
9th International Workshop on Science Gateways (IWSG 2017), 19-21 June 2017

Accelerating Circuit Realization via
a Collaborative Gateway of Innovations

Ian J. Taylor†∗, Adam Brinckman†, Ewa Deelman‡, Rafael Ferreira da Silva‡ Sandeep Gupta§

Jarek Nabrzyski†, Soowang Park§, and Karan Vahi‡
†Center for Research Computing, University of Notre Dame, Notre Dame, IN, USA

∗School of Computer Science & Informatics, Cardiff University, Cardiff, UK
‡Information Sciences Institute, University of Southern California, Marina del Rey, CA, USA

§Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA

Emails: {itaylor1, abrinckm, naber}@nd.edu, {deelman, rafsilva, vahi}@isi.edu, {sandeep, soowangp}@usc.edu

Abstract—The CRAFT repository seeks to develop new fast-
track circuit-design methods, multiple sources for integrated
circuit fabrication, and a technology repository. This paper
presents the design decisions and implementation to build a
collaborative repository that capitalizes on the recent advances
in open-source collaborative frameworks, and answers the needs
for the DARPA’s CRAFT program. The repository has been
developed as an EmberJS application (front-end), which interacts
with an instance of the Open Science Framework (OSF).

Keywords—Collaborative Environments; Design Flows; Chip
Design

I. INTRODUCTION

The Circuit Realization at Faster Timescales (CRAFT)

DARPA (Defense Advanced Research Projects Agency) pro-

gram [1] aims at reducing the design cycle time needed for

creating custom integrated circuits. Currently, the design of

a custom integrated circuit for a specific task can take more

than two years, require a large team of engineers, and can

cost up to $100 million. Such timescales and economics are

not practical and therefore DoD (Department of Defense)

engineers instead use readily available inexpensive general-

purpose circuits and implement the specialized operations

using software. The resulting chips require more power, which

is not ideal for hand-held devices that are deployed in the

battlefield or for use in unmanned aerial vehicles.

CRAFT’s program goal is to reduce the timescale for de-

signing power-efficient high performance chips (or ASICS—

application-specific integrated circuits) for military applica-

tions to months. In this paper, we use chips and ASICS

interchangeably). In order to facilitate this goal, the CRAFT

repository also aims to provide innovative tools so that meth-

ods for fast design, documentation, and intellectual property

can be re-purposed, rather than re-invented, with each design

and fabrication cycle.

Our team has been working on designing and building

the CRAFT repository [2], with the aim of it being a col-

laborative gateway for circuit designers to be able to work

on chip designs together and share their methods, tools, and

designs. For developing this repository, we have taken a hybrid

approach by integrating a CRAFT-specific Web front-end,

written in EmberJS [3], with the preexisting Open Science

Framework (OSF) [4]. We make use of the OSF’s REST API

for the integration. We have further reused some of the Web

graphical interfaces by virtual co-locating of an OSF server

instance alongside our customized CRAFT Web application.

This approach involved some effort in the minor customization

of the OSF instance e.g., LOGO, titles, etc., but also allowed us

to include several pieces of functionality without modification

(e.g. file browser and visualizing, adding contributors, a WIKI,

and so on). The CRAFT application implementation was con-

fined to CRAFT-specific additions to support the collaborative

tools for chip design and the remaining parts of the OSF

seamlessly work together in an extremely interactive on-line

experience. This paper describes the architecture, design, and

implementation of the CRAFT repository and it’s collaborative

tools. Our CRAFT specific additions enhance the overall chip

design process by facilitating re-use of circuit modules and

rapid adoption of new design flows across CRAFT project

participants.

II. CRAFT REQUIREMENTS

To derive the key characteristics of the repository, we began

by analyzing the goals of the CRAFT program. First and

foremost, CRAFT requires the development of radically new

chip design approaches that will dramatically reduce the time

required for the first successful tape-out for ASIC designs.

The community of researchers and industry experts working

to address this challenge will develop completely new tools,

new types of libraries, and new design flows (a design flow is

a sequence of steps, each carried out by a tool; we describe

it in more detail later on). Second, the program requires

CRAFT researchers to transfer immediately all their new tools,

libraries, and flows to a few selected DoD ASIC design teams,

and requires these teams to use such tools to design ASICs.

Third, the program requires rapid refinement and adoption of

the new tools, libraries of module designs, and design flows

by the wider community of DoD ASIC design teams.

