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Abstract

One fundamental evaluation criteria of an AI tech-
nique is its performance in the worst-case. For
static strategies in extensive games, this can be
computed using a best response computation. Con-
ventionally, this requires a full game tree traver-
sal. For very large games, such as poker, that
traversal is infeasible to perform on modern hard-
ware. In this paper, we detail a general tech-
nique for best response computations that can often
avoid a full game tree traversal. Additionally, our
method is specifically well-suited for parallel en-
vironments. We apply this approach to computing
the worst-case performance of a number of strate-
gies in heads-up limit Texas hold’em, which, prior
to this work, was not possible. We explore these
results thoroughly as they provide insight into the
effects of abstraction on worst-case performance in
large imperfect information games. This is a topic
that has received much attention, but could not pre-
viously be examined outside of toy domains.

1 Introduction
Extensive games are a powerful framework for modeling se-
quential stochastic multi-agent interactions. They encompass
both perfect and imperfect information games allowing work
on extensive games to impact a diverse array of applications.

To evaluate an extensive game strategy, there are typically
two options. The first option is to acquire a number of strate-
gies and use an appropriately structured tournament. This is,
by far, the most common option in the AI community, and is
used by the Annual Computer Poker Competition, the Trad-
ing Agent Competition, RoboCup, the General Game Play-
ing competition, SAT and Planning competitions, and so on.

While the tournament structure will ultimately declare a win-
ner, it is not always clear how to interpret the results. That is,
which strategy is indeed the best when the results are noisy,
have intransitivities, or there are multiple evaluation criteria?

The second option is to compute or bound the worst-case
performance of a strategy. Good worst-case performance sug-
gests a strategy is robust to the choices of the other players. In
zero-sum games, the worst-case performance takes on addi-
tional importance, as it is intimately tied to the Nash equi-
librium concept. A strategy’s worst-case performance can
be computed using a best response calculation, a fundamen-
tal computation in game theory. Conventionally, the best re-
sponse computation begins by examining each state once to
compute the value of every outcome, followed by a pass over
the strategy space to determine the optimal counter-strategy.
For many games, this is infeasible with modern hardware,
despite requiring only a single traversal of the game. For ex-
ample, two-player limit Texas hold’em has 9.17 ∗ 1017 game
states, which would require ten years to examine even if one
could process three billion states per second.

Since best response computation has been thought to be
intractable for two-player limit Texas hold’em, evaluation
has focused on competitions instead. The Annual Computer
Poker Competition holds an instant runoff tournament for
variants of Texas hold’em poker. Historically, top entrants to
this tournament have aimed to approximate Nash equilibrium
strategies using increasingly finer abstractions and efficient
equilibrium-finding techniques. More accurate solutions to
ever finer abstractions were thought to improve worst-case
performance and result in stronger tournament performance.
While tournament results suggested this was happening, re-
cent work shows that finer abstractions give no guarantee
of improving worst-case performance [Waugh et al., 2009a].
This finding was demonstrated on a toy domain where best-
response computations were feasible. To date, no one has
measured the worst-case performance of a single non-trivial



strategy in any of the competition events.
In this paper, we describe general techniques for accelerat-

ing best response calculations. The method uses the structure
of information and utilities to avoid a full game tree traver-
sal, while also being well-suited to parallel computation. As
a result we are able for the first time to compute the worst-
case performance of non-trivial strategies in two-player limit
Texas hold’em. After introducing these innovations, we use
our technique to empirically answer a number of open ques-
tions related to abstraction and equilibrium approximation.
We show that in practice finer poker abstractions do produce
better equilibrium approximations, but better worst-case per-
formance does not always result in better performance in a
tournament. These conclusions are drawn from evaluating
the worst-case performance of over three dozen strategies in-
volving ten total CPU years of computation.

2 Background
We begin with a brief description of an extensive game; a
formal definition can be found in [Osborne and Rubinstein,
1994, Ch. 11]. An extensive game is a natural model of inter-
action between players in an environment. A history h ∈ H
is the sequence of actions taken by all of the players, includ-
ing the chance player whose actions represent random events
such as card deals or dice rolls. A player function P (h) de-
termines which player is next to act. Taking an action a in a
history h produces a new history ha. A subset of all histories
are terminal histories. At a terminal history z, the game is
over and the players are assigned utilities according to a util-
ity function, where ui(z) is the utility for player i. If there
are two players and the utilities sum to 0 (so u1(z) = −u2(z)
for all z), then we say the game is zero-sum. An extensive
game can be intuitively thought of as a game tree, where each
history is a game state and actions by the players cause tran-
sitions to new histories.

