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Abstract

Designers are increasingly utilizing spatial (e.g. custom and reconfigurable) architectures
to improve both efficiency and performance in increasingly heterogeneous systems-on-
chip. Unfortunately, while such architectures can provide orders of magnitude better
efficiency and performance on numeric applications, they exhibit poor performance when
implementing sequential, control-flow intensive code. This thesis studies the problem of
improving sequential code performance in spatial hardware without sacrificing its inherent
efficiency advantage.

I propose (a) switching from a statically scheduled to a dynamically scheduled, dataflow
execution model, and (b) utilizing a newly developed compiler intermediate representation
(IR) designed to expose ILP in spatial hardware, even in the presence of complex control
flow. I describe this new IR – the Value State Flow Graph (VSFG) – and how it statically
exposes ILP from control-flow intensive code by enabling control-dependence analysis,
execution along multiple flows of control, as well as aggressive control-flow speculation. I
also present a High-Level Synthesis (HLS) toolchain, that compiles unmodified high-level
language code to dataflow custom hardware, via the LLVM compiler infrastructure.

I show that for control-flow intensive code, VSFG-based custom hardware performance
approaches, or even exceeds the performance of a complex superscalar processor, while
consuming only 1/4× the energy of an efficient in-order processor, and 1/8× that of a com-
plex out-of-order processor. I also present a discussion of compile-time optimizations that
may be attempted to further improve both efficiency and performance for VSFG-based
hardware, including using alias analysis to statically partition and parallelize memory
operations.

This work demonstrates that it is possible to use custom and/or reconfigurable hard-
ware in heterogeneous systems to improve the efficiency of frequently executed sequential
code, without compromising performance relative to an energy inefficient out-of-order
superscalar processor.
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CHAPTER 1

Introduction

Over the past two decades, pervasive, always-on computing services have become an
integral part of our lives. Not only are we using increasingly portable devices like tablets
and smartphones, there is also an increasing reliance on cloud computing: server-side
computation and services, like web search, mail, and social media. On the client side,
there is an ever growing demand for increased functionality and diversity of applications,
as well as an expectation of continued performance scaling with every new technology
generation.

Designers incorporate increasingly powerful processors and systems-on-chip into such
devices to meet this demand. However, the key trade-off in employing high-performance
processors is the high energy cost they incur [GA06]: for increasingly portable devices,
in addition to the demand for ever higher performance, users have an expectation of a
minimum time that their battery should last under normal use.

On the server-side, power dissipation and cooling infrastructure costs are growing, cur-
rently accounting for more than 40% of the running costs for datacenters [Ham08], and
around 10% of the total lifetime cost [KBPS09]. To meet the growing demand for com-
putational capacity in datacenters, computer architects are striving to develop processors
capable of not only providing higher throughput and performance, but also achieving high
energy efficiency.

Unfortunately, for the past decade, architects have had to struggle with several key
issues that hinder their ability to continue scaling performance with Moore’s Law, while
also improving the energy efficiency of computation. Poor wire-scaling, together with the
need to limit power dissipation and improve energy efficiency, have driven a push towards
ever more decentralized, modular, multicore processors that rely on explicit parallelism
for performance instead of frequency scaling and increasingly complex uniprocessor mi-
croarchitectures.

Instead of the dynamic, run-time effort of exposing and exploiting parallelism in in-
creasingly complex processors, in the multicore era the responsibility of exposing further
parallelism to scale performance rests primarily with the programmer. Nevertheless, de-
spite the increased programming costs and complexity, performance has continued to scale
for application domains that have abundant, easy-to-express parallelism, in particular for
server-side applications such as web and database servers, scientific and high-performance
computing, etc.
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The Dark Silicon Problem: On the other hand, for client-side, general-purpose
applications, performance scaling on explicitly parallel architectures has been severely
limited due to Amdahl’s Law, as such applications exhibit limited coarse-grained (data or
task-level) parallelism that could be cost-effectively exposed by a programmer [BDMF10].

Furthermore, more recently, a new issue has been identified that limits performance
scaling on multicore architectures, even for applications with abundant parallelism: due to
the end of Dennard scaling [DGnY+74], on-chip power dissipation is growing in proportion
to the number of on-chip transistors, meaning that for a fixed power budget, the propor-
tion of on-chip resources that can be actively utilized at any given time decreases with
each technology generation. This problem is known as the Utilization Wall [VSG+10].

Together, the utilization wall and Amdahl’s law problems lead to the issue of Dark
Silicon, where a growing fraction of on chip resources will have to remain switched off,
either due to power dissipation constraints, or simply because of insufficient parallelism
in the application itself. A recent study has shown that with future process generations,
even as Moore’s Law provides a 32× increase in on-chip resources, dark silicon will limit
effective performance scaling to only about 3− 8× [EBSA+11].

The Potential of Spatial Computation: To mitigate the effects of the utiliza-
tion wall, it is essential to make the most efficient use of the fraction of transistors that
can be active at any given time. Architects are doing exactly this as they build increas-
ingly heterogeneous systems incorporating spatial computation hardware such as custom
or reconfigurable logic1. Unlike conventional processors, spatial hardware relegates much
of the effort of exposing and exploiting concurrency to the compiler or programmer.
Spatial hardware is also highly specialized, tailored to the specific application being im-
plemented, thereby providing orders-of-magnitude improvements in energy efficiency and
performance [HQW+10].

Examples of such hardware include video codecs and image processing datapaths im-
plemented as part of heterogeneous systems-on-chip commonly used in modern smart-
phones and tablets. By implementing specialized hardware designed for a small subset of
tasks, architects essentially trade relatively inexpensive and abundant transistor resources
for essential improvements in energy-efficiency.

Current Limitations of Spatial Computation: To mitigate the effects of Am-
dahl’s Law and continue scaling performance with Moore’s law, it is essential to also
aggressively exploit implicit fine-grained parallelism from otherwise sequential code, and
to do so with high energy efficiency to avoid running into the utilization wall. Recent work
has attempted to implement sequential, general-purpose code using spatial hardware, in
order to improve energy efficiency [VSG+10, BVCG04]. Unfortunately, sequential code
exhibits poor performance in custom hardware, meaning that for performance scaling un-
der Amdahl’s Law, architects must employ conventional, complex, and energy-inefficient
out-of-order processors [BAG05].

1Unlike the temporal execution model of conventional processors, wherein intermediate operands are
communicated between operations through a centralized memory abstraction such as a register file, spa-
tial computation utilizes a point-to-point interconnect to communicate intermediate operands directly
between producing and consuming processing elements. Consequently, unlike with conventional pro-
cessors, placement/mapping of operations to processing elements must be determined before program
execution. Spatial Computation is described in greater detail in Section 2.4.
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Not only does this affect usability by reducing the battery life of portable devices, it
also means that overall performance scaling would be further limited due to the utilization
wall limiting the amount of parallel processing resources that can be activated within the
remaining power budget. To overcome this Catch-22 situation, it is essential that new
approaches be found to implement such sequential code with high performance, without
incurring the energy costs of conventional processors.

This dissertation focuses on combining the high energy efficiency of spatial computa-
tion, with the high sequential-code performance of conventional superscalar processors.
Success in this endeavour should have a significant positive impact on a diverse range of
computational domains in different ways.

For instance, embedded systems would be able to sustain higher performance within
a given power budget, potentially also reducing effort required to optimize code. For
example, the primary energy consumption in a smartphone is typically not due to the
application processor. Instead subsystems like high-resolution displays, or radio signalling
and processing consume a majority of the power budget. As a result, even an order of
magnitude improvement in computational efficiency would not significantly affect how
frequently a user is expected to charge their phone. However, the increased efficiency
could instead be utilized to undertake more complex computation within the same power
budget, perhaps to provide a better user experience.

Conversely, cloud and datacenter infrastructure could directly take advantage of the
increased efficiency to reduce energy costs. As the key reasons for the high energy cost
in server-side systems are (a) power consumed by processors, and (b) the cooling infras-
tructure needed to dissipate this power, more efficient processing elements would simul-
taneously reduce the operating costs due to both of these factors without compromising
computational capacity.

1.1 Thesis Statement

My main thesis is that by statically overcoming the limitations on fine-grained
parallelism due to control-flow, the sequential code performance of energy-
efficient spatial architectures can be improved to match or even exceed the
performance of dynamic, out-of-order superscalar processors, without incur-
ring the latters’ energy cost.

To achieve this, this dissertation focuses on the development of a new compiler in-
termediate representation that accelerates control-intensive sequential code by enabling
aggressive speculative execution, control-dependence analysis, and exploitation of multiple
flows of control in spatial hardware. In order to demonstrate my thesis, this dissertation
is structured as follows:

• Chapter 2: A brief overview of the energy and performance issues faced by com-
puter architects is presented, followed by an introduction to spatial computation,
along with a brief survey of existing spatial architectures, demonstrating the current
issues with sequential code performance.

• Chapter 3: I study the key underlying reasons for the performance advantage
of complex, out-of-order superscalar processors over spatial hardware when imple-
menting general-purpose sequential code. The goal being to understand how to

13



overcome these limitations without compromising the inherent energy-efficiency of
spatial hardware.

• Chapter 4: I then develop a new compiler intermediate representation called the
Value State Flow Graph that simplifies the static exposition of fine-grained instruc-
tion level parallelism from control-flow intensive sequential code. The VSFG is
designed so that it can be used as an intermediate representation for compiling to
a wide variety of spatial architectures and substrates, including a direct implemen-
tation as application-specific custom hardware.

• Chapter 5: A high-level synthesis toolchain using the VSFG representation is de-
veloped that allows the compilation of high-level language code to high performance
custom hardware.

• Chapter 6: Finally, results from benchmarks compiled using this toolchain demon-
strate that in most cases, the performance of the generated custom hardware matches,
or even exceeds the performance of a complex superscalar processor, while incurring
a fraction of its energy cost. I highlight the fact that performing compile-time opti-
mizations on the VSFG can easily improve both performance and energy-efficiency
even further.

Chapter 7 concludes the dissertation, and highlights some areas for future research in
the area of spatial architectures and compilers.

1.2 Contributions

This thesis makes the following contributions:

• A new low level compiler intermediate representation (IR), called the Value State
Flow Graph (VSFG) is presented, that exposes ILP from sequential code even in the
presence of complex control flow. It achieves this by enabling aggressive control-flow
speculation, control dependence analysis, as well as execution along multiple flows
of control. As conventional processors are typically unable to take advantage of the
last two features, the VSFG can potentially expose far greater ILP from sequential
code [LW92].

• The VSFG representation is also designed to be directly implementable as cus-
tom hardware, replacing the traditionally used CDFG (Control-Data Flow Graph)
[NRE04]. The VSFG is defined formally, including the development of eager (dataflow)
operational semantics. A discussion of how the VSFG compares to existing repre-
sentations of dataflow computation is also presented.

• To test this new IR, a new high-level synthesis (HLS) tool-chain has been im-
plemented, that compiles from the LLVM IR to the VSFG, then implements the
latter as a hardware description in Bluespec SystemVerilog [Nik04]. Unlike the
statically-scheduled execution model of traditional custom hardware [CM08], I em-
ploy a dynamically-scheduled static-dataflow execution model for our implemen-
tation [Bud03, BVCG04], allowing for better tolerance of variable latencies and
statically unpredictable behaviour.
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• Custom hardware generated by this new tool-chain is shown to achieve an average
speedup of 1.55× (max 4.05×) over equivalent hardware generated by LegUp, an
established CDFG-based high-level synthesis tool [CCA+11]. Furthermore, VSFG-
based hardware is able to approach (in some cases even improve upon) the cycle-
counts of an Intel Nehalem Core i7 processor, on control-flow intensive benchmarks.
While this performance incurs an average 3× higher energy cost than LegUp, the
VSFG-based hardware’s energy dissipation is still only 1/4× that of a highly opti-
mized in-order Altera Nios II/f processor (and 1/8× that of a Core i7-like out-of-
order processor).

• I provide recommendations for how both the energy efficiency and performance of
our hardware may be further improved by implementing simple compiler optimiza-
tions, such as performing alias-analysis to partition and parallelize memory accesses,
as well as how to reduce the energy overheads of speculation.

1.3 Publications and Awards

• Paper (to appear): Ali Mustafa Zaidi, David Greaves, “A New Dataflow Com-
piler IR for Accelerating Control-Intensive Code in Spatial Hardware”, 21st Recon-
figurable Architectures Workshop (RAW 2014), associated with the 28th Annual
International Parallel and Distributed Processing Symposium (IPDPS 2014), May
2014, Phoenix, Arizona, USA.

• Poster: Ali Mustafa Zaidi, David Greaves, “Exposing ILP in Custom Hardware
with a Dataflow Compiler IR”, The 22nd International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT 2013), September, 2013, Edinburgh,
UK.

– Award: Awarded Gold Medal at the PACT 2013 ACM Student Research
Competition.

• Paper: Ali Mustafa Zaidi, David Greaves, “Achieving Superscalar Performance
without Superscalar Overheads – A Dataflow Compiler IR for Custom Computing”,
The 2013 Imperial College Computing Students Workshop (ICCSW’13), Septermber
2013, London, UK.

• Award: Qualcomm Innovation Fellowship 2012, Cambridge, UK. Awarded for re-
search proposal titled: “Mitigating the Effects of Dark Silicon”.
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CHAPTER 2

Technical Background

This chapter presents a brief history of computer architecture, highlighting the technical
and design challenges architects have faced previously, as well as those that must be ad-
dressed today, such as dark silicon. I establish the need for achieving both high sequential
performance, as well as much higher energy efficiency, in order to mitigate the effects of
dark silicon. This chapter also presents a survey of prior work on spatial computation,
establishing its scalability, efficiency and performance advantages for the numeric appli-
cation domain, as well as its shortcomings with respect to implementing and accelerating
sequential code. This dissertation attempts to overcome these shortcomings with the de-
velopment of a new dataflow compiler intermediate representation which will be discussed
in Chapter 3, and described formally in Chapter 4.

2.1 The Uniprocessor Era

For over two decades, Moore’s Law enabled exponential scaling of uniprocessor perfor-
mance. Computer architects used the ever growing abundance of on-chip resources to
build increasingly sophisticated uniprocessors that operated at very high frequencies.
Starting in the mid 1980s, uniprocessor performance improved by three orders of mag-
nitude, at approximately 52% per year (Figure 2.1, taken from [HP06]), until around
2004. Of this, two orders of magnitude can be attributed to improvements in fabrication
technology leading to higher operating frequencies, while the remaining 10× improvement
is attributed to microarchitectural enhancements for dynamically exposing and exploit-
ing fine-grained instruction level parallelism (ILP), enabled by an abundant transistor
budget [BC11].

Programmers would code using largely sequential programming models, while ar-
chitects utilized ever more complex techniques to maximize ILP: incorporating deeper
pipelining, superscalar as well as out-of-order execution to accelerate true dependences,
register renaming to overcome false dependences, as well as aggressive branch prediction
and misspeculation recovery mechanisms to overcome control dependences.

While the benefits of explicit parallel programming were known due to extensive work
done in the high-performance and supercomputing domains [TDTD90, DD10], there was
little incentive for programmers to utilize explicit parallelism in the general-purpose com-
puting domain, since uniprocessor performance scaling effectively provided a ‘free lunch’:
doubling observed performance every 18 months, with no effort required on the part of the
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Figure 2.1: Uniprocessor Performance Scaling from 1978 to 2006. Figure taken from [HP06]

programmer [Sut05]. Thus all the ‘heavy lifting’ of exposing and exploiting concurrency
was left to the microarchitecture level of abstraction, leading to increasingly complex
mechanisms for instruction stream management at the microarchitecure level.

Utilizing the exponentially growing on-chip resources to develop evermore complicated
uniprocessors ultimately proved to be unsustainable. Around 2004, this trend came to an
end due to the confluence of several issues, commonly known as the ILP, Power, Memory,
and Complexity Walls [OH05].

1. The ILP Wall: In the early 1990s, limit studies carried out by David Wall [Wal91]
and Monica Lam [LW92] determined that, with the exception of numeric appli-
cations1, the amount of ILP that can be dynamically extracted from a sequential
instruction stream by a uniprocessor is fundamentally limited to about 4-8 instruc-
tions per cycle (IPC).

Lam noted that this ILP Wall is not due to reaching the limit of available ILP in
the code at runtime, but rather because control-flow remains a key performance
bottleneck despite aggressive branch prediction, particularly as uniprocessors are
limited to exploiting ILP by speculatively executing independent instructions from a
single flow of control. By enabling the identification of multiple independent regions
of code through control dependence analysis, and then allowing their concurrent
execution (i.e. exploiting multiple flows of control), Lam observed that ILP could
again be increased by as much as an order of magnitude in the limit [LW92].

2. The Memory Wall: As transistor dimensions shrank, both processor and DRAM
clock rates improved exponentially, but the rate of improvement for processors far
outpaced that for main memory. This meant that the cycle latency for accessing
main memory grew exponentially [WM95]. This issue was mitigated to an extent
through the use of larger last-level caches and deeper cache hierarchies, but at a

1Applications with abundant data level parallelism, and often regular, predictable control-flow. Ex-
amples include signal processing, compression, and multimedia.
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significant area cost: the fastest processors dedicated as much as half of total die
area to caches. Despite this, it was expected that DRAM access latency would
ultimately become the primary performance bottleneck to performance, given the
historic reliance on ever higher clock rates for uniprocessor performance improve-
ment.

3. The Complexity Wall: While transistor dimensions and performance have scaled
with Moore’s Law, the performance of wires has diminished as feature sizes shrink.
This is partly due to the expectation that each process generation will enable higher
frequency operation, so the distance that signals can propagate in a single clock cycle
is reduced [AHKB00]. Furthermore, narrower, thinner and more tightly packed wires
exhibit higher resistance (R) and capacitance (C) per unit length, and thus increased
signaling delay [HMMH01].

Uniprocessors have heavily relied on monolithic, broadcast resource abstractions
such as centralized register files, and broadcast buses, in their designs, primarily in
order to maintain a unified program state and support precise exceptions. However,
such resources scale poorly when increased performance is required [ZK98, TA03].

With poor wire scaling limiting clock rate improvements, together with the ILP
wall limiting improvements in IPC, designers observed severely diminishing returns
in overall performance, even as design complexity, costs and effort continued to
grow [BMMR05, PJS97].

4. The Power Wall: With each process generation, Moore’s law enables a quadratic
growth in the number of transistors per unit area, as well as allowing these transistors
to operate at higher clock rates. For a given die size, this represents a significant
increase in the number of circuit elements that can switch per unit time, potentially
increasing power dissipation proportionally. Thankfully, total power dissipation per
unit area could be kept constant thanks to Dennard scaling [DGnY+74], which
posits that both per-transistor load capacitance and supply voltage can be lowered
each generation. (This is described in more detail in Section 2.3.2).

However, Dennard scaling did not take into account the increased complexity of
newer processor designs, as well as the poor scaling of wires, both of which con-
tributed to an overall increase in power dissipation. Furthermore, as transistor di-
mensions shrink and supply voltage (and therefore threshold voltage) are reduced,
there is an exponential increase in leakage current, and therefore relative static
power dissipation increases as well [BS00]. Until about 1999, static power remained
a small fraction of total power dissipation, but was becoming increasingly more
severe with each process generation [TPB98].

A combination of these factors has meant that the total power dissipation of unipro-
cessor designs continued to grow to such an extent that chip power densities began
to approach those of nuclear reactor cores [Pol99].

Due to the ILP, Memory, Complexity, and Power Walls, further scaling of performance
could no longer be achieved by simply relying on faster clock rates and increasingly com-
plex uniprocessors. Ending frequency scaling became necessary to keep memory access
latency and architectural complexity from worsening, as well as to compensate for power
increases due to leakage, poor wire scaling, and growing microarchitectural complexity
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with successive process generations. This meant that further performance scaling would
have to rely solely on the increased exploitation of concurrency.

In order to overcome the ILP Wall and improve IPC, processors would need to exploit
parallelism from multiple, independent regions of code. Exploitation of more coarse-
grained and/or more explicit concurrency became essential, but must be achieved without
further increasing design complexity. To address poor wire scaling and the complexity
wall, decentralized, modular, highly scalable architectures must be devised, so that the
worst-case wire lengths do not have to scale with the amount of resources available.
Instead of relying on the simple unified abstraction provided by non-scalable centralized
memory or broadcast interconnect structures, cross-chip communication must now be
explicitly managed between modular components.

Since 2004, computer architecture has developed into two distinct directions. Multi-
core architectures are primarily utilized for the general-purpose computing domain, that
includes desktop and server applications. Alternatively, spatial architectures, discussed
in Section 2.4 are increasingly being utilized to accelerate numeric, data-intensive ap-
plications, particularly in situations where both high performance and/or high energy
efficiency are required.

2.2 The Multicore Era

The need for modularity and explicit concurrency was answered with an evolutionary
switch to multicore architectures. Instead of having increasingly complex uniprocessors,
designers chose to implement multiple copies of conventional processors on the same die.
In most cases, architects relied on the shared-memory programming model to enable
programmers to write parallel code, as this model was seen as an extension of the Von-
Neumann architecture that programmers were already familiar with.

Wire scaling and complexity issues were mitigated thanks to the modular nature of
multicore design, while the memory wall was addressed by ending frequency scaling. The
ILP Wall would be avoided by relying on explicitly parallel programming to identify
and execute ‘multiple flows of control’ organised into threads, communicating and syn-
chronizing via shared memory. Ideally, the Moore’s Law effect of exponential growth in
transistors would then be extended into an exponential growth in number of cores on
chip.

Multicore processors are able to provide high performance scaling for embarrasingly
parallel application domains that have abundant data or task level parallelism. This
is often facilitated with the help of domain-specific programming models like MapRe-
duce [RRP+07], that are used for web and database servers and other datacenter applica-
tions, or OpenCL [LPN+13], which is useful for accelerating highly numeric applications
such as games, or multimedia and signal processing2.

However, for many non-numeric, consumer-side applications, performance scaling on
multicore architectures has proven far more difficult. Such applications are characterized
by low data or task parallelism, complex and often data-dependent control-flow, and ir-
regular memory access patterns3. Previously, programmers had relied on the fine-grained

2Graphics Processors or GPUs can be considered a highly specialized form of multicore processor,
designed to accelerate such data-parallel applications.

3In this thesis, I refer to such code as belonging to the client-side, consumer, or general-purpose
application domains, or simply as sequential code.

20



ILP exploitation capabilities of out-of-order superscalar processors to achieve high per-
formance on such code [SL05].

The shared memory programming model has proven to be very difficult for program-
mers to utilize in this domain, particularly when constrained to exploiting such fine-
grained parallelism [HRU+07]. Programmers are required to not only explicitly expose
concurrency in their code by partitioning it into threads, but also to manually manage
communication and synchronization between threads at run-time. The shared-memory
threaded programming model is also highly non-deterministic, since the programmer is
largely unaware of the order in which concurrent threads will be scheduled, and hence
alter shared state, at runtime. This non-determinism further increases the complexity
of debugging such applications, as observed behavior may change with each run of the
application [Lee06].

Thus, despite the decade-old push towards multicore architectures, the degree of
threaded parallelism in consumer workloads remains very low. Blake et al. observed
that over a period of 10 years, the number of concurrent threads in non-numeric applica-
tions has been limited to about two [BDMF10]. As a result, performance scaling for such
applications remains far below what users have come to expect over the past decades. In
part due to this insufficient explicit parallelism in applications, a new threat to continued
performance scaling with Moore’s Law has recently been identified, called Dark Silicon.

2.3 The Dark Silicon Problem

Despite ongoing exponential growth of on-chip resources with Moore’s Law, the perfor-
mance scalability of future designs will be increasingly restricted. This is because the
total usable on-chip resources will be growing at a much slower rate. This problem is
known as ‘Dark Silicon’, and is caused by two factors [EBSA+11]:

1. Amdahl’s Law and performance saturation due to insufficient explicit parallelism,
and

2. the end of Dennard Scaling, together with limited power budgets leading to the
Utilization Wall.

This section describes these issues in more detail, and discusses current strategies for
addressing them.

2.3.1 Insufficient Explicit Parallelism

Amdahl’s Law: As mentioned in the last section, the general-purpose, or consumer
application domain exhibits low degrees of parallelism. Amdahl’s Law [Amd67] governs
the performance scaling of parallel applications by considering them composed of a paral-
lel and a sequential fraction, and states that for applications with insufficient parallelism,
achievable speedup will be strictly constrained by the performance of the sequential frac-
tion.

Perf(f, n, Sseq, Spar) =
1

(1−f)
Sseq

+ (f)
n.Spar

(2.1)
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A generalized form of Amdahl’s Law for multicore processors is shown in equation 2.1
(adapted from [HM08]), where f is the fraction of code that is perfectly parallel, thus
(1−f) is the fraction of sequential code. Sseq is the speedup that a particular architecture
provides for the sequential portion of code, n is the number of parallel processors, and
Spar is the speedup each parallel processor provides when executing a thread from the
parallel region of code.

Figure 2.2 shows a plot of the relative speedup of a machine with high Sseq, versus a
machine with low Sseq, as f and n are varied (assume Spar = 1 for both machines). The
vertical axis is the ratio of speedup of a machine with Sseq = 4 to a machine with Sseq = 1.
Figure 2.2 shows that even with moderate amounts of parallelism (0.7 ≤ f ≤ 0.9), overall
speedup is highly dependent on the speedup of the sequential fraction of code even as
the number of parallel threads is increased. Thus achieving high sequential performance
through dynamic exploitation of implicit, instruction-level parallelism remains important
for scaling performance with Moore’s Law. However, this must be achieved without again
running into the ILP, Complexity, Power and Memory Walls.

Figure 2.2: Plot showing the importance of sequential performance to overall speedup. The
y-axis measures the ratio of performance between two machines, one with high sequential per-
formance (Sseq = 4), vs. one with low sequential performance (Sseq = 1), with all other factors
being identical.

Amore comprehensive analysis of multicore speedups under Amdahl’s Law is presented
by Hill and Marty [HM08]. They consider various configurations of multicore processors
given a fixed resource constraint: fewer coarse-grained cores, many fine-grained cores, as
well as asymmetric and dynamic multicore processors. They find that while performance
scaling is still limited by the sequential region, the best potential from speed-up arises
from the dynamic multicore configuration, where many smaller cores may be combined
into a larger core for accelerating sequential code, assuming minimal overheads for such
reconfiguration. It is important to note that theirs is a highly optimistic analysis, as it
assumes that sequential performance can be scaled indefinitely (proportional to

√
n, where

n is the number of execution resources per complex processor), whereas Wall [Wal91] notes
a limit to ILP scaling for conventional processors.

Esmaelzadeh et al. identifed insufficient parallelism in applications as the primary
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source of dark silicon [EBSA+11]: with the sequential fraction of code limiting overall
performance, most of the exponentially growing cores will remain unused unless the degree
of parallelism can be dramatically increased.

Brawny Cores vs. Wimpy Cores: Even for server and datacenter applications
that exhibit very high parallelism, and thus are less susceptible to being constrained
by sequential performance, per-thread sequential performance remains essential [H10].
This is because of a variety of practical concerns not considered under Amdahl’s Law
– the explicit parallelization, communication, synchronization and runtime scheduling
overheads of many fine-grained threads can often negate the area and efficiency advantages
of wimpy, or energy-efficient cores. Consequently, it is often better for overall cost and
performance to have fewer threads running on fewer brawny cores than to have a fine-
grained manycore in most cases [LNC13].

Add to this the fact that a vast amount of legacy code remains largely sequential,
we find that achieving high sequential performance will remain critical for performance
scaling for the forseeable future. Unfortunately, currently the only means of achieving high
performance on general-purpose sequential code is through the use of complex, energy
inefficient out-of-order superscalar processors.

2.3.2 The Utilization Wall

The average power dissipation of CMOS circuits is given by equation 2.2, where n is the
total number of transistors, α is the average activity ratio for each transistor, C is the
average load capacitance, VDD is the supply voltage, and f is the operating frequency.
Pstatic represents static, or leakage power dissipation that occurs independently of any
switching activity, while Ileakage is the leakage current, and kdesign is a constant factor.
This model for Pstatic is taken from [BS00].

Ptotal = Pdynamic + Pstatic = n.α.C.V 2
DD.f + n.VDD.Ileakage.kdesign (2.2)

The effect of Moore’s Law and Dennard Scaling on power dissipation is described as
a first-order approximation in [Ven11], and is adapted and briefly summarized here:

If a new process generation allows transistor dimensions to be reduced by
a scaling factor of S (i.e. transistor width and length are both reduced by
1/S, where S > 1), then the number of transistors on chip (n) grows by S2,
while operating frequency (f) also improves by S. This implies that the total
switching activity per unit time should increase by S3, for a fixed die size.
However, chip power dissipation would also increase by S3.

In 1974, Robert Dennard observed that not only does scaling transistor di-
mensions also scale its capacitance (C) by 1/S, but that it is also possible to
scale VDD by the same factor [DGnY+74]. This meant that Pdynamic could be
kept largely constant, even as circuit performance per unit area improved by
S3!

However, as VDD is lowered, the threshold voltage of transistors (Vth) must be
lowered as well, and this leads to an exponential increase in leakage current
(Ileakage) [BS00]. Although Ileakage was rising exponentially, Pstatic accounted
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for a very small fraction of total power until about 1999, but has been increas-
ingly significant since then [TPB98].

This has meant that Dennard scaling effectively ended with the 90nm process
technology in about 2004, because if VDD was lowered further, Pstatic would
be a significant and exponentially increasing fraction of total power dissipa-
tion [TPB98]. Consequently, with only transistor capacitance scaling, chip
power dissipation would increase by S2 each process generation if operated at
full frequency.

This issue resulted in the Power Wall described in section 2.1. Switching to multicore
and ending frequency scaling meant that power would now only scale with S. In addition,
enhancements in fabrication technology such as FinFET/Tri-gate transistors and use of
high-k dielectrics allowed designers to avoid this power wall at least temporarily [RM11,
AAB+12, HLK+99].

Unfortunately, the end of Dennard scaling has another implication: for a fixed power
budget, this means that with each process generation, only an ever decreasing fraction of
on-chip resources may be active at any time, even if frequency scaling is ended. This prob-
lem is known as the Utilization Wall, and is exacerbated even further with the growing
performance demands of increasingly portable yet functional devices like tablets, smart-
phones and smart-watches, that have evermore limited power budgets.

2.3.3 Implications of Dark Silicon

The issue of insufficient parallelism, together with the Utilization Wall means that despite
ongoing exponential growth in transistors or cores on-chip with Moore’s Law, a growing
proportion of these resources must frequently remain un-utilized, or ‘dark’. Firstly, per-
formance scaling will primarily be limited due to poor sequential performance scaling in
the consumer domain. Secondly, even for applications with abundant data or task level
parallelism, such as in the server/datacenter or multimedia domains, the Utilization Wall
limits the amount of parallelism that can be exploited in a given power budget.

A comprehensive analysis of these two factors by Esmaelzadeh et al. found that in
6 fabrication process generations, from 45nm to 8nm, while available on-chip resources
grow by 32×, dark silicon will limit the ideal case performance scaling to only about
7.9× for highly parallel workloads, with a more realistic estimate being about 3.7×, or
only 14% per year – well below the 52% we have been used to for most of the past three
decades [EBSA+11]. This analysis assumed ideal per-benchmark multicore configurations
from among those described by Hill and Marty [HM08], so actual performance scaling on
a fixed, realistic architecture can be expected to be even lower.

Overcoming the effects of dark silicon would require addressing each of the constituent
issues. Breakthroughs in auto-parallelisation or an industry-wide switch to novel program-
ming models that can effectively expose fine-grained parallelism from sequential code
would be required to effectively exploit available parallel resources. Overcoming the Uti-
lization Wall, returning to Dennardian scaling, and re-enabling the full use of all on-chip
resources would likely require a switch to a new post-CMOS fabrication technology that ei-
ther avoids the leakage current issue, or is just inherently far more efficient overall [Tay12].
Barring such breakthroughs however, the best that architects can attempt is to mitigate
the effects of each of these factors.
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The Need to Accelerate Sequential Code

To accelerate sequential code, architects are currently developing heterogeneous multi-
core architectures, composed of different types of processor cores. One approach is to
implement an Asymmetric Multicore processor, that combines a few complex out-of-order
superscalar cores for accelerating sequential code, with many simpler in-order cores for
running parallel code more efficiently [JSMP13]. Another is the Single-ISA Heterogeneous
Multicore4 approach, where cores of different performance and efficiency characteristics
but implementing the same ISA, cooperate in the execution of a single thread – per-
formance critical code can be run on the complex out-of-order processors, but during
phases that do not require as much processing power (e.g. I/O intensive code), execution
seamlessly switches over to the simpler core for efficiency [KFJ+03, KTR+04].

An example of such a design is ARM’s big.LITTLE which is composed of two different
processor types: large out-of-order superscalar Cortex-A15 cores, as well as a small and
efficient Cortex-A7 cores [Gre11]. big.LITTLE can be operated either as an asymmetric
multicore processor, with all cores active, or as a single-ISA heterogeneous multicore,
where each Cortex-A15 core is paired with a Cortex-A7 in such a way that only one of
them is active at a time, depending on the needs of the scheduled threads.

However, running sequential code faster on complex cores also inevitably means a
decrease in energy efficiency, thus such architectures essentially trade-off between perfor-
mance and energy by running non-critical regions of code at lower performance. Gro-
chowski and Annavaram observed that after abstracting away implementation technology
differences for Intel microprocessors, a linear increase in sequential performance leads to
a power-law increase in power dissipation, given by the following equation [GA06]:

Pwr = Perfα where 1.75 ≤ α ≤ 2.25. (2.3)

This puts architects between a rock and a hard place – without utilizing complex pro-
cessors, performance scaling is limited by Amdahl’s Law, and practical concerns, but
with such processors, their high power dissipation means that the Utilization Wall limits
speedup by limiting the number of active parallel resources at one time. Esmaelzadeh et
al note that in order to truly mitigate the effects of dark silicon: “Clearly, architectures
that move well past the Pareto-optimal frontier of energy/performance of today’s designs
will be necessary” [EBSA+11].

The Need for High Energy Efficiency

To mitigate the effects of the Utilization Wall, it is essential to make the most efficient use
possible of the fraction of on-chip resources that can be activated at any given time. Re-
cently, architects have been increasingly relying on custom hardware and/or reconfigurable
architectures, incorporated as part of heterogeneous systems-on-chip, in order to achieve

4Although both involve combining fast cores with simple cores on the same multicore system-on-chip,
a subtle distinction is made between asymmetric and heterogeneous multicores, primarily due to the dif-
ferent use cases these terms are associated with in the cited literature. The former expects sequential/low-
parallelism fraction of an application to run on fewer large cores, with the scalable parallel code running
on many smaller cores, as a direct response to Amdahl’s Law, whereas the latter involves switching a
single sequential thread from a small core to a large core in order to trade-off energy with sequential
performance, as needed. Asymmetric multicores view all cores as available to a single parallel applica-
tion, whereas the heterogeneous multicores approach typically makes different kinds of cores seamlessly
available to a single sequential thread of execution.
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high performance and high energy efficiency on computationally intensive operations such
as video codecs or image processing. This trend has largely been driven by growing de-
mand for highly portable (thus power limited) computing devices like smartphones and
tablets, with strong multimedia capabilities. For such applications, custom hardware is
able to provide as much as three orders of magnitude improvements in performance and
energy efficiency [HQW+10] .

Custom and reconfigurable hardware are types of spatial computing architectures.
The next section describes spatial computation, and considers how its advantages may be
utilized to mitigate the effects of dark silicon. I also describe the current limitations of
spatial computation that need to be overcome in order to be truly useful for addressing
the dark silicon problem, and how several research projects have attempted to do so.

2.4 The Spatial Computation Model

Conventional processors rely on an imperative programming and execution model, where
communication of intermediate operands between instructions occurs via a centralized
memory abstraction, such as a register file or addressed memory location. For such
processors, the spatial locality between dependent instructions – i.e. where they execute
in hardware relative to each other – is largely irrelevant. Instead, what matters is their
correct temporal sequencing – when an instruction executes such that correct state can
be maintained in the shared memory abstraction.

