
Accelerating cardiac excitation spread

simulations using graphics processing units

B. M. Rocha∗, F. O. Campos† ‡, R. M. Amorim‡, G. Plank† §,
R. W. dos Santos ‡,M. Liebmann¶, G. Haase¶‖

Abstract

The modeling of the electrical activity of the heart is of great medical
and scientific interest, because it provides a way to get a better under-
standing of the related biophysical phenomena, allows the development of
new techniques for diagnoses and serves as a platform for drug tests. The
cardiac electrophysiology may be simulated by solving a partial differential
equation coupled to a system of ordinary differential equations describing
the electrical behavior of the cell membrane. The numerical solution is,
however, computationally demanding because of the fine temporal and
spatial sampling required. The demand for real time high definition 3D
graphics made the new graphic processing units (GPUs) a highly paral-
lel, multithreaded, many-core processor with tremendous computational
horsepower. It makes the use of GPUs a promising alternative to simulate
the electrical activity in the heart. The aim of this work is to study the
performance of GPUs for solving the equations underlying the electrical
activity in a simple cardiac tissue. In tests on 2D cardiac tissues with dif-
ferent cell models it is shown that the GPU implementation runs 20 times
faster than a parallel CPU implementation running with 4 threads on a
quad–core machine, parts of the code are even accelerated by a factor of
180.

Keywords: Cardiac electrophysiology, graphic processing units, high perfor-
mance computing

1 INTRODUCTION

The phenomenon of electrical propagation in the heart comprises a set of com-
plex nonlinear biophysical processes. Its multi-scale nature spans from nanome-
ter processes such as ionic movements and protein dynamic conformation, to
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centimeter phenomena such as whole heart contraction [1]. Computer models
have become valuable tools for the study and comprehension of such complex
phenomena, as they allow different information acquired from different physical
scales and experiments to be combined in order to generate a better picture of
the whole system functionality.

There are two components that contribute to the modeling of cardiac elec-
trical propagation [2]. The first is a model of cellular membrane dynamics,
describing the flow of ions across the cell membrane. Such models are usu-
ally formulated as a system of nonlinear ordinary differential equations (ODEs)
describing processes occurring on a wide range of time scales. These models
are being continually developed to give an increasingly detailed and accurate
description of cellular physiology. However, this development also tends to in-
crease the complexity of the models making them substantially more costly to
solve numerically [3, 4].

The second is an electrical model of the tissue that describes how currents
from one region of a cell membrane interact with other regions and with neigh-
boring cells. When these two components are put together, the ODEs are cou-
pled to a set of partial differential equations (PDEs) giving rise to the bidomain
model [5].

Despite being currently the most complete description of cardiac electrical
activity, the numerical solution of the bidomain equations are very computa-
tionally demanding [6, 7, 8, 9]. A simpler approximation can be obtained from
the model formulation in [5] by considering the extracellular potential to be
constant; or the tissue conductivity to be isotropic; or the intracellular and ex-
tracellular conductivities to have equal anisotropy ratios [10]. If one of these
assumptions is made, the equations are reduced to the monodomain model [11],
which has been recently demonstrated to yield essentially to equivalent results
as the bidomain model [12].

Nevertheless, the numerical solution of these tissue models involves the dis-
cretization in space and time of PDEs as well as the integration of nonlinear
systems of ODEs. Using an appropriate decomposition for the time discretiza-
tion, the nonlinearity of the system may be isolated, i.e. for each node of the
spatial mesh a system of ODEs, that comes from the cellular model, may be
solved independently. To perform realistic simulations of cardiac tissue, a large
number of ODE systems must be solved at each time step, which contributes
substantially to the total computational work. Therefore, it is necessary to pur-
suit new efficient ways of solving the large linear algebraic system that arises
from the discretization of the PDEs as well as the systems of ODEs associated
with the cell models.

