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ABSTRACT

Recently, general-purpose computing on graphics processing

units (GPGPU) has been enabled on mobile devices thanks

to the emerging heterogeneous programming models such as

OpenCL. The capability of GPGPU on mobile devices opens

a new era for mobile computing and can enable many compu-

tationally demanding computer vision algorithms on mobile

devices. As a case study, this paper proposes to accelerate an

exemplar-based inpainting algorithm for object removal on a

mobile GPU using OpenCL. We discuss the methodology of

exploring the parallelism in the algorithm as well as several

optimization techniques. Experimental results demonstrate

that our optimization strategies for mobile GPUs have signifi-

cantly reduced the processing time and make computationally

intensive computer vision algorithms feasible for a mobile de-

vice. To the best of the authors’ knowledge, this work is the

first published implementation of general-purpose computing

using OpenCL on mobile GPUs.

Index Terms— GPGPU, mobile SoC, computer vision

implementation, CPU-GPU algorithm partitioning, parallel

architectures.

1. INTRODUCTION

Mobile computing technology has grown significantly over

the past decade. As mobile processors are gaining more com-

puting capability, we are witnessing a rapid growth of com-

puter vision applications on mobile devices, such as image

editing, augmented reality, object recognition and so on [1, 2].

One major usage of modern mobile devices is to take pic-

tures and share them on social networks such as Facebook

and Instagram. The demand for fast image editing functions

on mobile devices has considerably increased. For example,

users may want to remove unwanted objects in a picture taken

by a camera phone before sharing it on the internet [3, 4].

However, long processing time due to the high computational

complexity prevents computer vision algorithms from being

practically used in mobile applications. To address this prob-

lem, researchers have explored the graphics processing units
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(GPUs) as accelerators to speedup image processing and com-

puter vision algorithms [1, 5, 6, 7, 8, 9, 10, 11, 12]. Most of

them use the OpenGL ES programming model to harness the

compute power of the mobile GPU [13]. However, it is dif-

ficult to develop OpenGL ES programs for general-purpose

computing, since the OpenGL ES model was originally de-

signed for 3D graphics rendering on mobile platforms.

Recently, emerging programming models such as Open

Computing Language (OpenCL) [14] and RenderScript [15]

have been supported by mobile processors. As a result,

GPGPU computing in the mobile domain becomes possi-

ble [1]. In this paper, we take the exemplar-based inpainting

algorithm for object removal as a case study to explore the

capability of mobile GPUs to accelerate computer vision al-

gorithms using OpenCL. Our optimized GPU implementation

shows significant speedup and enables fast interactive object

removal applications in a practical mobile device.

The paper is organized as follows. Section 2 introduces

the OpenCL programming model for mobile GPUs. Section

3 briefly explains the exemplar-based inpainting algorithm for

object removal. We analyze the complexity of the algorithm

and propose a method to map the algorithm onto a mobile

GPU in Section 4. Section 5 shows experimental results on a

practical mobile device. Section 6 concludes the paper.

2. OPENCL FOR MOBILE GPUS

Unlike the dedicated GPUs for desktop computers, a mobile

GPU is typically integrated into an application processor,

which also includes a multi-core CPU, an image process-

ing engine, DSPs and other accelerators. Recently, modern

mobile GPUs such as the Qualcomm Adreno GPU [16],

the Imagination PowerVR GPU [17] and the NVIDIA ULP

GeForce GPU [18] tend to integrate more compute units in

a chip. Mobile GPUs have gained general-purpose paral-

lel computing capability thanks to the multi-core architecture

and emerging frameworks such as OpenCL. OpenCL is a pro-

gramming framework designed for heterogeneous computing

across various platforms [14]. In OpenCL, a host processor

(typically a CPU) manages the OpenCL context and is able

to offload parallel tasks to several compute devices (for in-

stance, GPUs). The parallel jobs can be divided into work
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groups, and each of them consists of many work items which

are the basic processing units to execute a kernel in parallel.

OpenCL defines a hierarchical memory model containing a

large global memory but with long latency and a small but

fast local memory which can be shared by work items in the

same work group. To efficiently and fully utilize the limited

computation resources on a mobile processor to achieve high

performance, partitioning the tasks between CPU and GPU,

exploring the algorithmic parallelism, and optimizing the

memory access need to be carefully considered.