Custom and reconfigurable hardware on the other hand utilize a more dataflow-
oriented, spatial execution model. Dataflow graphs of applications are mapped onto a
collection of processing resources laid out in space, with intermediate operands directly
communicated between producers and consumers using point-to-point wires, instead of
through a centralized memory abstraction. As a result, where in space an operation is
placed is crucial for achieving high efficiency and performance – dependent instructions
are frequently placed close to each other in hardware in order to minimize wiring lengths
in the spatial circuit.

2.4.1 Advantages of Spatial Computation

Scalability

As the number of operations that can execute in parallel is increased, the complexity
of memory elements such as register files in conventional architectures grows quadrati-
cally [ZK98, TA03]. Instead of such structures, spatial architectures (a) rely on programmer-
or compiler-directed placement of operations, making use of abundant locality information
from the input program description to minimize spatial distances between communicating
operations, and then (b) implement communication of operands between producers and
consumers through short, point-to-point, possibly programmable wires.

While broadcast structures like register-files and crossbars are capable of supporting
non-local, random-access, any-to-any communication patterns, recent work by Greenfield
and Moore indicates that maintaining this level of flexibility is unnecessary. By analysing
the dynamic-data-dependence graphs of many benchmark applications, they observe that
the communication patterns of many applications demonstrate Rentian scaling in both
temporal and spatial communication between dependent operations [GM08a, GM08b].
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By making use of short, point-to-point wiring for communication, spatial computation
is able to take advantage of the high locality implied by Rent’s rule: instead of having
the worst-case, quadratic complexity growth of a multi-ported register-file, the commu-
nication complexity of spatial architectures would be governed by the complexity of the
communication graph for the algorithm/program it is implementing.

The communication-centric nature of spatial architectures is also beneficial in address-
ing the general issue of poor wire scaling. Ron Ho et al. observed that: “increased delays
for global communication will drive architectures towards modular designs with explicit
global latency mechanisms” [HMMH01]. The highly modular nature of spatial architec-
tures, together with their exposure of communication resources and their management to
higher levels of abstraction (i.e. the programmer and/or compiler) means that they are
inherently more scalable than traditional uniprocessor architectures.

Computational Density

In complex processor cores, only a small fraction of the die area is dedicated to execution
resources that perform actual computation. Complex processors are designed to maxi-
mize the utilization of a small set of execution resources by overcoming false and control
dependencies, and accelerating true dependence in an instruction stream. Consequently,
the majority of core resources are utilized in structures for dynamically exposing concur-
rency from a sequential instruction stream: large instruction windows, register renaming
logic, branch prediction, re-order buffers, multi-ported register files, etc.

Spatial architectures instead dedicate a much larger fraction of area to processing
elements. Per unit area, this allows spatial architectures to achieve much higher com-
putational densities than conventional superscalar processors [DeH96, DeH00]. Provided
that applications can be mapped efficiently to spatial hardware such that the abundant
computational elements can be effectively utilized, spatial architectures can achieve much
greater performance per unit area. Given the fact that the proportion of usable on-chip
resources is shrinking due to the Utilization Wall, the higher computational density of-
fered by spatial architectures is an effective way of continuing to scale performance by
making more efficient use of available transistors.

Energy Efficiency

Due to poor wire scaling, the energy cost of communication now far exceeds the energy
cost of performing computation. Dally observes that transferring 32-bits of data across
chip consumed the energy equivalent of 20 ALU operations in the 130nm CMOS process,
which increased to about 57 ALU operations in the 45nm process, and is only expected
to get worse [Dal02, MG08].

The communication-centric, modular, scalable, and decentralized nature of spatial
architectures makes them well-suited to also addressing the energy efficiency challenges
posed by poor wire scaling. Exploitation of spatial locality reduces the distances signals
must travel, while reliance on decentralized point-to-point interconnect instead of multi-
ported RAM and CAM (content-addressable memory) structures reduces the complexity
of communication structures.

Programmable spatial architectures are able to reduce the energy cost of programma-
bility in two more ways. First, instead of being broadcast from a central instruction store
to execution units each cycle (such as the L1 instruction cache), ‘instructions’ are config-
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ured locally near each processing element, thereby reducing the cost of instruction stream
distribution. Secondly, spatial architectures are able to amortize the cost of instruction
fetch by fixing the functionality of processing elements for long durations – when executing
loops, instructions describing the loop datapath can be fetched and spatially configured
once, then reused as many times as the loop iterates. DeHon demonstrates in [DeH13],
that due to these factors, programmable spatial architectures exhibit an asymptotic en-
ergy advantage over conventional temporal architectures.

A further energy efficiency advantage can be realised by removing programmability
from spatial computation structures altogether. Instead of utilizing fine-grained pro-
grammable hardware like FPGAs, computation can be implemented as fixed-function
custom hardware, eliminating the area, energy, and performance overheads associated
with bit-level logic and interconnect programmability. For certain applications, this ap-
proach has been shown to provide as much as three orders of magnitude improvements
in energy efficiency over conventional processors [HQW+10], and almost 40× better ef-
ficiency than a conventional FPGA, with its very fine-grained, bit-level programmable
architecture [KR06]. While this improved efficiency (and often performance) comes at
the cost of flexibility, given the ever-diminishing cost per transistor thanks to Moore’s
Law, incorporating fixed-function custom hardware is an increasingly attractive option
for addressing the utilization wall problem by actively making use of dark silicon through
hardware specialization.

Of course, a middle-ground does exist between highly-programmable but relatively
inefficient FPGAs and inflexible but efficient custom hardware: researchers are increas-
ingly developing coarse-grained reconfigurable arrays (CGRAs), that are optimized for
specific application domains by limiting the degree and granularity of programmability
in their designs. This is done for instance by having n-bit ALUs and buses, instead of
bitwise programmable LUTs and wires. Examples of such architectures are discussed in
Section 2.4.3.

However, there remain several issues with spatial architectures that must be addressed
before they can be more pervasively utilized to mitigate the effects of dark silicon, par-
ticulary for the general-purpose computing domain.

2.4.2 Issues with Spatial Computation

Despite its considerable advantages, spatial computation has not found ubiquitous uti-
lization in mainstream architectures, due to a variety of issues. Many of these issues
are often specific to particular types of spatial architecture, and could be addressed by
switching to a different type. For instance, FPGAs provide a high degree of flexibility, but
incur high device costs due to their specialized, niche-market nature, as well as exorbitant
compilation times due to their fine-grained nature. This makes it difficult to incorporate
them into existing software engineering practices that rely on rapid recompilation and
testing. FPGAs also incur considerable cost, area, performance, and efficiency penalties
over custom hardware, limiting the scope of their applicability to application areas where
their advantages outweigh their drawbacks [Sti11].

Some of the efficiency, performance and cost issues can be mitigated by utilizing fixed-
function custom hardware, or domain-specific CGRAs, as suggested by several academic
research projects [KNM+08, MCC+06, VSG+10]. However, there are two fundamental
issues for spatial computation that must be addressed before such architectures can be
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easily and pervasively used.

Programmability

Implementing computation on spatial hardware is considerably more difficult than writ-
ing code in a high level language. This is a direct consequence of the spatial nature of
computation. Whereas conventional processors employ microarchitecture-level dynamic
placement/allocation of operations to execution units, and rely on broadcast structures
for routing of operands, spatial architectures instead relegate the responsibility of opera-
tion placement and operand routing to the higher levels of abstraction. The programmer
and/or the compiler (and in some cases even the system runtime) are now responsible for
explicitly orchestrating placement, routing, and execution/communication scheduling of
individual operations and operands. This is analogous to the way that the shift to mul-
ticore meant that the the programmer was responsible for exposing concurrency, except
that spatial computation makes this far more complex, as much more low-level hardware
details must now be managed explicitly.

A related issue is that of hardware virtualization: for conventional processors, pro-
grammers remain unaware of the resource constraints of the underlying execution envi-
ronment – for a given ISA, the hardware may implement a simple processor with fewer
execution units, or a complex processor with more. The programmer need not be aware
of this difference when writing code. On the other hand, the spatial nature of computa-
tion also exposes the hardware capacity constraints to higher levels of abstraction. The
programmer must in most cases ensure that this developed spatial description satisfies all
cost, resource or circuit-size constraints.

Historically, programmers relied on low-level hardware description languages (HDLs)
such as Verilog and VHDL to precisely specify the hardware for the functionality that they
wished to implement. More recently, design portability and programmer productivity have
been improved thanks to sophisticated high-level synthesis (HLS) tools, that allow the
programmer to define hardware functionality using a familiar high-level language (HLL).
Many such tools support a subset of existing HLLs like C, C++, or Java [CLN+11,
CCA+11], while some augment these languages with specialized extensions to simplify
concurrent hardware specification in a sequential language [Pan01, PT05]. At the same
time, common coding constructs that enhance productivity, such as recursion, dynamic-
memory allocation and (until recently) object-oriented code are usually not permitted.

Furthermore, the quality of output from such tools is highly sensitive to the coding
style used [Sti11, SSV08], thus requiring familiarity with low-level digital logic and design
optimization in order to optimize the hardware for best results. Recent HLS tools manage
to provide much better support for high-level languages [CLN+11, CCA+11], but never-
theless, the spatial hardware programming task remains one of describing the hardware
implementation in a higher level language, instead of merely coding the algorithm to be
implemented.

Due to the difficulty and cost of effectively programming spatial architectures, their
use has largely been relegated to numeric application domains where the abundant paral-
lelism is easier to express, and the order-of-magnitude performance, density and efficiency
advantages of spatial computation far outweigh the costs of their programming and im-
plementation.
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Amenability

Conventional processors dedicate considerable core resources to managing the instruction
stream, and identifying and overcoming name and control dependences between individual
instructions to increase parallelism. On the other hand, spatial architectures dedicate
very few resources to such dynamic discovery of concurrency, opting instead for high
computational density by dedicating far more area to execution units and interconnect.
In order to make full use of the available execution resources, discovering and overcoming
dependences then becomes the responsibility of higher levels of abstraction.

Overcoming many statically (compile-time) known name dependences becomes trivial
through use of point-to-point communication of intermediate values, since there is no
centralized register file with a finite number of registers that must be reused for multiple
values. Also, unlike the total order on instructions imposed by a sequential instruction
stream, spatial architectures directly implement the data-flow graph of an application,
which only specifies a partial order on instructions considering only memory and true
dependences.

However, overcoming dependences that require dynamic (runtime) information be-
comes more difficult, as the statically-defined structure of a spatial implementation cannot
be easily modified at run-time. Code with complex, data-dependent branching requires
aggressive control-flow speculation to expose more concurrency. Based on code profil-
ing, the compiler may be made aware of branch bias – i.e. which side of a branch is
more likely to execute in general – but it cannot easily exploit knowledge of a branch’s
dynamic behavior to perform effective branch prediction, which tends to be significantly
more accurate [MTZ13]. Similarly, code with pointers and irregular memory accesses in-
troduces further name dependences that cannot be comprehensively overcome with only
compile-time information (e.g. through alias-analysis).

Due to these issues, spatial architectures have thus far largely been utilized for applica-
tion domains that have regular, predictable control-flow, and abundant data or task-level
parallelism that can be easily discovered at compile-time. Conversely, for general-purpose
code that contains complex, data-dependent control-flow, spatial architectures consis-
tently exhibit poor performance.

Implications

For these reasons, spatial architecture utilization is restricted largely to numeric applica-
tion domains such as multimedia, signal-processing, cryptography, and high-performance
computing, where there is an abundance of data-parallelism, and often regular, predictable
control-flow and memory access patterns. Due to an increasing demand for highly portable
yet functional, multimedia oriented devices, custom hardware components are commonly
included in many smartphone and tablet SOCs, particularly to accelerate video, radio-
modem, and image processing codecs. Such custom hardware presents an effective utiliza-
tion of dark silicon, since these components are only activated when implementing very
specific tasks, and remain dark for the remainder of the time.

While FPGAs are unsuitable for the portable computing domain due to their high area
and relatively higher energy cost, they are increasingly being utilized in high performance
computing systems, again to accelerate data intensive tasks such as signal-processing for
oil and gas exploration, financial analytics, and scientific computing [Tec12].

However, with growing expectations of improved performance scaling with future tech-
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nology generations, as well as critical energy-efficiency concerns due to the utilization wall,
it is becoming increasingly important to broaden the applicability, scope and flexibility
of spatial architectures so they may be utilized to address these issues. Section 2.4.3
highlights several recent research projects that attempt to address the programmability
and/or amenability issues with spatial computation. This brief survey shows that while
considerable success has been achieved in addressing the programmability issue, address-
ing amenability (by improving sequential code performance) has proven more difficult,
especially without compromising on energy efficiency.

2.4.3 A Brief Survey of Spatial Architecture Research

While there are many examples of research projects developing spatial architectures tar-
geted at numeric application domains like multimedia, signal processing etc. [HW97,
PPM09, PNBK02], this brief survey focuses on selected projects that attempt to address
at least one, if not both of the key limitations of spatial architectures, namely programma-
bility and amenability.

RICA: The Reconfigurable Instruction Cell Array [KNM+08]

RICA is a coarse-grained reconfigurable architecture designed with the goal of achieving
high energy efficiency and performance on digital signal processing applications. RICA is
programmable using high-level languages like C, and executes such sequential code one
basic-block at a time. To conserve energy, basic-blocks are ‘depipelined’, meaning that
intermediate operands are only latched at basic-block boundaries, reducing the number of
registers required in the design, but resulting in each basic block executing with a variable
latency. To address this, execution of instructions in a block are scheduled statically, so
that the total latency of each block is known at compile-time. This known clock latency
is then used to enable the output latches from each basic block after the specified number
of cycles.

RICA does not attempt to overcome control-flow dependences in any significant way.
No support is provided for control-flow speculation, though the compiler does implement
some optimizations such as loop unrolling and loop fusion that reduce some of the control-
flow overheads. Though not mentioned, RICA might be able to implement some specula-
tive execution through the use of compile-time techniques such as if-conversion [AKPW83]
and hyperblock formation [MLC+92] to combine multiple basic blocks into larger blocks
and expose more ILP across control-flow boundaries – such approaches are already used
for generating statically scheduled VLIW code [ACPP05].

While RICA is able to address the issue of programmability to some degree, it still
suffers from poor amenability, and as such is limited to accelerating DSP code with simple
control-flow. RICA provides 3× higher throughput than a low power Texas Instruments
TI C55x DSP processor, but with 2-6× lower power consumption. Compared to an
8-way VLIW processor (the TI 64X processor), RICA achieves similar performance on
applications with simple control-flow, again with a 6× power advantage. However, for
DSP applications with complex control-flow, RICA performs as much as 50% worse than
the VLIW processor despite the numeric nature of the applications.
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The MIT RAW Architecture [TLM+04]

The RAW architecture was developed to address the problem of developing high through-
put architectures that are also highly scalable. Unlike RICA’s Coarse-Grained Recon-
figurable Array, RAW is classified as a massively parallel processor array (MPPA), since
each of its processing elements is not simply an ALU, but a full single-issue, in-order
MIPS core, with its own program counter. Each such core executes its own thread of
code, and also has an associated programmable router. The ISA of the cores is extended
with instructions for explicit communication with neighbouring cores.

The RAW architecture supports the compilation of general-purpose applications through
the use of the RAWCC compiler, which is responsible for partitioning code and data across
the cores, as well as statically orchestrating communication between cores. Much like a
VLIW architecture, the responsibility for exposing and exploiting ILP rests with the
compiler.

Compared to an equivalent Pentium III processor, a 16-tile RAW processor is able to
provide as much as 6× performance speedups on RAWCC compiled numeric applications.
Unfortunately, performance on non-numeric sequential applications is as much as 50%
worse. While energy and power results are not provided, the 16-tile RAW architecture
requires 3× the die area of the Pentium III processor at 180nm.

However, when utilizing a streaming programming model that enables the programmer
to explicitly specify coarse-grained data-parallelism in numeric applications [GTK+02],
RAW is able to provide as much as 10× speedups on streaming and data-parallel appli-
cations over the Pentium III.

DySER [GHN+12]

The DySER architecture is a spatial datapath integrated into a conventional processor
pipeline. DySER aims to simultaneously address two different issues: functionality spe-
cialization, where a frequently executed region of sequential code is implemented as spatial
hardware in order to mitigate the cost of instruction fetch and improve energy-efficiency,
and data-level parallelism, where the spatial fabric is utilized to accelerate numeric code
regions. Unlike many previous CGRAs, DySER relies on dynamically-scheduled, static-
dataflow style execution of operations: instead of the execution schedule being determined
at compile-time and encoded as a centralized finite-state machine, each processing element
in the DySER fabric is able to execute as soon as its input operands are available.

DySER relies on a compiler to identify and extract frequently executed code regions
and execute them on the spatial fabric. The DySER fabric does not support backwards
(loop) branches or memory access operations: code regions selected for acceleration must
therefore be partitioned into a computation subregion and a memory subregion, with
the former mapped to the DySER fabric. All backwards branches and memory access
operations are executed in parallel on the main processor pipeline. From the perspective
of the processor, a configured DySER fabric essentially looks like a long-latency, pipelined
execution-unit.

As the DySER fabric need not worry about managing control-flow or memory ac-
cesses, this approach greatly simplifies its design. However, being tightly coupled with
a conventional processor considerably limits the advantages of spatial computation for
the system as a whole. Without support for backwards branching, DySER is limited to
accelerating code from the inner-most loops of applications. Furthermore, the efficiency
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and performance advantages of the spatial fabric can be overshadowed by the energy cost
of the conventional processor that cannot be deactivated while the fabric is active.

A 2-way out-of-order superscalar processor extended with a DySER fabric is able to
achieve a speedup of 39% when accelerating sequential code, over the same processor
without DySER. However, only a 9% energy efficiency improvement is observed. On
data-parallel applications, DySER achieves a 3.2× speedup, with a more respectable 60%
energy saving over a conventional CPU.

Wavescalar [SSM+07]

The Wavescalar architecture was designed with two objectives in mind: (1) develop a
highly scalable, decentralized processor architecture, (2) that matches or exceeds the per-
formance of existing superscalar processors. The compiler for Wavescalar compiles HLL
code into a dataflow intermediate representation: the Wavescalar ISA. Unlike conventional
processor ISAs, the Wavescalar ISA does not have the notion of a program counter or a
flow of control. Instead, execution of each operation is dynamically scheduled in dataflow
order. Abandoning the notion of a flow of control between blocks of instructions allows
Wavescalar to concurrently execute instructions from multiple control-independent regions
of code, effectively executing along multiple-flows of control, as described by Lam [LW92]
(this is discussed in greater detail in Chapter 3).

Wavescalar employs the dynamic dataflow execution model [AN90], meaning that
multiple copies of each instruction in the Wavescalar ISA may be active at any time,
and may even execute out of order, depending on the availability of each copy’s input
operands. This is similar to an out-of-order superscalar processor, which implements a
restricted version of the dynamic-dataflow execution model for instructions in its issue
window [PHS85].

The original implementations of the dataflow execution model in the 1970’s and 1980’s
did not support the notion of mutable state, and hence were unable to support compilation
of imperative code to dataflow architectures, instead relying on functional and dataflow
programming languages [WP94, Tra86]. To support mutable state, Wavescalar introduces
a method of handling memory-ordering called wave-ordered memory, that associates se-
quencing information with each memory instruction in the Wavescalar ISA. Wave-ordered
memory, enables out-of-order issue of memory requests, but allows the memory system to
correctly sequence the out-of-order requests and execute them in program order. Thus a
total load-store sequencing of side-effects in program-order can be imposed.

Wavescalar currently does not support control speculation, or dynamic memory dis-
ambiguation. Nevertheless, thanks to its ability to execute along multiple flows of control,
it performs comparably to an out-of-order Alpha EV7 processor on average – outperform-
ing the latter on scientific SpecFP benchmarks, while performing 10-30% worse than the
Alpha on the more sequential, control-flow intensive SpecINT benchmarks. While not im-
plemented, Swanson et al. estimate that with perfect control-flow prediction and memory
disambiguation, average performance could be improved by 170% in the limit.

As energy-efficiency was not a stated goal for the Wavescalar architecture, no en-
ergy results are presented. However, efficiency improvements from the Wavescalar ar-
chitecture can be expected to be limited, since unlike statically scheduled architectures
(PPA [PPM09], RICA [KNM+08], C-Cores [VSG+10]) or static-dataflow architectures
(DySER [GHS11], Phoenix/CASH [BVCG04]), Wavescalar incurs considerable area and
energy overheads in the form of tag-matching hardware to implement the dynamic-
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dataflow execution model. Only a small fraction of each Wavescalar processing element
(PE) is dedicated to the execution unit, reducing its computational density advantage –
the majority of PE resources are used to hold up to 64 in-flight instructions, along with
tag-matching, instruction wake-up and dispatch logic.

TRIPS [SNL+04] and TFlex [KSG+07]

The TRIPS architecture had similar design goals to the Wavescalar project: develop a
scalable spatial architecture that can overcome poor wire-scaling, while continuing to
improve performance for multiple application types, including sequential code. TRIPS
aimed to be polymorphic, i.e. capable of effectively accelerating applications that exhibited
instruction, data, as well as thread-level parallelism.

Unlike the purely dataflow nature of the Wavescalar ISA, TRIPS retained the notion
of a flow-of-control, utilizing a hybrid approach that attempted to combine the familiarity
of the Von-Neumann computation model with the spatial, fine-grained concurrency of the
static dataflow execution model. A program for TRIPS was compiled to a Control-Data
Flow Graph (CDFG) representation. Unlike the pure dataflow Wavescalar ISA, TRIPS
retained the notion of a sequential order between basic-blocks in a CFG, but like RICA,
only a dataflow order is expressed within each such acyclic block.

As it is important to overcome control-flow dependences in order to achieve high
performance on sequential code, TRIPS utilizes a combination of static and dynamic
techniques to perform control speculation. The TRIPS compiler relies on aggressive loop-
unrolling and flattening (i.e. transforming nested loops into a single-level loop) to reduce
backwards branches, and then reduces forward branches by combining multiple basic-
blocks from acyclic regions of code into hyperblocks [MLC+92, SGM+06].

The TRIPS architecture incorporates a 4 × 4 spatial grid of ALUs, onto which the
acyclic dataflow graph of each hyperblock is statically placed and routed by the com-
piler. To accelerate control-flow between hyperblocks, TRIPS utilizes aggressive branch
prediction hardware to fetch and execute upto 8 hyperblocks speculatively, by mapping
each into its own separate context on the 4x4 grid. This approach has its own trade-offs:
correct prediction of hyperblocks can potentially enable much greater performance, but
incorrect prediction incurs a considerable energy and performance cost, as the misspecu-
lated hyperblock and all its predicted successors must be squashed and a new set of blocks
fetched.

TRIPS incurs considerable hardware overheads due to managing hyperblocks in sep-
arate contexts, dynamically issuing instructions from across multiple hyperblocks, and
effectively stitching hyperblocks together to communicate operands between hyperblock
contexts [Gov10]. As a result of this complexity, despite the advantages of largely decen-
tralized spatial execution, TRIPS exhibits only a 9% improvement in energy efficiency
compared to an IBM Power4 superscalar processor, at roughly the same performance,
when executing sequential code.

More recent work shows that TRIPS performance on sequential SpecINT benchmarks
is 57% worse on average cycle-counts than an Intel Core2 Duo processor (with only one
core utilized) [KSG+07]. Kim et al. attribute this poor performance to the limitations of
their academic research compiler, as code must be carefully tuned to produce high perfor-
mance on TRIPS. A newer version of TRIPS, called TFlex, manages to improve average
sequential performance by 42% over TRIPS, while dissipating the same power. This is
achieved primarily by allowing the compiler to adapt the hardware to the requirements
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of the application more accurately – TFlex does not constrain execution to a fixed 4× 4
grid of PEs, instead allowing the compiler to select the appropriate grid configuration for
each application.

The CMU Phoenix/CASH [BVCG04]

The CMU Phoenix project developed the Compiler for Application Specific Hardware
(CASH), the goals of which were to maximize the programmability, scalability, perfor-
mance and energy efficiency potential of custom-computing by compiling unrestricted
high-level language code to asynchronous static-dataflow custom hardware. Instead of
targeting a specific spatial architecture like TRIPS, Wavescalar or DySER, the CASH
compiler transformed largely unrestricted5 ANSI C code into a custom hardware descrip-
tion in Verilog.

The CASH compiler converted C code into the ‘Pegasus’ IR – a CDFG-derived dataflow
graph which could be directly implemented in hardware. Like the TRIPS compiler, Pe-
gasus relied upon aggressive loop unrolling and hyperblock formation to mitigate control-
flow dependences and expose ILP. However, unlike TRIPS, the generated application-
specific hardware (ASH) did not incorporate any branch prediction to overcome inter-
block control-flow dependences at run-time. As a result, while instructions from across
multiple hyperblocks (or even multiple instances of the same hyperblock) could execute
in parallel, they would only do so when the control-flow predicate for each hyperblock
had been computed.

Being full-custom hardware, ASH avoided the overheads of dynamic instruction-stream
management and dataflow stitching incurred by TRIPS. By employing static-dataflow in-
stead of dynamic-dataflow, ASH avoided the costs of dynamic tag-matching and instruc-
tion triggering logic incurred by Wavescalar. A further efficiency improvement results
from the fact that applications are implemented as fully asynchronous hardware, thus
the dynamic power overhead of driving a clock-tree, which forms a significant proportion
of dynamic power dissipation in synchronous circuits, is avoided. In combination, these
factors allow the generated hardware to achieve three orders of magnitude greater energy
efficiency than a conventional processor. One drawback of the CASH approach is that
the size of an ASH circuit generated is proportional to the number of instructions in the
code being implemented.

In order to overcome this issue, as well as target a more flexible, reconfigurable hard-
ware platform, Mishra et al. developed Tartan, a hybrid spatial architecture that loosely
coupled a conventional processor with an asynchronous CGRA. The conventional pro-
cessor implements all the code that could not be compiled for the CGRA, in particular
handling library and system calls. Unlike DySER, the CGRA is largely independent of
the conventional processor and able to access the memory hierarchy independently. Thus
while the CGRA is active, the coprocessor may be deactivated to conserve power.

The Tartan CGRA provided a 100× energy-efficiency advantage over the same code
implemented on a simulated out-of-order processor [MCC+06]. Tartan also alleviated the
circuit size issue by supporting hardware virtualization in the CGRA [MG07]: during
program execution, the ASH implementations of required program functions would be
fetched and configured into the CGRA, and evicted once more space was needed for

5Even recursive functions are supported. Only missing was support for library and system calls, run-
time exception handling (using signal() and wait(), setjmp() and longjmp() functions). Code containing
these types of operations is offloaded to a loosely-coupled conventional processor.
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newer functions. This allowed a fixed-size CGRA to implement an arbitrary sized ASH
circuit, so long as the size of an individual function did not exceed the capacity of the
CGRA.

The performance characteristics of ASH follows a similar pattern observed in earlier
projects: for embedded, numeric applications with simple control-flow, ASH achieves
speedups ranging from 1.5-12×, but for sequential code, ASH can be as much as 30%
slower than a simulated 4-way out-of-order superscalar processor [BAG05]. Budiu et al.
identify two key reasons for this limitation: the lack of control-flow speculation between
hyperblocks, and the fact that the dynamic-dataflow model approximated by conventional
out-of-order processors is fundamentally more powerful than the static-dataflow model.

Conservation Cores [VSG+10]

The GreenDroid project developed the Conservation Cores approach, designed specifically
to mitigate the effects of the utilization wall. Their objective was to identify frequently
executing regions of code in a system, and implement these as patchable6 custom hard-
ware cores. Unlike conventional systems-on-chip that incorporate custom hardware for
accelerating numeric applications, conservation-cores focus on energy-efficiency instead of
performance.

Conservation cores is an attempt to make effective use of dark silicon by specializing
available hardware resources, and utilizing a fraction of them as needed. Energy-intensive
code regions are selected for implementation as conservation-cores. These are compiled
to a CDFG style intermediate representation, and then implemented as synchronous,
statically-scheduled custom hardware (with some modifications to incorporate patching
support). A number of conservation cores are loosely-coupled (like Tartan/ASH, and un-
like DySER) with a simple in-order MIPS 24K processor core that executes the remaining
code. Patchable conservation cores are able to provide 10× higher energy efficiency than
the same functionality implemented on the in-order MIPS core, but with a 5-10% perfor-
mance loss compared to the in-order processor.

More recent revisions of this work apply ‘selective depipelining’ to reduce the number
of datapath registers, and incorporate ‘cachelets’ to accelerate memory access to the
cores [SVGH+11]. This has improved efficiency over conservation-cores by 2× on average,
for a total efficiency advantage over the MIPS core of 20×, and improved performance to
about 1.2× the in-order MIPS baseline. Nevertheless, with statically scheduled execution
and limited control-flow speculation, sequential performance of conservation-cores is far
below that of an out-of-order superscalar processor.

2.5 Summary

Computer Architects face several critical challenges to the continued scaling of perfor-
mance with Moore’s Law:

1. Poor wire scaling, together with growing design cost and complexity issues are
driving the development of highly modular, scalable, communication-centric archi-

6Conservation cores are slightly programmable, in that some of their behavior can be modified at
runtime. This puts them conceptually between conventional fixed-function custom hardware, and highly
programmable reconfigurable architectures.
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RICA Cons-Cores CASH TRIPS DySER Wavescalar Superscalar
[KNM+08] [VSG+10] [BVCG04] [Gov10] [GHS11] [SSM+07]

Execution
Scheduling

static static SDF SDF SDF DDF DDF

Control-flow
Acceleration

static static static BP BP MFC BP

Sequential
Performance

Low Low Medium Medium High High High

Numeric
Performance

High High High High High High Medium

Energy Effi-
ciency

High High High Medium Low Low Low

Table 2.1: A summary of features and comparison of energy/performance characteristics of spa-
tial architectures surveyed in Section 2.4.3. SDF = Static Dataflow; DDF = Dynamic Dataflow;
BP = Branch Prediction; MFC = Multiple-flows of Control.

tectures, that require explicit management of communication at higher levels of
abstraction (e.g. by the programmer or compiler).

2. The end of Dennard scaling, and the resultant Utilization Wall, necessitate the
development of highly energy efficient architectures with high computational density,
to provide continued performance scaling with Moore’s Law.

3. The continuing importance of achieving high performance on sequential code, ne-
cessitated by Amdahl’s Law for improving performance on applications with insuffi-
cient explicit parallelism [EBSA+11]. Even for domains with abundant thread-level
parallelism, per-thread sequential performance remains important [H10].

Spatial Architectures are well suited to addressing two of these three issues. They are
modular and decentralized, mitigating the effects of poor wire-scaling, while also provid-
ing high application specific adaptivity and computational density, leading to orders-of-
magnitude improvements in energy efficiency that help mitigate the effects of the utiliza-
tion wall [BVCG04, HQW+10]. In addition, they have also demonstrated high potential
for accelerating applications with abundant data-level parallelism.

However, the crucial problem of amenability still needs to be properly addressed: while
embedded applications with simple, regular control-flow and abundant data-parallelism
can be conveniently compiled to spatial architectures and provide high performance and
efficiency [GHS11, Bud03, KNM+08, PPM09], sequential code with limited data paral-
lelism, complex control-flow, and often irregular memory access patterns runs poorly when
compiled to spatial architectures. Either performance [VSG+10, BVCG04], or energy-
efficiency [SNL+04, GHS11, SSM+07] must be compromised when compiling such code
to spatial architectures. Typically, researchers suggest utilizing complex and energy-
inefficient out-of-order superscalar processors to accelerate such code [BAG05, H10].

Table 2.1 highlights the relative energy/performance trade-offs of the various archi-
tectures surveyed in Section 2.4.3. Several spatial architectures manage to approach or
exceed the high sequential performance of superscalar processors when running sequen-
tial code, but lose much of their efficiency advantage due to significant microarchitectural
overheads incurred by dynamic management of instructions, data-forwarding, or manage-
ment of speculative execution contexts [SSM+07, Gov10, GHS11]. High energy-efficiency
is achieved instead by architectures that generate highly application-specific hardware,
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targeting fixed-function hardware or CGRAs with minimal dynamic instruction or data-
stream management overheads [KNM+08, BVCG04, VSG+10], but these architectures
exhibit poor sequential performance in comparison to a superscalar processor.

It is also important to note that architectures that implement dataflow-style dy-
namic execution scheduling of instructions, as well as some mechanism for overcoming
control-flow dependences (either via branch prediction or exploiting multiple-flows of
control) [BVCG04, MCC+06, SNL+04, SSM+07, GHS11] achieve higher sequential per-
formance than architectures that rely on static execution scheduling and/or have limited
control-flow speculation support [VSG+10, TLM+04].

In order to improve sequential performance in spatial architectures it is therefore
necessary to expose ILP by overcoming control-dependences in sequential code, as well as
to exploit this ILP by utilizing dataflow style dynamic execution scheduling of instructions.
However, in order to do so without compromising the energy efficiency advantages of
spatial hardware, I argue that much of this work ought to be done at the compiler level
instead of the hardware microarchitecture level, in order to minimize runtime energy
overheads. To this end, this dissertation develops a new dataflow compiler IR, designed
to statically expose ILP from control-flow intensive code, and suitable for implementation
as application specific static-dataflow hardware [BVCG04].

Chapter 3, describes the key limitations to achieving high sequential performance in
application specific hardware, and then discusses how this new IR is able to expose ILP
from control-flow intensive code.
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CHAPTER 3

Statically Exposing ILP from

Sequential Code

In Chapter 2, we observed the need to achieve very high energy efficiency, as well as
high sequential performance, in order to mitigate the effects of dark silicon. Different
spatial computation approaches provide either efficiency [KNM+08, BVCG04, VSG+10],
or sequential performance [SSM+07, Gov10, GHS11], but not both. This chapter starts
by discussing the nature of imperative, sequential code, and how concurrency may be
exposed and exploited from it. We then discuss how spatial architectures (custom/recon-
figurable hardware in particular) achieve high energy efficiency by relying primarily on
static exposition of ILP by the compiler or programmer, at the cost of sequential perfor-
mance [CCA+11, BVCG04, MCC+06, VSG+10]. This is contrasted with the primarily
dynamic exposition of ILP in out-of-order superscalar processors, incurring a high energy
cost for improving sequential performance.

Finally, we discuss how the performance limitations of spatial architectures may be
overcome, with the help of the Value State Dependence Graph [Law07], without incurring
the high energy cost of dynamic ILP techniques.

3.1 The Nature of Imperative Code

A simple grammar to represent an assembly-like imperative language is presented in
Figure 3.1. Each operation ‘o’ updates the computational state by reading values from its
input locations, performing the appropriate operation, and assigning a value to its output
location(s). As with modern processor assembly-languages, I assume strict execution
semantics for each operation, i.e. all inputs must be available before an operation can
execute. Storage locations serve as a means of communicating values between producer
and consumer operations. The set of all program locations L constitutes the state of
the computation, and may be considered composed of two sets: L = Reg ∪Mem, with
r ∈ Reg, where Reg is the set of temporary registers, and m ∈ Mem, where Mem is the
set of memory locations1.

1For simplicity, only a few addressing modes are shown, such as register (binary(rsrc1, rsrc2)), im-
mediate (binaryI(rsrc1, imm ∈ Z)), direct (loadDirect(msrc)), and register-indirect (load(raddr), or
store(raddr, rdata)). I also assume that I/O operations are memory-mapped, and volatility issues will
be taken into account by the programmer/compiler that produces such code. Finally, I assume that no
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Given r ∈ Reg,m ∈ Mem, and L = Reg ∪ Mem, where L is the set of ‘locations’
constituting program (and system) state:

Operations o ::= rdest := binary(rsrc1, rsrc2) |
rdest := binaryI(rsrc1, imm ∈ Z) |
rdest := unary(rsrc) |
rdest := select(rpred, rsrc1, rsrc2) |
rdest := loadDirect(msrc) |
rdest := load(raddr) |
mdest := store(raddr, rdata)

Control-Flow c ::= skip | o1; cN | if rP then cT else cF | while rP do cL |
call(cfunction) | return

Figure 3.1: BNF Grammar for low-level imperative code. I assume that I/O is memory-
mapped and handled through the load/store instructions, and that volatility aspects are taken
into account. Also note that for the store operation, the contents of raddr specify the memory
location mdest.