The advent of multi-core CPUs and many-core GPUs means that main-
stream processor chips are now parallel systems. Remarkably, the newer pro-
grammable GPUs have become a highly parallel, multithreaded, many-core
processors with tremendous computational horsepower and very high memory
bandwidth. Nevertheless, to develop applications that can efficiently exploit
the increasing number of processor cores of this technology is still a challenge.
The NVIDIA CUDA technology [13] is a general purpose parallel program-
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ming model and software environment designed to overcome this challenge while
maintaining a low learning curve for programmers familiar with standard pro-
gramming languages such as C.

Many efforts have been made to solve efficiently the equations modeling
the cardiac electrical activity on a single CPU [3, 6, 14] as well as in cluster of
computers [7, 9]. A recent study has also reported the use of GPUs to parallelize
the monodomain model [15]. However, a rigorous analysis of the parallel solvers
is not shown and only one simple cellular model is employed in the simulations.

The aim of this work is to evaluate the performance of CPU and GPU
solvers for the monodomain model developed in standard C (parallelized with
the OpenMP library [16]) and extended to the NVIDIA CUDA parallel envi-
ronment. Differently to what was presented in [15], we analyze the performance
of the ODE solver to different and more complex ionic models and also the
performance of iterative solvers with sparse matrices.

2 MATHEMATICAL FORMULATION

2.1 Monodomain model

In cardiac tissue, the excitation wave spreads through the tissue because the
cardiac cells are electrically coupled via special proteins called gap junctions.
The monodomain model describes the propagation of the excitation wave:

∇ · (σ∇Vm) = βIm (1)

where β is the surface-to-volume ratio of the cardiac cells, Vm is the transmem-
brane voltage, σ is the conductivity tensor and Im is the ionic current across
the membrane.

In order to accurately simulate the propagation pattern of the electrical wave
front it is necessary to include the orientation of the muscle fibers in the model.
The heart muscle is strongly anisotropic since it consists of fibers and the con-
ductivity is higher in the direction of the fibers than in the cross–fiber direction.
The muscle fibers are organized in sheets, which defines three directions for the
conductive values of the tissue: parallel to the fibers, orthogonal to the fibers
but parallel to the sheet, and perpendicular to the sheet. At any point x we have
three unit vectors al(x),at(x),an(x), with al(x) parallel to the local fiber direc-
tion, at(x) orthogonal to al(x) but in the sheet plane, and an(x) normal to the
sheet plane. Using these vectors, an entry (i, j) of the intracellular conductivity
tensor σ can be expressed as

σij = σla
i
la
j
l + σta

i
ta
j
t + σna

i
na

j
n (2)

where σl, σt and σn are the intracellular conductivities defined by fiber direction,
across the fiber direction and normal to the sheet plane, respectively.
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2.2 Ionic models

The dynamics of the processes that underlie the action potential (AP) in a
cardiac cell are typically described by a set of ODEs modeling the total ionic
current Im (predominantly Na+, K+, Ca2+ and Cl−) through protein channels
in the cell membrane [2]:

Im = Cm
∂Vm
∂t

+ Iion (Vm, ηi)− Istim (3)

dηi
dt

= f(t, ηi) (4)

where Cm is the membrane capacitance, Iion is the sum of ionic transmembrane
currents present in the cardiac cell, f is a vector–valued function, η are variables
that contribute to the modeling of Iion and Istim is a stimulus current.

In this work two different cardiac cell models with different levels of complex-
ity and suitability for performing large-scale spatial simulations were considered
to simulate the kinetics of Iion in Eqs. (3)-(4): the classical LR-I model [17]
describing the electrical activity in a general mammalian ventricular cell; the
TNNP human ventricular model [18] designed to provide a good trade-off be-
tween a considerable level of physiological detail and computational efficiency [19].

2.2.1 The LR-I model

In LR-I model, Iion is defined as:

Iion = INa + Isi + IK + IK1 + IKp + Ib (5)

where INa is the fast sodium current, Isi is the slow inward current, IK is
the time-dependent potassium current, IK1 is the time-independent potassium
current, IKp is the plateau potassium current and Ib is time-independent back-
ground current.