Few prior works studied using OpenCL on mobile GPU.

Leskela et al demonstrated an OpenCL Embedded Pro-

file prototype emulated by OpenGL ES on mobile devices

and showed advantages in performance and energy effi-

ciency [19]. Since there is no previous work exploring

OpenCL-based GPGPU computing on a real mobile device,

it is desirable to study the GPGPU computing capability of

a real mobile platform using the OpenCL framework and to

explore the implementation and optimization methodology.

3. ALGORITHM OVERVIEW

Object removal is one of the most important image editing

functions. The key idea of object removal is to fill in the

hole that is left behind after removing an unwanted object,

to generate a visually plausible result image. The exemplar-

based inpainting algorithm for object removal can preserve

both structural and textural information by replicating patches

in a best-first order, which can generate good image quality

for object removal applications [3, 4]. In the meanwhile, this

algorithm can achieve computational efficiency thanks to the

block-based sampling processing, which is especially attrac-

tive for a parallel implementation.

Assume we have a source image Φ with a target region

Ω to be filled in after an object is removed. We first search

the image region Φ and find a patch Ψq̃ that best matches a

patch Ψp on the border of the target region Ω. Then we copy

the pixel values of Ψq̃ into Ψp. The aforementioned search

and copy process is repeated until the whole target region Ω
is filled up. Criminisi et al proposed a priority-based selec-

tion scheme to determine the patch filling order [3]. A patch

priority is composed of two terms: a data term indicating the

reliability of the surrounding pixels and a confidence term in-

dicating the nearby structural information. The patch priority

is evaluated for every pixel on the border of the target region

Ω. The patch to be filled in is chosen based on priority values.

More details can be found in reference [3].

4. IMPLEMENTATION AND OPTIMIZATION

4.1. Mapping Object Removal Algorithm onto GPGPU

Fig. 1 shows a work flow diagram of the the exemplar-based

inpainting algorithm for object removal. The blocks with

the dashed lines are core functions inside the iterative loop

and represent most of the computational workload. We can
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Fig. 1. Algorithm work flow diagram. The blocks with

dashed lines are mapped into multiple OpenCL kernels. The

other blocks are implemented using standard C.

Table 1. Breakdown of exec cycles for OpenCL kernels.

Kernel functions
Exec cycle

percentage

Convert RGB image to gray-scale image 0.05%

Update the border of the area to be filled 0.08%

Mark the source pixels to be used to fill the hole 1.16%

Update pixel priorities in the filling area 0.45%

Update pixel confidence in the filling area 0.03%

Find the best matching patch 98.20%

Update the RGB image of the filling patch 0.02%

Update the grayscale image of the filling patch 0.02%

map the core functions into OpenCL kernels to exploit the

2-dimentional pixel-level and block-level parallelisms in the

algorithms. The CPU handles the OpenCL context initial-

ization and maintenance, memory objects management and

kernel launching. By analyzing the algorithm, we partition

the core functions into eight OpenCL kernels based on the

properties of computations, as is shown in Table 1. In each

OpenCL kernel, the fact that no dependency exists among

image blocks allows us to naturally partition the tasks into

work groups. To represent RGBA color pixel values, we use

efficient vector data structures such as cl_uchar4 to take ad-

vantage of built-in vector functions.

To better optimize the OpenCL-based implementation, we

first measure the performance of the OpenCL kernels using an

internal performance profiler. Table 1 shows a breakdown of

execution cycles on a Qualcomm Snapdragon S4 chipset [16].

The OpenCL kernel function used to find the best matching

patch with the current patch ( findBestPatch) occupies most

of the processing time (98.2%), so the optimization of this

kernel is the key to improving performance.