Multiple operations can be composed into an application control-flow graph (CFG), by
making use of the control-flow commands ‘c’. Sequential composition is used to construct
basic blocks (o1; cN), while the ‘if ’ and ‘while’ statements implement control-flow between
basic-blocks.

This typical representation of imperative code makes the data dependencies between
operations implicit – i.e. values are passed between producer and consumer operations in-
directly, through storage locations – whereas the control-flow ordering between operations
is made explicit. It is expected that the order of execution of operations and control-flow
commands (and hence the order of updates to the set of all locations L) will occur strictly
in the control-flow order specified by the program (i.e. sequentially) in order to ensure
correctness of program execution and predictability of state updates throughout execu-
tion. In conventional processors, this is implemented by utilizing a program-counter, that
specifies the unique next operation that will execute in control-flow order. However, this
strictly sequentializing nature of control-flow can be relaxed in various ways in order im-
prove performance by allowing some concurrent updates to state, without affecting the
correctness of program execution.

Observable vs Trace Semantics: For instance a distinction can be made be-
tween the observable semantics of a program and its trace semantics. As defined by Alan
Lawrence [Law07]: “the observable semantics of a program describe the actions of the
program in terms of a function from its inputs to its outputs (including side-effects2)”.

operation has any side-effects other than updates to the set of register and memory locations L.
2A function is said to have a side-effect if, in addition to returning a value, it also has an observable

interaction with its calling function, the remainder of the program, or the outside world through modi-
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Unlike observable semantics, the trace semantics of a program instead deal with the pre-
cise sequence of steps with which a program will compute its results.

In imperative languages like C, a program or function may receive explicit arguments
as well as the current computational state (analogous to the set of locations L from
Figure 3.1), as input. The function may produce an explicit output value, and/or modify
state before returning: between its invocation and return, the function may allocate
memory for, and update local data-structures and/or temporary variables on the call-
stack, as well as access and update global heap memory. In addition the function may
also execute system calls to perform I/O, dynamically allocate or free heap memory, raise
exceptions, or request other system services.

Any operations in the function that modify state are considered side-effects if these
modifications or their effects remain live – i.e. can affect the observable behavior of the
system – after the function exits. In addition to the function’s output return value, these
side-effects are also part of the observable semantics. For instance, I/O operations or any
changes to heap-allocated memory would be considered side-effects, as such changes often
are visible after the function returns. Conversely, temporary variables allocated on the
call-stack are not typically preserved on function exit, and thus updates to these would
not be considered side-effects.

In order for correctness of the program representation and implementation, only the
observable semantics need to be preserved exactly by any compiler transformation. Thus,
so long as the function outputs, including all of its side-effects, remain indistinguishable
from a strictly sequential, control-flow ordered execution, the execution order for indi-
vidual operations may be relaxed. For non side-effecting operations, the execution order
of operations need only (and must necessarily) be constrained by the data-flow depen-
dencies between operations, as opposed to their control-flow ordering. This allows for
the possibility of accelerating computation by concurrently executing operations that are
data-independent of each other.

With reference to a function ‘cfunction’ written in our imperative language from Fig-
ure 3.1, the observable semantics are concerned with the correct values assigned (and
order of updates) to a subset S of state L, i.e. S ⊆ (Reg ∪ Mem), that comprises the
output of cfunction, as well as its side-effects. The set S would typically exclude most
temporary registers as well as memory locations in the program call-stack, save for those
used to pass input and output arguments. It would of course include all locations in
heap memory that are updated and affect observable program behavior (i.e. remain live)
after cfunction returns, as well as memory-mapped locations utilized to implement I/O
operations or system-calls.

In order to accelerate the execution of sequential imperative code, the goal is therefore
to maximize concurrent execution of operations (i.e. exploit instruction-level parallelism).
To ensure correctness, only the true data dependencies need to be preserved for non side-
effecting operations, while both data dependencies and control-flow ordering must be pre-
served for operations with side-effects3. However, several issues arise when attempting to

fications to the computational state, given by the set of locations L in Figure 3.1. L includes not only
programmer visible or programmer managed locations, but also system locations such as those affected
by I/O operations, system calls, and exceptions.

3In actuality, only the appearance of correct control-flow ordering need be preserved for side-effecting
operations – the execution of such operations may occur out of control-flow order, so long as their
effects become visible to the system in the correct order. This type of decoupling of operation execution
from state-update is extensively utilized in aggressive superscalar processors that often execute memory
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relax the control-flow ordering, and exploit data dependencies between non side-effecting
operations from an imperative program representation like the one from Figure 3.1:

1. Name dependencies (known at compile-time),

2. Overcoming control-flow between basic-blocks, and

3. Memory disambiguation (dependencies only resolved at runtime).

The manner in which different architectures address each of these issues when im-
plementing (C-like) imperative languages affects how much ILP can be exploited, hence
performance improved, for a given section of imperative code.

3.2 Exposing ILP from Imperative Code

This section discusses how both modern out-of-order superscalar processors, as well as
custom hardware (and by extension, energy-efficient spatial architectures) attempt to
overcome these issues, and demonstrates the reasons for the performance advantage of
the former on irregular, sequential, control-intensive code. The sample control-flow code
shown in Figure 3.2a is used to illustrate each of the three issues mentioned above.

3.2.1 False or Name dependencies

Name dependencies, such as write-after-write (WAW) and write-after-read (WAR), occur
due to the need to reuse a finite set of locations during program implementation for storing
the results from an arbitrarily larger (potentially infinite) number of dynamically executed
operations at run-time, and unnecessarily constrain operation execution ordering. In
Figure 3.2a, the pointer variable y is written to by operations 01 and 03, while it is read
by operations 02, 04 and 05. Although there is no dataflow between operations 01 and
03, there is a write-after-write (WAW) hazard. Similarly, there is both a write-after-
read (WAR) and a WAW hazard between operations 02 and 03, but again no dataflow.
The only true data dependencies through the pointer variable y in this basic block are:
01 → 02, 03 → 04, and 03 → 05. A similar set of name dependencies exist for the variable
u. Overcoming name dependencies often involves increasing the number of available
temporary locations.

For instance, a compiler-based approach to reducing name-dependencies in imperative
code is to convert it to static-single-assignment (SSA) representation, where each variable
is written to only once in the code [CFR+91]. As shown in Figure 3.2b, SSA form makes
the dataflow between operations more explicit in the code by avoiding reuse of the same
variable for different purposes. Note however that there still exist name dependencies
between multiple iterations of the same loop – each of the variables (ui, vi, xi, yi, zi) is
reused each time the loop body is re-entered. To reduce run-time name dependencies
due to loops, one solution is to unroll each loop a number of times, introducing new SSA
variable names for each unrolled iteration [Fin10, CM08]. Loop unrolling can help reduce
the effect of loop-carried name dependencies, but often at the cost of increased code-size.

operations speculatively and out-of-order, yet only commit them to the program state in-order. Work
done by Lokhmotov et al on ‘Sieve C++’ also allows the programmer to expose more parallelism by
manually introducing this decoupling in code by delaying side-effects [LMR07].
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(a) A sample imperative CFG.

(b) Static-Single Assignment Form.

(c) SSA Form with if-conversion as well
as predicate-promotion.

Figure 3.2: A sample imperative code CFG (with various optimized versions) to illustrate the
issues that must be overcome in order to expose true data dependencies and exploit concurrency
between operations.
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High-level synthesis tools rely extensively on such static approaches to resolve name
dependencies. However, increased code-size due to loop unrolling often translates into
increased area and resource utilization in the generated custom hardware. Custom hard-
ware also usually employs static execution scheduling, where the execution schedule for
operations is determined at compile-time, and implemented at run-time by a central-
ized finite-state machine [CCA+11, VSG+10]. In the presence of complex control-flow,
unrolling loops when implementing statically-scheduled hardware also affects hardware
complexity and performance, as discussed in Section 3.2.2.

Instead of relying on the compiler, out-of-order superscalar processors employ ‘register-
renaming’ logic to overcome name dependencies dynamically. The small set of ISA regis-
ters used in the input binary are dynamically mapped to a much larger set of renaming
registers. On advantage of this approach is that processors can unroll loops dynamically
instead of at compile-time – with register renaming, multiple instances of the same in-
struction, say from a tightly wound loop, may be issued and executed independently,
without causing any WAW or WAR hazards, and without the increase in code size that
is caused by static unrolling. Register-renaming, combined with dynamic, out-of-order
execution scheduling, allows superscalar processors to approximate the dynamic-dataflow
model of execution [PHS85].

3.2.2 Overcoming Control Flow

In Figure 3.2b, operation 13 is data-dependent upon operations 08 or 10, which only
exhibit a loop-carried data dependency on themselves (and each other). Operations 09
and 11 are side-effects, but also have no data dependencies on preceding instructions
within the while-loop. However, the execution of operations 13, 08 and 10 is constrained
not only by their respective dataflow dependencies, but by their control-flow dependence
on operation 07. The evaluation of 07 must be preceded by several long latency operations:
modulus, and two memory loads (operations 04 and 02).

If we constrain all operations to execute in control-flow order, despite having very sim-
ple data-dependencies, 08, 10, and 13 cannot execute until the control-dependency from
07 is resolved. A similar situation arises when executing operations from across multiple
iterations of the while loop (e.g. through loop unrolling): the control-flow condition for
the next iteration of the while loop (operation 00) is data dependent on operation 12
only, which again only has a loop carried dependence on itself. However, since 12 is again
control-dependent on 07, the start of the next iteration cannot be determined until all
the long-latency operations that 07 requires are completed.

As discussed earlier, in addition to the true data dependencies, correct program exe-
cution requires that control-dependencies must also be respected, but only for side-effects
(and operations with name data dependencies through memory). Several compile-time
and runtime techniques are available for overcoming control-flow dependencies for non-
side-effecting operations.

Modern superscalar processors utilize aggressive branch prediction at runtime to relax
the constraints imposed by control flow on ILP: branch predictors with very high ac-
curacy (≥ 95%) enable effective speculation across multiple branches, providing a much
larger region of code from which multiple independent instructions may be discovered and
executed out of order. To handle cases of branch mis-speculation, processors make use
of an in-order commit buffer (or re-order buffer) to selectively commit executed instruc-
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tions in program order. When a misprediction is detected, executed instructions from the
mispredicted paths can simply be discarded from this buffer, preserving correct program
state. This decoupling of execution of operations from the commitment of their effects
to program state allows superscalar processors to improve ILP by speculatively executing
both side-effecting and non-side effecting operations.

Static approaches to overcoming control-flow rely on enabling speculative and predi-
cated execution from forward branches through if-conversion and/or hyperblock forma-
tion [MLC+92]. These types of approaches are typically utilized by simpler, energy ef-
ficient processors such as those from ARM, or VLIW architectures. Compilers for such
architectures often apply if-conversion together with predicate-promotion in order to con-
vert forward (if-else) control-flow into dataflow. If-conversion involves replacing forward
branches with a computed boolean guard value, that is then used to predicate the ex-
ecution of control-dependent operations. Then, control-dependent operations that do
not cause side-effects may be predicate-promoted, i.e. allowed to execute speculatively,
without becoming data dependent on the guard condition.

Figure 3.2c shows the CFG from Figure 3.2b after if-conversion and predicate-promotion.
The four basic blocks forming the body of the loop have now been combined into a single
large block. The if control-flow command in 07 has been replaced by the computation
of a guard g (07a). The control-dependent side-effect operations (09 and 11) have their
execution predicated by this guard condition such that both may execute, but only one
will have its effects committed to program state, depending on the value of g. While op-
erations 08, 10 and 12 were also control-dependent on 07, as they do not have side effects
(nor any name dependencies), their execution does not need to be predicated by g, i.e.
they have been predicate-promoted, and thus may execute speculatively. Finally, a select
operation is needed to choose the correct new value of v0 (07b), essentially converting
control-flow in this instance to dataflow.

Predicate promotion of 08, 10, and 12 allows their execution in dataflow order without
having to wait for g. As a result the next loop condition (00) can also be computed
much earlier. As if-conversion is only applicable to acyclic code, conventional (or VLIW)
processors that support predicated instructions often augment if-conversion with either
static loop unrolling or dynamic branch prediction to speculatively execute across loop
iterations as well.

Unfortunately, standard approaches to generating custom hardware are unable to take
full advantage of if-conversion – the static execution scheduling typical for most conven-
tional custom hardware implies that such hardware can only be conservatively scheduled
for the multiple possible control-flow paths through the code, leaving it unable to adapt to
runtime variability that may occur due to data-dependent control-flow, predicated side-
effects and memory operations, variable-latency operations, or unpredictable events such
as cache misses.

Furthermore, while speculative execution of non-side-effecting operations is possible
through if-conversion, predication of side-effects is indistinguishable in a static schedule
from execution in control-flow order – in both cases, operations must wait for the com-
putation of the guard/control-flow condition. Also, while if-conversion allows speculative
execution of some forward branches (without side-effects) in custom hardware, currently
no mechanisms exist for safely speculating on backwards branches (loops).

Superscalar processors are able to both speculate across backwards branches, as well as
speculatively execute side-effecting operations. This is due to the fact that such processors
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decouple the execution of an operation from any updates it can make to the program state
L. This is done through the use of some form of ‘commit-buffer’, where the results of all
operations that have been issued and executed are stored temporarily, without becoming
part of the program state. Superscalar processors only commit the results of operations
from this buffer to program state in the correct control-flow order. This decoupling also
provides a convenient mis-speculation roll-back and recovery mechanism – operations,
side-effecting or otherwise, that have been mis-speculated can simply have their results
discarded from the commit buffer.

Custom hardware, with its specialized and minimalist nature, does not have any such
decoupling of operation execution from state update via a commit-buffer. Speculation via
if-conversion on forward branches means that the results of speculatively executed oper-
ations will be discarded at some later synchronization step, such as the select operation
07b from Figure 3.2c. However, without a commit-buffer-like mis-speculation roll-back
and recovery mechanism, speculation is not permitted for side-effecting operations, nor
across backwards branches.

High-level synthesis tools employ static unrolling, flattening and pipelining of loops
in order to decrease the number of backwards branches that would be dynamically exe-
cuted (i.e. by converting them into forward branches) [CM08]. But this can significantly
increase the complexity of the control and multiplexing logic that implements the static
schedule for the hardware datapath, resulting in very long combinational paths that can
overwhelm any gains in IPC [GDGN04, KSP07]. As observed by Gupta et al in [GDGN04]:
“Although loop unrolling and pipelining have been proposed previously for high-level syn-
thesis, we found that when the resource utilization is already high – because of either high
instruction level parallelism in the design or as a result of loop unrolling – the control and
interconnect (multiplexing) costs of further loop unrolling or loop pipelining outweigh the
gains achieved in performance. This is because frequently the longest combinational path
in the circuit (the critical path length) increases so much that the input to output circuit
delay becomes worse”.

Overcoming the performance limitations due to explicit control-flow is the key issue
that needs to be addressed for custom hardware to become performance-competitive with
conventional processors on sequential code [BAG05].

3.2.3 Pointer Arithmetic and Memory Disambiguation

Pointer arithmetic is an established feature of many imperative languages (especially C
and C++). Together with the use of data-dependent control-flow, the implication of
such pointer arithmetic is that the precise sequence of locations that a pointer points-to
at runtime cannot be determined at compile-time, except in the most trivial cases (i.e.
static points-to analysis is undecidable [Lan92]). Pointer arithmetic can therefore often
obfuscate the data dependence between producers and consumers, leaving the potential
for a true or name dependence that can only be resolved at runtime, when the values of
pointer variables are known. This is the ‘unknown address problem’ [PMHS85].

This effect puts an additional constraint on the ordering of memory operations, even
those accessing locations that are not a part of the set S. All accesses to memory locations
that (a) have their ‘address-taken’, or are accessed after pointer arithmetic, and (b) whose
points-to set membership cannot be determined with sufficient precision, must also be
constrained by the program control-flow in a similar manner to side-effecting operations,
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until the precise address locations pointed-to can be discovered at runtime. This constraint
applies even for temporary storage locations on the call-stack that are not typically part
of the set S, and is necessary to preserve data dependencies through such locations.

In Figure 3.2b, while SSA form helps distinguish between pointer locations y0 and y1,
it may not be possible through static analysis to determine whether ∗y0 and ∗y1 refer
to the same value. Thus even though there may not be a data dependence through the
location pointed to by y0, as long as independence cannot be determined with certainty,
operation 02 must precede 03 (02 → 03). Similarly, if it cannot be determined that yi from
successive iterations of the loop will always point to distinct, independent locations, all
accesses through pointer yi across iterations must occur in the control-flow order specified
by the CFG. Thus, although the set of locations pointed-to by yi may be temporary stack
variables and thus not a part of S, any operations that access memory through yi must
also be treated like side-effects (i.e. constrained by control-flow as well as dataflow).

Superscalar processors rely on out-of-order execution and dynamic memory disam-
biguation [SLH90] logic to expose and exploit concurrency between memory operations.
Memory operations are issued to a Load/Store Queue (LSQ) within the processor, where
the processor can dynamically determine execution order after the target addresses for
each such operation are known: execute operations in-order of there is a name dependency
between them, or allow out-of-order execution otherwise.

High-level Synthesis tools for generating custom hardware instead typically rely on
static alias-analysis to disambiguate memory addresses at compile-time and allow concur-
rent execution of memory access operations. The inability to take advantage of precise
run-time information limits the degree of concurrency that can be exposed and exploited
compared to the dynamic disambiguation mechanisms in superscalar processors. To ad-
dress this, work by Budiu improved upon existing high-level synthesis tools by incorpo-
rating a LSQ into their generated custom dataflow hardware, enabling limited dynamic
memory disambiguation and out-of-order memory access execution in addition to the
static memory disambiguation already implemented by their compiler [Bud03].

Their work however demonstrated that despite incorporating support for dynamic
memory disambiguation, control-flow (Section 3.2.2) and loop-carried name dependencies
(Section 3.2.1) remain the primary issues hindering the performance of spatial hardware
on irregular sequential code [BAG05]. Given the existing work on incorporating dynamic
memory disambiguation into spatial hardware, this thesis leaves the study of efficient
dynamic memory disambiguation for future work, and instead focuses on overcoming
control-flow and loop-carried name dependences in spatial hardware.

3.3 The Superscalar Performance Advantage

When it comes to control-intensive code, custom hardware is often limited by its total
reliance on programmer and compiler effort for exposing and exploiting concurrency:

• Static execution scheduling reduces the control-flow and dataflow acceleration achiev-
able via if-conversion on forward branches.

• Custom hardware does not support dynamic branch prediction, and must instead
rely on loop unrolling to expose ILP from loops.
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• Custom hardware must often rely on static alias-analysis for memory disambigua-
tion.

Conversely, modern out-of-order superscalar processors rely extensively on dynamic
effort in order to resolve name dependencies, overcome control dependencies, and disam-
biguate memory addresses:

• Branch prediction, together with misprediction recovery through the in-order com-
mit buffer (re-order buffer) enables aggressive control-flow speculation across both
forwards and backward branches.

• Dynamic, out-of-order execution scheduling, combined with register-renaming, al-
lows superscalar processors to approximate the dynamic-dataflow model of execu-
tion [PHS85].

• Memory operations can frequently be executed concurrently (from within a finite
instruction window), thanks to dynamic memory disambiguation.

Dynamic execution scheduling helps in dealing with unpredictable behavior at runtime
such as variable-latency operations, cache-misses, or branch mispredicts. Instructions are
allowed to execute as soon as their input operands, as well as the appropriate execution
resources, become available. For instance, in the event of a cache miss, only instruc-
tions that are dependent on the stalled instruction would be delayed, while independent
instructions can continue to execute.

The cost of all of this dynamic effort in silicon is incurred in both area and power
dissipation. Figure 3.3 shows the power dissipation figures for a simulated Intel Nehalem
Core i7 processor core running various integer benchmarks. As can be seen, a large
proportion of power is dissipated in the register-renaming logic (OOO Logic), and dynamic
memory disambiguation at the LSQ (OOO Mem). Next, instruction fetch and instruction
caches (IF and Icache) dissipate the most power, followed by the operand forwarding and
bypass network (Bypass) that is used to accelerate true dependencies by forwarding results
between pipeline stages. In fact, only a small fraction of the total power is dissipated by
the integer execution units (Exec Int): about 0.3W, which forms only 3-8% of the total
power dissipated per benchmark.

As mentioned in Section 3.2.3, this thesis will not focus on addressing the memory
disambiguation problem here, as there already exists abundant literature on (a) improving
static pointer analysis and auto-parallelization, (b) or agumenting static analysis with
profiling information [TWFO09], as well as (c) incorporating dynamic disambiguation
logic into spatial hardware [SSM+07, Bud03]. Instead, I focus on the remaining two
advantages of out-of-order superscalar processors identified above: support for aggressive
control-flow speculation, as well as the ability to dynamically overcome loop-carried name
dependences with register-renaming (thereby approximating restricted dynamic dataflow
execution). The objective is to find ways of matching these advantages in spatial hardware,
without incurring the high energy costs associated with the dynamic logic utilized by
conventional processors.

The following case study illustrates the performance advantage of superscalar proces-
sors due to these two features on a region of code the performs poorly when implemented
in conventional, statically scheduled custom hardware.
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Figure 3.3: Power dissipation breakdown for a single core of the Intel Nehalem Core i7 archi-
tecture. Generated using Sniper interval simulator and the McPAT power estimation tool (The
following settings were used for McPAT: VDD = 1.2V ; DVFS enabled; 45nm process).

3.3.1 Case Study 1: Outer-loop Pipelining

Consider for instance, the internal int transpose function from the epic Mediabench bench-
mark given in Figure 3.4. Budiu et al identified this as a region of code that performs
poorly when implemented as custom hardware [BAG05].

At runtime, the inner do-while loop rarely executes more than once and never more
than twice each time, while the outer-loop executes for a large number of iterations. The
branch prediction logic in conventional processors adapts to this execution pattern and
is effectively able to execute multiple copies of the outer loop, i.e. performing outer-loop
pipelining, thereby effectively hiding much of the latency of the % and * operations in
the inner loop. Conventional high-level synthesis tools would implement the control-data
flow graph (CDFG) of this code, shown in Figure 3.5a, as statically-scheduled custom
hardware. Without branch prediction, each basic block (grey boxes) will be executed one
at a time, in sequence. The exit predicates for the active block must be computed before
control can flow to the next block.

One may attempt to alleviate this strict control-flow ordering somewhat by statically
unrolling the loops. Unrolling the innermost loop will not yield significant benefit as it
rarely executes more than once. Unrolling the outer-loop would replicate the blocks that
comprise it, including the inner-loop and the if-block. Figure 3.5b shows the CDFG from
Figure 3.5a unrolled twice. As can be seen, the control-flow within the outer-loop body is
replicated as-is, and must still be accelerated either dynamically through branch predic-
tion, or statically through if-conversion and/or hyperblock formation. Due to presence of
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1/* ============================================

2In-place ( integer) matrix tranpose algorithm.

3Handles non -square matrices , too!

4============================================*/

5void internal_int_transpose(int* mat , int rows , int cols , int modulus

){

6int swap_pos , curr_pos , swap_val;

7
8for (curr_pos=1; curr_pos <modulus; curr_pos++) {

9swap_pos = curr_pos;

10do {

11swap_pos = (swap_pos * cols) % modulus;

12}

13while (swap_pos < curr_pos);

14
15if (curr_pos != swap_pos) {

16swap_val = mat[swap_pos];

17mat[swap_pos] = mat[curr_pos];

18mat[curr_pos] = swap_val;

19}

20}

21}

Figure 3.4: The ‘internal int transpose’ function from the ‘epic’ Mediabench benchmark

the inner-loop cycle, the latter solution is not possible. Due to the lack of mis-speculation
recovery mechanisms for backwards branches and memory operations, neither the inner-
loops nor the memory operations in the if-block can be executed speculatively. Thus,
unrolling the outer-loop provides no benefit in this case, since the predicate computations
of each basic block in the new sequence would still be on the critical path.
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1for (i = 0; i < 100; i++)

2if (A[i] > 0) foo();

3bar();

Figure 3.6: Example C Code for illustration purposes

3.4 Limitations of Superscalar Performance

Despite these key advantages of out-of-order superscalar processors, there exists a funda-
mental limit to how much ILP can be dynamically extracted from a sequential instruction
stream by such a processor. A limit study by Wall [Wal91] considered a hypothetical
64-issue out-of-order superscalar processor with a 2000 instruction issue window, and
found that even assuming perfect memory disambiguation and register renaming, IPC
was limited to between 4-8 for non-numeric sequential code, due to imperfect control-flow
prediction.

A subsequent study by Lam and Wilson confirmed control-flow as the primary cause of
the ILP Wall limiting sequential code performance [LW92]. They also noted that unipro-
cessor performance is limited not just due to imperfect branch prediction, but also because
uniprocessors are inherently limited by having to maintain a single program counter, ef-
fectively exploiting ILP from only a single flow of control. By enabling the identification
of multiple independent regions of code through control dependence analysis, and then
allowing such regions to execute independently, (i.e. exploiting multiple flows of control),
they observed that ILP could again be increased by as much as an order of magnitude.
This was corroborated by a more recent limit study by Mak and Mycroft [MM09].

3.4.1 Case Study 2: Multiple Flows of Control

Consider the sample code in Figure 3.6. A conventional processor would be capable of
dynamically unrolling the for loop and executing instructions from multiple iterations of
the loop. Aggressive branch prediction will also accelerate the transfer of control from
the loop into the foo() function, whenever the if condition is predicted-taken. Once
control-flow switches to foo(), the processor will issue instructions from within foo() until
control returns back to the context of the loop. Assuming foo() contains non-trivial
code, the processor will not be able to simultaneously issue independent instructions
from subsequent iterations of the for -loop, as it is constrained to executing from a single
flow-of-control (i.e. maintaining a single program-counter). Similarly, even though the
contents of the for -loop and the bar() function are control-independent, instructions from
bar() can only be issued once control exits the loop.

Lam and Wilson note that as long as the data-dependencies and side-effect ordering
between different calls to foo() are respected, instructions from multiple copies of foo()
could be issued in parallel. Similarly, instructions from bar() could also be issued concur-
rently with the execution of instructions from multiple copies of foo() and the dynamically
unrolled loop iterations.

Exploiting multiple-flows of control by extending a conventional out-of-order processor
would be impractical, as a conventional processor cannot keep track of multiple-flows of
control and their interdependencies. In order to automatically exploit multiple flows of
control while maintaining a single program-counter, an impractically large instruction
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issue window would be needed that could contain all instructions from multiple copies of
foo(). Furthermore, perfect branch and jump prediction (as well as possibly if-conversion
and inlining of foo()) would be necessary to decide precisely how much dynamic unrolling
of the for -loop is needed, so as to determine when to start fetching instructions from bar().
Without perfect prediction, any misprediction would lead to all non-committed operations
being discarded from the commit-buffer, unless some form of control-dependence analysis
can be incorporated in the processor to determine the control-independent instructions
that need not be discarded [LW92].

Various approaches have been explored to overcome the ILPWall by exploiting multiple-
flows of control. These can be classified according to the level of abstraction they focus
on:

• Programming Model: Conventional multicore systems rely on programmer spec-
ified concurrency – often a shared-memory threaded parallel programming model is
utilized by the programmer to explicitly partition code into multiple threads (hence
multiple flows of control). However, as noted in Section 2.2, due to the difficul-
ties with this programming model, performance gains on non-numeric client-side
applications remain low [BDMF10].

• Compiler Level: Auto-parallelization tools are primarily focused on extracting
data-level parallelism. However, more recent work has studied parallelizing more
irregular code [CJH+12], achieving speedups of 2.25× on a 6-core Intel Core i7-
980X processor. The Wavescalar project is another example where the compiler
IR exposes dataflow parallelism from multiple-flows of control by abandoning the
notion of a program counter (section 2.4.3 provides more details).

• Language/system Runtime: Considerable research has been undertaken into the
area of Thread-Level Speculation (TLS), or Speculative Multithreading (SpMT),
where sequential code is speculatively partitioned into concurrent threads by the
system runtime [YRHBL13]. Recently, such systems have also demonstrated modest
speedups on regular sequential applications with easily discovered parallelism.

• Architecture Level: The Multiscalar architecture was proposed to expose and ex-
ploit multiple-flows of control from a sequential instruction stream by partitioning
the stream into tasks, then executing each task on a distinct processing-element.
Architectural features were utilized to manage data and control-dependencies be-
tween tasks executing on different PEs. Multiscalar exhibited modest speedups over
a conventional architecture on sequential code [SBV95].

These approaches have largely focused on improving performance, and have not con-
sidered energy-efficiency as an objective, or even a constraint.

3.5 Improving Sequential Performance for

Spatial Hardware

Various research projects have attempted to overcome these sequential performance limi-
tations by devising spatial architectures that perform aggressive control flow speculation,

53



dynamic execution scheduling, or both. TRIPS employs both dynamic and static tech-
niques to expose ILP from control-flow intensive code [SNL+04], while DySER offloads
all control-flow speculation duties to its host processor [GHS11]. Both projects utilize the
static-dataflow model for dynamic execution scheduling. On the other hand, Wavescalar
discards the notion of the program-counter, exploits multiple flows of control, and utilizes
the dynamic-dataflow model for execution scheduling. Unfortunately, all three approaches
also significantly compromise the orders-of-magnitude energy-efficiency advantage the cus-
tom/reconfigurable spatial hardware can provide.

In order to overcome the sequential performance limitations of conventional custom
hardware, without compromising the energy efficiency potential of spatial harwdare, I
propose two key changes during high-level synthesis:

• Instead of using a statically scheduled instruction execution model for custom hard-
ware, the dynamically scheduled static-dataflow execution model should be used,
similar to the Phoenix/CASH approach mentioned in Section 2.4.3, and described
in [BVCG04, Bud03]. This approach enables dynamic scheduling without compro-
mising energy efficiency in spatial hardware [MCC+06].

• A new compiler IR is needed to replace the CDFG-based IRs that are traditionally
used for hardware synthesis. This new IR should be based on the Value State De-
pendence Graph (VSDG) [Law07, JM03], as it has no explicit notion of a sequential
flow-of-control between basic-blocks. Instead the VSDG only represents the neces-
sary value and state dependencies in the program. Section 3.6 defines the VSDG,
and its advantages.

3.5.1 Why the Static Dataflow Execution Model?

Unlike conventional statically-scheduled custom hardware, the static-dataflow execution
model for spatial computation proposed by Budiu et al [BVCG04] enables the execution
of each individual operation to be scheduled dynamically, based on the status of its input
and output edges. This allows the spatial hardware to be more tolerant of variable or
unpredictable latencies at runtime.

Static-dataflow provides an additional advantage over statically-scheduled spatial hard-
ware: since each operation is triggered based only on the state of its input and output
edges, the control-path in hardware can be fully decentralised – there is no need for a
centralized finite-state machine (FSM) to implement a compiler-defined schedule (Fig-
ure 3.7a). Instead, each processing element has its own simple, local FSM (Figure 3.7b).
Due to this decentralization, control and multiplexing costs do not scale as the size of the
machine being implemented grows, thus improving hardware scalability [Bud03]. This be-
comes particularly useful when applying loop optimizations like unrolling, flattening and
software pipelining, as centralized control can often increase the longest combinational
path in the circuit and limit performance gains [GDGN04, KSP07].

Unlike the dynamic dataflow model of the Wavescalar architecture (also approximated
by out-of-order processors), each edge in a static-dataflow graph may hold only one value
at any time, thereby avoiding the need for complex operand-tag-matching, instruction
wake-up, and issue logic [SSM+07]. Nevertheless, the dynamic dataflow model is funda-
mentally more powerful than static dataflow, thanks to the former’s ability to eliminate
false dependencies in tightly wound loops by supporting multiple values per dataflow
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(a) Statically-scheduled custom hard-
ware with the schedule implemented
by a centralized FSM.

(b) Dataflow spatial hardware sup-
porting dynamic scheduling. Each
hardware operation has its own FSM.

Figure 3.7: Static execution scheduling vs dynamic execution scheduling in hardware.

edge [BAG05]. Ideally, to match the performance of conventional superscalar processors,
custom-hardware would need to be able to approximate the dynamic-dataflow model, but
must do so without overly compromising its energy-efficiency.

Switching to static-dataflow execution for custom hardware alone goes some way to-
wards improving sequential code performance beyond statically-scheduled hardware, as
demonstrated by the Phoenix/CASH work [BVCG04]. However, performance on sequen-
tial code is still poor compared to an out-of-order processor, primarily due to the control-
flow limitations imposed by their CDFG-based compiler IR [BAG05].

3.5.2 Why a VSDG-based compiler IR?

In order to overcome the limitations of sequential control-flow on ILP in spatial archi-
tectures, I propose the utilization of a new compiler IR that is based on the Value State
Dependence Graph, instead of the traditionally used Control Flow Graph. The main
reason for emphasizing a change at the compiler IR level instead of relying on dynamic,
microarchitectural control-flow acceleration like TRIPS, DySER and Multiscalar is to
maximize energy-efficiency – as much of the effort in exposing ILP as possible ought to
be done at compile time, in order to minimize the effort and energy expended at runtime.

The Value State Dependence Graph is a compiler IR, originally introduced by Johnson
and Mycroft [JM03, Joh04], and then updated by Lawrence [Law07]. Unlike the Control-
Flow Graph, which represents flow of control explicitly and dataflow implicitly, the VSDG
represents the data and side-effect ordering dependencies between operations explicitly,
without any explicit representation of a flow of control. Section 3.6 describes the VSDG
in more detail, and discusses how its structure can expose more ILP from control-flow
intensive code when implemented as static-dataflow spatial hardware.

3.6 Overcoming Control-flow with the VSDG

3.6.1 Defining the VSDG

A detailed definition of the VSDG has been developed by Johnson [Joh04], and revised by
Lawrence [Law07]. This section briefly summarizes the definition developed by Lawrence,
albeit slightly modified.
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Definition 3.1. Value State Dependence Graph (VSDG): A VSDG is a labelled,
directed, acyclic, hierarchical Petri-net4 G = (P, T, E), where:

• Transitions T represent operations. Operations may be of three types:

– Value Transitions represent the basic, non side-effecting unary and binary
arithmetic and logic operations.

– MUX Transitions are used to implement speculative execution by applying
if-conversion – aMUX transition will select and output one of two input values
based on a third, boolean predicate input.

– State Transitions represent those operations that either access or modify
system state and thus must be constrained to execute in control-flow order to
preserve the observable semantics of the program. State transitions are subdi-
vided into a further two types: Memory-access transitions (i.e. load and
store), and Compound transitions, representing nested VSDG subgraphs.

• Places P represent the results of operations. Each place may be of either Value
type, or State type. Value places hold data results produced by a Value operation,
while state places hold tokens produced by State operations representing an access
to, or update of system state. Aside from the places representing intermediate values
within the graph, each VSDG would have a set of input argument places, and a set
of output result places:

– Arguments Pin ⊂ P are places holding values (or state) being passed into a
VSDG.

– Results Pout ⊂ P are the places holding the output values (or state) generated
by a VSDG.

• Edges E ⊆ P ×T ∪T ×P represent dependencies on, and production of results by
operations.

Unlike the explicitly sequential control-flow ordering specified by imperative languages
(and their Control Flow Graphs), the VSDG represents only the true data-dependencies
between operations/transitions, as well as the memory-access and side-effect ordering
dependencies that must be imposed to match the observable semantics of the code being
represented. There is no explicit flow of control from one operation to the next, or
between basic-blocks. Instead of organizing code into basic blocks, forward branches are
represented using MUX-nodes, that implement a selection between two sets of incoming
value and/or state edges based on a third predicate value.