Four of the 6 ionic currents in Eq. (5) are controlled by gating variables
described by ODEs following the the Hodgkin-Huxley formalism [20] which are
of the form

dn

dt
=
n∞ − n
τn

(6)

where n represents the gating variable, and the terms n∞ and τn are defined as

n∞ =
α

α+ β
, τn =

1

α+ β
. (7)

with α and β being functions of Vm whose complete description can be found
in [17].

In addition to the ODEs for the gating parameters, the model includes an
ODE for the intracellular calcium concentration [Ca2+]i:

d[Ca2+]i
dt

= −10−4Isi + 0.07
(
10−4 − [Ca2+]i

)
(8)
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In summary, the model is based on a set of 8 ODEs describing ionic currents
and intracellular calcium concentration. For a full specification of the ionic
currents see [17].

2.2.2 The TNNP model

In the TNNP human ventricular model, the term Iion is the sum of all trans-
membrane ionic currents and given by:

Iion = INa + IK1 + Ito + IKr + IKs + ICaL

+ INaCa + INaK + IpCa + IpK + IbCa + IbNa (9)

where INa is the fast Na+ current, IK1 the inward rectifier K+ current, Ito
the transient outward K+ current, IKr and IKs are the rapid and the slow de-
layed rectifier K+ currents respectively, ICaL the L-type Ca2+ current, INaCa is
the Na+/Ca2+ exchanger, INaK is Na+/K+ pump, IpCa and IpK are plateau
Ca2+ and K+ currents, and IbCa and IbK are background Ca2+ and K+ cur-
rents.

Likewise the LR-I model, every ionic current is described by a formalism
similar to that presented by Eqs. (6)-(7). Intracellular Na+ and K+ concentra-
tions as well as a more extensive description of intracellular Ca+2 handling are
also included in the model.

In summary, the model is based on a set of 19 ODEs that describes the ionic
currents and the intracellular concentration of Na+, K+ and Ca+2. The reader
is referred to [18] for a full specification of the model.

3 NUMERICAL SCHEMES

In order to obtain a numerical solution for Eqs. (1)-(4), the Godunov operator
splitting [21] was employed. The coupled system is then reduced to a two
numerical step scheme that involves the solutions of a parabolic PDE and a
nonlinear system of ODEs at each time step. This splitting leads to the following
two steps algorithm:

1. Solve the systems of ODEs

∂Vm
∂t

=
1

Cm
[−Iion(Vm, ηi) + Istim] (10)

∂ηi
∂t

= f(Vm, ηi) (11)

2. Solve the parabolic problem

∂Vm
∂t

=
1

βCm
[∇ · (σ∇Vm)] (12)
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The finite element method (FEM) is used for the spatial discretization of
Eq. (12) and, the second–order Crank-Nicolson method is used to advance the
solution in time. Applying the FEM for the spatial discretization results in a
linear system of equations that needs to be solved at each time step and has the
following form:

(M +
C

2
K)υk+1 = (M − C

2
K)υk (13)

where υ discretizes Vm at time k∆t; M and K are the mass and stiffness matrices
from the FEM discretization, respectively; and the constant C is ∆t

βCm
. The

preconditioned conjugate gradient method (PCG) was used to solve this linear
system using the Jacobi preconditioner.

Due to the discretization nature of the FEM, the matrices K and M are
sparse, i.e., matrices where the number of non-zero entries is only a small fraction
of the total. Realistic anatomic models of the heart may easily exceed 1 million
nodes [22], which after spatial discretization using the FEM lead to large sparse
matrices. Therefore, it makes sense to look for sparse matrix representations
that store only the non-zero elements of the matrix. In the present work, specific
data structures were used to store the FEM matrices in an efficient manner.

Since in this work we used only 2D structured square meshes the resulting
matrices are structured and therefore the following two sparse matrix formats
were used: the compressed sparse row (CSR) format and the ELLPACK for-
mat [23]. Let N and Nz be the number of rows of the matrix and the total
number of non-zero entries of the matrix, respectively. Then, the CSR format
stores a sparse matrix in three arrays: vals, cols which are of size Nz and hold,
respectively, the non-zero entries and the columns indexes of these entries and
finally, a third array ptrs of size N + 1 that stores the pointers to the beginning
of each row in the arrays vals and cols, as illustrated in Figure 1. This CSR
format is the natural choice when working with matrices originating from FEM
discretizations of unstructured meshes and therefore we wanted to investigate
this storage scheme.