In games of imperfect information, some of the actions
by the players, or chance, may not be fully revealed. One
example is the game of poker, in which chance deals private
cards face-down to each player, and these cards determine the
utilities at the end of the game. To represent such cases, we
use information sets to group indistinguishable histories. If
player 1 cannot see player 2’s cards, for example, then all of
the histories that are differentiated only by player 2’s cards
are in the same information set for player 1. When a player
is to choose an action, their choice only depends on the infor-
mation set, not the underlying history.

A strategy for a player i, σi ∈ Σi, is a function that assigns
a probability distribution over the actions to each information
set I . When player i must select an action at I , they sample
an action from the probability distribution σi(I). Note that
in games such as poker where the agents alternate positions
after each game, an agent will have one strategy to use in each
position. A player has a specified position in the game, while
an agent has a strategy for every position in the game.

A strategy profile, σ ∈ Σ, consists of a strategy for each
player. We use σ−i to refer to all of the strategies in σ ex-
cept for σi. As a strategy profile defines the probability dis-
tribution over actions for all of the non-chance players, it is

sufficient to determine the expected utility for each player, de-
noted ui(σ). Similarly, we define ui(σ1, σ2) = ui(σ1 ∪ σ2).

A best response is the optimal strategy for player i to use
against the opponent profile σ−i. It is defined as

bi(σ−i) = argmax
σ′

i∈Σi

ui(σ−i, σ
′
i). (1)

The value of the best response, ui(bi(σ−i), σ−i), is how
much utility the best response will receive on expectation.
In two player games, this value is also useful as a worst-case
evaluation of the strategy σi, as ui(σi, b−i(σi)) is a lower
bound on player i’s utility on expectation.

Two-player zero-sum games have a game value, vi, that is
the lower bound on the utility of an optimal player in position
i. In this case, we use the term exploitability to refer to the
difference

εi(σi) = vi − ui(σi, b−i(σi)). (2)

The exploitability of a strategy is thus how much additional
utility is lost to a worst-case adversary by playing σi, instead
of a strategy that achieves the game’s value. A strategy is
unexploitable, or optimal, if this difference is zero.

In large two player zero-sum games such as poker, the
value of the game is unknown and is intractable to compute;
however, if the players alternate positions, then the value of a
pair of games is zero. If an agent plays according to profile σ
then its exploitability is

ε(σ) =
u2(σ1, b2(σ1)) + u1(b1(σ2), σ2)

2
. (3)

A Nash equilibrium is a strategy profile σ that has the prop-
erty that no player can benefit by unilaterally deviating.

Definition 1 σ is a Nash Equilibrium if

ui(σ) ≥ ui(σ−i ∪ σ′i),∀i ∈ N,∀σ′i ∈ Σi. (4)

In two player zero-sum games, a Nash equilibrium is unex-
ploitable: against any opponent the strategy will win no less
than the value of the game. However, in large games it may
be intractable to compute such a strategy. In such cases, an
aligned goal is to attempt to approximate an equilibrium with
a low exploitability strategy, thus bounding its worst-case per-
formance. Various abstraction and equilibrium computation
methods have been applied to making what were hoped to be
good equilibrium approximations. While many of these have
been applied to building strategies for two-player limit Texas
hold’em, it has been previously infeasible to evaluate their
worst-case performance in such a large domain.

3 Conventional Best Response
Conventionally, a best response can be easily computed
through a recursive tree walk that visits each game state once.
To illustrate this algorithm, we will refer to Figure 1, which
presents four views of the simple game of 1-Card Poker. Con-
sider the diagram labelled “Game Tree”, which represents the
exact state of the game. The game begins at the root, where
the white circle nodes represent chance privately giving one
card to Player 1. The children, black circles, represent chance
privately giving one card to Player 2. Descending through the
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Figure 1: Four trees for the game of 1-Card Poker.

tree, the white and black squares represent players 1 and 2 re-
spectively making public betting actions, before arriving at
the terminal nodes, represented by triangles.