4.2. Optimizations of GPU Implementation

The core mission of findBestPatch kernel is to find the best

matching patch Ψq̃ from candidate patches Ψq in the source

image region Φ, to match a object patch Ψp in the object

region Ω based on certain distance metric. The sum of
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WalkingMan River Dive Hill 

Fig. 2. The best patch mapping found by a full search. The

1st row: original images. The 2nd row: masks covering the

unwanted objects. The 3rd row: best patch mapping.

squared differences (SSD) is used as a distance metric to

measure the similarity between the patches [3]. We denote

the color value of a pixel x by Ix = (Rx, Gx, Bx). For

an object patch Ψp, the best patch Ψq̃ is chosen by com-

puting Ψq̃ = argminq∈Φ d(Ψp,Ψq), in which d(Ψq,Ψp) =
∑

p∈Ψp∩Φ,q∈Ψq∩Φ
(Ip − Iq)

2. Assume the size of the original

image is M × N , the size of the object area is Mo × No,

and the size of the patch is P × P . The complexity of find-

BestPatch is O(MNP 2). To perform a full search in the

findBestPatch OpenCL kernel, we spawn M ×N work items,

with each computing an SSD value. We further partition

these M × N work items into work groups according to the

compute capability of the GPU. In our implementation on

mobile GPU, each work group contains 8× 8 work items.

4.2.1. Reducing search space of the best patch

We have done an experiment to verify the locations of the best

patches found by a full search across the whole image area.

As is shown in Fig. 2, most of the best patches are found

near the object area. The reason is that adjacent areas usually

have the similar structures and textures in natural images. To

reduce the searching time, we can utilize this spatial locality

by limiting the search space.

In addition to the time reduction, reducing the search

area has another benefit. As a comparison metric, SSD can

roughly represent the similarity of two patches, but it cannot

accurately reflect the structural and color information em-

bedded in the patches. By limiting the search area, we can

reduce the possibility of false matching, in which the “best”

patch with a high correlation score may have very distinctive

textural or color information compared to the object patch.

Experiments show that reducing the search area by a certain

degree can generate visually plausible result images.

We define the new search area by expanding the object

area by αMo to the up and down directions, and αNo to the

left and right directions. The search area factor α has a range

0 ≤ α < max(M/Mo, N/No). The new search area be-

comes an area of (Mo+2αMo)× (No+2αNo). By defining
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Fig. 3. Impact of increased patch size 13 × 13 and 17 × 17,

compared to 9 × 9 patch. (9 × 9 is the standard patch size

suggested by the original algorithm [3].)

the search factor, we can easily adjust the search area. More-

over, this method allows the search area to grow along four

directions with an equal chance, so as to increase the possi-

bility of finding a better patch. The timing results for this

optimization will be shown in Table 2 in Section 5.

4.2.2. The impact of patch size

The object removal algorithm is an iterative algorithm, in

which an object patch is processed in an iteration. We need

MoNo/P
2 iterations to finish the whole process. The overall

complexity can be estimated as O(MNP 2)·O(MoNo/P
2) =

O(MNMoNo), which seems to indicate that the patch size

does not affect the processing time. However, the truth is that

the patch size has a huge impact on the performance when

we reduce the search area. We only use the pixels Iq in the

intersection of the candidate patch Ψq and source image Φ
(Iq ∈ Ψq ∩ Φ) to compute the SSD values. As we reduce

the search area and increase the patch size, more candidate

patches Ψq overlap the object region Ω. As a result, the area

of Ψq∩Φ becomes small, indicating a decrease in the number

of pixels Iq associated with computations. Therefore, the pro-

cessing time is reduced. Experimental results shown in Fig. 3

verifies the above analysis. For bigger search areas (α ≥ 1),

patch size does not affect the performance. However, as the

search area keeps decreasing (α < 1), bigger patch area leads

to more significant time reduction.

4.2.3. Memory optimization

Similar to desktop GPUs, mobile GPUs also suffer from long

latency of the off-chip global memory. The local memory on

the Adreno Mobile GPU provides quick memory accesses and

can be shared by work items in the same work group. As men-

tioned before, a work group contains 8 × 8 work items, each

of which computes an SSD value between an object patch and

a candidate patch. Adjacent candidate patches processed by

these 8 × 8 work items have many overlapped pixels, each

of which is accessed by several different work items. For a

P ×P patch, (P +8−1)× (P +8−1) pixels are shared. We

can load these pixels into the local memory to allow data shar-

ing and reduce the global memory accesses. In our OpenCL

2631
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Fig. 4. Android demo with OpenCL acceleration. (a) original

image; (b) a mask indicating the object area; (c) intermediate

result; (d) final result image after iterative editing.

implementation, (P + 8 − 1)2 · sizeof(cl_uchar4) source

image data, P 2 · sizeof(cl_uchar4) patch image data and

P 2 · sizeof(cl_int) patch pixel label data can be loaded into

the local memory. For a 9×9 patch (P = 9), we need 1.63KB

of local memory, which can be fit into the local memory of the

Adreno GPU. In addition, if we carefully design the method

to load data from the global memory to the local memory by

data striping, we can coalesce the global memory access to

further reduce latency.