The CRAFT repository therefore should expose many of

these tools to help the CRAFT community organize infor-

mation and to allow the different teams to communicate

efficiently with each other. At the same time, the various

teams need to have control over their content and the reposi-

9th International Workshop on Science Gateways (IWSG 2017), 19-21 June 2017

tory’s flexible architecture to create different permissions for

different projects and topics enables this. The following five

sections discuss the underlying requirements and the high level

concepts we use to attain CRAFT goals.

A. A Collaborative Space For Chip Designs

The CRAFT project centers collaboration around a design

flow. Therefore, the repository requires a way to encapsulate

the tools within some kind of collaborative space. To meet

this requirement, we decided to organize the repository using

the concept of a project, in a way very similar to other on-

line tools, such as Bitbucket [5] and GitHub [6]. Each project

should have a project overview page, which provides access

to the ensemble of features of the project, as well as an

overview of the components, files, tags, history, comments,

and other components (e.g., wikis, associated with the project).

Participants should also be able to participate in discussions

by leaving comments within a project, effectively creating a

project-wide chat. Further, notifications should be enabled for

any project, allowing users to be notified via email when a

new comment is added to a project. A user can also choose

to receive email notifications when someone replies to their

comment, similar to how they would do on Facebook.

Each project should be able to provide documentation (e.g.,

a WIKI), describe itself (tags), and allow files to be uploaded

and browsed. Sub-projects should be allowed and should be

distinct, encapsulated parts of a project and have their own

contributor lists and permissions. For example, the user should

be able to create a data component that remains private even

when other parts of the project are made open to other

collaborators, and lists contributors that were vital for data

collection but are not involved in other parts of the project.

Thus, projects have a hierarchical collaborative space.

Each project therefore should provide a container to allow a

user to organize files and content into meaningful groups like

catalog of design flows, standard reference flows, proposed

flows, datasets, code, circuit modules designed, or other re-

search contributions. Each project should also have a unique,

persistent URL, meaning that it can be referenced or linked

to individually. Every action/event should be automatically

documented with date-time stamps, and the log presented

on the project dashboard. Additionally, a project should be

capable of being completely open or private.

B. Authentication

Users should authenticate via a secure central authentication

service (CAS). The CAS protocol involves at least three

parties: (1) a client web browser, (2) the web application

requesting authentication, and (3) the CAS server. It may also

involve a back-end service, such as a database server, that does

not have its own HTTP interface but communicates with a web

application. When the client visits an application desiring to

authenticate to it, the application redirects it to CAS. CAS val-

idates the client’s authenticity, usually by checking a username

and password against a database (such as Kerberos, LDAP,

or Active Directory). If the authentication succeeds, CAS

returns the client to the application, passing along a security

ticket. The application then validates the ticket by contacting

CAS over a secure connection and providing its own service

identifier and the ticket. CAS then gives the application trusted

information about whether a particular user has successfully

authenticated. CAS allows multi-tier authentication via proxy

address. A cooperating back-end service, like a database or

mail server, can participate in CAS, validating the authenticity

of users via information it receives from web applications.

C. Project Permissions, Communication, and Privacy

Each project should have a project leader (project admin-

istrator e.g., the PI could be a project administrator), who

can manage that particular project and its sub-projects. The

project administrator should be able to invite collaborators to

their project and assign them certain privileges. Additional

roles include: (1) read privileges, allow contributors to see

the contents of the project or component; and (2) read and

write, which allow the contributor to see the contents of the

project, upload and delete files, create, and edit new projects.

Administrators encompass read and write privileges, as

well as the ability to add or delete contributors, controlling

permissions, and controlling the overall settings of the project,

or even deleting the project.

All projects should be private by default. However, a project

administrator can choose to make a project publicly available.

However, projects that are public can still contains sub-projects

with their own privacy settings, i.e. making a project public

does not make all of its sub-projects public. Users may want

to provide more limited access to external users for a variety

of circumstances. For example, editors or reviewers might get

read-only access to a private project during the review process.

D. Version Control

The repository should support version control as part of

its services. Project members can keep things up to date by

uploading new versions of documents to the repository and

have the repository keep track of older versions of those

documents.

We also plan to support “releases”, which create a frozen,

time-stamped version of a project that cannot be edited or

deleted. The release will have its own unique, persistent URL

that is always linked back to the frozen project. The meta-data

should be permanently stored with a registration.