The VSDG is a hierarchical, acyclic data-dependence graph: it represents each function
call (and loop) in the program as a compound operation containing a nested subgraph.
Figure 3.8b shows the if condition from the CFG in Figure 3.2b, expressed as a VSDG.
All of the operations in the VSDG retain their necessary dataflow or value edges from the
CDFG (solid black arrows). State operations such as loads, stores, function call and loops
subgraphs that may access or modify state upon execution, have an additional type of

4For now, the use of a Petri-net is strictly a matter of representation, and does not imply Petri-net
style execution semantics. Lawrence develops graph-reduction based lazy execution semantics for this
representation in [Law07], while this dissertation develops eager, static-dataflow execution semantics for
a modified variant of the VSDG in Chapter 4.
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(a) The code for the if -
condition from Figure 3.2b.

(b) The equivalent VSDG representation.

Figure 3.8: An example VSDG representation of a forward branch. Solid black lines indicate
data-flow dependencies, red dotted lines indicate state/side-effect ordering dependencies, and
the green dotted lines indicate predicate/guard computation.

edge: an incoming and outgoing state edge (red dashed arrows) that pass a token between
state-sensitive operations in order to enforce sequentialization of side effects in program
order. As can be seen, the explicit data (and state ordering) dependencies represented by
the VSDG allow for an implicit if-conversion of forward branches (described previously in
Figure 3.2c).

Double-borders are used to represent compound operations – transitions containing
their own nested VSDG subgraphs. From the perspective of its parent graph, each com-
pound operation appears like any of the other Petri-net transitions: it consumes tokens
from its input places (Pin), and produces output tokens (Pout) atomically – i.e. each
compound transition appears to its parent graph to occur instantaneously5. The isolation
implied by atomicity is guaranteed by the fact that all side-effects and state accesses are
explicitly ordered by the state-edge throughout all levels of the VSDG graph hierarchy.

The VSDG is also a directed acyclic graph, as it contains no backwards edges. The
support for hierarchy enables loops to be represented as acyclic, infinite nested graphs
using tail-recursion [Law07]. Figure 3.9b shows the representation of the for -loop shown
in Figure 3.9a. Similarly, general recursive functions may also be represented using the
hierarchical nature of the VSDG. Figure 3.10b shows the VSFG representation for the
recursive Fibonacci function given in Figure 3.10a.

Lazy vs. Eager Execution Semantics

Lawrence and Johnson both recommended lazy execution (pull) semantics for the VSDG
representation [Law07, Joh04]. Under lazy execution, only the transitions that are re-
quired to produce a result would be allowed to fire. For instance, for the VSDG in
Figure 3.8b, the external environment would pull on the output places of this subgraph
(Pout = {z1, STATE OUT, x1}). This would trigger the computation of the x0 increment,
the z1 = p+ v0, and the MUX transitions. At the MUX transition, a pull request would
trigger the computation of the predicate (u > 256), after which, only the appropriate set

5Though in reality, any transition, compound or otherwise, may take a finite, possibly even variable
amount of time to execute.
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(a) The for -loop from Fig-
ure 3.6.

(b) The equivalent VSDG representation. Note that
the loop only updates state, and does not produce a
value output.

Figure 3.9: An example VSDG representation of a loop as a tail-recursive function. The outer
double-border bounding box represents the definition of the forloop(i, A, STATE) function that
is tail-recursively called within itself. Note the introduction of the STATE argument to the
function definition.

of remaining predecessors would be triggered: if the predicate holds, only the v0 = v−x0

and the printf(“branch true′′) transitions would be pulled and hence executed, while
their false counterparts would not. Lazy evaluation constrains the execution of control-
flow dependent side-effects and state-updates in this manner, ensuring that the observable
semantics of the original program are preserved, even in the absence of an explicit flow of
control in this program representation.

However, as the intent of this work is to improve performance, in particular by over-
coming the constraints of control-flow by enabling speculative execution, we must modify
the VSDG structure slightly to make it suitable for eager/dataflow evaluation semantics,
while allowing for predication of State operations, and predicate promotion of Value op-
erations. An additional reason for preferring eager evaluation is the relative simplicity of
implementing dataflow graphs in hardware, compared to the complexity and overheads
of implementing a graph reduction machine to support lazy evaluation [PJ87].

In order to support eager/dataflow execution semantics, while also permitting specu-
lative execution of control-dependent operations, we must modify the VSDG slightly: in
addition to the state input and output edges associated with each state operation, a predi-
cate input edge must also be incorporated. Each basic block in the original program CFG
will have an equivalent predicate expression implemented as additional boolean operations
in the VSDG. Correct control over the execution of state operations is thus implemented
by predicating their execution, as described previously in Section 3.2.2.

Figure 3.11 shows the VSDG from Figure 3.8b with the additional predicate edges
incorporated. Note that with eager evaluation, all operations would be ready to execute
as soon as their inputs are available. However, the state operations printf(“branch true′′),
and printf(“branch false′′) have an additional predicate input, which ensures that only
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(a) The code for a recursive
Fibonacci function.

(b) The equivalent VSDG representation. Note that
this function produces both a state and a value out-
put.

Figure 3.10: The VSDG representation of the recursive fibonacci function.

one of them will access/update state, depending on the value of the guard condition (u >
256). As in Figure 3.2c, the value operations 08 (vT = v−x0), and 10 (vT = v+ x0) have
been predicate-promoted, as they do not have any side-effects. To distinguish between the
VSDG as described by Lawrence and Johnson, this predicated, eager-evaluation version
of the VSDG will from now on be referred to as a Value State Flow Graph, or VSFG.

Similarly, Figures 3.12 and 3.13 show the VSFG equivalents of the VSDGs shown in
Figures 3.9b and 3.10b, respectively. Again, thanks to predication of state operations,
note that the next iteration of the for-loop (i.e. the recursive call to forloop(i, A, STATE,
pred)), will only be triggered if the next loop predicate (i < 100) is true. The same is
true for the nested subgraph implementing the function foo(STATE, pred).

Generating Predicate Expressions for Eager Evaluation

The process of converting imperative code into an equivalent VSFG will be described
in greater detail in Chapter 5. Here, I briefly describe how predicate expressions are
generated for each basic block from the CFG of the input code. Part of the process for
converting to the VSFG involves extracting all loops in the code into their own functions,
and then transforming these into tail-recursive functions. This transformation means
that each of the constituent functions in the application code will have acyclic control-
flow graphs. Figures 3.14b and 3.14a show the acyclic control-flow graphs for a loop
and a non-loop function, respectively, from the AES benchmark that forms part of the
CHStone suite [HTH+08]. For the function CFG in Figure 3.14b, the basic block labelled
tailRecurseBlock contains the tail-recursive call of the function to itself.

Given an acyclic control-flow graph, predicate expressions for each of the basic blocks
in the graph may be computed relative to the first, or entry block. Recall that all State
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Figure 3.11: The equivalent VSFG representation to the VSDG from Figure 3.8b. Note that
all State operations are now predicated, while Value operations are predicate-promoted.

Figure 3.12: The equivalent VSFG representation to the VSDG from Figure 3.9b.
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Figure 3.13: The equivalent VSFG representation to the VSDG from Figure 3.10b.

operations are to be controlled by predicates, including nested subgraphs representing
function calls. Thus the predicate of each entry block itself would be the input predicate
from the calling function, written as inPred. Let us denote the predicate associated with
a block b as p(b). Thus, p(b) would drive the predicate inputs of all state operations in b
– if p(b) holds, then all state operations within b will execute non-speculatively, as soon
as their remaining value and state-edge inputs are available.

Similarly, a control-flow edge between two blocks b1 and b2 will also have an associated
predicate, denoted by p(b1, b2), essentially representing the condition evaluation for a
conditional branch at the end of block b1. If p(b1, b2) holds, this implies that control
will pass from block b1 to block b2, assuming control-flow has reached block b1 (i.e. if
p(b1) also holds). As such condition computations are typically value operations, and
may execute speculatively in the VSFG, it is essential that the predicate for block b2 be
generated using both the block predicate for b1, and the edge predicate for the edge from
b1 to b2, as follows: p(b2) = p(b1) . p(b1, b2). Using this notation, we can compute the
predicate expressions for each of the basic blocks in an acyclic CFG. For the CFG from
Figure 3.14a, the predicate expressions for each of the basic blocks can be computed as
shown in Equations 3.1 and 3.2. Each basic block in the original CFG will therefore have
an equivalent predicate expression implemented as additional boolean operations in the
VSFG.

Since we have:

p(entry, b) = p(entry, a)

p(a, d) = p(a, c)

p(b, f) = p(b, e)

p(c, g) = p(c, f)

p(d, h) = p(d, f)

(3.1)
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(a) Acyclic CFG for a non-loop function.

(b) Acyclic CFG for a loop, extracted into
its own, tail-recursive function.

Figure 3.14: Sample loop and non-loop CFGs from the AES benchmark in the CHStone Bench-
mark Suite [HTH+08]. These CFGs were generated using an LLVM pass, after preprocessing
the benchmark code to extract loops into tail-recursive functions.
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Therefore:

p(entry) = inPred

p(a) = p(entry) . p(entry, a)

p(b) = p(entry) . p(entry, a)

p(c) = p(a) . p(a, c)

p(d) = p(a) . p(a, c)

p(e) = p(b) . p(b, e)

p(f) = p(b) . p(b, e) + p(c) . p(c, f) + p(d) . p(d, f)

p(g) = p(c) . p(c, f)

p(h) = p(d) . p(d, f)

p(return) = p(e) + p(f) + p(g) + p(h)

(3.2)

Enabling Control-Dependence Analysis

As boolean expressions, predicates for each basic block may be minimized. Consider, for
instance the predicate p(return) for the return block in Equations 3.2. Expanding the
constituent terms, we get:

p(return) = p(e) + p(f) + p(g) + p(h)

=
p(b) . p(b, e) + p(b) . p(b, e) + p(c) . p(c, f) + p(c) . p(c, f) +

p(d) . p(d, f) + p(d) . p(d, f)

= p(b) + p(c) + p(d)

= p(entry) . p(entry, a) + p(a) . p(a, c) + p(a) . p(a, c)

= p(entry) . p(entry, a) + p(entry) . p(entry, a)

= p(entry) = inPred

(3.3)

This implies that the state operations in the return block from Figure 3.14a may ex-
ecute non-speculatively as soon as the input predicate to the function subgraph, inPred,
evaluates as ‘true’. Applying such logic minimization to the predicate expressions for
each basic block enables us to incorporate control-dependence analysis into the VSFG.
All predicate expressions within a function may be evaluated in dataflow order, and be
available concurrently in the eagerly-evaluated VSFG. This allows even the predicated
state-operations to non-speculatively execute earlier than in a CFG-based spatial im-
plementation, where control must flow through the CFG, enabling the non-speculative
execution of state operations one basic block at a time. The minimized boolean predicate
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expressions for the loop CFG of Figure 3.14b are given by Equations 3.4.

p(entry) = inPred

p(i) = inPred . p(entry, i)

p(j) = inPred . p(entry, i)

p(k) = inPred

p(l) = inPred . p(k, l)

p(m) = inPred . p(k, l)

p(n) = inPred

p(o) = inPred . p(n, o)

p(q) = inPred . p(n, o)

p(r) = inPred

p(s) = inPred . p(r, s)

p(t) = inPred . p(r, s)

p(u) = inPred

p(loopExitBlock) = inPred . p(u, loopExitBlock)

p(tailRecurseBlock) = inPred . p(u, loopExitBlock)

p(return) = inPred

(3.4)

From Equations 3.4, we see that state operations in blocks entry, k, n, r, u, and return
may execute non-speculatively, as soon as the inPred predicate input is available. Ex-
ecution of these state-operations would thus be constrained primarily by the sequential
state-edge traversing each such operation in the VSFG. Furthermore, the next loop iter-
ation (i.e. tail-recursive loop call in the tailRecurseBlock) may be initiated as soon as the
expression p(u, loopExitBlock) can be computed.

Such control-dependence analysis can also be applied when converting acyclic control-
flow into dataflow within a hyperblock, via if-conversion [MLC+92], as has been applied by
Budiu in his implementation of spatial computation [Bud03]. However, the key advantage
of switching away from the CFG towards a VSDG-based intermediate representation
is that the latter is fully acyclic, thus this form of control-dependence analysis is not
restricted to within acyclic regions of an existing control-flow graph, but can be applied
across the entire code, and within each level of the VSDG/VSFG graph hierarchy.

These predicate expressions, in conjunction with the MUX operators, serve to effec-
tively convert all control-flow in the program into dataflow, while the state-edge does the
same for side-effect ordering. Applying minimization on these expressions can further
expose concurrency by enabling aggressive control-dependence analysis, as described by
Lam [LW92].

3.6.2 Revisiting Case Studies 1 and 2

The Value State Flow Graph represents a good starting point for overcoming the perfor-
mance limitations faced due to control flow in spatial hardware for three reasons:

• The VSFG represents data-dependencies explicitly, but control-flow only implicitly.
There is no notion of a program counter, or a selection between executing basic

64



blocks. Instead, control is implemented using a form of if -conversion (selection be-
tween speculatively computed values based on predicates) and predicate-promotion
(predication of state operations only). Since control-flow is the primary bottleneck
to sequential code performance [LW92, Wal91, MM09], the VSFG would provide a
better option for describing spatial dataflow hardware than the CFG, particularly
when attempting to accelerate control-intensive sequential code.

• The VSDG/VSFG is acyclic, representing loops as an infinite sequence of forward
branches. This can be beneficial in addressing the limitations of custom hardware
with respect to addressing speculation across backwards branches6.

• The VSDG/VSFG is a gated-data dependence representation containing operations
that have convenient equivalent representations in hardware. For instance, the
MUX-node utilized in the VSFG to represent value selection based on control-flow
is equivalent to a multiplexer in hardware. This is in contrast to its counterpart, the
φ-node that is utilized in static single assignment CFG IRs for the same purpose,
but has no direct hardware analogue (operations 14 and 15 in Figures 3.2b, and 3.2c
are examples of the usage of φ-nodes in SSA form).

Figure 3.15 presents the VSFG equivalent to the CDFG from Figure 3.5a (and the
code in Figure 3.4). In Figure 3.15a, the outer loop contains the inner-loop in a nested-
subgraph represented by the block labeled ‘Inner do-while Loop’, the contents which are
shown in Figure 3.15b. Similarly, the next iteration of the outer-loop itself is represented
as a tail-recursive call to the nested-subgraph marked ‘Outer For Loop’.

Outer-loop Pipelining without Dynamic-dataflow Overheads: One key ad-
vantage of this lack of explicit control flow, combined with nesting of subgraphs is the
ability to perform loop unrolling and pipelining at multiple levels of a loop nest. Any of the
nested subgraphs in a VSFG can be flattened into the body of the parent graph [Law07].
In the case of loops, flattening the subgraph representing the tail-recursive loop call is
essentially equivalent to unrolling the loop. Figure 3.16 shows the ‘Outer For Loop’ sub-
graph in Figure 3.15 flattened/unrolled once.

Furthermore, as each loop is implemented within its own subgraph, this type of un-
rolling may be implemented within different subgraphs independently of others. There-
fore, it is possible in the VSFG to exploit ILP within a loop nest by unrolling the inner
loops independently of the outer loops. Thus, for the example code in Figure 3.4 that
performs poorly when implemented as custom hardware, or even CDFG based spatial
computation [BAG05], by utilizing the VSFG as our dataflow IR, we are able to exploit
greater ILP through outer-loop pipelining in the same manner as the superscalar proces-
sor, simply by flattening the nested-subgraph representing the outer-loop tail-recursive
function call any number of times.

The VSFG can therefore more aggressively overcome the effects of loop-carried name
dependencies by enabling outer-loop parallelism in energy-efficient static-dataflow hard-
ware, without incurring the exorbitant energy cost of complex register-renaming logic (as
in superscalar processors) or instruction-operand tag matching, wake-up and select logic

6Note however that in order to implement the VSFG representation with a finite amount of custom
hardware, dataflow cycles will need to be carefully reintroduced to implement loops using finite resources.
This is described in greater detail in Chapter 4.
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(a) VSFG for ‘internal int transpose’ Outer Loop.

(b) VSFG for ‘internal int transpose’ Inner Loop.

Figure 3.15: VSFG for the outer for-loop of ‘internal int transpose’, showing the inner loop
as a nested subgraph. The next iteration of both outer and inner loops is also represented as
nested subgraphs, essentially implementing loops as tail-recursive functions.
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Figure 3.16: Loop unrolling is implemented by flattening the loop’s tail recursive call subgraph
a number of times. Here, the VSFG of the Outer For Loop, is unrolled once, implementing
two copies of the inner loop. Each loop in a loop nest may similarly be flattened/unrolled
independently of the others to expose loop parallelism.
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(used by both superscalar processors and Wavescalar), etc. that is needed to approximate
the dynamic-dataflow execution model.

Note that in the actual hardware implementation, cycles must be reintroduced to
convert from the infinite, acyclic representation of loops into finite hardware. However,
this can be done after the appropriate degree of unrolling/flattening has been achieved
for each loop-level, and is described in greater detail in Chapter 4.

Aggressive Static Control Speculation: All forward branches support specula-
tive execution of operations through if-conversion and predicate promotion. Given that
loops are represented as infinite, hierarchical sequence of forward-branches (at least until
cycles are reintroduced for hardware implementation), the VSFG representation is able
to support speculative execution on all branches.

Such a high degree of speculation can potentially incur a high energy cost, as only
a few of the speculatively executed operations in a VSFG will produce results that are
not discarded at the multiplexers. Thanks to the hierarchical nature of the VSFG, it is
possible to control the degree of speculation by selectively controlling the execution of
nested-subgraphs. For instance, for the ‘Inner do-while Loop’ subgraph, we may choose
whether the contents of this subgraph execute speculatively or not: the predicate input to
it may be used to only allow its execution when the predicate is true, thereby providing no
speculation. Alternatively, the subgraph may start executing irrespective of the predicate
value, in which case, the predicate value will be passed into the subgraph, where side-
effect free operations may execute speculatively even before the predicate value becomes
available. All side-effecting operations will however always be predicated.

(a) The CDFG for Figure 3.6. (b) The VSFG for Figure 3.6.

Figure 3.17: The equivalent CDFG and VSFG for the code given in Figure 3.6.

Exploiting Multiple Flows of Control: Another advantage of having control flow
converted in to boolean predicate expressions is the ability to perform control dependence
analysis to identify regions of code that are control-flow equivalent and may therefore
execute in parallel – provided all state and dataflow dependencies are satisfied. Consider
the bar() function in the code given in Figure 3.6 (the equivalent CDFG is given in
Figure 3.17a). Despite aggressive branch prediction, a superscalar processor will not
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Figure 3.18: The VSFG from Figure 3.17b with the loop unrolled 4 times.

be able to start executing bar() until it has exited the loop. Similarly, when the if
branch is predicted-taken, the superscalar processor must switch from executing multiple
dynamically unrolled copies of the for-loop and instead focus on executing the control-flow
within foo(). This is because a conventional processor can only execute along a single flow
of control [LW92].

The VSFG on the other hand can apply boolean expression optimization on the
control-predicte expressions of each basic block to identify the control-flow equivalence
between the contents of the for-loop and the bar() function. Thanks to this implicit con-
trol dependence analysis [LW92], independent instructions from within the bar() function
may start executing in parallel (speculatively or otherwise) with the for -loop.

Furthermore, so long as their dataflow and state-ordering dependencies are resolved,
the contents of the foo() subgraph can also execute in parallel with its parent graph. If we
combine this concurrency with loop unrolling as shown in Figure 3.18, it becomes possible
to execute multiple copies of the loop and foo(), in parallel with the execution of bar().
This ability to execute multiple regions of code concurrently is equivalent to enabling
execution along multiple flows of control, and has the potential to not only expose greater
ILP than even a superscalar processor, but possibly also to break through the ILP Wall
as well [LW92, MM09].

Potential performance limitations: In the simplest form of the VSFG or the
VSDG, there is a single valid state-token in the graph at any time, i.e. there is a total-
order imposed on the execution of all state access and side-effect sensitive operations
throughout all levels of the graph hierarchy. This implies that after a certain amount
of unrolling, the sequentializing state-edge will often be on the dynamic critical path7

through the VSFG, limiting the achievable ILP.
Further improvements to ILP will require partitioning this state-edge, so that multiple

memory operations to disjoint locations may occur concurrently, and possibly out of order.
As mentioned earlier, conventional superscalar processors often have support for aggressive
memory operation reordering at their load-store queues to enhance performance, without
visibly violating the sequential order on side-effects. However, this approach requires
complex hardware structures and incurs a significant energy cost. In order to avoid this,
in the first instance, the compiler should rely on alias and memory dependence analysis
to perform static memory disambiguation, enabling partitioning of the sequential state-
edge chain. This partitioning would convert the total order on State operations into a

7i.e. the longest dependency chain of operations in a pipelined implementation of the graph, as opposed
to the longest combinational path between registers when implementing custom hardware.
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partial order, permitting concurrent updates to disjoint memory locations to improve
performance as much as possible without incurring an additional energy cost.

Such static partitioning is employed by many existing high-level synthesis tools, like
LegUp [CCA+11] and Kiwi [SG08]. Budiu et al have even augmented this static parti-
tioning by incorporating dynamic memory disambiguation hardware in their generated
hardware [Bud03, BVCG04]. In this thesis, static memory disambiguation through alias
analysis has not been incorporated in the results, partly due to constraints of time, and
partly because the effects of such optimizations for high-level synthesis have already been
studied extensively.

3.7 Related Work on Compiler IRs

As discussed in Section 2.4.3, The most common compiler IRs used for compiling to spatial
architectures are closely related to the CDFG: RICA DySER, TRIPS, CASH/Phoenix,
and Conservation Cores all utilize a version of the CDFG, often with optimizations like
loop unrolling, if-conversion and hyperblock formation applied to reduce the effects of
control-flow on performance. RICA and DySER only exploit spatial computation for
loop-free regions of code. However, recent academic research describes several innovative
projects developing compiler IRs for spatial computation.

Program Dependence Graph (PDG)

The PDG represents a program as a graph incorporating two types of edges: one set
to represent data dependences and another to represent control [FOW87]. Unlike the
CDFG that expresses control flow between basic blocks, a PDG control edge expresses
explicit fine-grained control dependence between individual operations. The PDG also
allows grouping control-equivalent operations into a single region, but unlike the CFG,
instructions within such regions may be selected from multiple basic-blocks. This bal-
anced treatment of both control and data dependences allows the PDG to simplify several
important code transformations, particularly those that require the interaction of both
control and data dependences [FOW87].

Variants of the PDG that only represent true data dependences (i.e. the PDG+SSA: a
combination of the PDG with the static-single assignment representation) have repeatedly
proved useful for partitioning single threaded code into multiple communicating threads:
Li et al [LPC12] use an ‘SSA-PDG’ to identify strongly connected components (SCC) in
a program graph, considering both control and data dependence edges. Each such SCC
may then be assigned for execution in a different thread on a multithreaded processor as
a means of converting imperative code for execution as coarse-grained hybrid dataflow on
a multicore architecture. A similar technique is used by [Ott08].

The PDG has also been utilized for the generation of higher quality custom hard-
ware [GWK04]. A PDG+SSA IR is generated from the input CFG of an application.
Like in the VSFG, the control-dependence edges in the PDG+SSA are implemented as
dataflow predicate edges, and SSA φ-nodes are converted into MUX elements. Unlike
the boolean minimization that may be applied to simplify control-dependence in the
VSFG, the PDG-SSA instead uses control-flow dominance and post-dominance relation-
ships (similar to what is described in Section 5.2.3). Gong et al demonstrate that due
to such optimizations, their PDG+SSA based, statically-scheduled custom hardware ex-
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hibits a 7% performance improvement over their equivalent CDFG based hardware on
various multimedia kernels from the Mediabench benchmark suite [GWK04].

Unlike the VSFG, the PDG does not exploit hierarchy to represent loops, and therefore
can contain explicit control and dataflow cycles8. This, combined with the statically
scheduled execution model employed by Gong et al makes this approach unable to exploit
outer-loop pipelining as demonstrated for the VSFG.

Hierarchical Control Dependence Graph (HCDG)

Like the VSFG, the HCDG IR was developed to address the implementation of applica-
tions that exhibit complex control-flow as well as dataflow [KW02]. Unlike the VSFG, the
HCDG emphasizes the traditional, statically scheduled execution model, and is designed
to efficiently implement scheduling, allocation, and binding during high-level synthesis.
Like the PDG+SSA, the HCDG also incorporates both control and true dataflow edges.
But instead of representing control dependences as in the PDG, control is represented
using boolean expressions just like in the VSFG9, and therefore is subject to boolean
minimization as well.

However, unlike the VSFG, the HCDG does not usually apply predicate promotion
to non-side-effecting operations. Instead, this hierarchical predicate information for each
operation in the IR is used to perform efficient static-scheduling, allocation, mapping
during HLS, for instance, by establishing the mutual exclusivity of various operations
due to diverging control-flow in the original program graph. Predicate promotion is only
applied when speculative execution is needed.

Unlike Pegasus, but like the VSFG and the PDG+SSA [GWK04], the HCDG does
not incorporate the notion of control-directed dataflow. Although, the HCDG does not
currently support the representation of loops, Kountouris and Wolinski recommend intro-
ducing the notion of a composite node representing the loop body for handling loops in
the future [KW02]. This would be similar to how the VSFG and VSDG represent loops
as nested subgraphs.

Given their commitment to statically scheduled execution, they recommend the gen-
eration of a hierarchical FSM10, with each composite loop node having its own FSM,
communicating with a higher level FSM that manages execution in the parent graph.
Code with multiple levels of nested loops would therefore be managed by an FSM with
corresponding levels in its hierarchy. This approach would allow for independent compos-
ite nodes to be executing concurrently, but it remains unclear if this approach would be
suitable for exploiting inter-iteration parallelism in loops without unrolling, or outer-loop
pipelining.

Given this suggestion for hierarchical construction as a means of handling loops, the
HCDG becomes very similar to the VSFG, except that due to its commitment to static
execution scheduling, it does not need to incorporate state-edges to preserve the order of
side-effecting operations. Given an application with complex control flow, the HCDG is
able to better exploit ‘conditional resource sharing’ to improve the resource requirements
of the generated hardware over existing list-scheduling based approaches [KW02]. The

8thus, well-behavedness issues must be considered for static-dataflow implementations.
9The ‘Hierarchical’ prefix in the name of this IR refers to this construction of complex tree of boolean

expressions based on the structure of the CFG, and not to the type of hierarchy that has been discussed
thus far in reference to the VSDG and VSFG.

10here the word hierarchy is used in a similar fashion as the VSDG/VSFG.
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present work on the HCDG IR may prove a useful starting point if the development of a
statically-scheduled VSFG implementation is ever desired.

Control-Memory Dataflow Graph (CMDFG)

The CMDFG IR is utilized in the COMRADE compiler for ‘adaptive’ computing sys-
tems [GK07], that generates static-dataflow custom hardware from hot regions of imper-
ative code. The CMDFG can be seen as an amalgam of the features of the PDG+SSA,
the HCDG and the Pegasus IR.

Like the HCDG, the CMDFG has no control-directed dataflow within acyclic regions,
and instead relies on boolean predicate expressions instead. Like the Pegasus and VSFG
IRs, it targets the static-dataflow execution model, and thus must incorporate a sequen-
tializing state-edge between side-effecting operations. Like the PDG+SSA, the CMDFG
replaces SSA φ-nodes with MUX nodes, and it too allows cycles in the graph to represent
loops11, instead of the hierarchical approach favoured by the VSFG and the HCDG. Lack-
ing this notion of hierarchy, the CMDFG thus cannot exploit multiple flows of control or
outer-loop pipelining as proposed for the VSFG.

However, the key contribution made by this work was to improve the performance of
speculative execution through the use of ‘cancel tokens ’ [GK08]. Speculation is imple-
mented in a static-dataflow graph via if-conversion: all speculative datapaths are allowed
to execute concurrently, with only the results from the true path being selected at a MUX.
However, if such a speculative datapath is enclosed within a loop body, the throughput
of the loop will be constrained by the longest of the speculative paths, even if it is not
the most frequently used path12. In order to avoid this unnecessary latency along falsely
speculated paths, MUX elements in the CMDFG are able to produce cancel tokens that
traverse the static-dataflow graph backwards along all false paths, once the correct MUX
predicate value is known. These cancel tokens are used to kill computations that may
be in progress in the false paths, thereby reducing the unnecessary latency incurred, and
improving loop throughput.

Gadke and Koch are able to demonstrate a 3× improvement in performance for an
example code kernel compared to the baseline, and a 1.8× improvement over lenient MUX
execution13 [GK08]. This novel approach would also be useful for improving performance
of such loops in VSFG based implementations, as discussed later in Section 6.2.1. For
now, the inclusion of cancel tokens into the VSFG is left for future work.

3.8 Summary

This chapter started by studying the nature of sequential, imperative code, and the issues
that arise in exposing and exploiting fine-grained concurrency from it. I highlighted

11Note that as the CMDFG targets static-dataflow execution, well-behavedness issues must be taken
into account when implementing code with such loops. Section 4.2.1 discusses well-behavedness in
dataflow computation graphs.

12In cases where there are no loop-carried dependences, techniques like pipeline balancing may be
utilized [Gao91] to maximize throughput at the expense of increased latency along the shorter speculative
paths. However this may not help for loops that have loop-carried dependences. A lengthier discussion
on this issue is presented in Section 6.2.1, and Figure 6.4.

13Lenient execution is also used by the VSFG, and is described in greater detail in Sections 4.3.1
and 4.3.2.
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the fact that superscalar processors achieve high sequential performance by performing
aggressive branch prediction to overcome control-flow, and approximate the dynamic-
dataflow execution model to accelerate true dependencies and mitigate the impact of
unpredictable latencies at runtime. I also noted that while such processors are constrained
by the ILP Wall, it may be possible to exploit more ILP from code by exploiting multiple-
flows of control.

To match, or even exceed superscalar performance in hardware, I proposed (a) switch-
ing to the static-dataflow execution model for spatial hardware, in order to retain high
energy-efficiency while providing dynamic execution scheduling, and (b) switching from
CFG-based compiler IRs to a VSDG-based IR – the Value State Flow Graph – that rep-
resents data and side-effect ordering dependencies explicitly, enables aggressive control
speculation, control-dependence analysis, and exploitation of multiple-flows of control.
By enabling the independent unrolling of each loop in a loop-nest, the VSFG could even
enable exploiting concurrency in nested loops via outer-loop pipelining, without needing
to incur the area and energy overheads associated with the dynamic-dataflow execution
model.

It is important to note that unlike a conventional processor, or even high-performance
spatial architectures like TRIPS and DySER, the proposed approach relies solely on static,
compile-time manipulation of the program IR to expose greater ILP from control-flow
intensive code. Chapter 4 formally describes the operational semantics of the VSFG-S :
a version of the VSFG IR that is suitable for implementation as static-dataflow custom
hardware. Chapter 5 then describes the implementation of a toolchain that compiles
high-level language code to the VSFG-S IR, and then implements it as dataflow custom
hardware.
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CHAPTER 4

Definition and Semantics of the

VSFG

Chapter 3 described the Value State Dependence Graph (VSDG) and how its struc-
ture could facilitate aggressive static exposition of ILP from control-intensive sequential
code, by (a) enabling aggressive speculation through if-conversion, (b) employing control-
dependence analysis to accelerate predicated operations, and (c) exposing ILP from across
multiple flows-of-control. I highlighted the need to develop an eager-evaluation, dataflow
version of the VSDG, called the Value State Flow Graph (VSFG). The objective of de-
veloping the VSFG program representation is to facilitate the implementation of conven-
tional imperative languages on spatial architectures with minimal programmer interven-
tion, while matching the performance of conventional superscalar processors.

This chapter describes in greater detail the structure and semantics of a version of
the VSFG that may be implemented directly as custom or reconfigurable hardware. This
constrained version of the VSFG may be referred to as the VSFG-S, where the appended
‘S’ specifies the static-dataflow nature of the execution model being targeted, as opposed
to the pure dataflow VSFG representation from Chapter 31.

4.1 The VSFG as Custom Hardware

In order to evaluate the performance and energy characteristics of spatial implementations
using the VSFG-S, a prototype high-level synthesis toolchain is developed that compiles
imperative code into the VSFG representation, and then implements it as static-dataflow
custom hardware described using standard Verilog HDL. This approach was selected for
the following reasons:

• Custom hardware is considered an important target for implementing computation
in the Dark Silicon era [VSG+10]. Our compiler IR must be able to efficiently and
effectively compile to custom hardware while exhibiting better performance than
hardware generated using existing HLS tools, and retaining the inherent efficiency
advantage of custom hardware.

1However, from Chapter 5 onwards, ‘VSFG’ and ‘VSFG-S’ are used interchangeably, unless explicitly
stated otherwise.
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• There is no need to design and optimize a target spatial architecture (e.g. a CGRA)
for the VSFG, nor to build specialized compilation (i.e. place and route) tools to map
the VSFG to such an architecture. Generating custom hardware representation in a
standard HDL from the VSFG IR allows us to utilize existing prototyping substrates
and tools, like FPGAs.

• High-level synthesis to application-specific hardware allows us to evaluate the per-
formance and efficiency potential of the IR itself, without the evaluation being
complicated by the characteristics and design trade-offs inherent in any particu-
lar spatial architecture. In fact, the development of a spatial architecture is best
treated as a separate (albeit related) research project, wherein a thorough design
space exploration must be performed to develop a well tuned architecture with the
appropriate performance, energy and area characteristics for its target application
domain(s). Such an approach is being pursued by the Loki project [Bat14].

In addition to the incorporation of predicate expressions to control the execution of
side-effects and compound operations in the eagerly-evaluated VSFG (Section 3.6), the
following issues must also be considered when trying to use the VSFG to directly represent
a static-dataflow machine in custom hardware:

1. Developing dataflow semantics for VSFG Operations: Unlike the φ-nodes
from SSA form, we must ensure that all of the constituent operations in a VSFG
can be implemented easily and efficiently in hardware. This includes not only the
value, memory-access, and MUX operations, but also determining how compound
VSFG operations representing nested-subgraphs may be implemented in hardware.
Section 4.3.1 describes push semantics for all basic operations, while Section 4.3.2
describes the representation of compound operations in custom hardware.

2. Implementing loop VSFGs in finite hardware: The VSFG, like the VSDG,
thus far represents each loop as an infinite directed-acyclic graph. However, cycles
must be reintroduced into the VSFG in order to implement it with finite custom
hardware. Section 4.3.3 describes how dataflow back-edges and limited control-
dependent dataflow are reintroduced into the VSFG in order to implement loops,
without negating its advantages described in Chapter 3.

3. Maintaining well-behavedness of dataflow graphs: With the reintroduction
of back-edges into the VSFG, finite hardware resources such as hardware operations,
registers and wires will be ‘reused’ at runtime. In this case, maintaining the well-
behavedness of the VSFG IR across all subgraphs is essential for correct execution
of dataflow graphs2. Section 4.2.1 discusses well-behavedness and how the VSFG
must be constrained to be well-behaved.

Petri-nets are well suited to representing dataflow execution. Continuing from the
definition of the structure of the VSFG as a Petri-net (Definition 3.1), the next few sections
describe the structure and operational semantics of the VSFG-S, as well as discussing how
each of the above issues is addressed in this representation.

2Especially in the case of static-dataflow, where each output place only holds one value at a time.
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4.2 Modeling Execution with Petri-Nets

Consider a generalized dataflow operation with n inputs and m outputs, as shown in
Figure 4.1a. In the abstract or pure dataflow execution model, operation execution is
only constrained by the availability of values on the input edges [AC86]. Once one input
value is available on each of the n input edges, the the dataflow operation may execute,
consuming one value from each of its input edges and simultaneously producing one value
on each of m output edges.