Since there is private information in this game, each player
has a different view of the game, which is represented by the
“P1 Information Set Tree” and “P2 Information Set Tree” di-
agrams. In these diagrams, the private information provided
to the opponent by chance is unknown, and so the black and
white circles for the opponent have only one child. Each node
in these trees represents a set of game states that the player
cannot distinguish. For example, if Player 1 reaches the ter-
minal node labelled ‘A’ in their information set tree, they can-
not determine whether they are in the game tree node labelled
‘A,X’ or ‘A,Y’, as these nodes are distinguished only by the
opponent’s private information, while all of the public actions
leading to these nodes are identical.

Consider computing a best response from Player 2’s per-
spective. We will do a recursive tree walk over their informa-
tion set tree. At a terminal node, such as the one labelled ‘X’,
we must consider all of the game states that the game could
actually be in: ‘A,X’ or ‘B,X’. Specifically, we need to know
the probability that the opponent would reach the nodes ‘A’
and ‘B’ in their tree, according to their strategy being used at
their earlier decision points and chance’s strategy; we will call
this vector of probabilities the reach probabilities. Given
these probabilities, we can compute the unnormalized value
for us reaching ‘X’ to be the sum over the indistinguishable
game states of each game state’s utility times that game state’s
reach probability. We then return this value during our tree
walk. Recursing back through our choice nodes, the black
squares, we will pick the highest valued action to create our
best response strategy, and return the value of this action. At
opponent choice nodes and chance nodes, the white squares
and circles, we simply return the sum of the child values.
When we return to the root, the returned value is the value
of the best response to the opponent’s strategy. Performing
this computation from each position gives us both best re-
sponse values, and thus by Equation 3, the exploitability of
the strategy.

Note that there is an obvious enhancement to this algo-
rithm. Instead of recomputing the opponent’s vector of reach
probabilities at each terminal node, during our recursive tree
walk we can pass forward a vector containing the product of
probabilities of the earlier actions in the tree. This allows us

to query the opponent’s strategy once for each of its earlier
actions and reuse the strategy’s action probability at all of its
descendent terminal nodes. In large domains, the opponent’s
strategy might be many gigabytes and be stored on disk or
otherwise have a nontrivial cost to do such queries, and it
is important to take advantage of opportunities to cache and
reuse these computed values. Thus, our recursive tree walk
will pass forward a vector of reach probabilities for the states
in an information set, and return the value for reaching an
information set.

4 Accelerated Best Response
The conventional best-response computation visits each game
state exactly once, and is thus seemingly efficient. However,
in large games such as Texas hold’em poker, with 1018 states,
having to visit each state once makes the computation in-
tractable. In this section, we will show four ways that this
conventional algorithm can be accelerated: (1) traversing a
different type of tree, which allows more opportunities for
caching and reusing information; (2) using properties of the
game’s utilities to efficiently evaluate terminal nodes of the
public tree; (3) use game-specific isomorphisms to further re-
duce the size of the expanded tree; (4) solving independent
sections of this new tree in parallel.

Public State Tree. We begin by presenting the heart of the
accelerated best response algorithm.

Definition 2 (Public State) We call a partition of the histo-
ries, P , a public partition and P ∈ P a public state if

• no two histories in the same information set are in differ-
ent public states (i.e., if information is public, all players
know it)

• two histories in different public states have no descen-
dants in the same public state (i.e., it forms a tree), and

• no public state contains both terminal and non-terminal
histories (we call a public state with terminal histories a
terminal public state).

Informally, a public state is defined by all of the information
that both players know, or equivalently, what the game looks
like to an observer that knows no private information. Like
the histories, it forms a tree that we can traverse. Though it



is not provided by an extensive game’s description, it is triv-
ial to come up with a valid public information partition, and
many games have a natural notion of public information. Fol-
lowing our earlier example of 1-Card Poker, Figure 1 shows
an example of the public tree, beside the much larger game
tree.