E. Visualizing and Editing Design Flows

The design flows should be captured using a machine

processable format, which is capable of being visualized by

Web-based tools. From our initial requirements gathering, our

users have indicated that a graph view and a table view are

the two initial visualization tools we should provide for the

design flows. For editing the flows, initially these will be input

manually but in the second phase of the project, we target the

support of editable components via the table or graph viewers.

2

9th International Workshop on Science Gateways (IWSG 2017), 19-21 June 2017

III. ARCHITECTURE AND DESIGN

In order to produce a repository that met the requirements

of the CRAFT community, architectural design decisions

needed to carefully taken to optimize development and enable

sustainability. We then were faced with different approaches

that would allow us to converge to an efficient system:

(1) architecting and implementing the system from scratch;

(2) customizing an existing system to meet the needs; (3) creat-

ing a new dashboard to an existing system using a REST API;

or (4) creating a dashboard for CRAFT-specific features to an

existing system using a REST API, and leveraging existing

tools using a hybrid architecture.

Although option 1 is generally the simplest approach, as

there are no other systems to learn and integrate with, and

creating an architecture with such clear requirements is a

straight forward engineering task, this approach has major

disadvantages. First, the timescale we had to work within

was around 7 months, from the project requirements gathering

to a first production release of the repository, which would

have been a challenging target using our allocated 1.5 full

time developers. Second, many of these features already exist

on other websites; e.g., Github and Bitbucket already have

many of the project-oriented features implemented, amongst

a number of others. Third, sustainability is not guaranteed,

and would require on-going additional effort to maintain the

code (which would be a poor practice for reinventing the

wheel). Given the limited timescale, we aimed to assess

several external well-established systems against our needs.

The results of this study led to two candidate systems which

were investigated in depth.

HUBzero [7] is an open source software platform for build-

ing websites that support scientific activities. The signature

service of a hub is its ability to deliver interactive graphical

simulation tools; you can zoom in on a graph, rotate a

molecule, probe isosurfaces of a 3D volume—interactively,

without having to wait for a web page to refresh. Each hub

is a place for users to come together and share information.

The sharing mechanism enables users to create and manage

their own groups of users. Any registered user can create a

group and invite others to join it. The creator can accept or

reject group members, and can promote various members to

help manage the group. Resources associated with a group

can be kept private, meaning that their access is limited to

members of the group. You can also share files and each hub

supports the creation of “topic” pages, which are similar to

the Google “knol” model for knowledge articles. HUBzero is

written in PHP and supports most of the CRAFT requirements.

However, it only supports option 2 above, and the CRAFT

repository would have to be integrated into the HUBzero

code base. Although there are good interfaces to support this

development, there is no comprehensive Web API that can

be used to separate the HUBzero instance from the Web

dashboard.

The Open Science Framework (OSF) [4], [8] is an open

source software project that facilitates open collaboration in

science research and has a main focus on the reproducibility

of research. However, more recently it has evolved into a more

general framework for enabling core project-based functional-

ity through an OSF REST API [9]. Research collaboration

is built around the concept of a project (called a node or

component in OSF) and a user can invite other people to

collaborate on a project and assign them administrator, read,

or read/write permissions. It has a number of tools to facilitate

import and exporting data into the repository, and it also

interfaces with several popular cloud-based storage systems,

e.g., Dropbox [10], Google Drive [11], and Box [12]. The

file system also supports versioning. This allows a user to

create new versions of a file by re-uploading the latest copy

without changing the name. Each file has a set of revisions

that are accessible. The OSF includes forking and registration

of projects that enables us to make immutable releases. It also

includes preprints for publishing a paper (or documentation)

about a project. Within a project, there are multiple tools for

visualizing files, for adding comments and it includes a full

WIKI capability, for integrating documentation. OSF supports

almost all of the underlying features that CRAFT needs,

and the REST API supports all of the functionality through

a JSON-API [13] compatible REST interface. The OSF is

written in python, it uses the Django Rest Framework [14] to

host the API, and provides an EmberJS [3] toolkit that allows

third party implementations to reuse the models of the OSF

API from a Javascript application.

In the context of the CRAFT project, OSF presented sev-

eral advantages over HUBzero. The full access to the OSF

functionality via REST API allows a complete and clear sep-

aration of the development of CRAFT-related tools from the

base system. It also has far more comprehensive support for

projects, includes collaborative tools, such as chat surrounding

all project entities; and also provides versioning of files and

even projects (through registration and forking). We therefore

decided to capitalize on the recent advances of OSF to base

the development of the CRAFT repository.

