partial differential equations with random input data, SIAM Journal
on Numerical Analysis, 45 (2007), pp. 1005–1034.

[5] G. Bal, I. Langmore, and Y. M. Marzouk, Bayesian Inverse Problems
with Monte Carlo Forward Models, Inverse problems and imaging, 7 (2013),
pp. 81–105.

[6] V. Barthelmann, E. Novak, and K. Ritter, High dimensional polyno-
mial interpolation on sparse grids, Advances in Computational Mathematics, 12
(2000), pp. 273–288.

[7] N. Bliznyuk, D. Ruppert, C. Shoemaker, R. Regis, S. Wild, and

P. Mugunthan, Bayesian Calibration and Uncertainty Analysis for Com-
putationally Expensive Models Using Optimization and Radial Basis Function
Approximation, Journal of Computational and Graphical Statistics, 17 (2008),
pp. 270–294.

[8] N. Bliznyuk, D. Ruppert, and C. A. Shoemaker, Local Derivative-Free
Approximation of Computationally Expensive Posterior Densities, Journal of
Computational and Graphical Statistics, 21 (2012), pp. 476–495.

[9] J. P. Boyd, Chebyshev and Fourier Spectral Methods, Dover Publications, 2nd
revise ed., 2001.

[10] S. P. Brooks and G. O. Roberts, Assessing Convergence of Markov Chain
Monte Carlo Algorithms, Statistics and Computing, 8 (1998), pp. 319–335.

129



[11] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zhang Jr.,
Spectral Methods: Fundamentals in single domains, Springer Berlin Heidelberg,
2006.

[12] O. Cappe, A. Guillin, J.-M. Marin, and C. P. Robert, Population
Monte Carlo, Journal of Computational and Graphical Statistics, 13 (2004),
pp. 907–929.

[13] A. Chakraborty, B. K. Mallick, R. G. Mcclarren, C. C. Kuranz,

D. Bingham, M. J. Grosskopf, E. M. Rutter, H. F. Stripling, and

R. P. Drake, Spline-Based Emulators for Radiative Shock Experiments With
Measurement Error, Journal of the American Statistical Association, 108 (2013),
pp. 411–428.

[14] J. A. Christen and C. Fox, Markov chain Monte Carlo Using an Approxima-
tion, Journal of Computational and Graphical Statistics, 14 (2005), pp. 795–810.

[15] C. Clenshaw and A. Curtis, A method for numerical integration on an
automatic computer, Numerische Mathematik, 2 (1960), pp. 197–205.

[16] W. S. Cleveland, Robust Locally Weighted Regression and Smoothing Scat-
terplots, Journal of the American Statistical Association, 74 (1979), pp. 829–836.

[17] W. S. Cleveland and C. Loader, Smoothing by local regression: Principles
and methods, in Statistical Theory and Computational Aspects of Smoothing,
W. Haerdle and M. G. Schimek, eds., vol. 1049, Springer, New York, 1996,
pp. 10–49.

[18] A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust Region Methods,
SIAM, 2000.

[19] A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to
Derivative-Free Optimization, SIAM, 2009.

[20] P. R. Conrad and Y. M. Marzouk, Adaptive Smolyak Pseudospectral Ap-
proximations, SIAM Journal of Scientific Computing, 35 (2013), pp. A2643–
2670.

[21] P. R. Conrad, Y. M. Marzouk, N. S. Pillai, and A. Smith, Asymp-
totically Exact MCMC Algorithms via Local Approximations of Computationally
Intensive Models, Arxiv preprint arXiv:1402.1694v1, (2014), pp. 1–38.

[22] P. G. Constantine, M. S. Eldred, and E. T. Phipps, Sparse Pseudospec-
tral Approximation Method, Computer Methods in Applied Mechanics and En-
gineering, 229-232 (2012), pp. 1–12.

[23] S. L. Cotter, M. Dashti, and A. M. Stuart, Approximation of Bayesian
Inverse Problems, SIAM Journal of Numerical Analysis, 48 (2010), pp. 322–345.

130



[24] S. L. Cotter, G. O. Roberts, A. M. Stuart, and D. White, MCMC
methods for functions: Modifying old algorithms to make them faster, Statistical
Science, 28 (2013), pp. 424–446.

[25] M. K. Cowles and B. P. Carlin, Markov Chain Monte Carlo Convergence
Diagnostics : A Comparative Review, Journal of the American Statistical Asso-
ciation, 91 (1996), pp. 883–904.

[26] R. V. Craiu, J. Rosenthal, and C. Yang, Learn From Thy Neighbor :
Parallel-Chain and Regional Adaptive MCMC, Journal of the American Statis-
tical Association, 104 (2009), pp. 1454–1466.

[27] N. Cressie, Statistics for Spatial Data, John Wiley and Sons, 1991.

[28] T. Cui, C. Fox, and M. J. O’Sullivan, Bayesian calibration of a large-
scale geothermal reservoir model by a new adaptive delayed acceptance Metropolis
Hastings algorithm, Water Resources Research, 47 (2011), p. W10521.

[29] V. Dansereau, P. Heimbach, and M. Losch, Simulation of sub-ice shelf
melt rates in a general circulation model: velocity-dependent transfer and the
role of friction, Journal of Geophysical Research, in review, (2013).

[30] M. Dashti and A. Stuart, Uncertainty Quantification and Weak Approxi-
mation of an Elliptic Inverse Problem, SIAM Journal of Numerical Analysis, 49
(2011), pp. 2524–2542.

[31] Y. Efendiev, T. Hou, and W. Luo, Preconditioning Markov chain Monte
Carlo simulations using coarse-scale models, SIAM Journal on Scientific Com-
puting, 28 (2006), pp. 776–803.

[32] M. S. Eldred and J. Burkardt, Comparison of non-intrusive polynomial
chaos and stochastic collocation methods for uncertainty quantification, AIAA
paper 2009–0976, (2009).

[33] O. G. Ernst, A. Mugler, H.-J. Starkloff, and E. Ullmann, On the
convergence of generalized polynomial chaos expansions, ESAIM: Mathematical
Modeling and Numerical Analysis, 46 (2012), pp. 317–339.

[34] M. Fielding, D. J. Nott, and S.-Y. Liong, Efficient MCMC Schemes for
Computationally Expensive Posterior Distributions, Technometrics, 53 (2011),
pp. 16–28.
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