In our earlier example illustrating the conventional algo-
rithm, we used Figure 1 to describe that when we are at ter-
minal node X, we do not know if the opponent is at node A
or B, and so we must compute the reach probabilities for the
opponent and chance reaching each of these states. However,
there is an important opportunity to reuse these probabilities;
just as we cannot distinguish between their private states, the
opponent cannot distinguish if we are at node X or node Y,
and so the reach probabilities are identical when we are in
either state.

The public tree provides a structured way to reuse these
computed probabilities. Every node in the public tree rep-
resents a set of game states that cannot be distinguished by
an outside observer, and also partitions the information sets
for the players. Instead of finding a best response by walk-
ing over the information set tree, as in the conventional al-
gorithm, we will instead recursively walk the much smaller
public tree. When we reach a terminal node such as the one
labelled “A,B,X,Y” in Figure 1, we know that player 1 could
be in nodes A or B as viewed by player 2, and that player 2
could be in nodes X or Y as viewed by player 1. From player
2’s perspective, we can calculate the vector of player 1’s reach
probabilities for A and B once, and reuse these probabilities
when computing the value for both X and Y. Instead of pass-
ing forward a vector of reach probabilities and returning a
single value for the one information set being considered, as
we do in the conventional algorithm, we will instead pass for-
ward a vector of reach probabilities and return a vector of val-
ues, one for each of our information sets in the public state.
At our decision nodes, we will pick the best action for each
information set by recursing to get a vector of values for each
action, and return a vector where each entry is the max of
that entry across the action value vectors. At opponent de-
cision nodes and chance nodes, we will recurse to find the
child value vectors, and return the vector sum of these vec-
tors. At terminal nodes, the value for each information set
can be found by evaluating each one at a time, as in the con-
ventional algorithm, although later we will present a faster
technique that produces the same values.

Thus, the public tree walk performs exactly the same com-
putations as the conventional algorithm, and only the order
of these computations has changed so that we can more ef-
ficiently reuse the queries to the opponent’s strategy. In a
game like Texas hold’em where each player has up to 1326
information sets in each public state, this allows us to avoid
1325 unnecessary strategy queries. As previously mentioned,
if querying the opponent’s strategy is nontrivial and forms a
bottleneck in the computation, the speed advantage is sub-
stantial, as it may do as little as 1

1326 times as much work. In
practice, we estimate that this change may have resulted in a
110 times speedup.

Efficient Terminal Node Evaluation. The second way to
accelerate the calculation involves improving the terminal
public state utility calculation by exploiting domain specific
properties of the game. When reaching terminal public states
during the traversal, we have a vector of probabilities for the
opponent reaching that public state with each of their infor-
mation sets, and need to compute the value of each of our
information sets. A naive approach is to consider each pair
of information sets in the public state. This is an O(n2) com-
putation, assuming n information sets per player. However,
games of interest typically have structure in their payoffs.
Very often this structure can allow an O(n) computation at
the terminal nodes, particularly when the distribution over the
players’ information sets are (nearly) independent.

Example 1. Suppose the players’ information sets are fac-
torable and only some of the factors affect the utilities at any
particular public state. For example, in a negotiation game, a
player may have information that affects the utility of many
different negotiated outcomes, but only the information as-
sociated with the actual negotiated outcome affects that pub-
lic state’s utility. If the number of relevant information sets
is only O(

√
n) and the information sets are independently

distributed, then the O(n2) computation can be done in only
O(n) time.

Example 2. Suppose the players’ information sets make
independent and additive contributions to the best-response
player’s utility. For example, consider a game where goods
are being distributed and the players have independent esti-
mates for a good’s true value. If the player’s utility is the true
value of the acquired goods, then each player’s estimate is
making an independent contribution. In such a situation, the
expected opponent’s contribution can be first computed inde-
pendently of the best-response player’s information set, al-
lowing the whole utility calculation to be completed in O(n)
time.

Example 3. Suppose we can sort each players’ informa-
tion sets by “rank”, and the utility only depends upon the
relative ordering of the players’ ranks. This is exactly the
situation that occurs in poker. For the moment, let us as-
sume the distribution of the players’ ranks are independent.
In this case, evaluating each of our information sets requires
only O(n) work. We know that our weakest information set
will be weaker than some of the opponent’s hands, equal to
some, and better than some. We keep indices into the oppo-
nent’s ordered list of information sets to mark where these
changes occur. To evaluate our information set, we only need
to know the total probability of the opponent’s information
sets in these three sections. After we evaluate one of our
information sets and move to a stronger one, we just adjust
these two indices up one step in rank.