Initially, we explored option 3 above by building the repos-

itory entirely in EmberJS, and by recreating the tools we

needed into our GUI. However, after prototyping the initial

dashboard we found several graphical features of the OSF

Website itself compelling to reuse, rather than rewrite. Further,

since DARPA had a requirement that all data to be hosted at a

private server in Notre Dame, we were required to deploy our

own instance of the OSF. This resulted in a hybrid architecture,

which is shown in Figure 1.

The architecture for the CRAFT repository therefore con-

sists of two symbiotic servers: an EmberJS CRAFT ap-

plication [2], which contains the custom additions needed

for the CRAFT project, and a marginally customized OSF

instance [15], which is a re-skinned OSF instance with minor

modifications. The modifications to the instance were archi-

tected to be captured in a script and just change three aspects

of the OSF repository: the LOGO, the OSF name is changed to

CRAFT; and the menus are modified to include the EmberJS

application links and to remove some of the OSF functionality

3

9th International Workshop on Science Gateways (IWSG 2017), 19-21 June 2017

Fig. 1. Overview of the CRAFT repository architecture.

that are not required. This minor overlay allows us to easily

upgrade our OSF instance and take advantage of any new

additional features and bug fixes that are included in future

releases of the OSF framework.

The CRAFT architecture was conceptualized as tying the

two servers together into a seamless repository: the application

menus contain links to functionalities hosted on both servers;

and the CRAFT EmberJS application would copy the look and

feel of the OSF repository, so that it appears as a single appli-

cation to the users. A major challenge of this integration was

to accommodate OSF’s bootstrap-based development, with

Semantic UI [16] components used in CRAFT application. The

resulting user experience from such a design is summarized

as follows:

• User logs in via the CRAFT application;

• The CRAFT application redirects to the Oauth CAS

server to get a user token for authentication. This token

is cached in the browser to satisfy both the CRAFT

application and the OSF instance;

• The CRAFT application shows the user a customized

dashboard composed of a set/collection of CRAFT com-

munication channels and flows;

• When a user clicks on a project, s/he enters the CRAFT

project main page;

• The CRAFT application implements two custom pages:

the overview page for describing the flow and the Craft

page, which integrates the view and editing capabilities

for the design flow;

• The two EmberJS pages are included on a project menu

along with the remaining links of the OSF instance. This

creates a unified experience across both servers.

Using this approach, CRAFT can take advantage of the

various project-oriented features in the OSF instance to expose

files, revisions and releases, tags, history, comments and other

components (e.g., WIKIs) associated with the project. It can

also use the OSF Oauth mechanism without modification to

enable centralized authentication (CAS). All implementation

for CRAFT therefore is focused on the CRAFT-specific,

data, metadata, and project-specific ontologies required by the

CRAFT program.

A. CRAFT Design Flow Specification

As part of the DARPA CRAFT program, each CRAFT

performer team is developing a user-oriented version of its new

design flow. A major requirement for the CRAFT repository

is the ability to capture, document, store, and visualize such

flows in a systematic way, where the flow representation

should be flexible and generic enough to accommodate the

specificities of each flow. Therefore, we have developed a

common template to capture and integrate design flows from

all teams—which has been revised/expanded continually as

needed. The goal is to capture the steps a DoD designer will

have to take to use the flow. In the first step of the process of

design of this representation, we conduct several requirements

gathering meetings (in-person, telecons, email exchanges, etc.)

to create a high-level view of the design flow (no flow

specific information are required at this point, e.g., options and

controls). In the second step, we extract expert knowledge to

expand the high-level flow into a complete running example

flow, which includes information about options, flow controls,

and data. The final step, is to publish the flow into the

repository, where an interactive visualization tool allows other

designers to explore detailed information about the flows.

IV. IMPLEMENTATION

The underlying project-based implementation is provided

through the OSF REST API. Our Web dashboard is imple-

mented using EmberJs and uses the Ember OSF toolkit [17] to

model the REST API. Since we capitalize on OSF capabilities

(provided by our OSF instance) for most of the GUIs and

tooling (e.g., file management, etc.), the implementation of

the CRAFT EmberJS application is focused on five areas of

development:

1) Authentication to the OSF CAS;

2) The main dashboard page;

3) The project overview Page;

4) The Craft Design Flows tooling; and

5) The Discussion Forum.