The pure/abstract dataflow execution model holds the presumption of unbounded
FIFO buffers – meaning that each edge in a dataflow graph may hold an arbitrary number
of values, that are consumed by a consumer in the order they were produced [AC86]. A
static dataflow machine, however, allows only one value to be buffered on each edge at a
time [AC86]. In this case, the dataflow operation from Figure 4.1a can only execute when
one input value is available on each of its n input edges, and the buffers on each of the
m output edges is empty.

(a) Generalized Dataflow operation with n
inputs and m outputs

(b) Unbounded Petri-net representation with
n input and m output places

(c) Petri-net from Figure 4.1b firing.

Figure 4.1: Representations of a generalized Dataflow operation using Petri-nets.

Dataflow execution can be modelled effectively using Petri-nets [Buc93]. Similar to
the dataflow operation from Figure 4.1a, a Petri-Net transition is ready to fire when each
of its input places have at least one token. Figure 4.1b shows the equivalent Petri-net
representation of the dataflow operation from Figure 4.1a. A Petri-net used to model
dataflow execution semantics is represented as a four-tuple G = (P, T, E,M0), where P ,
T , and E are the same as in Definition 3.1, while M0 is the initial marking3.

3Wang [Wan07] defines a marking as follows: “A marking in a petri net is an assignment of tokens
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Given the shown initial marking in Figure 4.1c, the equivalent transition (operation)
fires, removing tokens (values) from its input places and placing tokens into its output
places. Petri-nets of this type are useful for modelling abstract or pure dataflow, as there
is no restriction on the number of tokens that any given place may hold (i.e. Petri-
net places are unbounded), and hence useful for modelling unbounded buffers on each
dataflow arc. In order to model static-dataflow execution, we constrain our Petri-net to
be a homogeneous, marked-graph, that is 1-bounded and safe [Buc93]:

• Homogeneous Petri-nets: For a Petri-net, homogeneity means that a firing transition
removes only one token from each input place, and adds only one token to each
output place.

• Marked-graph Petri-nets: A Marked graph is a Petri-net in which every place has
exactly one input transition and one output transition. Marked-graphs are useful
in modelling deterministic Petri-net execution. The use of homogeneous, marked
graphs is well-established for representing dataflow computation [Buc93].

• 1-bounded Petri-nets: FromWang [Wan07]: “A place p is said to be k-bounded if the
number of tokens in p is always less than or equal to k (k is a nonnegative integer
number) for every marking M reachable from the initial marking M0”. For a Petri-
net to model static-dataflow, each place in the Petri-net must be constrained to hold
only a single value at a time, i.e. each place in the Petri-net must be 1-bounded.

• Safe Petri-nets: A Petri-net G = (P, T, E,M0) is safe if each place p ∈ P is 1-
bounded.

Safeness can be enforced by adding a set of acknowledgement places to the existing
set of places in the Petri-net:

P ′ = PA ∪ P , where PA = {p′k | k ∈ N ∧ pk ∈ P} (4.1)

The new set of places P ′ thus contains an additional acknowledgement place p′k ∈ PA

for each of the places pk ∈ P , with the property that p′k would have a token if and only
if pk does not have a token. Given that each transition t ∈ T in the Petri-net will have
a set of input places I(t) ⊂ P , and a set of output places O(t) ⊂ P , this is implemented
by:

• adding p′k to the output set O(t) of transition t, if pk is in the input set I(t) of
transition t, or

• adding p′k to the input set I(t) of transition t, if pk is in the output set O(t) of
transition t.

A safe Petri-net used to model static dataflow execution will have an initial marking
where all the acknowledgement places have a token, and all the value places will be empty,
as shown in Figure 4.2a. Triggering the execution of such a Petri-net involves placing

to the places of a Petri-Net. Tokens reside in the places of a Petri-net. The number and positions of
tokens may change during the execution of a Petri-net. The tokens are used to define the execution of a
Petri-Net.”
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(a) Safe Petri-net representation with n input and m output places, together with
corresponding acknowledgment places, also showing an initial marking.

(b) Petri-net from Figure 4.2a firing after the input places have valid tokens and the
input acknowledgement places have been cleared.

Figure 4.2: Representations of a generalized Dataflow operation using Petri-nets.

tokens in all pi ∈ Pin
4, while simultaneously removing tokens from all the corresponding

acknowledgement places p′i. The transition corresponding to the dataflow operation from
Figure 4.1a will then fire as shown in Figure 4.2b.

4.2.1 Well-behavendess in Dataflow Graphs

Before discussing the operational semantics of the individual operations in the VSFG-S,
it is important to consider the issue of well-behavedness of dataflow graphs. The original
dataflow computational model was composed of various types of operations: primitive
operations representing arithmetic/logic functionality as shown in Figure 4.3a, and control
operations, that implemented control-directed flow of data, as shown in Figure 4.3b and
Figure 4.3c [AC86]. Primitive operations consume all input tokens and produce tokens
on all outputs, just like the generalized dataflow operation considered in Figure 4.1a, but
the switch and merge control operations produce or consume tokens selectively, based on
a predicate input.

Implementation issues arise when composing dataflow graphs out of these operations,
particularly when implementing control dependent dataflow. For instance, Figure 4.4a
describes an attempt at speculative execution by using the merge operation, while Fig-
ure 4.4b describes an attempt at predicated execution using the switch operation. Since
merge does not consume tokens from its false input edge, two problems arise when the

4Recall that Pin ⊂ P is the set of input places of a VSFG graph or subgraph, as defined in Defini-
tion 3.1.
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(a) A primitive dataflow op-
eration.

(b) The switch control oper-
ation.

(c) The merge control oper-
ation.

Figure 4.3: Dataflow operations as defined by Arvind and Culler [AC86].

(a) Unsuccessful speculative execution
with merge.

(b) Unsuccessful predicated execution with
switch.

Figure 4.4: Unsuccessful attempts at control-dependent dataflow, taken from [AC86, Tra86,
AN90].

schema in Figure 4.4a is reused (i.e. resides inside a loop): (1) if the predicate p holds
for many iterations of the loop, the false edge could accumulate an unknown number of
tokens, and (2) if the predicate changes value at each iteration, the output token selected
would always be one generated during the previous iteration instead of the current one.
For the schema in Figure 4.4b, outputs may emerge in the wrong order, for instance, if
primitive operation g computes much faster than f, the value g(Y ) may emerge at the
output before f(X). In order to address these issues, Arvind et al assert that all dataflow
graphs be well-behaved.

Definition 4.1. Paraphrasing from Gao et al [GGP92]: “A dataflow graph is said to be
well-behaved if there exists an infinite, fair firing sequence of the operations of the graph
that requires only finite memory on every arc”. According to Arvind and Culler, all of
the following conditions must be met for a graph to be well-behaved [AN90]:

1. It has at least one input and one output edge;
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2. Assuming that initially there are no tokens in the graph, given exactly one token
on every input, ultimately exactly one token is produced on every output;

3. when all output tokens have been produced, there are no tokens left in the graph,
i.e. the graph is self-cleaning.

Per Definition 4.1, the primitive dataflow operation from Figure 4.3a is well behaved,
but the switch (Figure 4.3b) and merge (Figure 4.3c) operations are not. However, well-
behaved graphs can still be constructed out of non well-behaved operations: Figures 4.5a
and 4.5b show the well-behaved conditional and loop schemas, respectively, developed by
Arvind et al [AC86, Tra86, AN90], who also listed the following rules for the construction
of well-behaved graphs using these schemas:

1. An acyclic interconnection of graphs is a well-behaved graph if all of its component
graphs is a well-behaved graph;

2. The conditional schema is a well-behaved graph if the graphs for the true side and
false side are well-behaved graphs;

3. The loop schema is a well-behaved graph if the graphs for the predicate and body
are well-behaved graphs.

(a) Well-behaved ‘Control Schema’.
(b) Well-behaved ‘Loop Schema’.

Figure 4.5: Constructing well-behaved dataflow graphs from non-well-behaved components.
Taken from [AC86, Tra86, AN90].

Well-behavedness is therefore an important concern for the VSFG IR, and must be
considered when dealing with control-directed dataflow operations such as loops and for-
ward branches. For instance, I employ the well-behaved MUX operator instead of the
merge in order to implement speculative execution (Section 4.3.1). Similarly, care must
be taken when implementing loops as nested-subgraphs (Section 4.3.3).

81



4.3 Operational Semantics for the VSFG-S

Given the context of a homogeneous, 1-bounded, safe, marked-graph Petri-net to represent
the structure of the VSFG-S, we can define the semantics of the various transitions.
Figure 4.6 lists the various types of transitions that form part of the VSFG-S, as well as
the types (Γ) associated with each place, and the various values (V ) that each place may
hold, constrained by its type.

Values V ::= n ∈ N | z ∈ Z | b ∈ B | ∆ | τ | ⊥
Types Γ ::= int | float | bool | token

Transitions t ∈ T ::=

O(t) = binary (i1, i2) |
O(t) = unary (i1) |

Odata(t), OSTATE(t) = load (iaddr, iSTATE, ipred) |
OSTATE(t) = store (iaddr, idata, iSTATE, ipred) |

O(t) = mux (ipred1, ival1, ipred2, ival2, ..., ipredN , ivalN ) |
Ofused(t) = signal (ival, ipred) |

O(t) = wait (ifused, ipred) |
O(t) = eta (ipred, ival) |
O(t) = mu (i1, i2, ..., iN) |

Ofused(t) = inGate (p1, v1, ..., pN , vN) |
O(t) = outGate (p1, f

′

1, ..., pM , f ′

M)

Figure 4.6: List of Values, Types and Transitions supported in the VSFG-S

The following subsections describe all of the transitions mentioned in Figure 4.6 in
two formats. First, an equivalent, safe Petri-net representation is provided, and second,
a Plotkin-style operational semantics [Plo81] is presented. The latter formalizes the se-
mantics of each operation, while the Petri-net representations are useful in converting
the VSFG to custom hardware via the Bluespec SystemVerilog HDL, as described in
Chapter 5.

Section 4.3.1 describes the binary, unary, load, store, and mux operations. These basic
operations have been studied extensively in prior literature – the Plotkin-style semantics
presented in Equations 4.2 through 4.10 were originally developed by Budiu [Bud03],
while their equivalent Petri-net representations were developed for this work.

Sections 4.3.2 and 4.3.3 introduce new operations specifically tailored to deal with the
hierarchical nature of the VSFG, namely the signal, wait, inGate, and outGate operations.
Both their Petri-net representations, as well as their operational semantics (Equations 4.11
through 4.14, and 4.18 through 4.21) were developed specifically for this dissertation.

The notation used to present the operational semantics of the VSFG-S is described as
follows:
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• The list of values includes ∆ to denote don’t care values, and a ⊥ value to indicate
an empty, or undefined value.

• In addition to the basic types, Γ also includes a valueless token type. Places of token
type can only either be empty, signified by the value ⊥, or indicate the presence of
a token with the symbol τ .

• Each place in a VSFG-S can hold a specific type of value. I borrow terminology
from work on Coloured Petri-nets by Jensen [Jen91] to describe the type of value
each place may hold: each place p ∈ P is described as having a colour, given by the
function C : P → Γ. Hence the expression C(p) = bool indicates that place p holds
values of type bool (i.e. place p is of colour bool).

• The state of a Petri-net σ is a function mapping all places in the net to values:
σ : P → V . Thus we are able to denote the fact that place p holds value v with
the expression σ(p) = v. The expression σ(p) = ⊥ indicates that place p is empty,
or undefined (and thus its corresponding acknowledgement place p′ currently holds
a token). Note that the STATE edge that constrains the ordering of side-effects in
the VSFG-S should not be confused with the state σ of the Petri-net.

• A firing of any transition t is defined by a change in the state of the Petri-net from
σ to σ′. We write σ′ = σ[p 7→ v] to indicate that state σ′ can be reached from σ by
assigning a token with value v to place p (i.e. mapping p to v). By extension, the
expression σ′ = σ[p1 7→ v1][p2 7→ v2] would indicate that two places must map to
new values in order to reach state σ′ from σ.

• The expression σ(p) 6=⊥ can be abbreviated with def(p), signifying that place p has
a token. Conversely, !def(p) is the same as σ(p) =⊥, to signify that place p has no
token. The expression can be extended to describe the status of multiple places as
follows: def(p1, p2).

• The clearing of a place, given by the expression [p 7→⊥], can be abbreviated as
erase(p). The expression can be extended to describe the clearing of multiple places
as follows: erase(p1, p2).

• Each Transition t ∈ T in the VSFG has a set of input places I(t), and a set of
output places O(t). Each transition acts upon values from all of its input places,
and updates all of its output places. O(t) may contain multiple output places if
there are multiple consumers for an output value (i.e. fanout > 1), or if a tran-
sition has multiple distinct output types. An example of the latter case is the
load(iaddr , iSTATE, ipred) transition, which returns both a data value from memory,
as well as producing an output state token. Here, Odata(load) represents the set
of fanout places of the memory value being retrieved, while OSTATE(load) repre-
sents the set of fanout places for the state-token produced by the load transition:
O(load) = Odata(load) ∪ OSTATE(load).

• If addr ∈ V is used to indicate a value representing a memory address, we write
update(addr, v) to indicate that value v ∈ V is being stored at memory address
addr. Similarly, lookup(addr) is used to denote a value retrieved from the location
specified by addr.
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• The semantics for each transition op ∈ T are specified by (1) a precondition indicat-
ing when a transition may be triggered, as well as (2) the resultant change affected
on the Petri-net state σ when the precondition holds and the transition fires. This
is denoted as:

op
precondition

change

4.3.1 Semantics for Basic Operations

Value Operations

As introduced by Definition 3.1, Value operations represent the basic, non side-effecting
unary and binary ALU operations, and are analogous to the well-behaved primitive
dataflow operation from Figure 4.3a. The list of such operations currently supported
is largely similar to the binary and unary aritmetic, logic and conversion operations listed
in the LLVM Language Reference Manual [LLV], since the HLS toolchain implemented
for this dissertation uses the LLVM IR as the input language. Further details about this
toolchain are provided in Chapter 5.

Figures 4.7a and 4.7c show the dataflow graph representation of such operations,
while Figures 4.7b and 4.7d show their 1-bounded, safe Petri-net equivalents. As these
operations have are not side-effect sensitive, the do not require a state-edge input, nor
a predicate input (i.e. they are predicate promoted). The operational semantics of these
types of operations, as described by Budiu [Bud03], are described by Equations 4.2 and
4.3.

o1 = unary (i1)
σ(i1) 6=⊥, σ(o1) =⊥

σ′ = σ[o1 7→ unary(σ(i1))][i1 7→⊥]
(4.2)

o1 = binary (i1, i2)
σ(i1) 6=⊥, σ(i2) 6=⊥, σ(o1) =⊥

σ′ = σ[o1 7→ binary(σ(i1), σ(i2))][i1 7→⊥][i2 7→⊥]
(4.3)

For simplicity, I assume that each operation whose semantics are described in this way
has a fanout of 1, meaning only one output place, o1 ∈ O(t), needs to be updated. As an
example, consider Equation 4.3. The precondition for this transition indicates that it will
fire only when the input places i1 and i2 are defined (not empty), and the output place
o1 is empty. Upon firing, o1 is updated with the computed result of the binary operation
performed on the two input values ([o1 7→ binary(σ(i1), σ(i2))]), while simultaneously, the
input places are acknowledged, or cleared ([i1 7→⊥][i2 7→⊥]). This clearing action could
also have been written using the defined abbreviation: erase(i1, i2).

Load and Store Operations

The dataflow graph component for the load and store operations are shown in Figures 4.8a
and 4.8b respectively. As mentioned in Section 3.6, as State operations, both load and
store have a state and a predicate input (iS and ip, respectively), as well as a state output
(oS), in addition to their usual address and data inputs and outputs (ia, id and od). Both
operations are well-behaved, since even store has an output state-edge.

The equivalent safe Petri-net transitions for these operations are similar to those for
the binary and unary operations, and are shown in Figures 4.8c and 4.8d. As described
by Budiu [Bud03], and adapted for use with our Petri-net framework, the operational
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(a) A Unary Dataflow operation. (b) The equivalent safe Petri-net for a
Unary Dataflow Operation.

(c) A Binary Dataflow operation.
(d) The equivalent safe Petri-net for a Bi-
nary Dataflow Operation.

Figure 4.7: Basic Value Operations in the VSFG-S: Unary and Binary.

semantics for the load operation are given by Equations 4.4 and 4.5, while the semantics
for the store operation are given by Equations 4.6 and 4.7. Again, for simplicity, I assume
that the output set for each kind of output (Odata(t), OSTATE(t) ⊆ O(t)) for each of the
transitions only contains one place (od and oS, respectively).

od, oS = load (ia, iS , ip)
σ(ip) = True, def(ia, iSTATE), !def(od, oS)

σ′ = σ[od 7→ lookup(σ(ia))][oS 7→ τ ] ◦ erase(ia, iS , ip)
(4.4)

od, oS = load (ia, iS , ip)
σ(ip) = False, def(ia, iS), !def(od, oS)

σ′ = σ[od 7→ ∆][oS 7→ τ ] ◦ erase(ia, iS , ip)
(4.5)

oS = store (ia, id, iS , ip)
σ(ip) = True, def(ia, id, iS), !def(oS)

σ′ = σ[oS 7→ τ ] ◦ update(σ(ia), σ(id)), erase(ia, id, iS , ip)
(4.6)

oS = store (ia, id, iS , ip)
σ(ip) = False, def(ia, id, iS), !def(oS)

σ′ = σ[oS 7→ τ ] ◦ erase(ia, id, iS , ip)
(4.7)

If the input predicate (value in place ip) holds, the load operation accesses the memory
location specified by the value in the ia input place, through the lookup(addr) function,
and places the result atomically in its output place od, along with a state token τ in its
state output oS (Equation 4.4), while simultaneously clearing its inputs (i.e. removing
tokens from the input places, and placing tokens in their corresponding acknowledgement
places).
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(a) A Load Dataflow operation. (b) A Store Dataflow operation.

(c) The equivalent safe Petri-net for a Load
Operation.

(d) The equivalent safe Petri-net for a
Store Operation.

Figure 4.8: Basic State operations in the VSFG-S: Load and Store.

Similarly, if the predicate holds for a store operation, the update(addr, data) function
is utilized to place the value in idata into the memory location specified by the value in
ia (Equation 4.6). Note that as the memory address space is not incorporated as part of
the VSFG-S semantics, the update(addr, data) function does not update any places in the
Petri-net state σ.

If the input predicate is false, then neither operation accesses memory, as described
by the rules given in Equations 4.5 and 4.7. However, due to the need to enforce well-
behavedness in the graph, both operations must always place output values into their
output places: the load operation places a don’t care value ∆ in od, while both load and
store place a state token τ immediately in their oS output places, while simultaneously
clearing all inputs. Well-behavedness was discussed in greater detail in Section 4.2.1.

The MUX Operation

The MUX operation defined as part of the VSDG (and the VSFG) in Definition 3.1
selects from one of two input values based on a third, input predicate value. However,
my implementation of the MUX is slightly different: I implement a decoded multiplexer
that selects one from N input values, based on another N input predicate values. The
dataflow graph representation of this decoded MUX operation is shown in Figure 4.9a.

For such a decoded multiplexer, it must be guaranteed that at most only one of the N
input predicates will hold, while the rest must be false. Recall from Section 3.6 that during
the conversion from a CFG to the VSFG, predicate expressions are generated for each

86



(a) The MUX operation as Dataflow.

(b) The equivalent safe Petri-net for a
strict implementation of the MUX Opera-
tion.

Figure 4.9: The MUX operation in the VSFG-S, and its strict Petri-net implementation.

Figure 4.10: Acyclic CFG for a non-loop function. Copy of Figure 3.14a.

basic-block in the CFG. MUX operations replace the φ-nodes in SSA form, that occur
at ‘value-join points’ in the code: i.e. at basic-blocks that have multiple predecessors.
For instance, consider the basic block f from Figure 4.10, as it has multiple potential
predecessor basic blocks, and assume that it contains a φ-node selecting from one of three
potential values (since there are three predecessors to f , namely b, c, and d):

vout = φ
(

(vb, b), (vc, c), (vd, d)
)

Each of the tuples of the form (vx, x) specify the value vx to be selected if control-flow
reaches the φ-node from predecessor block x. Whereas the φ-node relies on the flow of
control from one of multiple predecessors to the value-join basic block in order to select
the appropriate output value, the MUX node instead relies on the computed predicate
expressions generated for each of the the predecessor blocks and control-flow edges (as
described in Section 3.6):

vout = mux(vb, pb, vc, pc, vd, pd)

where:

pb = p(b) . p(b, e), pc = p(c) . p(c, g), pd = p(d) . p(d, h)
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For instance, the MUX would select the value vb, if the predicate p(b) for block b holds,
and the control-flow condition evaluation p(b, e) at the end of block b evaluates as false,
in which case, after reaching b, control would flow from b to f . For our decoded MUX
operation, the constraint that at most only one predicate input be true is guaranteed by
the fact that in the original CFG, control would flow to f from only one of its predecessors,
i.e. the predicates pb, pc, and pd are mutually exclusive.

Note that the predicate p(f) of the host block f for theMUX operation is not used, as
MUX is a value operation, and can be predicate-promoted. Note also, that this implies
that in a VSFG supporting aggressive speculative execution, it is possible for all of the
predicate inputs to a MUX to be false. This would happen for instance if control-flow
never passes to f , instead going through e, g, or h. In this case, the MUX must still
produce a don’t care value in order to meet well-behavedness requirements (Section 4.2.1).
Another example MUX operation in the return block would have simpler predicate
expressions, since all the branches to return from its predecessors are unconditional:

vout = mux(ve, pe, vf , pf , vg, pg, vh, ph)

where:

pe = p(e), pf = p(f), pg = p(g), ph = p(h),

The MUX operation semantics may be defined in a similar fashion to the binary and
unary operations, where the MUX operation waits for all inputs to become available
before selecting the one whose predicate holds and returning that as its output, while
simultaneously clearing all of its inputs, as shown in Figure 4.2b. Note however, that this
introduces unnecessary synchronization into the dataflow execution: a value with a true
predicate would have to wait for all other values and their predicates to arrive at MUX
before it can be forwarded across MUX to its dataflow consumers. The Petri-net repre-
sentation of this strict implementation of the MUX operation is shown in Figure 4.9b.

Unlike the operations described thus far, MUX does not need all of its inputs to
be available before it can generate an output. A non-strict, or lenient implementation
is possible, where as soon as a value with a corresponding true predicate is available,
the MUX operation updates its output places. Again, to preserve well-behavedness,
the acknowledgement of inputs would only occur once all inputs have arrived. The use
of lenient MUX operations has been shown to improve performance in prior work on
generating static-dataflow custom hardware [BAG05]. The operational semantics for the
lenient MUX operation as described by Budiu [Bud03] are given by Equations 4.8, 4.9,
and 4.10.

o = mux (v1, p1, ..., vN , pN )
!def(o), !def(sent),∃k.(def(vk) ∧ σ(pk) = True)

σ′ = σ[o 7→ σ(vk)][sent 7→ True]
(4.8)

o = mux (v1, p1, ..., vN , pN )
∀k.σ(pk) = False,

σ′ = σ[o 7→ ∆][sent 7→ True]
(4.9)

o = mux (v1, p1, ..., vN , pN )
∀k.def(vk, pk), σ(sent) = True,

σ′ = σ[sent 7→⊥] ◦ ∀k.erase(vk, pk)
(4.10)

In addition to the input and output places, an internal boolean value sent is used
to track whether a value has been produced at the outputs. The rule in Equation 4.8
handles the case when one of the input predicate values (pk) holds – the sent variable is
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set True, and the corresponding input value (vk) is forwarded to the output o. The rule
in Equation 4.9 handles the case when all input predicates are false – in which case, a
don’t care value is forwarded to the output, and sent is again set to True. The rule in
Equation 4.10 is used to acknowledge all inputs once they’re ready, and a value has been
sent (i.e. sent 7→ True) by either of the preceding rules.

4.3.2 Compound Operations: Nested Acyclic Subgraphs

The VSFG as defined in Definition 3.1 is a hierarchical graph, with compound operations
representing the nested subgraphs of called functions and tail-recursive loops. In order
to present the operational semantics for such compound operations, I again borrow from
work done on Hierarchical Coloured Petri-nets [Jen91]:

• Substitution Transitions: Within a Hierarchical Petri-net, a compound operation
can be represented using a substitution transition, which is a transition that, along
with its surrounding edges, may be replaced by a more complex Petri-net. The
replacing Petri-net is referred to as a subpage.

• Fused Places: Hierarchical Petri-nets introduce the notion of fusion of places.
Specifying that a set of places in a Petri-net are fused, means that they all represent
a single place, even though they are drawn as individual places.

In our VSFG-S Petri-net, compound operations are therefore equivalent to substitution
transitions, with each such transition representing the nested subgraph of the compound
operation. Fused places are used to connect the set of input and output places (Pin and
Pout, respectively) of the nested subgraph with the function call argument and result
places in the parent graph.

As an example, let us assume that the fibonacci function from Figure 3.10a (VSFG
shown in Figure 3.13) is the nested subgraph being called from a parent graph. Fig-
ure 4.11a shows the substitution transition, while Figure 4.11b shows the subpage being
substituted5. The fused places between both figures are identified with the same label:
the in, iSTATE, and ipred argument places from Figure 4.11a are each fused with their cor-
responding, similarly named input places (∈ Pin) in the subpage VSFG from Figure 4.11b.
Similar fusion of places applies between the result places from Figure 4.11a and the output
places (∈ Pout) from Figure 4.11b.

From the perspective of the parent graph, a substitution transition appears like any
other transition, and thus may operate in the same fashion: atomically consuming all in-
puts and producing outputs as described in Figure 4.2b. However, for the nested subgraph
being activated, this approach would imply two constraints on performance:

• Call Strictness: All input arguments must be available before computation within
the subgraph starts.

• No Loop Parallelism: Given the static-dataflow execution semantics, new inputs
may not be injected into the nested subgraph until all of the outputs have been
produced from the previous set of inputs. Thus if the subgraph is nested within a
loop/tail-recursive function, it can only execute operations from one iteration at a
time, restricting concurrency.

5For simplicity, none of the acknowledgement places have been shown.
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(a) Substitution transition for the fib(in, iSTATE , ipred) nested VSFG

(b) Petri-net subpage showing the fib(in, iSTATE, ipred) VSFG.

Figure 4.11: The Substitution transition for the nested VSFG subgraph fib(in, iSTATE, ipred)
in its parent graph, and its replacement Petri-net subpage.

Call strictness was identified as one of the issues limiting achievable performance
for static-dataflow custom hardware by Budiu et al [BAG05]. To address this, leniency
may be introduced in a similar fashion to the MUX operation, without violating well-
behavedness, by allowing lenient insertion of arguments into the subgraph, but delaying
acknowledgement of the input arguments until all of the corresponding outputs have
been retrieved from the subgraph. This approach is discussed in Section 4.3.3, where
the nested subgraphs implement loops, and thus are not guaranteed to be well-behaved.
However, so long as the nested subgraph is known to be well-behaved, loop parallelism
may be exploited by allowing repeated insertion of input arguments into the subgraph,
irrespective of whether a result has been obtained from the previous set of arguments.
This is possible since flattening a well-behaved nested subgraph into its well-behaved
parent graph produces a well-behaved combined graph6.

As mentioned in Section 3.6.2, a means of controlling the degree of speculative ex-
ecution of nested subgraphs is needed in an eager-evaluated VSFG. To implement such

6Recall from Section 4.2.1: “An acyclic interconnection of graphs is a well-behaved graph if all of its
component graphs is a well-behaved graph” [Tra86, AN90].
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Figure 4.12: The signal and wait operations for communicating with well-behaved nested
subgraphs.

unrestricted communication with well-behaved nested subgraphs, I introduce two new
dataflow operations: signal and wait. The use of signal and wait in a parent graph to
communicate with a well-behaved nested subgraph is shown in Figure 4.12. The predicate
inputs to the signal operations are used to enforce predicated execution of subgraphs. If
speculative execution is desired for a subgraph, the predicate input may be set true, or
removed altogether.

The signal operation takes a value input that is to be communicated to the subgraph,
as well as a predicate input, but produces no output in the parent graph. If the predicate
input holds, only then is the value inserted into the subgraph. The wait operation only
takes a predicate input from the parent graph, and produces a value output that has
either been fetched from the subgraph (if the predicate holds), or is a don’t care value
(if the predicate is false). The necessary values inserted into the nested subgraph are the
input state-edge token, as well as an input predicate to the subgraph (i.e. the inPred
value for the subgraph, mentioned in Section 3.6), while the necessary value returned from
the subgraph is the output state-edge token7.

The equivalent Petri-net representation for the dataflow operations in Figure 4.12 is
shown in Figure 4.13. Each signal and wait operation is represented using two transitions:
one that fires only when the input predicate holds (signalT , waitT ), and one that fires
otherwise (signalF , waitF )

8. The signalT transition has a set of output places Ofused(t)
that are fused with some of the input places Pin of the nested VSFG subgraph (i.e.
Ofused(t) ⊆ Pin), while similarly, each waitT transition has an input place ifused that is
fused with one of the output places of the nested VSFG subgraph (i.e. ifused ∈ Pout).
Equations 4.11 and 4.12 give the operational semantics of the signal transitions, while
Equations 4.13 and 4.14 give the semantics for the wait transitions.

A signalT transition inserts values into its output place fused with the nested subgraph
(ofused ∈ Pin of the subgraph) only if the predicate value σ(ip) is true (Equation 4.11),

7A possible optimization would be to remove the state-edge and predicate inputs in the case that there
are no state-operations in the nested subgraph

8Note that with the inclusion of the signal and wait transition pairs, the VSFG-S would no longer be
a marked graph. However this does not introduce non-determinism into the execution of the Petri-net,
as the firing of the appropriate transition is determined by the value within the predicate place.
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Figure 4.13: The equivalent signal and wait Petri-net transitions, showing the fused places
used to communicate with a nested subgraph.

otherwise signalF fires instead, simply clearing its inputs, and preventing the activation
of any transitions in the nested subgraph (Equation 4.12). Similarly, the waitT transition
only seeks to retrieve values from its input place fused with the nested subgraph (ifused ∈
Pout of the subgraph) if its input predicate holds (Equation 4.13). If the predicate is false,
wait assumes that the corresponding signal operation would not have inserted tokens
into the subgraph, and thus it expects no input from the subgraph. In this case, waitF
fires, clearing its predicate input, and producing a don’t care value at its output places
in the parent graph (Equation 4.14).

ofused = signal (iv, ip)
σ(ip) = True, def(iv), !def(ofused)

σ′ = σ[ofused 7→ σ(iv)] ◦ erase(iv , ip)
(4.11)

ofused = signal (iv, ip)
σ(ip) = False, def(iv)

σ′ = σ ◦ erase(iv, ip)
(4.12)

ov = wait (ifused, ip)
σ(ip) = True, def(ifused), !def(ov)

σ′ = σ[ov 7→ σ(ifused)] ◦ erase(ifused, ip)
(4.13)

ov = wait (ifused, ip)
σ(ip) = False, !def(ov)

σ′ = σ[ov 7→ ∆] ◦ erase(ip)
(4.14)

4.3.3 Compound Operations: Nested Loop Subgraphs

Loops in the VSFG are represented using tail-recursion as infinite, nested, acyclic sub-
graphs. However, for implementation as static-dataflow hardware using finite resources,
cycles must be re-introduced into the VSFG, by incorporating back edges that allow loop
variant values to be reinserted into the loop-body for each iteration of a loop. The VSFG-
S replaces the VSFG’s compound transitions representing the tail-recursive calls with
back-edges.
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There are two aspects to accomplishing this safely: (1) how to modify the structure
of a loop-subgraph in order to introduce cycles in the static-dataflow, and (b) how to
maintain well-behavedness in both the loop subgraph and the parent graph. During both
of these stages, it is important to ensure that the inherent advantage of the VSFG in
dealing with loops – i.e. facilitating outer-loop parallelism through independent unrolling
of loops in a loop nest (Section 3.6.2) – are retained.

Reintroducing back-edges in the loop subgraph

Consider a loop VSFG, such as the one defined by the tail recursive function from Fig-
ure 3.12: forloop(i, a, STATE, pred). Loops in the VSFG representation may be consid-
ered to have three distinct parts, as shown in Figure 4.14:

1. The loop-body: A well-behaved acyclic graph representing the loop body, and
excluding both the tail-recursive subgraph and the exit MUX operation. The loop-
body, like any other VSFG, has input places and output places. However, we dis-
tinguish between two different types of output places, as marked in Figure 4.14:

(a) The loop exit outputs (Pexit ⊂ Pout): these are the value, state and predicate
outputs from the loop-body that would be used if the exit predicate holds
during the current iteration.

(b) The loop iteration outputs (Piteration ⊂ Pout): these are the value state and
predicate outputs that serve as input arguments to the tail-recursive call –
essentially the input values for the next iteration of the loop. Thus this set of
outputs exactly matches the set of input places of the loop-body

For each loop-body, Pout = Piteration ∪ Pexit, and Piteration ∩ Pexit = ∅. In addition,
the predicates for the loop-exit and iteration outputs will be mutually exclusive,
since a loop will always either exit or iterate, but not both.

2. The tail-recursive call that occurs if the exit predicate p generated by the loop-
body is false.

3. The exit MUX operation that selects the appropriate set of loop-exit outputs to
return to the loop’s parent graph.

Our objective is to replace the tail-recursive call with control-directed dataflow that
allows the tail-call function arguments to be reinserted back into the loop-body. To
this end, I utilize two new operations, eta and mu, that were defined by Budiu in his
implementation of static-dataflow hardware [Bud03]:

• A Conditional Gate Operation, Eta : The eta operation receives a predicate
input and a value input. If the predicate input holds, the value input is forwarded to
the eta output, and both the value and predicate inputs are cleared/acknowledged.
Otherwise, if the predicate input is false, the inputs are acknowledged, but no output
is produced. Figure 4.15a shows the dataflow representation of the Gate operation,
while Figure 4.15b shows the equivalent Petri-net representation.

The operational semantics for eta, as described by Budiu [Bud03], are given in
Equations 4.15 and 4.16. Note that eta is not a well-behaved operation, as it is not
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Figure 4.14: The three components of a loop represented using a VSFG: (1) a well-behaved,
acyclic loop body, (2) the tail recursive call, and (3) the exit MUX.

(a) The eta dataflow opera-
tion.

(b) Petri-net representation of eta.

Figure 4.15: The eta operation, for implementing control-directed dataflow in the VSFG-S.

guaranteed to produce an output each time it consumes its inputs.

o = eta (iv, ip)
σ(ip) = True, def(iv), !def(o)

σ′ = σ[o 7→ σ(iv)] ◦ erase(iv , ip)
(4.15)

o = eta (iv, ip)
σ(ip) = False, def(iv)

σ′ = σ ◦ erase(iv, ip)
(4.16)

• A Non-deterministic merge operation, Mu : The mu operation is essentially
a non-deterministic merge – whereas for the merge operation discussed in Sec-
tion 4.2.1, a predicate input was used to control which of its inputs a token is
selected, there is no predicate input for the mu operation: an input token is se-
lected and placed at the outputs immediately upon arrival. Figure 4.16a shows the
dataflow representation of mu, and Figure 4.16b shows the equivalent Petri-net.

The Petri-net representation of mu essentially has an input place with multiple
incident edges9. When the mu transition fires, it simply copies a value from its

9As with the signal and wait operations, note that with the inclusion of either an eta or a mu
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(a) The mu dataflow opera-
tion.

(b) Petri-net representation of mu.