This approach can be used in cases where the players’ hid-
den information is independent. However, even if the infor-
mation sets are dependent, as in poker where one player hold-
ing a card excludes other players from holding it, we may
still be able to do an O(n) evaluation. We will use the game
of Texas hold’em as an example. In this game, a 52-card
deck is used, five cards are revealed, and each player holds
two cards. We proceed as before, and evaluate each of our
(47 choose 2) possible hands, considering all (47 choose 2)



hands for the opponent. However, some of the opponent’s
hands are not possible, as their cards overlap with ours. Using
the inclusion-exclusion principle, when computing the total
probability of hands better and worse than ours, we subtract
the total probability of opponent hands that include either of
our cards. The opponent hand that uses both of our cards
has then been incorrectly subtracted twice, so we correct by
adding its probability back again. This O(n) procedure re-
sults in exactly the same value as the straightforward O(n2)
evaluation. In games such as poker, the ordering of the in-
formation sets may not be known until the final action by the
chance player is revealed. In such cases, the information sets
must be sorted after this occurs, resulting in an O(n log n)
sorting procedure followed by the O(n) terminal node evalu-
ation. However, the O(n log n) sorting cost can be paid once
and amortized over all of the terminal node evaluations fol-
lowing the final chance event, reducing its cost in practice.
In Texas hold’em, this O(n log n) evaluation runs 7.7 times
faster than the straightforward O(n2) evaluation.

Game-Specific Isomorphisms. The third way to accelerate
the calculation depends on leveraging known properties of a
strategy. In some games, there may be actions or events that
are strategically equivalent. This is true in many card games,
where the rank of a card, but not its suit, indicates strength.
For example, a 2♥ may be equivalent to a 2♠, at least until
additional cards are revealed; if the chance player later reveals
a 3♠, 2♠ may then be stronger than a 2♥. We call such sets
of equivalent chance actions isomorphic, and choose one ar-
bitrarily to be canonical. If the domain has this property and
if the strategy being evaluated is the same for every member
of each set of isomorphic histories, then the size of the public
state tree can be greatly reduced by only considering canon-
ical actions. On returning through a chance node during the
tree walk, the utility of a canonical action must be weighted
by the number of isomorphic states it represents. In Texas
hold’em, this reduction results in a public state tree 21.5 times
smaller than the full game.

Parallel Computation. The fourth and final way in which
we accelerate the calculation is to choose subtrees of the pub-
lic tree that can be solved independently. We rely on the fact
that the graph of public states forms a tree, as required by
Definition 2, and computing a value vector at a public state
requires only the vector of probabilities for the opponent to
reach this public state and computations on the subtree of
public states descendent from it. Given this, any two public
states where one is not descendent from the other will share
no descendents and thus have no computations in common,
and so can be solved in parallel. For example, when reaching
a public chance event during a public tree walk, all of the chil-
dren could be solved in parallel and the value vector returned
as normal once each subtree computation has finished.

In Texas hold’em poker, one natural choice of a set of inde-
pendent subgames to solve in parallel is at the start of the sec-
ond round, called the “flop”. There are 7 nonterminal action
sequences in the first round and 1755 canonical public chance
events at the start of the flop, resulting in 12,285 independent
subgames for each position, and 24,570 subgames total. Us-
ing the accelerated best response technique described above,

each subgame requires approximately 4.5 minutes on aver-
age to solve, resulting in a 76 cpu-day sequential computa-
tion. Since these subgames are independent, a linear speedup
can be achieved by using 72 processors to solve the set of
subgames in just over a day. When all of the subgames are
complete, walking the small tree from the root to the start of
the subgames requires less than a minute to complete.

The four methods described above provide orthogonal speed
enhancements over the conventional best response algorithm.
By combining them, we can now compute the value of a best
response in just over a day, in a domain where the computa-
tion was previously considered intractable.