In addition to these specific functional elements, the Em-

berJS application also implements the more general look-and-

feel features (e.g., menus, CSS, etc) for the application.

A. Authentication

A customized login screen was created for the CRAFT

application, as shown in Figure 2. This login screen allows

a user to login or the user can rotate the “shape” widget to

register with the OSF. The registration method simply redirects

the user to the OSF instance for registration with the server.

When the user logs in, authentication in the application is

achieved using the Ember OSF plug in which runs the Oauth

flow to the OSF CAS, which redirects the user to the redirect

URL specified in this flow. The redirect URL is defined to be

the dashboard page of the EmberJS application, which sends

the user to the CRAFT main dashboard.

4

9th International Workshop on Science Gateways (IWSG 2017), 19-21 June 2017

Fig. 2. CRAFT login screen: authentication is performed via Oauth from
OSF CAS.

Fig. 3. CRAFT main dashboard screen.

B. CRAFT Dashboard

The main dashboard shows the list of private and public

projects. A screen-shot of the private project part of this

dashboard is shown in Figure 3. Private projects are projects

that restrict access only to the members of those projects

and public projects provide view access to everyone. The

dashboard makes use of the Ember OSF pagination filtering

mechanism to filter the projects to show a predefined number

of projects per page. Projects navigation is done via the

pagination buttons, and/or using the search mechanism—the

CRAFT repository capitalizes on the tag-based search features

provided by OSF. Using a a combination of these features the

user can locate desired projects quickly. Lastly, the dashboard

allows the user to create a project and uses a modal dialog

pop-up to allow the user to enter the details of the new project.

C. Project Overview Page

Figure 4 shows a screen-shot of a project overview page,

which is composed of a project overview tab, and a list of

activities tab (e.g., for auditing project usage). The project

overview is separated into two panels. The upper part of

the overview’s tab shows (1) the project title, (2) a list of

contributors (members of the project), with links to their

respective profiles, (3) a short description of the project,

(4) a list of sub-projects (if this project has a sub-project)

visible only to members of the sub-projects, and (5) a list

of comprehensive tags that characterizes the project (the user

Fig. 4. CRAFT project overview screen.

can also click to the right of the tags to add a new tag).

On the lower part of this tab, a project overview description

is provided. This segment employs the use of the Medium

Editor [18], which is a simple intuitive HTML5-based editor.

It provides a popup toolbar that allows text formating (bold,

italic, headings, etc.), adding hyperlinks, and also dragging

and dropping images from a desktop. Although, this is very

simple, it provides an efficient mechanism to allow users to

create a general project overview description.

D. CRAFT Design Flows

In the initial phase of the project, we defined the template to

capture design flows as an Excel spreadsheet (facilitates visual

communication with the performer teams). However, in order

to enable flow validation (syntactically and semantically),

and automated visualization/edition, subsequently flows are

described in a JSON format1. This format is only used for

internal purposes, i.e., to store the flow into the repository.

Performers only interact with the visualization graph tool

(Figure 5) or a tabular viewer (mimics the initial spreadsheet

template, Figure 6) of the flow.

Flow visualizations are automatically generated from the

JSON file. The graph visualization tool provides an interactive

interface to visualize the flow (based on the open source

Cytoscape.js project [19]). Users can click on the boxes (repre-

senting stages, input/output data) and edges (representing de-

pendency and control flows) to visualize detailed information

about each tool and its control options. A tabular visualization

(develop with the Handsontable library [20]) facilitates to

visualization/edition of detailed information at once. Versions

(history of changes) of the flow are automatically recorded in

the repository. In the repository, each project manages a single

flow. We chose this approach to foster collaborative efforts,

since all discussions and files within a project, are tied to a

1CRAFT Flow template schema: https://github.com/pegasus-isi/craft/tree/
master/schema

5

https://github.com/pegasus-isi/craft/tree/master/schema
https://github.com/pegasus-isi/craft/tree/master/schema

9th International Workshop on Science Gateways (IWSG 2017), 19-21 June 2017

Fig. 5. CRAFT design flow represented in a graph format.

Fig. 6. CRAFT design flow represented in a tabular format.

Fig. 7. CRAFT discussion forum.

single flow. Sub-projects can be used to represent multiple

flows from a single performer.