Figure 4.16: The mu operation, for implementing non-deterministic merge in the VSFG-S.

input place to each of its output places. The operational semantics for mu, adapted
from Budiu [Bud03], are given in Equation 4.17. Note that mu is also not well-
behaved, as it produces an output by consuming inputs from only one of its input
edges.

o = mu (i1, i2, ..., iN )
∃k.def(ik), !def(o)

σ′ = σ[o 7→ σ(ik)] ◦ erase(ik)
(4.17)

The eta and mu operations are utilized to replace the tail-recursive call in the VSFG
with loop-back edges in the VSFG-S, as shown in Figure 4.17. The well-behaved, acyclic
loop-body remains unchanged from the VSFG. However, both the tail-recursive call and
the exit MUX are replaced with eta operations – one eta for the “exit outputs” and
another for the “iteration outputs” of the loop-body. The predicates driving both these
eta operations are complements of each other; thus together both the eta operations
implement similar functionality to the switch operation from Figure 4.3b (described in
Section 4.2.1): The ‘exit-outputs’ eta will only produce an output when the loop-exit
predicate holds, otherwise it will produce nothing; conversely, the ‘iteration-outputs’ eta
will drive the loop-back edges only when the complement of the loop-exit predicate holds.

There will be a loop-back edge for each of the input places of the loop-body VSFG,
including the inPred predicate input. If the loop-exit predicate is false, the ‘iteration-
outputs’ eta will place the next-iteration input values (including inPred = True) on the
loop-back edges. A mu operation is used to forward input values entering the loop from
either the loop’s parent graph (marked ‘parent-graph inputs’ in Figure 4.17), or from the
loop-back edges. Given the non-deterministic nature of mu, it is essential to impose a
constraint within the parent graph that prevents repeated insertion of values into the loop
subgraph until the loop has terminated. This will be discussed in the following subsection.

In order to support loop unrolling, the tail-recursive VSFG may have its recursive
subgraph flattened into the loop body any number of times, before loop-back edges need

operation, the VSFG-S will no longer be a Marked Graph. The eta Petri-net still exhibits deterministic
execution based on the input predicate value, while the mu can exhibit non-deterministic behavior. Non-
determinism in dataflow execution due to the mu operator is prevented through the use of the inGate
and outGate operations described shortly.
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Figure 4.17: Reintroducing back-edges into the VSFG-S by removing the MUX and Tail-call
subgraph with eta and mu operations.

to be introduced. Figure 4.18 shows the VSFG from Figure 4.14 with the tail-recursive
loop call flattened twice into the main loop body. Once the desired degree of unrolling
has been achieved, loop-back edges may be introduced in a similar fashion to Figure 4.17.

Figure 4.19 shows the thrice unrolled version of the loop from Figure 4.17. As before,
the ‘exit-outputs’ of each copy of the loop-body will have an eta controlled by its respective
exit predicate. The ‘iteration-outputs’ of the last copy of the loop body will similary have
an eta controlled by the complement of its exit predicate, with the output values of the eta
connected to the input mu operation. As there are multiple ‘exit-output’ eta operations
in the flattened/unrolled VSFG-S, another mu operation is needed at the outputs to the
loop in order to non-deterministically select the correct loop-exit outputs from one of the
exit etas.

The three ‘exit-output’ eta operations will be mutually exclusive, since their predicate
inputs are mutually exclusive. The output etas, together with the output mu, essentially
implement a decoded multiplexer. The key difference between this form of decoded multi-
plexer and theMUX described in Section 4.3.1 is that MUX synchronizes all of its inputs
before clearing/acknowledging them, whereas here, each individual eta will acknowledge
its own inputs.

Enforcing well-behavedness in the parent graph

As observed earlier, a mechanism is needed to prevent injection of additional values from
a parent graph into this form of loop subgraph, due to the presence of a non-deterministic
mu operation at the loop input.

As mentioned in Section 4.3.2, a simple means of achieving this would be to treat
any compound transition representing a loop subgraph as an atomic transition within the
parent graph, as described in Figure 4.2b. Recall from Section 4.3.2, that this would imply
two constraints on performance: (1) call strictness, and (2) no re-injection of values until
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Figure 4.18: Loop structure from Figure 4.14, with the tail-call flattened twice.

previous inputs are acknowledged. For well-behaved subgraphs, both of these constraints
were relaxed through the use of our signal and wait operations.

Due to the presence of the mu non-deterministic merge operation, VSFG-S loop sub-
graphs are not well-behaved. However, so long as re-insertion of values into a running
loop subgraph is prevented, and the loop terminates, a loop subgraph is guaranteed to
be self-cleaning, thanks to the eta operations at all of the outputs of the well-behaved
acyclic loop-body VSFGs. Thus loop subgraphs need not be treated as strictly atomic
operations – lenient insertion of operands is permissible, so long as subsequent operands
are only passed into the subgraph after all previous outputs from it have been retrieved,
thereby guaranteeing an empty loop subgraph.

To achieve this, variants of signal and wait from Section 4.3.2 have been developed,
called inGate and outGate. Figure 4.20 shows the Petri-net transitions for inGate and
outGate operations used within a parent graph to insert operands into a loop subgraph.
The Figure assumes a structure analogous to Figure 4.13, where the loop subgraph has
one value input in addition to the mandatory state-edge and inPred predicate inputs, and
produces one value and one state output.

The inGate operation is analogous to signal, in that if its input predicate holds, it
places a value token from the parent graph into a nested subgraph via a fused place.
Unlike signal, however, inGate does not acknowledge its predicate or value inputs in the
parent graph. Similarly, outGate is analogous to the wait operation, as it retrieves a
value from a nested subgraph via a fused place if its input predicate holds. Unlike wait,
outGate does not acknowledge its predicate input from the parent graph, though like wait,
it does acknowledge values received from the nested-subgraph fused place. Furthermore,
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Figure 4.19: The equivalent VSFG-S loop with back-edges, for the VSFG shown in Figure 4.18.

each outGate also sets a local variable (rcvd) each time it fires, irrespective of the input
predicate value.

Once all the outGate rcvd variables have been set, it means either that all output
values have been received from the nested subgraph (if the parent predicate evaluated
true), or that no output values were expected from the subgraph (if the parent predicate
evaluated to false). In either case the acknowledge inputs transition may fire, finally
acknowledging all of the the input values and predicates from the parent graph to the
nested subgraph. In this way, the combination of inGate and outGate operations allows
for lenient activation of loop subgraphs, while maintaining well-behavedness by preventing
re-insertion of value tokens until the loop subgraph has terminated.

f1, f2, ...fN ,= inGate (p1, v1, ..., pN , vN )
∃n.

(

σ(pn) = True ∧ def(vn)∧ !def(fn)
)

σ′ = σ[fn 7→ σ(vn)]
(4.18)

f1, f2, ...fN ,= inGate (p1, v1, ..., pN , vN )
∀n.def(pn, vn),∀m.(σ(rcvdm) = True)

σ′ = σ[∀m.rcvdm 7→⊥] ◦ ∀n.erase(vn, pn)
(4.19)
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Figure 4.20: The use of inGate and outGate Petri-net transitions, along with an additional
transition that acknolwedges all input places in the parent graph, but only after all outputs have
been retrieved from the subgraph by the outGate transitions.

o1, ..., oM = outGate (p1, f
′

1, ..., pM , f ′

M )
∃m.

(

σ(pm) = True ∧ def(f ′

m)∧ !def(om)
)

σ′ = σ[om 7→ σ(f ′

m)][rcvdm 7→ True]

◦ erase(f ′

m)

(4.20)

o1, ..., oM = outGate (p1, f
′

1, ..., pM , f ′

M )
∃m.

(

σ(pm) = False ∧ !def(om)
)

σ′ = σ[om 7→ ∆][rcvdm 7→ True]
(4.21)

Equations 4.18 through 4.21 describe the operational semantics for the inGate and
outGate operations, under the assumption that there are N input arguments (including
state and predicate inputs) to, and M output values (including state) from the nested-
subgraph. Equation 4.18 describes the operational semantics for a set of inGate operations
when the predicate inputs pi evaluate true. Unlike signal, none of the inputs are cleared
upon sucessful insertion of a value into a fused input place in the nested subgraph (fi ∈ Pin

of nested subgraph). Equation 4.20 describes the semantics for the corresponding outGate
operations if the predicate inputs pi evaluate true. Subgraph output values are retrieved
from the fused output places (f ′

i ∈ Pout of nested subgraph) if the predicates pi hold.
Note that the fused places f ′

i are acknowledged by outGate, but the predicate places pi
are not, as they reside in the parent graph. Note also that each outGate operation sets
its local variable rcvd, even if the input predicate is false (Equation 4.21). Equation 4.19
ultimately acknowledges all inputs once all have arrived, and all outGate operations have
set their respective rcvd flags.

The combination of inGate and outGate with the eta operations within the loop
behave very similarly to the well-behaved loop schema discussed previously in Section 4.2.1
(Figure 4.5b). Thanks to the isolation provided by inGate and outGate operations when
communicating with loop subgraphs, the parent graph appears acyclic at its level in the
hierarchy. This allows us to preserve the key advantage of the VSFG, i.e. the ability to
perform loop unrolling within a level of hierarchy, independently of other levels.

For instance, the well-behaved loop-body of the unrolled loop shown in Figure 4.17
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may itself contain a nested loop. So long as this inner loop is isolated from its parent
graph using inGate and outGate operations, unrolling the parent loop, as in Figure 4.19
may be carried out independently of the inner loop.

4.4 Comparison with Existing Dataflow Models

4.4.1 Comparison with Pegasus

The VSFG-S IR, and the HLS toolchain for its evaluation described in Chapter 5 share
a lot of similarities with previous work undertaken by Budiu et al on the Pegasus IR and
the CASH compiler toolchain developed at Carnegie Mellon University [BVCG04, Bud03,
MCC+06]. We both compile general-purpose imperative code to a dataflow intermediate
representation capable of being implemented directly as static-dataflow spatial computa-
tion. As a result, both the Pegasus and the VSFG-S IR utilize many of the same dataflow
operations: value operations, load, store, MUX , eta, and mu.

The work presented in this dissertation is intended to improve upon the Pegasus IR
and compiler work specifically by overcoming complex control-flow in order to expose
and exploit greater ILP in spatial hardware from sequential code. Whereas Budiu’s Pe-
gasus IR is a variant of the Control Flow Graph, composed of acyclic hyperblocks, the
VSFG-S is based upon the Value State Dependence Graph [Law07], that elides all ex-
plicit control flow, representing only true value and state dependences. This choice is
expected to provide a significant performance advantage over the Pegasus IR, due to the
ability of the VSFG-S to perform much broader control-dependence analysis, independent
unrolling/pipelining of loops in a loop-nest, and exploit multiple flows of control, as de-
scribed in Chapter 3. In addition, the following key advantages of the VSFG-S IR over
the Pegasus IR have also been identified:

• No Call Strictness: Whereas Pegasus implements a strict Call operation that
collects all arguments before initiating called function execution, the VSFG-S en-
ables lenient communication of operands between parent graphs and their nested
subgraphs through the use of signal, wait, inGate, and outGate operations.

There are two interrelated reasons for call-strictness in the Pegasus IR. Firstly,
instead of inlining/flattening all function calls as the VSFG-S currently does, Pe-
gasus incorporates a call-stack mechanism to support the implementation of true
function calls and general recursion. Secondly, Pegasus is based on the CDFG,
and must therefore maintain the abstract notion of a single-flow of control, even
though its implemented dataflow graph may be executing operations out-of-order,
from across multiple hyperblocks. Given the last-in-first-out nature of the call-stack,
call-strictness ensures that even in the presence of out-of-order dataflow execution,
values are pushed to and popped from the call-stack in the correct order. Further
discussion of this is presented in [Bud03].

On the other hand, the key strength of the VSFG-S is that it abandons the single-
flow of control constraint. Although the VSFG-S doesn’t currently support true
function calls or general recursion, a means of supporting both features in the future,
without requiring a single-flow of control contraint or a sequentializing call-stack, is
discussed in Section 4.5.
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• Reduced Control Overhead: Typically, the dataflow execution model incurs a
higher resource overhead than the conventional Von-Neumann model due to the
need to incorporate a large number of control-instructions (like switch, merge, eta,
and mu). One such operation is required for each operand that is subject to control-
directed dataflow, whereas conventional code simply uses a single branch instruction
to explicitly alter control-flow, independent of the number of live variables.

Previous work compiling the Id Nouveau dataflow language found a 2−3× instruc-
tion count overhead due to conditional instructions, compared to equivalent code
written in C [HCAA93]. Wavescalar IR reveals a similar 2−4× overhead in instruc-
tion counts [PPM+06], while Budiu et al report a 20 − 80% performance penalty
due to these instructions in the Pegasus IR [BAG05]. Both Wavescalar and Pegasus
compile to their respective dataflow representations from imperative code, and must
introduce a control-instruction for each live value at the entry and exit of each basic
block (or hyperblock) in the original code CFG.

The VSFG on the other hand elides most of the original control-flow. Consequently,
the VSFG-S utilizes its own control-directed dataflow operations (i.e. signal and
wait, inGate and outGate, eta and mu) only at the entry to and exit from sub-
graphs, instead of at each basic-block boundary. Within each subgraph, the VSFG-
S only employs MUX operations at value join points to replace φ-nodes. As a
result, VSFG-S based hardware should exhibit a much smaller instruction-count
and performance overhead due to control-instructions. An indirect measurement
of this is provided by the fact that VSFG-S based dataflow hardware exhibits only
an average of 15% resource requirement overhead compared to statically-scheduled
CFG-based custom hardware10 when synthesized to an FPGA (please see results
from Section 6.2.3).

Nevertheless, the work on Pegasus and the CASH compiler by Budiu et al does retain
certain advantages, such as the support for general recursion and true function calls, as
mentioned above. Furthermore, the CASH toolchain and generated harwdare incorporates
both static and dynamic memory disambiguation to exploit memory level parallelism,
whereas the VSFG toolchain currently does not. Finally, the HLS toolchain developed
for this dissertation to evalue the VSFG-S IR does not currently provide full support for
all imperative language features, whereas the CASH compiler supports compilation of
virtually all of ANSI C to custom hardware [BAG05, BVCG04]. The incorporation of
support for these features was left out of the current implementation primarily due to
time constraints. A more detailed summary of these limitations and the reasons for them
is provided in Section 5.4.

4.4.2 Relation to Original Work on Dataflow Computing

The design of the VSFG intermediate representation relies heavily on concepts developed
during the early work done on dataflow computation in the 1970’s and 1980’s [AC86,
Tra86, AN90]. The key distinction that could be made between the early work on dataflow
and the VSFG IR is in the handling of control-directed dataflow:

10which, being statically scheduled, would not incur the same control-instruction overhead as the
dataflow languages.
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1. Speculative execution via MUX : Early work on dataflow computing utilized the
conditional schema from Figure 4.5a to implement control-directed dataflow [Tra86].
The VSFG instead relies extensively on the well-behaved MUX operator, to support
speculative execution. Due to this, predicated operations like load and store must
produce a don’t care output even when their input predicate is false (i.e. they must
be well-behaved independent of the conditional schema).

2. Nested Subgraphs for representing function calls: Early dataflow litera-
ture establishes the notion of ‘user-defined functions ’, which was analogous to the
VSFG’s representation of nested subgraphs [AC86]. However, instead of utilizing
the conditional schema, the VSFG-S incorporates the predicated signal and wait
operations to control the execution of such user-defined functions.

3. Loops represented as atomic subgraphs: Instead of the loop schema described
by Traub (Figure 4.5b) [Tra86], the VSFG-S extracts loops into their own nested
subgraphs, that execute atomically from the perspective of the parent graph thanks
to the use of the inGate and outGate operations.

(a) Use of signal and wait to predicate the
execution of a nested subgraph.

(b) Functionally equivalent conditional
schema to Figure 4.21a. The ∆ operation
produces don’t care as output.

Figure 4.21: A predicated subgraph implemented using signal and wait in the VSFG-S, and
the functionally equivalent conditional schema described by Traub [Tra86].

However, these distinctions are merely abstractions that are useful for our purpose:
compiling iterative programming languages to an intermediate representation that elides
control-flow, and allows for aggressive speculation, control-dependence analysis and ex-
ploitation of multiple flows of control. For instance, the MUX operator is simply another
primitive operation of the type shown in Figure 4.3a, defined to enable speculative execu-
tion. Furthermore, the predication of subgraphs using signal and wait (Figure 4.21a) is
functionally equivalent to a conditional schema where the false path produces a don’t care
output, while the true path implements a user-defined function equivalent to the nested
subgraph being predicated (Figure 4.21b). This is shown in Figure 4.21.

Similarly, the use of eta and mu to implement loops, while isolating the running
loop from its parent graph using inGate and outGate operations (Figure 4.22a) is func-
tionally equivalent to having a loop-schema enclosed within the conditional schema from
Figure 4.21b, as shown in Figure 4.22b. In the same way as Budiu constructs the CDFG-
based Pegasus IR from variants of the established basic dataflow operations [AC86, Tra86,
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(a) Use of inGate and outGate to atomi-
cally execute a nested loop.

(b) Functionally equivalent combination
of conditional and loop schemas to Fig-
ure 4.22a. The ∆ operation produces don’t
care as output.

Figure 4.22: A nested loop subgraph implemented using inGate and outGate in the VSFG-
S, and the functionally equivalent combination of conditional and loop schemas described by
Traub [Tra86].

AN90], in order to represent imperative code [Bud03], the VSFG makes use of its own vari-
ants, for the same purpose, albeit utilizing a different organization, in order to overcome
complex control-flow and expose ILP from control-intensive code.

4.5 Limitations of Static Dataflow Execution

The VSFG-S intermediate representation was developed with the static dataflow execution
model in mind. This model was chosen for its potential for very high energy efficiency,
as demonstrated in prior work [BVCG04, MCC+06], but it also allows us to evaluate
the VSFG-S in a simpler manner by implementing a high-level synthesis tool to generate
static-dataflow custom hardware, instead of first having to develop, implement and tune
a coarse-grained reconfigurable architecture like Wavescalar [SSM+07].

Unfortunately, the static-dataflow execution model has one key limitation – it cannot
dynamically invoke user-defined function calls [AC86]. While it can represent function
calls as nested subgraphs, these subgraphs must be flattened/expanded into the parent
graph at compile-time. Thus in the VSFG-S, each nested subgraph representing a function
call would be implemented by instantiating a unique copy of the VSFG graph of that
function at that location.

This implies that in a pure static-dataflow execution model, there would be no support
for standard imperative language features like general recursion, since the number of times
a recursive functions’ subgraph is invoked is potentially large, and typically determined
at runtime11. The development of the dynamic-dataflow model was motivated in part by

11Note that we already revert our acyclic, tail-recursive representation of loops back to a finite graph by
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the need to overcome this key limitation of static-dataflow computing, thereby making
the dataflow model more suitable for general-purpose computation [AC86].

Unlike static dataflow, the dynamic dataflow approach associates a tag with each
value or token in the graph, signifying its dynamic instance. Dynamic dataflow is (a) not
constrained by the limitation of having only one token per dataflow edge, and (b) allows
operations to consume input tokens out-of-order, by performing tag-matching. The token
tagging and matching mechanisms allow a single instance of a function subgraph to be
utilized to execute multiple independent function calls. General recursion can therefore
also be supported by dynamic dataflow architectures, given sufficient memory space for
the storage of tagged-tokens along each input arc to a recursive function. Note that
this constraint is analogous to having sufficient call-stack space for a recursive program
implemented on a conventional Von-Neumann architecture. Further details and discussion
about both the static and dynamic dataflow execution models, and their implementation
may be found in earlier work by Arvind, Traub, and Gao et al [AN90, AC86, GGP92,
Tra86].

This key limitation of static-dataflow execution must be addressed if it is to be con-
sidered suitable for compiling unrestricted imperative high-level language code to spatial
architectures. Previous work on compiling imperative code to static-dataflow hardware
was undertaken by Budiu [Bud03], who incorporates a dynamic call-stack into his static
dataflow model in order to implement function calls and support general recursive exe-
cution. The caller graph – i.e. the graph containing a function call in Budiu’s Pegasus
representation – must (1) allocate a stack frame, and (2) push all live values in the graph
into this frame, before passing the arguments to the function call. Once the function call
returns its outputs, all live values must be popped from the stack frame, and restored into
the static-dataflow graph, after which the stack frame is freed, and execution proceeds
as normal. Recursive functions adhere to the same procedure, allocating stack frames
sequentially, and in control-flow order, in a similar fashion to the conventional imperative
execution model.

Budiu’s hybridization of the static-dataflow and imperative models is made possible
by the fact that his Pegasus intermediate representation is based on the Control Flow
Graph, and thus must strictly adhere to a single, sequential flow of control, at least at
the coarse-grained, hyperblock level: while execution within a basic or hyper-block may
occur concurrently in dataflow order, flow of control between blocks, and thus between
caller and callee functions, must occur sequentially. Thus the last-in-first-out nature of
the call-stack may still be utilized to implement function calls.

However, as execution in the VSFG is not constrained to a sequential or even a single
flow of control, this stack-based approach cannot directly be ported to the VSFG, as its
last-in-first-out nature does not guarantee retrieval of the correct operands in the absence
of a single flow of control. Instead, I propose hybridizing the static-dataflow approach
with the tagged-token dynamic dataflow approach, in order to add support for function
calls and general recursion. This proposed approach is neither implemented nor validated,
nor evaluated in this dissertation. These tasks are left for future work, while I focus on
compiling non-recursive applications in this dissertation. However, a brief description is

reintroducing back-edges for the same reasons. However, if the number of general-recursive calls can be
determined at compile-time, and the design is not resource constrained, there is no reason that recursive
calls couldn’t also be flattened into the original graph the desired number of times, in the same manner
as loops are currently unrolled.
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(a) Modifying subgraph communication to
support true, non-inlined function calls.

(b) Implementing coarse-grained dynamic
dataflow: incorporating token-storage and
tag-matching, logic at subgraph boundary.

Figure 4.23: Proposed hybridization of static and dynamic dataflow, to retain the simplicity
and efficiency of the former, while using the latter to support true function calls.

provided below, for completeness.

The goal of combining tagged-token dynamic dataflow with static dataflow would be to
retain the generality and dynamic function call features of the former, with the efficiency
and simplicity of the latter. To this end, the VSFG-S may be extended in the future to
incorporate tag-matching at a coarse-grained level, where instead of incorporating tag-
matching support for each operation in the VSFG, it may only be utilized at subgraph
boundaries. For instance, instead of being flattened/inlined at each call site, a function
subgraph may be implemented as shown in Figure 4.23.

For each call to a subgraph, the parent graph would dynamically generate a unique
tag value. This tag would be passed along with each input argument to the function. The
parent graph would pass an additional continuation or return address to the subgraph, as
shown in Figure 4.23a. The signal operations in the parent graph would have fused places
with corresponding wait operations at the entry to the function subgraph, as shown in
Figure 4.23b. These wait operations would receive the incoming operands, along with
their tags, from multiple potential call-sites, and insert them into the ‘token tag store and
matching logic’, which may be implemented using content-addressable memory. Once
a complete set of inputs to the subgraph has been received at this tag-matching logic
(i.e. all inputs with matching tags+continuation have arrived), they may be issued to
the well-behaved function subgraph, which would use signal operations at its exit edges
to send output values back to corresponding wait operations in the correct parent graph
specified by the continuation address.

The implementation of general recursion using such tagged-tokens may be performed
as shown in Figure 4.24. The VSFG of a recursive function, as shown in Figure 4.24a,
cannot be directly implemented as a VSFG-S suitable for static-dataflow execution, with
dynamic-dataflow style tag-matching at its inputs. In order to implement a recursive
function in our hybrid dataflow execution model, we must split its VSFG into two non-
recursive, well-behaved regions: one that produces input arguments for the recursive
self-call, and a second that consumes outputs from the returning recursive call, as shown
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(a) A VSFG for a recursive function,
containing a call to itself. (b) Implementing recursion: split the function into

two halves, and add tag-matching logic in the middle,
after the recursive call.

Figure 4.24: Proposed hybridization of static and dynamic dataflow, showing how to imple-
ment a general recursive function.

in Figure 4.24b.

All values from the first half VSFG that are not arguments to the recursive call, are
live values that must be held temporarily, until the recursive call returns. These values
are therefore inserted into another instance of tag-matching, token-store logic at the input
to the second half of the original VSFG, where they await the return of outputs from the
current instance of the recursive call. Once the corresponding recursive call returns, the
set of live values, along with the output from the recursive call, is inserted into the second
well-behaved half of the VSFG, after which the function returns its outputs to the original
calling parent graph.

Instead of incurring the cost of content-addressable logic for token storage and tag-
matching for each operation in the VSFG, as is the case with the Wavescalar architecture,
this hybrid approach should hopefully amortize this cost over a much larger set of dataflow
operations by restricting tag-matching and token storage to the boundaries of VSFG-S
subgraphs. Additionally, unlike the stack-based approach proposed by Budiu for his
Pegasus IR [Bud03], this proposal does not necessitate constraining execution to a single-
flow of control.

Additional work would be needed to fully flesh-out the details of how this hybrid ap-
proach may be implemented in custom or spatial hardware. For instance, a compiler might
need to assess the relative overheads of inlining all calls to a function over implementing a
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single body of the function with the associated tag-matching logic. Furthermore, how do
we determine the best graph-cut when splitting a recursive function into its constituent
halves? Finally, how suitable is the proposed approach for functions that make multiple
recursive self-calls? In order to fully support general imperative languages for compilation
to spatial architectures via the VSFG intermediate representation, validation, implemen-
tation and testing of this hybridization proposal is a high priority for future work beyond
this dissertation.

4.6 Summary

In order to evaluate the potential improvements in ILP that the VSFG may provide
for sequential, imperative applications implemented on spatial architectures, this chapter
made the case for developing a high-level synthesis toolchain that compiles a VSFG-based
IR directly to static-dataflow custom hardware. I described in detail the structure and
semantics of the VSFG-S, discussing how loops and nested subgraphs may be represented
for implementation as custom hardware. While a discussion of how to support true
function calls and general recursion by incorporating some dynamic dataflow features
is presented, implementation and validation of this approach is left for future work –
currently the VSFG-S based HLS toolchain in-lines all function calls, and does not include
support for recursion.

A brief comparison was also presented with the original dataflow computational model
and operations, demonstrating that a lot of the new operations in the VSFG-S are essen-
tially abstractions useful for eliding control-flow, and compiling imperative code to VSDG-
like dataflow graphs. The presented implementations of predicated nested subgraphs and
atomic loop subgraphs may easily be imitated using combinations of the original condi-
tional and loop schemas presented in the early dataflow literature [AN90, AC86, Tra86].

Chapter 5 will now describe a high-level synthesis toolchain that compiles imperative
code to the VSFG-S and then generates custom dataflow hardware for evaluation on an
FPGA platform.
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CHAPTER 5

A VSFG-Based High-Level

Synthesis Toolchain

Chapter 4 presented the definition and operational semantics of the VSFG-S interme-
diate representation. The goal of the VSFG-S is to facilitate the implementation of
sequential, imperative programs written in conventional high-level languages, onto spa-
tial computation substrates using the static-dataflow execution model. The nature of the
VSFG enables compile-time exposition of ILP from control-intensive code (as discussed
in Chapter 3), while the static-dataflow model enables dynamic execution scheduling an
energy-efficient exploitation of this ILP [BVCG04, MCC+06].

As highlighted in Chapter 4, development of a high-level synthesis tool that generates
custom hardware descriptions from the VSFG-S IR is an effective and time-conserving
way of evaluating the potential of this IR, without having to target a specific type of
programmable spatial architecture like the ones described in Chapter 2. This chapter
describes the design of this toolchain, after which Chapter 6 presents the evaluation
results for the VSFG-S based hardware generated using this toolchain.

5.1 The Toolchain

I utilize the LLVM compiler infrastructure to implement this VSFG-based high-level syn-
thesis toolchain. The toolchain takes the LLVM IR as input, generating VSFG-based
static-dataflow hardware described using the Bluespec Hardware Description Language.
The choice of the LLVM compiler infrastructure was motivated by several factors:

• Ease-of-use: The LLVM compiler is highly modular and well documented, making
it a very convenient tool for academic research. Front-ends for many popular high-
level languages are available that convert the input language code into the LLVM
IR. All code analysis, optimization and transformation passes are implemented only
on this LLVM IR, and thus can be developed independently of the input language.

Furthermore, compiler back-end code generation and optimization passes can also
be developed independently of the input language. An LLVM back-end would take
in as input the generic LLVM IR representation of the input code, that may have
undergone various back-end agnostic analysis and optimization passes, and generate
output assembly or binary code targeting different architectures. Back-ends for
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Figure 5.1: The language transformation steps involved in VSFG-based high-level synthesis.
The representations shaded grey are the ones generated by the toolchain. It takes LLVM IR as
input, and produces Bluespec SystemVerilog as output, which may subsequently be synthesized
via Verilog HDL to either standard-cell logic or an FPGA.

different computational models (such as custom hardware [CCA+11]) or even other
languages (for source-to-source translation) can also be developed.

• Robust, established compiler: As an established compiler undergoing rapid
development and enhancement, LLVM provides front-ends for multiple high-level
languages. Assuming that a VSFG-based spatial compiler is able to translate all
of the LLVM IR to the VSFG IR, it would in theory be able to directly support
the compilation of all high-level languages that have LLVM front-ends to spatial
computation architectures.

Furthermore LLVM provides as standard many well-tuned code analysis, transfor-
mation and optimization passes, that may be applied to the input code in its LLVM
representation, before generating the code for a targeted back-end.

• Static-single Assignment IR: The LLVM IR is a simple, strongly-typed, static-
single assignment (SSA) language. The SSA nature of LLVM simplifies dataflow
analysis and optimization considerably, and the structure of a program represented
using LLVM IR is essentially that of a Control-Data Flow Graph. The task of the
toolchain is therefore primarily one of translating from this CDFG to the VSFG-S
IR.

• Simple, RISC-like instruction-set: The LLVM instruction set is composed of
simple operations, and is analogous to that of a RISC processor [LLV]. This makes
it very easy to convert each non control-flow LLVM instruction into an equivalent
dataflow operation in hardware1.

Figure 5.1 presents an overview of the language transformation steps in the VSFG-
based high-level synthesis toolchain, which generates and/or operates on the language
representations shown within the grey region. The toolchain is essentially a back-end for
LLVM, taking LLVM IR as input, and producing Bluespec SystemVerilog HDL output
describing the application as VSFG-S IR based static dataflow hardware. This Bluespec
HDL description is then compiled using the Bluespec bsc compiler [Nik04, Nik08] to
generate Verilog HDL, that may then be further synthesized for implementation using a
standard-cell library, or on an FPGA. There are two key reasons for selecting Bluespec
HDL as the output language from the toolchain, instead of directly generating Verilog
HDL:

1Note that in addition to scalar integer operations, the LLVM instruction-set also supports floating-
point and vector arithmetic-logic operations. However, the described toolchain currently only supports
the integer subset of the LLVM instruction-set.
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• Bluespec provides a higher level of abstraction than Verilog, allowing for
faster design experimentation and prototyping of hardware implementations.

• Bluespec is well suited to expressing static-dataflow exection. Instead of
representing hardware at the register-transfer or structural level, Bluespec utilizes
sets of guarded atomic actions, or rules to express the intended functionality for
the hardware to be synthesized. The use of guarded atomic actions makes Bluespec
highly suited to the implementation of dataflow-style dynamic execution scheduling.
In particular, each transition in the Petri-net style execution semantics described
in Chapter 4 for the VSFG-S can be easily mapped to an atomic rule in Bluespec
HDL.

As shown in Figure 5.1, the LLVM IR representing the CDFG of the imperative
input code is first pre-processed into an acyclic, VSFG-like format wherein all loops are
normalized, extracted and transformed into tail-recursive functions, such that there are no
explicit cycles remaining in the CFG. Then this pre-processed, acyclic LLVM IR is used
to generate the equivalent Petri-net style VSFG-S representation as defined in Chapter 4.
Next the VSFG-S IR is used to generate static-dataflow spatial hardware described using
Bluespec SystemVerilog HDL, which is finally compiled using bsc to generate synthesizable
Verilog. These steps are described in greater detail in the following sections.

5.2 Conversion from LLVM to VSFG-S

The steps involved in the conversion of LLVM IR into the equivalent Petri-net style
VSFG-S are as follows:

1. Transform and extract all loops into tail-recursive functions, such that the CFGs of
all functions in the LLVM IR are now acyclic,

2. Introduce state-edges between side-effecting operations (including function calls),
to enforce control-flow order,

3. Generate predicate expressions for each basic block in each acyclic function CFG,

4. Convert φ-nodes into MUX nodes,

5. Discard all branch instructions, and construct a VSFG-S from the remaining LLVM
instructions, and the newly introduced predicate, MUX and state-edge operations.

5.2.1 Convert Loops to Tail-Recursive Functions

In order for a CFG to be transformed into an equivalent Value State Dependence Graph,
and thus by extension, a Value State Flow Graph, all cycles within the CFG must be
part of natural loops [Joh04]. A natural loop is one that has a single entry, or header
basic block, such that none of the basic blocks that make up the body of the loop will
have any control-flow predecessors outside the loop except for the header block, and all
back-edges from within the loop enter the header block [ALSU06]. Essentially, all control
flow entering a natural loop enters through the header block. Conversely, CFG cycles that
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(a) A reducible CFG containing a natural
loop.

(b) An irreducible CFG, with a CFG cycle
but no distinct loop header.

Figure 5.2: Examples of reducible and irreducible code.

do not have a unique header node due to their being multiple control-flow entry points,
are considered non-natural or irreducible code.

Figure 5.2a gives an example of a reducible CFG, showing a natural loop composed
from the E, F, and G basic blocks. Block E is the loop header block, as control-flow only
enters the loop at E, and the back-edge from the loopback block G also terminates at E.
Figure 5.2b gives an example of irreducible code, where the D, E, F, and G basic blocks
are part of a CFG cycle, but they do not constitute a natural loop, since control-flow
can enter this cycle either from C (to E ), or from B (to D). Both Figures are taken
from [Joh04].

Irreduciblilty and its impact on VSDG formation are discussed in greater detail by
Johnson [Joh04], who observes that it is not possible to compile irreducible code directy
to a VSDG. Thankfully, natural loops represent the overwhelming majority of cycles
in the control-flow graphs generated from modern high-level languages [SW11, ALSU06].
Furthermore, irreducible code may also be transformed into reducible code through various
CFG transformations [UM02, JC97].

In order to extract such natural loops into their own tail-recursive functions, several
transformations must be applied. For nested loops, the order of extraction is from the
inner most loop to the outer-most.

1. Loop preheader insertion: For a natural loop that has a header block with
multiple predecessor basic blocks, a new preheader basic block is created, such that
the loop header will now only have one predecessor – the preheader block – while the
header’s original predecessors are now predecessors of the preheader block. Consider
the natural loop CFG shown in Figure 5.3a, in which block A, the loop header, has
multiple predecessors. Figure 5.3b shows the same CFG after the insertion of the
preheader block.

2. Merging all back-edges: Next, all the back-edges are merged into one. This is
done by introducing a new loopback block, as shown in Figure 5.4a (block L), and
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(a) Another reducible CFG showing a nat-
ural loop. (b) The same loop after preheader block

insertion.

Figure 5.3: An example CFG showing another natural loop. Loop blocks are shown in green,
while non-loop blocks are shown in blue. Each block introduced due to our transformations to
the CFG are shown in purple.

re-directing the original back edges (from blocks C and D) to this block2. A new
set of φ-nodes must be introduced in L for each loop-variant variable to select the
appropriate value for the next iteration.

3. Merging all loop-exit edges: Then, all edges exiting the loop are also merged
into a single exit edge. This is implemented by introducing two new basic blocks,
as shown in Figure 5.4b: a return block R, and a new exit block X. The exit edges
from both blocks C and D are redirected to the return block R, which has a single
edge to block X. Block X then redirects control flow to the original exit blocks E
and F.

Note that a new select value must be introduced into the program in order to
implement this correctly: a new φ-node is introduced into the R block, that indicates
which of the unique loop exits is being taken (i.e. from D or from E ). This select
value is then used by the exit block X to conditionally redirect the control flow to
either E or F.

4. Loop extraction: At this point, all of the blocks constituting the transformed loop
can be extracted into their own function definition. As shown in Figure 5.5a, every
block between the header block A and the return block R inclusive, is extracted into
a new function, and replaced in the orignial CFG by a call to this new function.