5 Application to Texas Hold’em Poker
Our new ability to calculate the exploitability of strategies
in large extensive games allows us to answer open questions
about abstraction and approximate equilibria which have
been raised by the computer poker community. The Annual
Computer Poker Competition, which was started in 2006, has
popularized poker as a challenging testbed for artificial in-
telligence research. Annually, over two dozen poker-playing
programs are submitted to the competition. Although many
approaches are used, the most popular technique is to ap-
proximate an unexploitable Nash equilibrium strategy. How-
ever, the smallest and most popular variant of poker in the
competition, heads-up Limit Texas hold’em, has 9.17 ∗ 1017

game states, rendering the computation of an exact solution
intractable. Instead, a compromise is made that is common
to many large domains in artificial intelligence: a smaller ab-
stract game is constructed and solved, and the resulting ab-
stract strategy is used in the real game.

With this approach, the competitors have made substan-
tial progress in discovering more efficient game solving tech-
niques, such as Counterfactual Regret Minimization [Zinke-
vich et al., 2008] and the Excessive Gap Technique [Hoda
et al., 2010]. More efficient algorithms and more powerful
hardware has allowed for larger, finer-grained abstractions
to be solved. These new abstractions have involved imper-
fect recall and a focus on public information [Waugh et al.,
2009b], and k-means-clustering-based approaches that better
model the real game [Gilpin and Sandholm, 2007]. This line
of work has been motivated by an intuition that larger, finer-
grained abstractions will produce less exploitable strategies.

Unfortunately, recent work has shown this intuition to be
unreliable. In a toy poker game, counterexamples were found
where refining an abstraction to a finer-grained one produced
strategies that were dramatically more exploitable [Waugh
et al., 2009a]. These abstraction pathologies, if present in
Texas hold’em, could result in highly exploitable agents. As
the best response calculation was until now intractable, their
possible effect has been unknown.

In the next section, we will present results from our best re-
sponse technique in two-player limit Texas hold’em. In par-
ticular, we aim to answer three key questions from the com-
puter poker community. First, how exploitable are the com-
petition’s approximations to equilibrium strategies? Second,
is progress being made towards the goal of producing an un-
exploitable strategy? Third, do abstraction pathologies play a



Agent Name Exploitability (mb/g)
Always-Fold 750
Always-Call 1163.48
Always-Raise 3697.69
50% Call, 50% Raise 2406.55

Table 1: Four trivial Texas Hold’em Poker agents.

Name vs (4) Exploitability (mb/g)
(1) Hyperborean.IRO -3 ± 2 135.427
(2) Hyperborean.TBR -1 ± 4 141.363
(3) GGValuta -7 ± 2 237.330
(4) Rockhopper 0 300.032
(5) GS6.IRO -37 ± 6 318.465
(6) PULPO -9 ± 2 399.387
(7) Littlerock -77 ± 5 421.850

Table 2: Agents from the 2010 Computer Poker Competition.
The “vs (4)” column shows the performance and 95% con-
fidence interval against the top-ranked agent in the competi-
tion. The “Exploitability” column shows the expected value
of the best response to the agent.

large role in Texas hold’em? In addition, we will raise new
issues related to abstraction and equilibria that these experi-
ments have revealed.

6 Results in the Texas Hold’em Domain
We will begin by presenting the exploitability of several triv-
ial Texas hold’em agents, shown in Table 1, to give context to
later results. All of our results are presented in milliblinds per
game (mb/g) won by the best response, where a milliblind is
0.001 big blinds, the unit of the largest ante in Texas hold’em.
Note that the exploitability values presented are precise to
within floating-point inaccuracies. The “Always Fold” agent
always chooses the fold action to surrender the game. Thus,
its exploitability is trivially calculable to be 750 mb/g with-
out our analysis. However, the exploitability of the “Always-
Call”, “Always-Raise”, and “50% Call 50% Raise” agents
are not trivially computable. The exploitability of “Always-
Raise” has been independently computed [mykey1961, 2007]
and matches our result after changing units, but to our knowl-
edge, our analysis is the first for “Always-Call” and “50%
Call 50% Raise”. For comparison, a rule-of-thumb used by
human poker professionals is that a strong player should aim
to win at least 50 mb/g.