E. Discussion Forum

The CRAFT repository provides a topic-based discussion

forum (Figure 7), where any contributor can start or com-

ment a new topic. Contributors that have interacted with a

topic, will be notified (via email) once any other contributor

answers/replies a comment. Discussions follow the project

visibility, i.e., the discussion forum will only be public if

the project is also public. For instance, a general discussion

forum (e.g., DARPA announcements), can be made through

a separate public project created only for this purpose. The

discussion feature is built on top of OSF’s chat feature, where

we have re-defined the concept of simple messages into topic

threads, and message replies into thread replies.

V. CONCLUSION

This paper presented the CRAFT repository, a collabora-

tive science gateway for accelerating circuit realization. The

main goal of the repository is to capture and document, in

a systematic way, the design flow process for chip design

development. The repository is built using a hybrid approach,

where the front-end has been developed as an EmberJS appli-

cation, which interacts with an instance of the Open Science

Framework. The application was customized to fulfill CRAFT

program requirements, in particular the development of tem-

plates and schema to capture the design flows. Currently, the

repository is only available to CRAFT performers but will be

made available to wider DoD community soon. CRAFT per-

formers include: Carnegie Mellon University, Harvard Univer-

sity, Princeton University, Stanford University, University of

California Berkeley, University of California, San Diego, and

the University of Southern California. Industry collaborators

and government organizations include the Boeing Company,

Cadence Design Systems, Inc., DARPA, NVIDIA Corporation,

Northrop Grumman Corporation, and Synopsys, Inc. Future

work include the development of a service to capture and

document intellectual property (IP) cores. Usability studies

will follow.

Acknowledgements. This work was funded by DARPA under

contract #HR0011-16-C-0043 “Repository and Workflows for

Accelerating Circuit Realization (RACE)”.

REFERENCES

[1] “Circuit Realization at Faster Timescales (CRAFT),” http://www.darpa.
mil/program/circuit-realization-at-faster-timescales.

[2] “The Craft Repository,” https://craftproject.org/.
[3] “EmberJS,” http://emberjs.com/.
[4] “The Open Science Framework,” http://www.osf.io/.
[5] “The Bitbucket Website,” http://bitbucket.org/.
[6] “The Github Website,” http://github.com/.
[7] M. McLennan and R. Kennell, “Hubzero: a platform for dissemination

and collaboration in computational science and engineering,” Computing

in Science & Engineering, vol. 12, no. 2, 2010.
[8] J. R. Spies, The open science framework: improving science by making

it open and accessible. University of Virginia, 2013.
[9] “The Open Science Framework REST API,” https://api.osf.io/v2/.

[10] “Dropbox,” https://www.dropbox.com.
[11] “Google Drive,” https://www.google.com/drive/.
[12] “Box,” https://www.box.com/.
[13] “JSON-API Specification,” http://jsonapi.org/.
[14] “Django Rest Framework,” http://www.django-rest-framework.org/.
[15] “Craft OSF Repository,” https://osf.craftproject.org/.
[16] “Semantic UI,” http://semantic-ui.com/.
[17] “The Ember OSF Toolkit,” https://github.com/samchrisinger/ember-osf.
[18] “HTML5 Medium Editor,” https://github.com/yabwe/medium-editor.
[19] “Cytoscape.js,” http://js.cytoscape.org/.
[20] “Handsontable – javascript spreadsheet,” https://handsontable.com/.

6

http://www.darpa.mil/program/circuit-realization-at-faster-timescales
http://www.darpa.mil/program/circuit-realization-at-faster-timescales
https://craftproject.org/
http://emberjs.com/
http://www.osf.io/
http://bitbucket.org/
http://github.com/
https://api.osf.io/v2/
https://www.dropbox.com
https://www.google.com/drive/
https://www.box.com/
http://jsonapi.org/
http://www.django-rest-framework.org/
https://osf.craftproject.org/
http://semantic-ui.com/
https://github.com/samchrisinger/ember-osf
https://github.com/yabwe/medium-editor
http://js.cytoscape.org/
https://handsontable.com/

	Introduction
	Craft Requirements
	A Collaborative Space For Chip Designs
	Authentication
	Project Permissions, Communication, and Privacy
	Version Control
	Visualizing and Editing Design Flows

	Architecture and Design
	CRAFT Design Flow Specification

	Implementation
	Authentication
	CRAFT Dashboard
	Project Overview Page
	CRAFT Design Flows
	Discussion Forum

	Conclusion
	References