Before construction of the new function declaration, it is essential to identify all of
the variables in the program that are live when control-flow enters the header block
A – these variables must be added to the input argument list of the new function.
Similarly, it is necessary to identify all of the variables that are updated within

2Given that we start from the inner-most loop in a loop nest, all nested inner loops would have already
been extracted into their own tail-recursive functions, thus their back-edges are not considered here.
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(a) CFG from Figure 5.3b with the multi-
ple back-edges merged into one. (b) CFG from Figure 5.4a after merging

loop-exit edges. Note the introduction of
the return block R and the exit block X.

Figure 5.4: The loop CFG from Figure 5.3a after further transformations. Loop blocks are
shown in green, while non-loop blocks are shown in blue. Each block introduced due to our
transformations to the CFG are shown in purple.

the loop body, and are live when control-flow reaches the exit block X. For these
variables, new stack memory is allocated in the preheader block P, and the pointers
to these memory locations are added to the argument list of the new function.

Within the loop body, at block R, just before returning control to the parent block,
all of the updated values of these variables are stored to their respective stack
locations. Corresponding load operations to retrieve the loop outputs from the stack
are also inserted into block X. Thus communication between the parent function and
the extracted loop function occurs through stack allocated memory3. The select
value from the previous step that is computed in R, is set as the return value from
this new function.

5. Conversion to Tail-recursion: This final step modifies the CFG of the extracted
loop function by removing the back-edge exiting the loop-back block L, adding a
recursive self-call to L, followed by an unconditional jump to the return block R,
as shown in Figure 5.5b. However, before this can be implemented, the function
definition in the previous step must again be modified – all loop variant values in
the loop must also be added to the function’s input arguments list, so that each
time the tail recursive call is made, the updated values of the loop variants may be
passed into the ‘next iteration’.

3In the actual VSFG implementation, these stack allocation and access operations are identified and
optimized away – instead, for each such stack pointer variable added to a function’s argument list I
consider the VSFG function subgraph as having an additional output port.
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(a) CFG from Figure 5.4b with the basic blocks constituting the loop extracted into
a separate function.

(b) CFG from Figure 5.5a with the loop back-edge replaced by a recursive self-call.

Figure 5.5: The loop CFG from Figure 5.4b after further transformations. Loop blocks are
shown in green, while non-loop blocks are shown in blue. Each block introduced due to our
transformations to the CFG are shown in purple.
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The LLVM compiler provided considerable infrastructure that could be adapted to im-
plement the above functionality for extracting natural loops into tail-recursive functions.
LLVM includes a -loop-simplify transformation pass, that performs the first two transfor-
mations listed above. Another two useful passes are the -loop-extract and -merge-return,
that together implement transformations 3 and 4 above. Thus, just by utilizing existing
LLVM passes, 4 of the required 5 transformations can easily be performed.

Implementing transformation 5, i.e. replacement of the loop back-edge with a tail-
recursive call, required modification of the existing -loop-extract pass to (a) add the loop-
variant values to the extracted functions’ input arguments lists, and (b) add the tail-
recursive call to the loop-back block and remove its back-edge. This modified -loop-extract
pass has been called the -loop-2-tail-recurse pass.

After the -loop-simplify, -loop-2-tail-recurse, and merge-return passes have been ap-
plied to the input LLVM IR, each function in the IR will have an acyclic CFG. At this
point, the subsequent steps may be carried out in order to generate the predicate expres-
sions and construct the state-edge graph for the VSFG.

5.2.2 Implement State-edges between State Operations

Once the tail-recursion transformations are applied, the LLVM IR CFG for each function
in the input code will be acyclic. State-edges are now introduced between all state opera-
tions in the IR. Each side-effecting instruction (load, store and function call) in the LLVM
IR is augmented with new state-token input and output ports. Then, within each basic
block, the state output port of the first side-effecting instruction is connected to the state
input of the second side-effecting instruction, and so on, until the end of the block. If
there are no state operations in a block, the block’s incoming state-edge is directly passed
to its output.

Between basic blocks, the state-edge connectivity mirrors the structure of the acyclic
CFG. The state-edge splits at the exit of a basic block when it has multiple possible
successor blocks. Similarly, if a block has multiple predecessors, i.e. it represents a
control-flow join point, then the state edges from each of the predecessor blocks must
join, or synchronize before entering the current block. This synchronization is performed
by introducing a MUX operation (as described in Section 5.2.4) for the state-token edges
at the beginning of each basic block that has multiple predecessors.

An example is shown in Figure 5.6, which considers the now-acyclic CFG of the tail-
recursive loop implementation from Figure 5.5b. The red dashed line indicates the state-
edge. As can be seen, the state-edge splits at the exit of blocks B, C, and D, which means
that the state-output port of the last side-effecting operation in each of these blocks will
have a fan-out greater than 1 (fanout of 2 for each of these blocks). At control-flow join
points, MUX operations are implemented to synchronize incoming state edges for both
the tail-recursive call block and the return block R. Each MUX operation will wait for
the state-token from the correct control-flow path to arrive before allowing the execution
of subsequent side-effecting operations. In the VSFG-S, the correct control-flow path is
determined using the MUX predicate inputs (not shown for clarity). Note that one of
the state-operations in the Call funcLoop block will be the tail-recursive loop call, thereby
ensuring that state operations are ordered correctly across loop iterations.
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Figure 5.6: The tail-recursive function CFG from Figure 5.5b showing state-edges and MUX

operations inserted between basic blocks (red dashed lines).

5.2.3 Generate Block Predicate Expressions

Predicate expressions are also generated for each basic block and for control-flow edge in
the acyclic CFGs, as described in Section 3.6. A new set of boolean predicate operations
is incorporated into the program representation, one for each basic-block. Then, each
state operation in the CFG is augmented with a predicate input port, which is connected
to the new predicate operation for its host basic block. These predicate operations are
used not only to predicate the execution of state operations and function subgraphs, but
also provide the predicate inputs to the state and value MUX operations.

Due to constraints of time, comprehensive boolean expression minimization for these
predicate expressions (as described in Section 3.6) has not been incorporated into the
toolchain at present. Instead, a simpler optimization is implemented based on dominance
and post-dominance relations between basic blocks. For nodes in a directed graph with
an entry node N0 and an exit node N∞, dominance and post-dominance are defined as
follows (definitions adapted from Johnson [Joh04]):

Definition 5.1. Dominance: In a directed graph with an entry node N0, a node p is
said to dominate node q if and only if every path from N0 to q must traverse p. This
relation is written as p dom q.

Definition 5.2. Post-dominance: In a directed graph with an exit node N∞, a node q
is said to post-dominate node p if and only if every path from p to N∞ must traverse q.
This relation is written as q pdom p.

Instead of applying boolean logic minimization to optimize predicate expressions and
provide control-dependence analysis, as suggested in Chapter 4, I implement a simpler
optimization which relies on identifying basic-blocks that are control equivalent. Two
basic blocks are said to be control equivalent if every control-flow path from block N0 to
N∞ that traverses one of the blocks is guaranteed to also traverse the other. This implies
that after boolean minimization, the respective predicate expressions of both blocks would
be identical.
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(a) Acyclic CFG for a non-loop function.

(b) Acyclic CFG for a loop, extracted into
its own, tail-recursive function.

Figure 5.7: Sample loop and non-loop CFGs from the AES benchmark in the CHStone Bench-
mark Suite [HTH+08]. These CFGs were generated using an LLVM pass, after preprocessing
the benchmark code to extract loops into tail-recursive functions.
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As an example, consider the example CFGs from Figure 3.14, shown again in Fig-
ure 5.7. From Figure 5.7a, we see that the entry and return blocks are control equivalent,
since any path through this graph must traverse both. A more complex example is pro-
vided by Figure 5.7b: blocks entry, k, n, r, u, and return are control equivalent. As a
result the predicate expression for the earliest block (entry) can directly be applied to the
all of its control-equivalent blocks, as a means of simplifying their predicate expressions.
Thus we have:

p(return) = p(u) = p(r) = p(n) = p(k) = p(entry) = inPred (5.1)

Which is similar to the effect achieved by applying boolean minimization as discussed
for Equations 3.4. Control equivalent blocks can be identified from the CFG through
dominance analysis:

Definition 5.3. Control-equivalence of basic blocks: Two basic blocks p and q in a
function CFG are said to be control-equivalent if and only if both p dom q, and q pdom
p.

LLVM provides comprehensive analysis passes to evaluate dominance relations be-
tween basic blocks. These are used to provide a simple means of incorporating some
control-dependence analysis into the VSFG. Currently, the VSFG toolchain only imple-
ments this control-equivalence based optimization of predicate expressions. Integration
with boolean minimization tools like Espresso was not incorporated due to constraints of
time, and is left for future work.

5.2.4 Replace each φ-node with a MUX

Once boolean expressions have been generated for each basic-block and conditional control-
flow edge in each CFG, it becomes possible to convert all the φ-nodes within the LLVM
IR into equivalent MUX nodes, as discussed in Section 4.3.1. In addition to replacing
the phi-nodes, the newly introduced MUX operations for synchronizig state-edge joins
(described in Section 5.2.2) are also provided with their appropriate predicate inputs.

5.2.5 Construct the VSFG-S

At this point, we have an acyclic LLVM CFG, with loops implemented using tail-recursion.
Additionally, state operations have been augmented with state and predicate inputs, as
well as a state output. State-edges have been introduced to sequentialize state operations
in control-flow order, while predicates have been generated (and optionally optimized)
for each basic-block. Finally, φ-nodes have been replaced with MUX operations. Having
establised all of the necessary value and state dependencies, it is now possible to discard
the explicit control-flow from the LLVM IR, and generate the equivalent VSFG-S Petri-
net:

• All branch instructions are discarded from the LLVM IR.

• All remaining simple LLVM instructions are translated into their equivalent set of
VSFG-S Petri-net transitions described in Chapter 4. ALU and load/store instruc-
tions become value and state transitions respectively, while φ-nodes become MUX
transitions.
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• All LLVM Call instructions to non-loop functions are replaced by the appropriate
set of signal and wait transitions, one for each input and output argument of that
function, as described in Section 4.3.2. This of course includes the new state and
predicate inputs and outputs required for state operations.

• All LLVM Call instructions to tail-recursive (formerly extracted loop) functions are
similarly replaced by a set of corresponding inGate and outGate transitions, as
described in Section 4.3.3. The VSFG-S subgraph of each function is replicated for
each of its call-sites in a parent graph, since our static-dataflow execution model
doesn’t currently support true function calls, as discussed in Section 4.5.

• Each value or state edge in the augmented LLVM CDFG is assigned a Petri-net
place4 if an instruction has a fanout of n, then n Petri-net output places will be
introduced for its equivalent transition(s). Also, places are introduced at the input
and output ports of each VSFG-S subgraph, fused with their corresponding signal
and wait, or inGate and outGate operations in their parent graph (Section 4.3.2).

• After the appropriate degree of ‘loop-unrolling’ (via tail-recursive subgraph flatten-
ing) has been performed for each the extracted loop functions, dataflow loop-back
edges can be reintroduced through the incorporation of eta and mu transitions.
Both of these transformations are described in Section 4.3.3.

Once a completely defined VSFG-S Petri-net has been generated from the input LLVM
IR, the next step is to translate it into an equivalent static-dataflow hardware description
via the Bluespec SystemVerilog HDL.

5.3 Conversion from VSFG-S to Bluespec

As described in Chapter 4 each instruction/operation in the VSFG IR is represented
using one or more Petri-net transitions in the VSFG-S IR. Similarly, each producer-
consumer communication edge has an associated, unique Petri-net place. The Petri-net
based representation and execution model of the VSFG-S makes it very easy to generate
the equivalent Bluespec HDL.

Consider the short sample of LLVM IR input code shown in Figure 5.8a. After pre-
processing this IR as described in Section 5.2, we end up with an acyclic VSFG-like
LLVM representation that contains state and predicate edges, and can be represented as
a dataflow graph as shown in Figure 5.8c. Once this is converted to the equivalent VSFG-
S, as described in Section 5.2.5, we get the Petri-net representation shown in Figure 5.8d.

Broadly speaking, each transition in the VSFG-S Petri-net can be described using a
single atomic rule in Bluespec, while each 1-bounded place5 in the VSFG-S Petri-net maps
to a corresponding 1-place FIFO element in the Bluespec HDL. The equivalent Bluespec
HDL describing the Petri-net functionality of Figure 5.8d, is given in Figure 5.8e. The
first few lines of Bluespec code (shaded blue) represents the declaration of 1-place FIFOs
corresponding to each of the 1-bounded places in Figure 5.8d. Next, there are three atomic
rules (shaded grey), implementing each of the three transitions from Figure 5.8d.

4Actually, a pair of places: a value place and its corresponding acknowledgement place, as discussed
in Section 4.2

5Again, actually represented as a pair of places: a value place and its corresponding acknowledgement
place, as discussed in Section 4.2
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(a) Sample LLVM IR.
(b) Symbol key for Figure.

(c) Dataflow graph suggested by the pre-
processed, VSFG-like LLVM IR

(d) The equivalent VSFG-S Petri-net

(e) The corresponding Bluespec HDL

Figure 5.8: Sample LLVM IR code, and the subsequent three intermediate representations
identified in the grey region of Figure 5.1.
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A rule in Bluespec is able to fire when all of its implicit and explicit conditions are
met. While the shown rules have no explicit conditions, implicit conditions are imposed
by the status of the FIFOs being accessed from within each rule. As with the Petri-net
transitions, each of the corresponding rules is able to fire when its input FIFOs are not
empty, and its output FIFOs are not full. A firing rule then removes values from its
input FIFOs and places a result value in each of its output FIFOs, thereby implementing
the intended static-dataflow execution semantics. In Figure 5.8e, a .first operation on
a FIFO accesses the contained value, while a .deq command removes a value from the
FIFO. The former is analogous to reading a token from a value place, while the latter is
equivalent to removing the token from the value place and placing one in the corresponding
acknowledgement place.

Note however that a key issue aries when we maintain such a 1-to-1 correspondence
between Petri-net places and Bluespec FIFOs: the number of storage elements required to
store the output of an operation becomes proportional to the fanout of that output6. This
can incur a significant area, power and energy overhead in custom hardware, particularly
for the deeply pipelined style of circuits that are generated by this toolchain. One possible
optimization is to instantiate a single output register for each output value in the VSFG-S.
Then, each of the FIFOs in Bluespec can be declared to be of void type – this would mean
that although they are still useful for performing flow-control between rules, they would
not implement any storage for the output values. Instead of a .first operation performed
on unique FIFOs, values would be read directly from the unified output register. Only
the .deq operation would be retained to implement flow control.

Unfortunately, the Bluespec compiler is still experimental and under development.
Implementing this optimization led to compilation failure when attempting to synthesize
the resultant Bluespec into Verilog. Thus currently the toolchain incurs an area overhead
proportional to the average fanout of values in the circuit, which must be accounted for
when evaluating results, as discussed in Sections 6.2.3 and 6.2.4.

It is also important to note here that the Bluespec compiler implements its own internal
scheduler to order the execution of rules. However, the Bluespec scheduler has no effect on
either complexity or performance of the generated designs. This is because the generated
Bluespec code is quite low-level, describing each instruction and its input/output FIFOs,
thus there are no resource conflicts or contention between rules for the Bluespec scheduler
to affect.

5.4 Current Limitations

As detailed in Chapter 2, in addition to addressing the amenability problem of spatial
architectures by improving their performance on control-intensive sequential code, it is
also important to address the programmability problem of spatial computation. Many
recent projects address the programmability by developing sophisticated, fully automated
high-level synthesis tools that are capable of compiling unrestricted imperative language
code to generate custom hardware [BVCG04, SSM+07, VSG+10].

6Since each place (and its corresponding acknowledgement place) are implemented as a 1-place FIFO
in Bluespec, operations/transitions that have a fan-out of n > 1, will therefore implement n 1-place
FIFOs, one for each fan-out value. This can be quite wasteful, as the registers within each such FIFO
will be storing identical values.
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In the design of the VSFG IR this research also strives to provide a similar, complete
coverage of imperative language features. The end-goal is analogous to the LLVM com-
piler IR in that unrestricted, unmodified high-level language code ought to be compiled to
the VSFG, or the VSFG-S, which may then be processed through various back-end compi-
lation passes for implementation on a wide variety of spatial architectures and substrates.
As mentioned earlier, this problem is greatly simplified by the selection of the LLVM IR
as our input representation, since numerous robust LLVM front-ends for various high-
level languages already exist. Thus ideally we’d like to be able to compile unrestricted,
unmodified LLVM IR to the VSFG IR.

However, largely due to constraints of time, the static-dataflow VSFG-S and the asso-
ciated high-level synthesis toolchain have certain limitations on the types of code that can
be compiled. These constraints and their associated reasons and solutions are summarised
below:

• No irreducible code: As mentioned in Section 5.2.1, and detailed by John-
son [Joh04], irreducible code cannot be compiled to the VSDG, thus nor to the
VSFG, by extension. Thankfully, irreducible code occurs very rarely [SW11, ALSU06],
and when it does7, transformations may be applied to make it reducible [UM02,
JC97]. No such transformations have been incorporated into the current version of
the VSFG-S HLS toolchain, but may easily be incorporated in the future.

• No support for recursion: While the pure-dataflow VSFG IR can represent
general recursion, the VSFG-S IR does not. However, as discussed in Section 4.5,
this support, as well as support for true function calls, may be added to the VSFG-S
by hybridizing it with the dynamic dataflow execution model. This is left for future
work – currently, our evaluation focuses on non-recursive code, and in-lines all called
function subgraphs.

• No system integration: Currently the HLS toolchain does not incorporate sup-
port for system calls (including dynamic memory allocation, software exceptions,
etc.) or external library calls. These are not limitations of the VSDG or VSFG IRs,
but rather are common across most high-level synthesis toolchains, due to the often
stand-alone, self-contained nature of the custom hardware that is typically gener-
ated. Other researchers frequently overcome this by implementing hybrid architec-
tures composed of a conventional host processor combined with spatial-hardware
components [MCC+06, MG07, VSG+10, CCA+11]. This hybrid approach enables
full integration with modern system architecture, as all OS functionality, system
and library calls are implemented on the host processor.

Another approach would be to develop a fully programmable spatial substrate like
Wavescalar [SSM+07], which would then implement all OS features and library code,
though this requires recompilation of the OS and all libraries for the target spatial
architecture. Both approaches may be explored in the future when developing pro-
grammable spatial architectures targeting the VSFG.

• No Complex Data-structures: Aside from dynamically sized data structures,
the current toolchain also does not support complex, static data structures like

7Irreducibility is sometimes introduced by very aggressive code optimization passes. For instance
running the gcc compiler with -O3 flags will occasionally produce irreducible code.
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structs, unions, or multi-dimensional arrays. This support was left out only due to
time constraints and may easily be incorporated in the future.

None of the above limitations are inherent to the VSFG IR itself. With more devel-
opment, it should easily be possible to compile unrestricted LLVM IR code to the VSFG
IR. In fact, with the exception of the issue of OS integration, system calls etc, all of the
other issues can easily be addressed even for the custom hardware oriented VSFG-S IR.

Nevertheless, for now, these limitations constrain the scope of evaluation possible with
the current VSFG-S HLS toolchain, as benchmark applications must be carefully selected
that exclude the above features. The evaluation methodology, including the selected
benchmarks are discussed next in Chapter 6.

5.5 Summary

This chapter briefly summarised the structure of the VSFG-S based high-level synthesis
toolchain that is used to evaluate the performance and energy characteristics of VSFG-
based spatial dataflow hardware. Also highlighted were various limitations of the proto-
type toolchain and means of overcoming them in the future.

Chapter 6 will now present an evaluation methodology, results and discussion of the
performance and energy characteristics of the VSFG-based dataflow hardware, compared
to an existing high-quality statically-scheduled high-level synthesis tool, as well as a simple
in-order and a complex out-of-order processor.
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CHAPTER 6

Evaluation Methodology and

Results

Chapter 4 presented a justification for generating static-dataflow custom hardware based
on the VSFG in order to evaluate its potential for exposing and exploiting ILP from
control-intensive code. Then, Chapter 5 described the design and implementation of a
prototype high-level synthesis toolchain for compiling sequential, imperative code to the
VSFG, and then to custom hardware. In this Chapter, I present the methodology for, and
results of, comparing the performance, power and energy characteristics for this generated
custom hardware.

6.1 Evaluation Methodology

The objective of the following experimental evaluation is three-fold: (1) evaluate the
potential of the VSFG for statically exposing ILP from control-intensive sequential code,
compared to equivalent, conventional CDFG-based custom hardware, (2) understand the
energy and area cost incurred for the observed improvements in ILP, and (3) estimate
the performance characteristics of the VSFG compared to a conventional superscalar
processor.

Using the toolchain described in Chapter 5, results for three versions of the VSFG-S
based hardware are presented: VSFG 0 has no loop unrolling/flattening, VSFG 1 has all
loops unrolled once, and VSFG 3 has all loops unrolled thrice. In a two-level nested-loop,
for the VSFG 1, this would mean that there would be two copies of the outer-loop body
VSFG, each containing a nested subgraph representing the inner-loop, which itself would
have two copies of its loop-body. Thus for the VSFG 1, a two-level nested loop would
implement four copies of the inner loop body, and similarly, the VSFG 3 would implement
sixteen copies of the inner loop. This explosive growth in area would be impractical
for real-world implementations, which would not unroll all loops blindly, instead relying
on profile-driven selection of which loops to unroll. However, the objective here is to
understand the maximum achievable performance.
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6.1.1 Comparison with an Existing HLS Tool

To provide a baseline for comparison, we use LegUp 2.0, an established, high perfor-
mance HLS tool [CCA+11] to generate CDFG-based, statically-scheduled custom hard-
ware. There are several key reasons why LegUp was considered a suitable choice for this
comparison:

• LegUp is a recent but mature project, aimed at developing a state-of-the-art, open-
source high-level synthesis tool. As a result, it has a very active community of
developers and researchers contributing to it, with prompt and readily available
technical support and bug-fixing when needed.

• Like our VSFG-based toolchain, LegUp is based on the LLVM compiler infrastruc-
ture. This allows us to apply identical optimization and transform passes to the
input code, and retain confidence that any observed differences in the characteris-
tics of the generated hardware from both tools are not merely due to differences in
the type or quality of compiler optimization passes applied.

• It has been demonstrated that LegUp produces hardware of comparable quality to
commercial HLS tools like eXCite from Y Explorations Inc. [Inc10, CCA+11].

The input LLVM IR to both LegUp and the VSFG toolchain is compiled with −O2
flags, and with no link-time inlining or optimization. LegUp 2.0 does not support any
loop unrolling, so results for only one version of LegUp generated hardware are provided1.

Both tools were run with operation-chaining disabled – meaning that generated hard-
ware is fully pipelined, with each instruction in the IR having its own output register
instead of being merged as combinatorial logic with a predecessor or successor. This
was done because enabling operation-chaining would have masked the ILP improvements
by reducing the degree of pipelining in the generated hardware to match the achievable
operating frequency.

6.1.2 Comparison with Pegasus/CASH

Given that this work is closely related to the Pegasus IR and the CASH compiler [Bud03],
and relies on the same static-dataflow execution model, ideally the best way to demon-
strate the advantage of the VSFG over CDFG-based IRs would have been to compare it
with Pegasus/CASH for the selected benchmarks. Unfortunately, requests to obtain the
CASH compiler were unsuccessful within a reasonable time-frame. Furthermore, even if
the CASH compiler had been made available, there would be additional causes for concern
regarding its suitability for our demonstration:

• The experimental compiler would have been almost a decade old, and largely un-
maintained during this time. Debugging or obtaining support for it would have been
difficult.

1A more recent version, LegUp 3.0 has incorporated limited support for pipelining and modulo-
scheduling of carefully constrained inner loops. The VSFG-S IR allows for far more robust unrolling
of loops from multiple levels of a loop nest. Furthermore, since the results reported by LegUp 3.0 do
not improve the results of LegUp 2.0 for the benchmarks being considered [Leg13], making the effort to
update our testing infrastructure to use this latest version was deemed unnecessary.
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• The CASH compiler uses the SUIF compiler [WFW+94] front-end and analysis
passes, while developing its own optimization passes. On the other hand, both
LegUp and VSFG are based on LLVM and make extensive use of the existing stan-
dard optimization passes in LLVM. This similarity brings confidence that any dif-
ferences in the observed characteristics of the generated hardware are not due to
any potential shortcomings of either of our experimental research compilers.

Due to the shared LLVM-IR based starting point for both LegUp and my VSFG-based
HLS toolchain, it is easy to verify that observed differences in performance, area, energy,
etc. could only be due to at most two factors: either the differing program representations
(VSFG vs. CDFG), or the execution models (statically-scheduled vs. static-dataflow).

6.1.3 Comparison with Conventional Processors

A comparison of the generated custom hardware is also made against the estimated per-
formance and energy cost for an in-order Altera Nios II/f soft-processor, as well as an
Intel Core i7 Nehalem out-of-order superscalar processor. The Nios processor is eval-
uated through timing-simulation on an Altera Stratix IV family FPGA, while Core i7
performance is approximated using the Sniper Interval Simulator [CHE11]. All bench-
marks were compiled for both processors using −O3 flags, with the gcc and nios2-elf-gcc
compilers respectively2 in order to maximize performance.

Evaluating performance: Presenting a comparison between custom hardware gen-
erated from different HLS tools is easily justifiable, as all such synthesized hardware (from
both LegUp and the VSFG-based HLS tools) is simulated on the same Altera Stratix IV
FPGA. Unfortunately, providing a precise performance and efficiency comparison between
synthesized custom-hardware and conventional processors is complicated by their vastly
different implementation technologies and operating frequencies, as well as differences in
the way they may be integrated into a system. The execution time for any application is
composed of three factors:

Execution Time = n× CPI × 1/f

Where n is the total number of instructions executed at runtime, CPI is the aver-
age cycles-per-instruction, and f is the clock frequency. The value of n varies between
different instruction-set architectures and implementation philosophies (e.g. CISC vs
RISC), while CPI and f are more implementation dependent parameters. To simplify
performance comparison across architectures with different ISAs, cycle-counts provide an
effective means of abstracting away the effects of instruction-set design and implementa-
tion:

Execution Time = Cycle Count× 1/f where Cycle Count = n× CPI

I utilize cycle-counts as a measure of performance because, assuming similar operating
frequencies f , they provide a good analogy for the degree of ILP exploited across different
architectures. Furthermore, with this approach, the issues in the VSFG IR affecting the

2The use of −O3 flags was recommended for the Nios II/f in the Nios II Software Developer’s Hand-
book [Alt11].
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exposition and exploitation of ILP may be considered separately from the implementation
issues during high-level synthesis affecting achievable operating frequency f 3.

While the Nios II/f soft processor is also evaluated on the same Altera FPGA, its de-
sign has been carefully tuned to achieve a high operating frequency (fMAX), often giving
it as much as a 3× frequency advantage over the unoptimized custom hardware. Similarly,
a full-custom Core i7 processor operating at around 2.6 GHz possesses an approximately
20 − 40× clock frequency advantage over FPGA-implemented custom hardware, which
typically runs at between 70 − 150 MHz for complex designs. Considering ILP as repre-
sented by cycle-counts separately from the issues of optimizing implementation frequency
allows us to evaluate the potential of the VSFG IR without being too confounded by
low-level implementation details, design trade-offs (such as optimising designs for high-
frequency), and HLS toolchain optimization issues at this early stage of work4.

Finally, in order to eliminate the effects of the differing memory-access latencies that
each processor implementation experiences, all memory operations are constrained to have
a latency of one clock cycle: the Sniper simulator is configured such that the simulated
Core i7 uses perfect L1 caches (100% hit rate), and a hit latency of 1 cycle, while the
Nios is configured to access local block RAMs (BRAMs) on the FPGA, again with 1 cycle
access latency. This is done to match the 1 cycle BRAM access latency of the generated
custom hardware.

Evaluating power and energy: As with the evaluation of performance, it is diffi-
cult to provide a fair comparison of power and energy efficiency between the synthesized
custom hardware implemented on an FPGA and a full-custom processor like the Intel
Core i7. In the first instance, I present an energy cost comparison with the Nios II/f
soft-processor only, as it at least shares the same implementation substrate.

For further analysis, it is reasonable to assume that the in-order, six-stage pipeline of
the Nios II/f should provide much higher energy-efficiency than the out-of-order Core i7, if
both were implemented using the same underlying substrate. To estimate the energy cost
of such an equivalent version of the Core i7 processor, I refer to the empirical relationship
between power and performance for sequential processors presented by Grochowski et
al. [GA06]:

Power = Perfα where α = 1.75

Using the available cycle-count results for the Core i7 and the Nios to estimate their
relative performance difference (Perf) allows us to estimate the approximate power dis-
sipation of our hypothetical Core i7 processor, relative to the Nios. Assuming the same
fMAX for both the Nios and this hypothetical soft/FPGA version of the Core i7, an
energy-efficiency comparison of the VSFG-based hardware with this out-of-order proces-
sor is also presented.

6.1.4 Selected benchmarks:

As an early-stage prototype, the VSFG HLS tool-chain can only compile applications
with some constraints, as mentioned in Chapter 5. Currently there is no support for C
language structs or multi-dimensional arrays, nor for floating-point arithmetic operations.

3i.e. minimizing the longest combinational critical-path between registers in the hardware.
4Recall that HLS is being used as a test case to evaluate the VSFG – the objective for now is not to

produce a production quality, competitive HLS toolchain.
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Additionally, like most HLS tools, there is no support for general recursion, dynamic
memory-allocation, or external system/library calls.

Due to these limitations our choice of benchmark applications is constrained. Never-
theless, in order to provide a meaningful evaluation of performance on control-intensive
sequential code, I have selected six benchmarks from the CHStone benchmark suite, in
addition to two home grown kernels. The CHStone benchmark suite [HTH+08] was de-
veloped in order to facilitate research into high-level synthesis tools. It is composed of
several common C-language benchmark applications that have been modified to be en-
tirely self-contained, by removing all dynamic memory allocation, library or system calls,
and general recursion. The following benchmark applications were selected from the CH-
Stone suite:

• dfadd: Implements IEEE-standard double-precision floating-point addition using
64-bit integers. This benchmark contains only a single loop, but exhibits consid-
erable data-dependent forward branching through if statements, as well as bitwise
ALU operations.

• dfmul: Implements IEEE-standard double-precision floating-point multiplication
using 64-bit integers. This benchmark exhibits similar control-flow structure to
dfadd.

• dfdiv: Implements IEEE-standard double-precision floating-point division using
64-bit integers. In addition to considerable forward branching, dfdiv also contains
several data-dependent loops nested within the main loop. Furthermore, it requires
long latency integer division operations to be selectively performed based on data-
dependent control flow.

• dfsin: Implements a double-precision floating-point sine function using 64-bit in-
tegers. This benchmark exhibits multiple nested data-dependent loops, as well as
function calls to code from the dfadd, dfmul, and dfdiv benchmarks, thus also ex-
hibiting data-dependent forward branches and bitwise ALU operations.

• mips: This benchmark is a simplified (30-instructions) MIPS processor simulator
implementing a sorting program. It is composed of a main outer-loop, containing
four inner-loops, one of which contains data-dependent forward branching in the
form of a two-level nested switch statement.

• adpcm: Implements the CCITT G.722 Adaptive Differential Pulse Code Modula-
tion algorithm for voice compression. This benchmark implements both ADPCM
encoding and decoding, and contains significant data dependent forward branches,
multiple levels of nested loops, as well as function calls.

In addition, to the above benchmarks from CHStone, the following two home-grown
kernels were also used as benchmarks:

• epic: This is the internal int transpose function identified as being difficult to ac-
celerate in spatial hardware by Budiu et al. [BAG05], and discussed in Section 3.3.
It consists of a nested-loop that exhibits significant outer-loop parallelism, but in-
sufficient concurrency, as well as a long latency modulus (%) operation within its
inner-loop.
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• bimpa: This is a spiking neural-network simulator for constructing and simulating
a network of 1000 neurons, and was developed as part of the BIMPA project [BIM].
I modified this benchmark to flatten all structs and multi-dimensional arrays, as
well as to statically allocate all memory. This benchmark exhibits complex-control
flow in the form of multiple levels of loop-nesting, with dynamic data-dependent
control-flow. This benchmark is also highly memory intensive, as unlike the CH-
Stone benchmarks listed above, neural-network simulation is dominated by commu-
nication of spike values between neurons through array updates. Most of the loops
in the benchmark are easily vectorizable [NFMM13], however, for the purposes of
this work, no vectorization optimizations are applied – the benchmark is treated
strictly as sequential, imperative code.
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Table 6.1: Table showing Raw Cycle-counts for LegUp, various versions of the VSFG, as well as the Altera Nios II/f and Intel Nehalem Core
i7 processors.

Full subgraph-speculation, Full subgraph-speculation, Predicated subgraphs, Conventional
no predicate optimization basic predicate optimization basic predicate optimization Processors

LegUp VSFG 0 VSFG 1 VSFG 3 VSFG 0 VSFG 1 VSFG 3 VSFG 0 VSFG 1 VSFG 3 Nios II/f Core i7
epic 1078444 1062439 980783 972593 1062436 524122 320344 1062436 528218 265170 3399634 200174
adpcm 71349 56145 51580 51186 56145 51580 51186 57860 51580 51186 119794 42662
dfadd 2391 2073 1737 1737 1999 1590 1574 1623 1574 1574 16441 15994
dfdiv 3029 4485 3460 2929 4405 3380 2824 3235 2825 2639 36487 15120
dfmul 941 928 679 647 916 671 625 916 671 625 7074 14072
dfsin 105773 78349 78275 78275 72007 71896 71896 77906 73231 73231 1420558 104953
mips 13414 14489 13438 12953 14489 13438 12953 14489 13438 12953 31082 29998
bimpa 142386696 114361494 98179648 97430648 114361494 98179648 97430648 114361494 98179648 97430648 373347552 39664956



6.2 Results

6.2.1 Cycle Counts

Aside from varing the degree of loop unrolling between VSFG 0 and VSFG 3, the VSFG
HLS toolchain was configured to generate three different versions of the VSFG:

• Full subgraph-speculation, no predicate optimization.

• Full subgraph-speculation, basic predicate optimization.

• Predicated subgraphs, basic predicate optimization.

Table 6.1 shows the raw cycle-count results for all 3× 3 versions of the VSFG, as well
as for LegUp.

Table 6.2: Table showing Cycle-counts for VSFG with full subgraph-speculation, and no pred-
icate optimization

LegUp VSFG 0 VSFG 1 VSFG 3
epic 1078444 1062439 980783 972593

adpcm 71349 56145 51580 51186
dfadd 2391 2073 1737 1737
dfdiv 3029 4485 3460 2929
dfmul 941 928 679 647
dfsin 105773 78349 78275 78275
mips 13414 14489 13438 12953
bimpa 142386696 114361494 98179648 97430648

Full subgraph-speculation, no predicate optimization: For the very first eval-
uation of the generated VSFG-based hardware, no boolean expression minimization was
performed on the predicate expressions generated for each basic-block in the original
CFG. This meant that this implementation did not benefit from the control-dependence
analysis described in Section 3.6. Nevertheless, in order to maximize performance, the
VSFG implementations were initially configured to maximize speculative execution: all
signal and wait operations were predicate promoted so that all nested subgraphs (except
loop-subgraphs) would execute without waiting for their predicates to be computed.

Table 6.2 shows the cycle-count results of this version of the VSFG (i.e. a subset of
Table 6.1), while Figure 6.1a, shows all values normalized to the results for the hardware
generated from the LegUp HLS tool. On average, the baseline VSFG 0 provides 6%
lower cycle-counts than the equivalent LegUp generated hardware. Furthermore, as the
degree of unrolling in the VSFG is increased from VSFG 0 to VSFG 3, there is a general
improvement in performance for most benchmarks of an average 21%. However, the epic
benchmark, despite a high degree of unrolling for both levels of the loop-nest, shows only
a 10% improvement in cycle-counts relative to the baseline VSFG 0 and LegUp results.
Additionally, the VSFG 0 results exhibit worse performance than LegUp for the dfdiv and
mips benchmarks.
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(a) Cycle Counts with speculative subgraph execution and without predicate opti-
mization.