The ELLPACK format stores the sparse matrix in two arrays of dimensions
N ×MaxRow, where MaxRow is the maximum number of non-zeros entries
per row in the matrix. One array, vals, saves the non-zero entries of the matrix
and the other, cols, the indexes of the columns of every entry, as illustrated in
Figure 1. Since this format has a regular data structure, like a dense matrix,
it is suitable for operations on vector architectures [23]. On the other hand,
operations with this format lose performance when it is used to store matrices
obtained from unstructured meshes where the number of entries per row is
irregular.

The system of ODEs in Eqs. (10)-(11) was integrated using the explicit Euler
method. Although it is well known that explicit numerical methods have strong
limitations because of stability and accuracy restrictions [3], they are widely
used due to their simplicity of implementation [6, 9].
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Figure 1: Example of storage of a sparse matrix using the CSR and ELLPACK
formats.

Table 1: Dimensions of the in-silico tissue preparation, number of nodes, ele-
ments and non-zero entries of the sparse matrix.

Tissue Nodes Elements Non-zero

1.6 cm× 1.6 cm 25921 25600 231361
3.2 cm× 3.2 cm 103041 102400 923521
6.4 cm× 6.4 cm 410881 409600 3690241

4 METHODS

We have developed three different in-silico tissue preparations for our investi-
gations. Each preparations is a two dimensional square piece of tissue, which
was spatially discretized through the FEM with bilinear quadrangular elements,
resulting in diagonal structured matrices with a maximum of 9 non-zero entries
per row. Table 1 presents the physical dimensions of the simulated tissues,
properties of the FEM meshes as well as the number of non-zero entries stored
in the sparse matrix formats.

Boundary conditions were modeled by imposing homogeneous Neumann con-
ditions on Vm in all simulations. Spatial discretization was set to ∆x = 100µm.
Numerical tests using the forward Euler method to solve the system of ODEs for
the LR-I and TNNP models revealed that a ∆t = 0.01ms and ∆t = 0.001ms,
respectively, are the largest allowable time steps for stability constraints. The
absolute tolerance of the PCG method was set to 10−6.

The parameters of the monodomain model were taken from the literature [1,
24]: Cm = 1µF/cm2; eβ = 0.14µm−1. Tissue conductivity was consid-
ered homogeneous and anisotropic with conductivity values given by σl =
0.0003mS/µm and σt = 0.0001mS/µm (also taken from the literature [25]).
Cardiac fibers were also homogeneously oriented to 45 degrees.

0.6
We simulated 500ms of electrical propagation in these cardiac tissues after

applying a stimulus in the central area of the preparations. The stimulus was
made by setting Vm in this area to a value above the threshold required to
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Figure 2: Simulation results. A) Spatial distribution of Vm in a 6.4 cm× 6.4 cm
tissue simulation using the LR-I model 50 ms after the stimulus onset. B) The
AP related to the cell highlighted in A).

generate an AP. Figure 2 (A) illustrates the spatial distribution of the trans-
menbrane potential, Vm, for a simulated tissue of dimensions 6.4 cm × 6.4 cm
using the LR-I model at 50ms following the stimulus onset; and (B) the time
course of the AP of the cell highlighted in (A).

4.1 Implementation details

In order to obtain high performance using GPU programming some requisites
should be kept in mind. The first is the challenge inherent to the development of
applications for parallel systems, which should balance the workload and scale
it over a number of processors. In addition, differently than in the CPU, the
global memory space is not cached in the GPU. Finally, it is also very important
to follow the right access pattern to get maximum memory bandwidth [13].