5. EXPERIMENTAL RESULTS

The Qualcomm Snapdragon S4 chipset contains a multi-core

Krait CPU and Adreno GPU, and it supports the OpenCL Em-

bedded Profile for both CPU and GPU [16]. We implemented

the exemplar-based inpainting algorithm for object removal

on a test platform based on the Snapdragon S4 chipset us-

ing OpenCL and the Android NDK [14, 15]. We applied the

proposed optimization techniques. To demonstrate the effi-

ciency and practicality of the proposed implementation, we

developed an interactive OpenCL Android demo on the test

platform. Fig. 4 shows screen-shots of the implemented An-

droid demo application, in which an end user can draw a cus-

tomized mask by touching the touchscreen to cover an un-

wanted object and then remove it by pressing a button. The

demo allows iterative editing, so that the user can keep editing

an image until a satisfying result is obtained.

Due to the paper page limits, we only show experimen-

tal results for the “WalkingMan” image shown in Fig. 5. The

size of the image is 512×384, and the size of the object area is

76 × 128. The mask is manually drawn to cover the walking

person. When running on the CPU only, the OpenCL pro-

gram uses 393.8 seconds, which is a long processing time for

a practical mobile application. The fact that iterative editing

is required under many circumstances makes the CPU-only

implementation far from being practical. Table 2 shows ex-

perimental results for the CPU-GPU hetergeneous solution.

We study the impact of reduced search areas and increased

Original image Mask image Result image 

Fig. 5. Image “WalkingMan” used in the experiments.

Table 2. Total processing time for hetergeneous solution,

with OpenCL kernels running on the GPU.

Search factor
Search area

Time for different

patch sizes (seconds)

α 9× 9 13× 13 17× 17

full search 512× 384 96.652 96.394 96.110

2 481× 384 73.367 70.723 72.296

1 234× 311 37.107 37.156 37.114

0.5 156× 248 19.975 19.024 18.658

0.2 108× 176 10.539 8.925 8.117

0.05 84× 138 7.528 5.233 4.266

patch sizes. On one hand, given a fixed patch size, reducing

the search area significantly decreases the run time. On the

other hand, increasing the patch size for larger search areas

(e.g. full search, α = 2, α = 1) does not affect the run time.

However, for smaller search area (e.g. α = 0.5, 0.2, 0.05), we

observe performance gains with larger patches. Experimental

results justifies our analysis in Section 4.2.2.

With search factor α = 0.05 and patch size 17 × 17,

the processing time is only 4.266 seconds, which indicates

a 95.6% reduction in processing time compared with the “full

search and 9 × 9 patch” case. The subjective quality of re-

sultant images does not degrade according to our experiment

results. The subsequent experiments show that the process-

ing time can be further reduced to less than 2 seconds on a

high end Snapdragon S4 processor. According to the research

conducted by Niida et al, users can tolerate 5 seconds average

processing time for mobile services before they start to feel

frustrated [20]. By accelerating the object removal algorithm

using mobile GPU, we successfully reduce the run time to

1 ∼ 5 seconds, which makes these types of computer vision

algorithms feasible in practical mobile applications.

6. CONCLUSIONS

Modern mobile GPUs are capable of performing general-

purpose computing with the support of programming models

such as OpenCL. As a case study, we present an OpenCL-

based mobile GPU implementation of an object removal

algorithm. Algorithm mapping and optimization techniques

for mobile GPUs are discussed. The experimental results on

a real mobile platform powered by a Snapdragon S4 proces-

sor show that by offloading the core computations to mobile

GPUs, the processing time can be significantly reduced.

Therefore, we conclude that with the GPGPU support, many

more computer vision applications can be enabled on practi-

cal mobile devices.
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