Computer Poker Competition Results. The Annual Com-
puter Poker Competition is a driving force behind recent re-
search into equilibrium-finding and abstraction techniques.
However, due to the computational complexity of computing
a best response using conventional techniques, the worst-case
performance of the agents was unknown. With the coopera-
tion of the agents’ authors, we have used our technique to
calculate the exact exploitability of some of the agents that
competed in the 2010 ACPC. These results are presented in
Table 2. A complete table of the agents’ relative performance
can be found on the competition’s website [Bard, 2010].

From Table 2, we see that there is a wide range in ex-
ploitability between these agents, even though the first five
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appear to be similar from the tournament results. This sug-
gests that while this one-on-one performance gives us a bound
on the exploitability of a strategy, it does not indicate how
far away from optimal a strategy is. Note that the PULPO
strategy is not explicitly attempting to approximate an unex-
ploitable strategy as the other agents are; it uses a pure strat-
egy that gives up exploitability in return for better one-on-one
performance against weak opponents. In fact, PULPO was
the winner of the 2010 Bankroll event, in which agents at-
tempt to maximize their utility against the other competitors.
If the goal is to create an agent that performs well against
other agents, having the lowest exploitability is not sufficient
to distinguish a strategy from its competitors, or to win the
competition.

Abstraction Pathologies. As we mentioned in Section 5,
toy domains have shown that increasing one’s abstraction size
(even strictly refining an abstraction) does not guarantee an
improvement, or even no change, in worst-case performance.
Instead, examples in these domains show that even strict re-
finements can result in more exploitable strategies. With the
accelerated best response technique, we can now for the first
time explore this phenomenon in a large domain. In Figure 2,
we present an analysis of the University of Alberta Computer
Poker Research Group’s entries into the Annual Computer
Poker Competition and two Man-vs-Machine competitions
over a period of four years. Over time, improvements in the
implementation of our game solving algorithm [Zinkevich et
al., 2008] and access to new hardware have allowed for larger
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Figure 4: Four different abstraction techniques as the size of
the abstraction varies.

abstractions to be created and solved. This increased abstrac-
tion size has also allowed for more complex abstraction tech-
niques that use new domain features. In turn, this has led to a
consistent decrease in the exploitability of the strategies.

In Figure 3, we consider increasing sizes of abstractions
generated by one particular abstraction methodology (Per-
centile Hand Strength) using the Counterfactual Regret Min-
imization algorithm [Zinkevich et al., 2008] to solve the ab-
straction. At each chance node, the possible outcomes are
ranked according to the Expected Hand Strength Squared
(E[HS2]) metric and divided equally into a number of buck-
ets. For the larger 10-5x2 and 12-6x2 bucket abstractions, the
hands were first divided into 5 and 6 buckets respectively ac-
cording to the E[HS2] metric then each was further split into
2 buckets according to the E[HS] metric. This means that
we have two examples of strict refinement as described by
[Waugh et al., 2009a]: 10-5x2 is a strict refinement of 5, and
12-6x2 is a strict refinement of 6. In the chart, we see that
increasing the size of the abstraction provides a consistent,
albeit small improvement.

Finally, in Figure 4, we show the results of varying the ab-
straction size for four different abstraction techniques. The
“PR Perc. E[HS2]” abstraction technique has perfect recall
and uses the Percentile Hand Strength technique as described
in [Zinkevich et al., 2008]. The “IR Public Perc. E[HS2]”
abstraction technique uses imperfect recall and public infor-
mation as described in [Waugh et al., 2009b]. The two “k-
Means” abstraction families also use imperfect recall and the
same public buckets, and also use a k-means-clustering tech-
nique based on a player’s hand’s expected value and its po-
tential to improve. In all four cases, increasing the abstraction
size results in lower exploitability.

From Figures 2, 3 and 4, it appears that the abstraction
pathologies encountered in small games do not appear to be
common in the types and sizes of abstractions used in limit
Texas hold’em. In these experiments, using one abstraction
technique and solving increasingly larger games results in
consistent decreases in exploitability. While diminishing re-
turns affect the result, this decline appears predictable.