We implemented the numerical solution of the monodomain problem de-
scribed by Eqs. (1)-(4), in which Iion is given by either Eq. (5) or Eq. (9).
The program for the CPU version was written in C and compiled with GNU C
compiler version 4.3.3. In order to exploit the power of the available multi-core
processors we parallelized the CPU code using OpenMP [16]. The code for the
GPU was extended from the CPU code to the NVIDIA CUDA parallel envi-
ronment. Thus, specific CUDA kernels were developed to solve the system of
ODEs as well as the parabolic problem. Figure 3 illustrates the solution algo-
rithm of the monodomain model using the GPU, describing memory allocations,
computations and data transfers betwenn CPU and GPU.

All CUDA kernels in this work were launched with 256 threads per block and
the number of blocks per grid was set accordingly to the size of the problem,
i.e., accordingly to the number of nodes in the FEM mesh. Additionally, we
used single precision for all floating point operations.
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Figure 3: Solution algorithm of the monodomain model on the GPU.

4.2 The ODE systems

We have developed two kernels to solve each of the systems of ODEs related to
Eqs. (3) and (4). The first one refers to the setting of initial conditions to the
systems of ODEs, whereas the second kernel integrates the systems of ODEs at
each time step.

The state variables of M cells were stored in an array SV of size M ∗ Neq,
where Neq is the number of differential equations of the ionic model (in this
work Neq = 8 or Neq = 19 for the LR-I or TNNP model, respectively). The
SV array was organized in such way that the first M entries correspond to the
first state variable, followed by M entries of the next state variable, and so on.
Moreover, for all ionic models the first M entries of the SV array correspond to
the transmembrane potential Vm. During the solution, after the integration of
the ODEs systems, the transmembrane potential of each node should be passed
to the PCG solver. Due to the memory organization of the SV array this is
straightforward, since the M first entries of the array correspond to the Vm of
each node, which avoids extra memory transactions between CPU and GPU.

The global memory of the SV array was created using the cudaMallocPitch
routine from the CUDA API [13] that allocates a pitch linear memory and may
pad the allocation to get best performance of a given piece of hardware by
meeting alignment requirements for memory coalescing [13]. A strict coalescing
requires that thread j out of n threads has to access data u[j] if u[0] is accessed
by thread 0, i.e., each thread should perform data access by stride n. Otherwise
the performance decreases by a factor of 10 for older GPUs as the 8800 GTX
and a factor of 2 on the GTX 280. Therefore, in the kernel to set the initial
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conditions each thread sets the values of all its state variables. The kernel
that solves the system of ODEs operates similarly, i.e., each thread computes
and updates its state variables writing to the right position in memory that
correspond to their variables.

4.3 The parabolic problem

The solution of the parabolic problem using the PCG method essentially consists
of basic linear algebra operations such as: vector addition, multiplication by a
scalar, vector scalar product and sparse matrix vector multiplication (SpMV).
The implementation of linear algebra operations such as vector addition, mul-
tiplication by a scalar and the SAXPY operation (y = ax + y) in CUDA is
a straightforward task since each thread is assigned to do the computation of
one position of the array. On the other hand, the implementation of the scalar
product is not straightforward since it requires a parallel reduction operation.
In the current work, this kernel was implemented doing a partial sum of the
vectors on each multiprocessor and then a reduction on shared memory.

The efficiency of iterative solvers such as the PCG greatly depends on the
performance of SpMV operations (y = Ax), since these methods usually require
several matrix-vector products to reach convergence. Therefore, the implemen-
tation of this operation has to be carefully designed to obtain satisfactory re-
sults. The SpMV using the CSR format can be easily parallelized since the
product of one row of the matrix and the vector is independent of other rows.
We implemented it assigning one thread to compute one dot product of the
matrix row and the vector. Although, there are more efficient variants of this
algorithm such as the block compressed row storage (BCRS) [26] or the CSR
vector kernel [27], we have only tested the CSR kernel as described before.

In our implementation of the ELLPACK format the arrays vals and cols were
stored as one dimensional arrays using a column–major order. This ensures that
threads within the same warp access memory contiguously [27]. The ELLPACK
format uses one thread per matrix row, thus each thread computes the dot
product between the corresponding matrix row and the x vector. Furthermore,
the implementation of this format used padding to align the vals and cols arrays
of the ELLPACK format appropriately, which ensures full coalesced accesses to
memory. A warp is a group of threads executed physically in parallel on one
of the 30 streaming multi–processors (SM) of a GTX280, each SM consists of
8 execution cores.

All SpMV kernels of this work used the texture cache of the CUDA–enabled
devices to access the x vector during the matrix vector multiplication in order
to improve performance. In these kernels the read operation of the x vector
were replaced with a texture fetch instruction using the tex1Dfetch function.

5 RESULTS

In this section we present the numerical results obtained for the monodomain
simulations using the LR-1 and TNNP cell models on graphics processing units
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Table 2: Environment specifications.

Memory Mem. Bandwidth. Peak Performance.

GPU - NVIDIA GeForce GTX 280 1 GB 141.7 GB/s 933.1 GFLOPS
CPU - AMD Phenom 9950 Quad-Core 8 GB 17.1 GB/s 12.5 GFLOPS

through NVIDIA CUDA environment and on a CPU using OpenMP. We used
the NVIDIA GeForce GTX 280 with a total of 240 CUDA cores and 1GB of
memory. A description of the hardware used in our numerical experiments is
given in Table 2. The code was compiled with NVIDIA CUDA 2.0 and GCC
4.3.3, Using this environment, simulations were performed on a Linux 2.6.28-18
x86-64, using OpenMP with 4 cores and compared against simulations running
on the GPU.

It is important to point out that the following optimization flags were used:
-O3 -ffast-math to compile the CPU code with GCC and -O3 -use fast math

to compile the GPU code with the NVIDIA compiler nvcc. Although the flags
-ffast-math for CPU code and -use fast math for GPU code seems to be
similar, they actually optimize the code differently. In spite of this fact, they
were used in order to optimize each code as much as possible with respect to
mathematical operations.

0.6

5.1 Multi-core CPU

Initially, we studied the performance of the OpenMP implementation with a
different number of cores. Simulations as previously described were performed
using the 641× 641 tissue preparation using 1, 2 and 4 processors cores. Figure 4
presents the elapsed time to solve the ODE and the parabolic problems. When
using 4 cores a parallel speedup of about 3.98 was observed for the ODE problem,
whereas a speedup of 2.35 was achieved for the parabolic problem.

5.2 GPU vs Multi-core CPU

We compared the CPU and GPU implementations by means of elapsed time re-
quired to integrate the ODE systems and to solve the parabolic system. Table 3
shows the execution times for the ODE solvers. Execution times for the two
different sparse matrices formats were not compared since it is irrelevant for the
ODE solver. According to Table 3, the GPU achieved much better performance
than the CPU in all tissue simulations. Speedup factors between 132-fold and
180-fold were achieved for the LR-I, whereas 65-fold and 75-fold were obtained
for the TNNP model.

Furthermore, we measured execution times for the parabolic problem which
consists of a SpMV operation and a call to the PCG solver. The execution

11



Figure 4: Execution times of the ODE and parabolic problems given in hours
for the LR-I model in the 641 × 641 testcase using OpenMP with 1, 2 and 4
cores.

Table 3: Comparison of execution times in seconds between CPU using 4 cores
and GPU solvers for the ODE problem.

LR-I TNNP
Tissue (cm) CPU GPU Speedup CPU GPU Speedup

1.6 × 1.6 509.80 3.86 132.07 8586.43 130.30 65.90

3.2 × 3.2 1728.64 10.48 164.95 34370.58 463.38 74.17

6.4 × 6.4 6776.98 37.64 180.05 136453.63 1804.67 75.61

times for the parabolic problem with different sparse matrix formats are shown
in Table 4, where CPU denotes the execution time on the CPU with 4 cores us-
ing the CSR format, GPUCSR, GPUELL, SpeedupCSR and SpeedupELL are the
execution times on the GPU with the CSR and ELLPACK sparse matrix rep-
resentations and their respective speedups, respectively. Table 4 shows that the
GPU implementation obtained speedup factors between 1.5-2.3 and between 2-9
using the CSR and ELLPACK formats, respectively. We focused in comparisons
between the CSR and ELLPACK sparse matrix representations for electrophys-
iological simulations on the GPU only, since it is not the aim of this work to
compare different formats in single- or multi-core environments. Therefore, for
the CPU simulations we used CSR format because the FEM matrices are natu-
rally assembled in this format in our code. In Table 4 we also observe that the
type of cell model, LR-I or TNNP, only marginally affects the execution times
of the parabolic problem.