Tilting the payoffs. While Nash equilibrium approxima-
tions are robust against any opponent, they do not exploit all
of the mistakes made by their opponents. Human domain
knowledge in poker suggests that an “aggressive” strategy

Name Abs. Size Tilt % Exploitability (mb/g)
Pink 266m 0,0,0,0 235.294
Orange 266m 7,0,0,7 227.457
Peach 266m 0,0,0,7 228.325
Red 115m 0,-7,0,0 257.231
Green 115m 0,-7,0,-7 263.702
Reference 115m 0,0,0,0 266.797

Table 3: Analysis of the 5 component strategies in the “Po-
laris” agent that competed in the 2008 Man Machine Poker
Championship. “Tilt %” shows the percent added to a
player’s payoff when they win a showdown, lose a show-
down, fold, or win due to their opponent folding. “Ex-
ploitability” is calculated in the unmodified game.
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Figure 5: Exploitability of strategies when a bonus is added
to the winner’s utility.

that chooses betting options more frequently, while making
an exploitable mistake, may perform better against weak op-
ponents. In 2008’s Man-vs-Machine competition, the Polaris
agent included off-equilibrium aggressive strategies that were
created by running the counterfactual regret minimization al-
gorithm on a variety of non-zero-sum games that asymmet-
rically increased the payoff for the winner or decreased the
penalty for the loser. We refer to such slight modifications
as tilting the game, and the resulting strategy as a tilt. Ta-
ble 3 shows the five colour-named component strategies used
in Polaris, along with the percent modification to the pay-
offs for when a player wins a showdown, loses a showdown,
loses by folding, and wins by the opponent folding. Thus, the
“Orange” agent believes it gets 7% more whenever it wins,
and pays the normal penalty when it loses. “Pink” was an
unmodified equilibrium; “Red” and “Green” used a smaller
abstraction, and so an equilibrium in their space is listed for
comparison.

Surprisingly, the resulting strategies were each slightly less
exploitable in the untilted real game than “Pink”, the abstract
equilibrium. To further investigate this effect, we used the
“Orange” tilt, which affects only the winner’s payoffs, and
varied the modification from -25% to 25% in one of our
smaller new abstractions. The results of this experiment are
shown in Figure 5. An equilibrium in this abstraction (at 0%)
is exploitable for 267.235 mb/g, while a tilt of 4% reaches
261.219 mb/g and 7% reaches 261.425 mb/g. One possible
explanation is that the change in the resulting strategies masks
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some of the errors caused by the abstraction process. This is
a surprising result that warrants further study.

Overfitting. Recall that the most popular approach in this
domain is to minimize exploitability in an abstract game as a
proxy for minimizing exploitability in the full game. Con-
sider the counterfactual regret minimization algorithm for
solving these abstract games, a popular choice among com-
petitors. The technique iteratively improves its approximate
solution, eventually converging to an unexploitable strategy
in the abstract game. While we know that the exploitability
is falling in the abstract game as the iterations increase, Fig-
ure 6 shows the exploitability in the full game for two equal-
sized abstractions, as the number of iterations increases. We
see that the sequence of generated strategies rapidly reduce
exploitability initially, but then show a slow and steady in-
crease in worst-case performance, all the while abstract game
exploitability is decreasing. This is essentially a form of over-
fitting, in which the strategy’s performance continues to im-
prove in the training domain while becoming worse in its test-
ing domain. The implications of this phenomenon deserves
considerable further study.

In summary, the results that we have presented show that
the poker community has made consistent progress towards
the goal of producing an unexploitable poker agent. While
the least exploitable agent found so far is exploitable for 135
mb/g, more than 2.5 times a professional’s goal of 50 mb/g, it
is unlikely that an adversary that does not know the complete
strategy a priori would be able to achieve this value. Be-
fore this work, researchers had few options to evaluate new
abstraction techniques and domain features. Now, continued
progress towards the goal can be measured, providing feed-
back to the abstraction process.

7 Conclusion
In this paper, we have presented a new technique that acceler-
ates the best response calculation used to evaluate strategies
in extensive games. Through this technique, we have eval-
uated state-of-the-art agents in the poker domain and bench-
marked the community’s progress towards the goal of produc-
ing an unexploitable poker agent. Our results show that there
has been consistent progress towards this goal as the commu-
nity discovers more efficient game solving algorithms, new

abstraction techniques, and gains access to more powerful
hardware. Although recent results have shown that no use-
ful guarantees exist with the community’s approach, we have
now demonstrated that progress has been made.
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