0.8
0.8
Finally, we compared the total execution time of each simulation, which in-

cludes not only the time to solve the systems of ODEs and the parabolic problem
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Table 4: Comparison of execution times in seconds between CPU using 4 cores
and GPU solvers for the parabolic problem.

Tissue (cm) CPU GPUCSR GPUELL SpeedupCSR SpeedupELL

LR-I
1.6 × 1.6 350.75 236.28 121.02 1.48 2.90

3.2 × 3.2 1350.36 689.38 245.54 1.96 5.50

6.4 × 6.4 5761.30 2427.48 648.78 2.37 8.88

TNNP
1.6 × 1.6 4338.50 3029.73 1607.76 1.43 2.70

3.2 × 3.2 17834.58 8984.83 3217.05 1.98 5.54

6.4 × 6.4 77654.12 31406.05 8394.53 2.47 9.25

Figure 5: Total execution times given in hours for the LR-I and TNNP models.

but also the time spent assembling the FEM matrices and writing data to disk.
Figure 5 presents the total time of the simulations on CPU and on GPU imple-
mentations for the LR-I and TNNP model on the left and right, respectively.
Clearly, the GPU implementations were faster than the CPU version for both
ionic models. In the largest tissue simulation using the TNNP model, the GPU
with ELLPACK was up to 20 times faster than the CPU with 4 cores, which
took about 59 hours to execute, whereas on the GPU it took about 2 hours to
complete. Furthermore, it shows that the GPU implementation with the ELL-
PACK format was faster than GPU version with the CSR format. Comparing
both GPU versions, we noticed that the ELLPACK format was 3 times faster
than the CSR format for the 6.4 cm x 6.4 cm case and at least 2 times faster
for the other tissue sizes.

In order to check for possible deviations in the numerical solutions due to the
use of single precision in the arithmetic operations, the Vm obtained using single
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precision was compared against one computed using double precision through

the relative root-mean-square norm RRMS = 100
√∑

t

∑
i,j(υ

t
i,j − νti,j)2/

√∑
t

∑
i,j(υ

t
i,j)

2

where υ is the solution computed using double precision, ν is the solution com-
puted using single precision and t and i, j are indexes in time and space, re-
spectively. The RRMS error using the 1.6cm × 1.6cm mesh revealed that an
error of 1.4950×10−3% and 1.5383×10−3% for the LR–I model using the CPU
and GPU, respectively. Similarly, the RRMS error for the TNNP model was
3.7669× 10−1% and 3.7598× 10−1%.

6 DISCUSSION

We have evaluated the performance of CPU and GPU solvers for the mon-
odomain model developed in standard C with OpenMP and with NVIDIA
CUDA parallel environment. Three different in-silico tissue preparations were
used in this work for the performance tests. In all cases, the GPU performed
much better than the CPU during the integration of the ODE systems, where
a speedup of about 75-fold was obtained for the TNNP ionic model. An even
better speedup of about 180-fold was achieved for the LR-I model. By com-
paring these two ionic models we observed that the mathematical equations
of the right-hand side equations of the LR-I model were more complex than
those found in the TNNP model. This has lead to a higher arithmetic intensity
(operations/ words transferred) for the LR-I and, as a consequence, to better
speedups obtained by the GPU implementation. The LR-I model had an arith-
metic intensity of 44.1 and the TNNP model had an arithmetic intensity of 31.8.
Another reason for speedup difference is the amount of registers needed by the
kernels. The LR-I model kernel needed less registers than the maximum allowed
by the block size choosen, whereas the TNNP model kernel needed more than
the maximum and had to use the maximum allowed for the configuration.

Moreover, a modest speedup of about 2.5-fold was achieved during the solu-
tions of the parabolic problem using the CSR format in the GPU. This speedup
increased to 9-fold when the GPU implementation adopted the ELLPACK for-
mat. The performance of the parabolic solver is strongly dependent on the
storage format for sparse matrix associated to linear system since during its
solutions several SpMV are performed. We have employed the well known CSR
format which is used to store general sparse matrices, and the ELLPACK format
which is more suitable for matrices arising from structured meshes. Although
the CSR format is general and easy to implement, from the point of view of
parallelization using the CUDA environment, the CSR format has a significant
drawback. In this format, the threads do not access the CSR arrays cols and
data contiguously resulting in uncoalesced accesses to the global memory. On
the other hand, since the matrices resulting from the spatial discretization are
diagonal structured the use of the ELLPACK format for the SpMV operations
delivered better performance for the parabolic problem since the global memory
accesses are fully coalesced.

The performance gain of the GPU in comparison to using all 4 cores of
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the quad–core CPU reaches a factor of 9 for the parabolic problem solver and
an excellent acceleration of 180 in case of the ODE solver. Furthermore, we
noticed that the single precision used did not influence the accuracy of numerical
solutions. The presented results show that GPUs are a promising alternative
to clusters of CPUs for simulating the electrical activity in the heart. The
GPU allows to increase complexity and dimensions of the problem that can be
modeled, and also represents a parallel system with high performance computing
capabilities for relatively low costs in comparison to a cluster of CPUs needed
to achieve the same performance.

6.1 Limitations and Future Work

We have compared the performance of GPU and Multi-core implementations
using the forward Euler method for the solution of the cell models. Although
the Euler method is the most commonly used method in the area, more effi-
cient methods have been proposed and employed for the solution of the ODEs,
such as the Rush-Larsen [28] method and implicit solvers, which are difficult
to implement. In addition, our experiments were carried out with structured
meshes, whereas whole heart simulations would require the use of unstructured
meshes to precisely represent the cardiac tissue and its boundaries. Therefore,
further studies on different sparse matrix formats and on efficient precondition-
ers for the CG solver as well as other iterative solvers are required. Among
the several sparse matrix representation available the Hybrid format [27] is a
promising alternative for unstructured matrices. Several preconditioners such
as incomplete LU factorization, SSOR and AMG have been tested for the bido-
main model [8, 7] on clusters of CPU. The performance of these preconditioners
should be evaluated for the case of cardiac excitation simulations running on
graphic processors units.

6.2 Related Work

Recently, Sato et al. have presented in [15] the performance results of an im-
plementation of the Monodomain equations on GPUs. The implementation was
based on the Nvidia CUDA language. Both system of ODEs and parabolic
problem were solved via the explicit forward Euler method and the cell model
used in this study was phase I of the LuoRudy action potential model [17]. The
reported GPU implementation was 30 times faster than a CPU implementation.
Although the numerical methods and cell models are very different from those
used in this work we have obtained a similar speedup of 20 for the Monodomain
model. We used the second order Crank-Nicolson method for the solution of the
parabolic problem which requires the solution of a linear system at each time
step and in addition we also used the ten–Tusscher model.

In [29], Vigmond et al. have presented a GPU implementation of the linear
system of ODEs as part of the simulations of the Monodomain equations. The
implementation was based on the Nvidia CUDA. The reported results indicated
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that the GPU implementation was around 10 times faster than the CPU imple-
mentation. The rabbit ventricular cell model published by Mahajan et al. [30]
was chosen to describe the cellular dynamics.

Recently we have reported in [31] an automatic tool that converts cell mod-
els described by the CellML language [32] to CUDA-based code for GPU. Four
different cell models were tested (LuoRudy, ten-Tusscher, Mahajan and Bon-
darenko [33]) as linear systems of ODEs in simulations based on the Mon-
odomain equations. Speedup factors between 75 and 290 were obtained by
the GPU implementations when compared to the CPU ones.
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