(b) Cycle Counts with speculative subgraph execution and predicate optimization.

(c) Cycle Counts with predicated subgraph execution and predicate optimization.

Figure 6.1: Performance Comparison (Cycle Count) Normalized to LegUp. Lower values are
better.

133



1/* ============================================

2In -place (integer) matrix tranpose algorithm .

3Handles non -square matrices , too!

4============================================ */

5void internal_int_transpose (int* mat , int rows , int cols ,

int modulus ){

6int swap_pos , curr_pos , swap_val ;

7
8for (curr_pos =1; curr_pos <modulus ; curr_pos ++) {

9swap_pos = curr_pos ;

10do {

11swap_pos = (swap_pos * cols) % modulus ;

12}

13while (swap_pos < curr_pos );

14
15if (curr_pos != swap_pos ) {

16swap_val = mat[swap_pos ];

17mat[swap_pos ] = mat[curr_pos ];

18mat[curr_pos ] = swap_val ;

19}

20}

21}

Figure 6.2: The ‘internal int transpose’ function from the ‘epic’ Mediabench benchmark

Full subgraph-speculation, basic predicate optimization: To address these
shortcomings, the basic predicate optimization described in Chapter 5 was incorporated
into the generated VSFG-S hardware. Table 6.3 shows the cycle-count results of this
version of the VSFG (another subset of Table 6.1), while Figure 6.1b shows the normalized
cycle count results with this predicate optimization enabled. With this optimization, a
dramatic improvement in the cycle count for the epic benchmark is observed as the
degree of unrolling is increased. Figure 6.3 shows the CFG for the outer-loop of the epic
benchmark kernel (code shown in Figure 6.2, and kernel described in Section 3.3). The
iterate basic block contains the tail-recursive call of the outer-loop. Without predicate
minimization, the predicate expression for the iterate block is given by the equation:

p(iterate) = p(condition) . p(condition, exit)

where:

p(condition) = p(entry) . p(entry, condition) + p(swap)

where:

p(swap) = p(entry) . p(entry, condition)

The computation of p(entry, condition) is dependent on the result computed within the
inner-loop. With predicate optimization however, the predicate expression for the condi-
tion and iterate blocks is simplified to:

p(condition) = p(entry) . p(entry, condition) + p(entry) . p(entry, condition)

= p(entry)
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Substituting, we get:

p(iterate) = p(entry) . p(condition, exit)

Thus initiation of the next outer-loop iteration is only dependent on the loop exit con-
dition being computed within the condition block. As the inner-loop body, including its
long-latency modulus operation, are no longer on the critical path for the computation of
the outer-loop’s loop-back predicate, multiple copies of the outer-loop may be activated
concurrently as the degree of unrolling is increased between the VSFG 0 and VSFG 3
implementations. This means that the execution of multiple copies of the inner-loop, in-
cluding its long latency modulus operator, may overlap, allowing for a dramatic reduction
in required cycle counts for epic.

However, as can be seen from Figure 6.1b, all other benchmarks exhibit only a modest
improvement in cycle-counts due to this optimization. The dfdiv and mips benchmarks
still exhibit worse performance than LegUp hardware for VSFG 0.

Table 6.3: Table showing Cycle-counts for VSFG with full subgraph-speculation, and basic
predicate optimization.

LegUp VSFG 0 VSFG 1 VSFG 3
epic 1078444 1062436 524122 320344

adpcm 71349 56145 51580 51186
dfadd 2391 1999 1590 1574
dfdiv 3029 4405 3380 2824
dfmul 941 916 671 625
dfsin 105773 72007 71896 71896
mips 13414 14489 13438 12953
bimpa 142386696 114361494 98179648 97430648

Predicated subgraphs, basic predicate optimization: Poor performance in the
two exceptions (dfdiv, and mips) was found to be due to sub-optimal pipeline balancing
in the static dataflow hardware [Gao91]. An example is shown in Figure 6.4a: even
if the long latency path (64 cycles) is infrequently taken, the static dataflow nature of
the graph means that the longer latency will still be incurred each time this loop body
is triggered. In the case of dfdiv, there is a long latency divide operation (64 cycles,
unpipelined) on one of the infrequently taken paths within its main loop body. Using
predicated execution (Figure 6.4b) instead of speculation to trigger only the necessary
path in each loop iteration can overcome this problem, but at the cost of any potential
performance gain due to speculation on the frequent path5.

Thanks to the hierarchical nature of the VSFG, we have third option – sub-graph
predication. Unlike full predication, infrequent paths through the graph can be nested
into their own subgraphs, and may then be selectively predicated, while the shorter, more
frequently taken paths can still take advantage of speculation, as shown in Figure 6.4c.
For the third version of the VSFG-based hardware, subgraph predication is implemented

5Predicated execution as shown here has been implemented using the conditional schema described in
Section 4.2.1.
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Figure 6.3: The LLVM CFG for the epic kernel outer-loop.

only on pre-existing subgraphs for all benchmarks, meaning that all non-loop subgraphs
will now have their corresponding signal and wait operations in the parent graph be
predicated6. Additionally, long-latency operations like division and modulus are also
predicated.

As shown in Figure 6.1c, performance of VSFG 0 for dfdiv improves significantly, but
there is no change for mips, as it contained no pre-existing subgraphs in its main loop
that could be selectively predicated. However, it must be noted that the performance
improvements do not apply for all benchmarks – epic, and dfadd exhibit slight improve-
ments in VSFG 0, while performance for dfsin is slightly worse for all VSFG configura-
tions, whereas bimpa and dfmul exhibit no change. On average, the VSFG 0 provides a
12% improvement in cycle count over LegUp, up from 7% for hardware with speculative
subgraph execution. But this can largely be attributed to the performance improvement
observed for dfdiv. Table 6.4 shows the raw cycle-count results of this version of the
VSFG, extracted from Table 6.1.

Additional effort in identifying mutually-exclusive control-flow regions and nesting
them into their own subgraphs is therefore warranted to further improve performance

6Recall that loop subgraphs are always predicated.
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(a) Speculation. (b) Predication. (c) Subgraph Predication.

Figure 6.4: The Trade-off between Speculation and Predication. The VSFG enables a combi-
nation of both: Subgraph Predication.

Table 6.4: Table showing cycle-counts for VSFG with predication of existing subgraphs and
long-latency operations (/ and %), and basic predicate optimization.

LegUp VSFG 0 VSFG 1 VSFG 3
epic 1078444 1062436 528218 265170

adpcm 71349 57860 51580 51186
dfadd 2391 1623 1574 1574
dfdiv 3029 3235 2825 2639
dfmul 941 916 671 625
dfsin 105773 77906 73231 73231
mips 13414 14489 13438 12953
bimpa 142386696 114361494 98179648 97430648

in the baseline VSFG 0 configuration. Further methods exist for pipeline balancing by
performing optimal dataflow software pipelining [Gao89]. This has already been incorpo-
rated into previous work on Spatial Computation [Bud03], and should be incorporated
into future versions of the VSFG toolchain as well.

Further performance improvements over VSFG 0 are achieved through aggressive
multi-level loop unrolling. Figure 6.1c shows that VSFG 3 achieves 35% lower cycle
counts than LegUp, by trading area for performance. Figure 6.5 compares LegUp and
VSFG cycle counts to those of the Core i7 and Nios II/f processors. epic, adpcm, dfsin,
and bimpa show the performance advantage of the superscalar Core i7 over the in-order
Nios, as well as the CDFG-based LegUp. With unrolling, VSFG 3 is able to approach or
exceed Core i7 cycle counts for all benchmarks with the exception of bimpa. Furthermore,
for all benchmarks except epic, performance gains stagnate quickly between VSFG 1 and
VSFG 3.

The reason for this is the lack of memory parallelism or reordering in the VSFG:
all memory operations are constrained by the state-edge to occur strictly in sequential
program order, whereas the Core i7 is able to dynamically disambiguate, re-order and
issue multiple memory instructions each cycle. Yet despite this, only the memory intensive
bimpa is where the Core i7 has a significant advantage over VSFG 3.
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(a) epic (×1K cycles) (b) adpcm (×1K cycles)

(c) dfsin (×1K cycles) (d) bimpa (×1M cycles)

(e) dfadd (×1K cycles) (f) dfdiv (×1K cycles)

(g) dfmul (×1K cycles) (h) mips (×1K cycles)

Figure 6.5: Performance Comparison (Cycle Count) vs an out-of-order Intel Nehalem Core i7
processor, and an Alteral Nios IIf in-order processor.
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(a) fMAX for benchmarks. Altera Nios II/f runs at 290 MHz.

(b) Normalized delay for benchmarks.

Figure 6.6: Frequency (fMAX) and Delay comparison of LegUp and VSFG custom hardware.
Note that some values for VSFG 3 are missing, as these circuits were too large to fit in our
target FPGA. These have been removed from the Geomean calculation for VSFG 3.

As is common for existing high-level synthesis tools [SG08, CCA+11], incorporating
static memory disambiguation based on alias-analysis is an essential first step towards ex-
posing and exploiting more memory-level parallelism. Work by Budiu et al goes further,
and incorporates a small load-store queue to perform dynamic memory disambiguation in
their generated application-specific static dataflow hardware [BVCG04]. Note, however,
that despite LegUp’s utilization of static memory dismabiguation, the VSFG-based hard-
ware performs better as LegUp-based hardware performance is primarily limited due to
explicit control-flow in its implementation.

The dfadd, dfdiv, dfmul, and mips benchmarks perform poorly on the Core i7 primarily
due to its high branch misprediction penalty – the i7 achieves only an 88% prediction
accuracy on average for these benchmarks. Thanks to their many short, data-dependent
branches, any speculation performance gains are quickly swamped by a 17 cycle penalty
for each misprediction. As a result, both LegUp and VSFG perform better than the Core
i7 for these benchmarks.

6.2.2 Frequency and Delay

Figure 6.6a shows the peak operating frequency (fMAX) estimated for the circuits gener-
ated by both LegUp and the VSFG (predicated subgraphs version) by the Altera Quartus
II (v. 13) tool after synthesis and place-and-route. For comparison, the Nios II/f achieves
an fMAX of 290MHz. The baseline VSFG 0 configuration achieves 15MHz higher fre-
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quencies on average than LegUp. This was expected, as the dynamically scheduled VSFG
does not have a centralized FSM, as discussed in Section 3.5. However, this advantage
diminishes with the increase in circuit size that accompanies loop unrolling in the VSFG 1
and VSFG 3 configurations.

Unfortunately, despite the high degree of pipelining by both LegUp and in the VSFG,
achievable fMAX is inversely related to the size of the circuit being implemented. The
primary reason for this is that all of the memory operations in spatial hardware are dis-
tributed across each generated circuit. Each such operation must access memory through
a single, centralized memory controller. The combinational critical-path wire length thus
increases with the total number of memory operations in the circuit. Thus as the degree
of VSFG unrolling is increased, fMAX decreases accordingly. The frequency values for the
spatial hardware are thus often well below the achievable fMAX for the carefully optimized
Nios II/f design.

Figure 6.6b provides a comparison of the wall-clock execution time for all of the hard-
ware configurations (ExecutionT ime = CycleCount × 1/fMAX). On average, VSFG 0
and VSFG 3 demonstrate a 19% and 32% performance advantage over LegUp respec-
tively. However, on a per-benchmark basis, it is important to note that the reduction
in operating frequency can often overwhelm the ILP/cycle-count advantage provided by
loop-unrolling, as is the case for the mips benchmark. This is another reason why static-
memory disambiguation is an essential feature of modern HLS tools – it not only enables
memory-level parallelism at runtime, but may also serve to partition physical memory, and
hence the memory access network/arbitration tree, into smaller subsets. Instead of being
connected to a single memory controller, memory operations may be divided amongst
multiple controllers, one for each static partition, thereby simplifying the interconnect
and improving fMAX .

Other projects have optimized the memory access network in custom hardware for
high frequency operation by either partitioning and distributing memory [HRRJ07] in this
manner, or by pipelining the memory access network, while simultaneously optimizing for
the most frequent accesses [VBCG06], or even by incorporating cache-like structures closer
to each memory access operation [PBD+08, SVGH+11]. Thus in addition to incorporating
memory disambiguation for parallelism, it is also necessary to consider the architecture
and implementation of the centralized memory resource in spatial hardware. For the
purpose of this dissertation, this effort is left for future work.

The LegUp tool instead deals with reduced fMAX in a different manner. Instead of
attempting to identify and pipeline the combinational critical path in a circuit, LegUp
applies operation-chaining : reducing the cycle-count for hardware execution by removing
registers between operations. This reduces the degree of pipelining in the circuit, but
so long as fMAX is not adversely affected, this translates into a direct improvement in
execution time. A rudimentary version of operation-chaining was also incorporated into
the VSFG HLS toolchain, and demonstrated similar improvements in cycle counts for
a few of the benchmarks, without adversely affecting fMAX . Unfortunately, my current
implementation of operation-chaining is not yet robust enough to successfully compile for
all benchmarks, thus those results are not provided here.
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6.2.3 Resource Requirements

Recall from Section 5.3 that during the compilation from the VSFG IR to the Bluespec
HDL, each VSFG transition is implemented as a set of one or more Bluespec rules, while
each place (and its corresponding acknowledgement place) are implemented as a 1-place
FIFO. Operations/transitions that have a fan-out of n > 1, will therefore implement
n 1-place FIFOs, one for each fan-out value. In the actual hardware implementation,
this can be quite wasteful, as the registers within each FIFO will store identical values.
This complicates providing a fair comparison of the area, energy and power requirements
between the circuits generated by LegUp, with those from the VSFG HLS toolchain.

A possible means of overcoming this is to store each output value in a separate regis-
ter, and then utilize void type FIFOs to implement the Petri-net / static-dataflow style
flow control. The void FIFOs do not incorporate registers to store any values, and only
implement the state machine for performing the necessary flow control. Unfortunately,
Bluespec currently remains an experimental compiler, and the VSFG HLS toolchain gen-
erates very large Bluespec modules for the selected benchmarks, often containing as many
as 600-700 rules, thus pushing Bluespec to its limits. Implementing this optimization in
my VSFG-to-Bluespec compilation pass caused the Bluespec compiler to fail during Ver-
ilog generation, despite the fact that no syntax or structural errors were reported. Of the
eight selected benchmarks, only one was able to compile successfully to Verilog.

Thus, an alternative means of fairly evaluating area, energy and power for the VSFG-
based hardware had to be devised: the area, energy and power metrics generated for
the VSFG-hardware would have to be scaled by the estimated overhead incurred in the
implementation due to the additional fanout FIFOs.

For FPGA implementations, the number of ‘programmable logic blocks’ or ‘look-up
tables’ utilized is used as a measure of area or resource requirements for a given circuit.
The structure of a typical Altera Stratix IV FPGA ‘Adaptive Look-up Table’ is shown
in Figure 6.7. The hardware generated by the VSFG HLS toolchain will utilize a greater
number of these ALUTs than equivalent hardware generated by the LegUp HLS tool,
not because the VSFG requires any additional combinational logic, but because each
instruction/operation/transition will require n sets of output registers instead of just 1
(where n is the fanout of a given instruction). Since there is only a single 1-bit register
associated with each bit of output from the combinational logic, the VSFG must make
use of n−1 additional ALUTs only for their registers, in order to implement the required
fanout FIFOs. I attempt to account for this effect when presenting the area, power
and energy results for the VSFG-based hardware, by computing a scaling-factor for each
benchmark.

To generate this scaling factor, the LLVM-to-VSFG compilation pass was augmented
to compute two new values for each benchmark. Assuming there are k instructions/op-
erations in a benchmark:

• Instruction-bits is the total number of output values produced in the circuit by its
constituent operations. It is the sum of the bit-width of the result of each operation
in the circuit:

Instruction Bits =

k
∑

i=1

(bit-width)i

• Instruction Fanout-Bits is the total number of 1-bit registers needed to store the
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Figure 6.7: An Altera Stratix IV FPGA ‘Adaptive Look-up Table’ design.

instruction-bits, taking into account the fanout of each instruction-bit :

Instruction Fanout-bits =

k
∑

i=1

(bit-width)i × (fanout)i

The scaling factor may then be computed as follows:

Scaling Factor =
Instruction Fanout-bits

Instruction Bits

This Scaling Factor represents the degree to which the fanout of all instructions in a
VSFG-based hardware circuit will increase its ALUT utilization on an FPGA. Table 6.5
shows the Instruction bits, the Instruction Fanout-bits, and the Scaling Factor for all the
benchmarks, while Table 6.6 shows the resource requirement for 7 of our 8 benchmarks
in ALUTs before and after applying the scaling factor to the ALUT count of each VSFG
implementation7. The VSFG area results are for the circuits implemented with predicated-
subgraphs, since these exhibited the best average cycle-count results.

Table 6.5: Table showing the Instruction bits, the Instruction Fanout-bits, and the Scaling
Factor for all benchmarks.

Instruction-bits Instruction Fanout-bits Scaling Factor
epic 590 1069 1.81
adpcm 40767 55400 1.36
dfadd 15673 28040 1.79
dfdiv 16337 26759 1.64
dfmul 10320 16640 1.61
dfsin 38759 67376 1.74
mips 15134 26790 1.77
bimpa 14488 20007 1.38

Figure 6.8 shows the scaled results from Table 6.6 normalized to the LegUp circuit
sizes. As can be seen, the VSFG 0 configuration has a similar resource requirement to

7Results for bimpa are not presented as it was too large to fit in the largest available FPGA, so its
resource requirements could not be estimated. The VSFG 3 results for the adpcm and dfsin benchmarks
are unavailable for the same reason.
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Table 6.6: Table showing the resource requirements (in number of ALUTs) of the generated
custom hardware from both the LegUp and VSFG HLS toolchains. Area is shown for the best
performing version of the VSFG hardware (i.e. predicated subgraphs).

Raw ALUT Counts Scaled ALUT Counts
LegUp VSFG 0 VSFG 1 VSFG 3 Sc. Factor VSFG 0 VSFG 1 VSFG 3

epic 764 1569 4932 16575 1.81 866 2722 9148
adpcm 17214 44268 81087 1.36 32575 59669
dfadd 6382 10098 19217 38048 1.79 5644 10741 21267
dfdiv 9843 14545 29849 68085 1.64 8880 18224 41567
dfmul 3088 5382 9556 18162 1.61 3338 5927 11264
dfsin 18805 36347 128487 1.74 20909 73914
mips 3533 7993 14299 27000 1.77 4515 8078 15253

Figure 6.8: Resource requirements comparison for VSFG-based hardware compared to LegUp
hardware. VSFG results have been scaled to remove the effects of extra fanout FIFOs.

the LegUp baseline, incurring a 15% penalty on average. The key reason for this is that
the VSFG must implement additional hardware operations in order to perform control-
directed dataflow and hierarchical subgraph communication in a dynamically scheduled
environment – MUX signal, wait, eta, mu, inGate, and outGate operations must be
implemented as part of the dynamically scheduled VSFG hardware. Additional resources
are also required to implement the boolean predicate expressions, as well as the state-token
being passed between state operations.

The statically-scheduled LegUp hardware also implements control-directed dataflow
operations, equivalent to our MUX , eta, and mu, however these are only implemented
as combinational logic, not requiring their own output registers, and thus also not always
requiring their own ALUTs in the FPGA. Conversely, LegUp hardware must implement
its static-schedule as a centralized, sometimes large and complex FSM that consumes
additional area, whereas the static-dataflow VSFG hardware implements very simple,
highly decentralized FSMs.

As the degree of unrolling is increased for the VSFG, its resource requirements grow
dramatically – the VSFG 3 configuration requires an average of almost 5× more resources
than the baseline LegUp implementation with no unrolling. The epic benchmark requres
almost 12× more resources than the LegUp baseline, as it effectively implements 16 copies
of the inner-loop, containing the resource intensive modulus operation.

In addition to the reduction in operating frequency that is experienced by larger
circuits as discussed earlier, managing resource utilization is another reason why unrolling
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of loops must be implemented more judiciously, perhaps by relying on execution profiling
of code, in order to identify which loops would benefit from unrolling, and to what degree.
As mentioned earlier, epic exhibits no inner-loop parallelism, thus only the outer-loop
ought to be unrolled, which would have improved both resource requirements, and fMAX ,
as well as reduced power dissipation, and improved energy efficiency, as discussed below.

6.2.4 Power and Energy

Power Dissipation:

Post-synthesis power estimation for each of the hardware circuits considered was per-
formed using the PowerPlay Power Analysis tool built into the Altera Quartus II ver.13
compiler. In order to achieve high accuracy, Value Change Dump (.vcd) files were gener-
ated for all nets within each circuit evaluated from post-synthesis functional simulation
using ModelSim. These ‘.vcd’ files were provided as input to the PowerPlay Power Anal-
ysis tool. According to the Altera Quartus II Development Sotware Handbook, these
results are expected to be accurate to within ±20% of a physical FPGA implementation
of a circuit [Alt13].

All power results are given in miliwatts (mW). Power values are generated assuming
a standard 250MHz operating frequency for all circuits, as well as the Nios II/f, and the
extrapolated Core i7. Given prior work on pipelining and/or partitioning the memory
arbitration tree for high frequency operations [HRRJ07, VBCG06, PBD+08, SVGH+11],
this not an unreasonable assumption, and is helpful in simplifying our power and energy
comparison. Reported power results have two main components: static and dynamic
power dissipation. Equations 6.1 and 6.2 present the general formulae for static and
dynamic power, respectively. In the equations, VDD is the supply voltage, Ileakage is
the leakage current, kdesign is a MOS fabrication technology dependent constant, f is the
operating frequency, C is the average loading capacitance per transistor/resource, n is the
total number of transistors/resources, and α is the average activity ratio for all transistors.

Pstatic = n.VDD.Ileakage.kdesign (6.1)

Pdynamic = n.α.C.V 2
DD.f (6.2)

For our FPGA-based evaluation, VDD, Ileakage, and kdesign can be assumed to be com-
mon across all tested circuits. Therefore, static power is proportional to n, i.e. the area
or ALUT resource requirements of a circuit. Dynamic power is primarily due to logic
transitions, signal transmission and switching activity, thus is primarily dependent upon
C, α, f , and n. PowerPlay presents dynamic power as composed of two components: (1)
combinational logic, and (2) clock power. Dynamic clock power accounts for power dissi-
pated by the FPGA clock tree, as well as all switching activity at the datapath registers
in a given circuit.

Table 6.7 presents the raw static and dynamic power results reported for the circuits
generated by LegUp8. The constituents of dynamic power are shown along with their
total. As can be seen, in such deeply pipelined spatial hardware, clock-tree and register
power is significantly greater than the power dissipated by the combinational LUT logic.

8Note that power results are not presented for bimpa, as this benchmark could not be synthesized
successfully as it did not fit in the largest available Stratix IV FPGA.
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Table 6.7: Table showing Raw Static and Dynamic Power Results (mW) for LegUp

Raw Dynamic Power Static Power
Clock Comb. Total Raw Used ALUTs Total ALUTs Actual Total

epic 33.2 1.2 34.4 813.59 764 182400 3.41 37.81
adpcm 1166.37 146.16 1312.53 880.77 17214 182400 83.12 1395.65
dfadd 271.23 2.74 273.97 830.29 6382 182400 29.05 303.02
dfdiv 454.7 3.26 457.96 844.3 9843 182400 45.56 503.52
dfmul 158.62 6.15 164.77 822.46 3088 182400 13.92 178.69
dfsin 586.3 13.75 600.05 873.95 18805 182400 90.10 690.15
mips 290.67 1.55 292.22 826.73 3533 182400 16.01 308.23

For comparison, the Nios II/f processor exhibits a total power dissipation of 738.17 mW,
of which 725.53 mW is dynamic power, and 12.63 mW is the actual static power.

PowerPlay reports the static power dissipated by the entire FPGA, thus actual static
power utilized by a circuit is determined by scaling this value by the actual proportion
of the FPGA being utilized by the circuit. The actual static power is thus calculated as
follows:

Actual Static Power = Raw Static Power× Used ALUTs

Total ALUTs

The total power reported in the last column is the sum of total dynamic and actual static
power values.

Tables 6.8, 6.9, and 6.10 present the power values for the VSFG 0, VSFG 1 and
VSFG 3 (with predicated subgraphs) respectively9. As with LegUp, combinational dy-
namic power forms only a small fraction of the total dynamic power. In addition to
scaling static power by the circuit size, we must also adjust it by using the scaling factors
provided in Table 6.5, in order to account for the overhead in VSFG circuits for the extra
fanout FIFOs. Since static power is proportional to the amount of resources utilized n,
it can be scaled as follows:

Scaled VSFG Static Power =
Raw VSFG Static Power

Scaling Factor
× Used ALUTs

Total ALUTs

For dynamic power, I assume that the amount of combinational logic is equivalent between
the VSFG and LegUp-based hardware, and thus the combinational component of dynamic
power need not be scaled. However, the clock component of dynamic power must be scaled
to remove the effects of the extra fanout FIFOs. For simplicity, I assume that C, α, f
would remain unchanged in VSFG circuits that are implemented without the extra fanout
FIFOs10. Thus dynamic clock power can also be scaled proportionally to the number of
registers in the circuit. Scaled dynamic power is therefore given as:

Scaled VSFG Dynamic Power =
Raw VSFG Clk Power

Scaling Factor
+ Raw VSFG Comb. Power

9As with LegUp, results are not presented for bimpa. In addition, VSFG 3 results for adpcm and dfsin
are also not presented, as these circuits were also too large to be successfully synthesized to the available
Stratix IV FPGAs.

10Note that the average loading capacitance C would also be reduced with the reduced number of fanout
FIFOs, as well as due to the total circuit size being reduced leading to shorter transmission distances.
However, I ignore this improvement for simplicity.
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Table 6.8: Table showing Static and Dynamic Power Results for VSFG 0 (mW)

Raw Dynamic Power Scaled Dynamic Power Static Power
Clock Comb. Sc. Factor Scaled Clk. Total Raw Used ALUTs Total ALUTs Scaled Total

epic 74.99 1.81 41.39 41.39 814.71 1569 182400 3.87 45.26
adpcm 2531.17 31.61 1.36 1862.60 1894.21 968.15 44268 182400 172.90 2067.12
dfadd 2057.31 4.18 1.79 1149.94 1154.12 879.38 10098 182400 27.21 1181.33
dfdiv 570.27 9.13 1.64 348.16 357.29 850.63 14545 182400 41.41 398.71
dfmul 764.07 23.8 1.61 473.87 497.67 838.95 5382 182400 15.35 513.02
dfsin 2679.5 54.78 1.74 1541.42 1596.20 951.45 36347 182400 109.07 1705.27
mips 1017.84 0.08 1.77 574.99 575.07 850.28 7993 182400 21.05 596.12

Table 6.9: Table showing Static and Dynamic Power Results for VSFG 1 (mw)

Raw Dynamic Power Scaled Dynamic Power Static Power
Clock Comb. Sc. Factor Scaled Clk. Total Raw Used ALUTs Total ALUTs Scaled Total

epic 178.98 5.33 1.81 98.78 104.11 817.54 4932 182400 12.20 116.31
adpcm 6117.88 36.84 1.36 4501.94 4538.78 1176.55 81087 182400 384.89 4923.67
dfadd 4007.14 17.63 1.79 2239.80 2257.43 953.32 19217 182400 56.14 2313.57
dfdiv 1240.34 22.29 1.64 757.26 779.55 899.45 29849 182400 89.86 869.41
dfmul 1576.3 63.54 1.61 977.61 1041.15 869.5 9556 182400 28.25 1069.40
dfsin 4157.85 63.89 1.74 2391.86 2455.75 1110.81 128487 182400 450.13 2905.89
mips 1394.74 0.24 1.77 787.91 788.15 868.37 14299 182400 38.46 826.60

Table 6.10: Table showing Static and Dynamic Power Results for VSFG 3 (mw)

Raw Dynamic Power Scaled Dynamic Power Static Power
Clock Comb. Sc. Factor Scaled Clk. Total Raw Used ALUTs Total ALUTs Scaled Total

epic 688.31 11.7 1.81 379.89 391.59 844.56 16575 182400 42.36 433.95
dfadd 4585.13 23.44 1.79 2562.87 2586.31 1000.93 38048 182400 116.70 2703.01
dfdiv 2500.87 47.01 1.64 1526.84 1573.85 1012.24 68085 182400 230.68 1804.53
dfmul 2745.6 121.15 1.61 1702.80 1823.95 918.18 18162 182400 56.70 1880.65
mips 2251.99 0.41 1.77 1272.18 1272.59 911.45 27000 182400 76.22 1348.80



Figure 6.9a shows a comparison of the total power values of LegUp from Table 6.7, with
the scaled total power values for VSFG circuits from Tables 6.8, 6.9, and 6.10, normalized
to LegUp. In order to understand the impact of aggressive speculative execution on
power dissipation in VSFG-based spatial hardware, I instrumented both the VSFG HLS
toolchain, and the generated VSFG 0 hardware to estimate the amount of circuit activity
overhead due to speculative execution in the baseline VSFG.

This was accomplished in two steps:

1. First, in the LLVM-to-VSFG compiler pass, I associate a true activity count and a
false activity count with each basic block predicate expression in the VSFG. This
is done in a similar manner to the instrumentation performed in Section 6.2.3. The
true activity count represents the total number of instruction-bits that might switch
each time the basic-block predicate holds, while the false activity count represents
the total number of instruction-bits that might toggle each time the predicate is
false, i.e. the activity of all the predicate promoted operations within the original
basic block that are speculatively executed.

2. Next, in the VSFG-to-Bluespec generation phase, two additional accumulators are
associated with each predicate expression in the generated hardware, labelled valid
activity bits, and mis-speculated activity bits. Each time a predicate expression holds
in the circuit, it adds its true activity count value to its valid activity bits register.
Conversely, each time a predicate expression is false, it adds its false activity count
value to its mis-speculated activity bits register. At the end of benchmark execution,
all valid and misspeculated activity bits registers are accumulated into two global
valid and misspeculated activity registers.

These values provide a measure of the degree of misspeculation overhead incurred by the
VSFG 0 hardware. Table 6.11 shows the measured useful and misspeculated activity for
6 of the 8 benchmarks11. The last column shows what fraction of total activity was useful,
i.e. not misspeculated. As can be seen, some benchmarks like adpcm and epic exhibit
low speculation overhead, while for the remainder, a large fraction of the activity is due
to mis-speculated execution. Figure 6.9b presents the misspeculated activity overheads
graphically, normalized to the useful activity (green region) in each benchmark.

Table 6.11: Table showing Useful, Misspeculated, and Total activity in Instruction-bits for the
VSFG 0

Activity in instruction-bits

Useful Mis-speculated Total Useful / Total
epic 7478389 1617588 9095977 0.82

adpcm 3504294 100992 3605286 0.97
dfadd 122651 586432 709083 0.17
dfdiv 93578 236223 329801 0.28
dfmul 59796 137056 196852 0.30
dfsin 3116600 6493479 9610079 0.32

11Unfortunately, the Bluespec compiler consistently crashed when mips was compiled after adding the
mentioned hardware instrumentation.
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(a) Power dissipation comparison of VSFG, normalized to LegUp.

(b) Activity overheads due to aggressive speculation in the VSFG 0.

Figure 6.9: Estimated Power Dissipation Comparison vs LegUp. The overheads for the
VSFG 0 are proportional to the increase in activity due to aggressive speculation.

Comparing Figures 6.9b and 6.9a, we see that the VSFG 0 mostly exhibits a higher
power dissipation than LegUp, echoing the pattern for speculation overhead in Figure 6.9b
- dfadd for instance has both the highest speculation overhead and the highest normalized
power dissipation for VSFG 0, while both epic and adpcm have much lower of both over-
heads. This again emphasizes the need to carefully balance between sub-graph predication
and speculation. Existing work on profiling-driven hyperblock formation [MLC+92], could
be adapted in the future for implementing careful subgraph extraction and/or refactoring
into the VSFG HLS toolchain. However, for now, the exploration of how far the the
energy overheads of speculation can be mitigated without compromising performance is
left for future work.

As we increase the degree of unrolling in the VSFG 1 and VSFG 3 configurations,
power dissipation increases significantly, despite the fact that circuit activity per unit area
should decrease. The additional increase in power dissipation for VSFG 1 and VSFG 3
is driven primarily by non-computational overheads: dynamic power increases because
clocking overhead grows proportionally to the registers in the circuit, while static power
increases in proportion to the increased circuit size.

These results highlight the need to apply effective clock and power gating to the vari-
ous subgraphs when implementing the VSFG in custom hardware. One extreme solution
is the utilization of asynchronous logic by Budiu et al for their spatial computation im-
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plementations [BVCG04], allowing for drastic reduction of dynamic power dissipation,
since there is no need for a global clock tree driving all registers. Additionally, the degree
of loop unrolling should be carefully balanced against the power overheads that may be
incurred in addition to the area cost.

Energy Cost:

VSFG-based hardware is able to achieve high sequential performance, approaching that
of a simulated Intel Nehalem Core i7 processor, as described in Section 6.2.1. For this
advantage, the unrolled VSFG 1 and VSFG 3 implementations exhibit anywhere from
2−10× higher power dissipation than the baseline LegUp hardware. In order to evaluate
the energy cost of the VSFG-based hardware, I combine the cycle-counts for the best
performing VSFG configuration from Section 6.2.1 (predicated subgraphs), with the power
measurements at 250MHz presented in Tables 6.8, 6.9, and 6.10.

I also combine the cycle counts for Nios with its power dissipation of 738.17 mW
at 250 MHz to estimate its energy dissipation. Finally, I estimate the energy cost of a
hypothetical version of the superscalar Core i7 processor that can be implemented on an
FPGA, also running at 250MHz. This is done by referring to the empirical relationship
between power and performance for sequential processors presented by Grochowski et
al. [GA06]:

Power = Perfα where α = 1.75

Table 6.12: Table showing average speedup of Core i7 over Nios II/f

Nios II/f Core i7 Speedup
epic 3399634 200174 16.98

adpcm 119794 42662 2.81
dfadd 16441 15994 1.03
dfdiv 36487 15120 2.41
dfmul 7074 14072 0.50
dfsin 1420558 104953 13.54
mips 31082 29998 1.04
bimpa 373347552 39664956 9.41

GEOMEAN 3.07
BEST GEOMEAN 8.83

Table 6.12 shows the cycle counts of the Nios II/f and the Core i7 processor taken
from Table 6.1, and presents their ratio as the speedup over Nios provided by the Core
i7 for each benchmark. Computing the geometric mean of speedup for all benchmarks,
we find that the Core i7 is on average 3.07× faster than the Nios processor at the same
clock frequency12. However, as noted earlier, the dfadd, dfdiv, dfmul, and mips bench-
marks represent pathological cases for the Core i7 due to their data-dependent, unpre-
dictable branching. Thus a more realistic estimate of average speedup excluding these

12Given that we’re assuming that this hypothetical Core i7 would be implemented on an FPGA, an
order of magnitude reduction in fMAX from 2.66 GHz to 250 MHz is a reasonable ball-park estimation.
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four benchmarks, and considering only the remainder is found to be 8.83× over the Nios.
Nevertheless, by applying the rule above for the more conservative speedup value:

PowerFactor3× = 3.071.75 = 7.12

Thus, power for our hypothetical superscalar processor is computed as:

Power3× = 7.12× 738.17mW = 5255.77mW

Combining the cycle count and power measurements, Figure 6.10 presents an energy
cost comparison between LegUp, each VSFG version, as well as pure software implemented
on both the Altera Nios and the hypothetical out-of-order processor. All values are
normalized to the energy of the LegUp-based hardware. The mean energy cost for the
35% higher average performance of the VSFG 1 and VSFG 3 configurations is between
3− 4× over LegUp. However, it is also about 0.25− 0.3× the energy cost of the in-order
Nios II/f processor, and about 6× more energy efficient on average than the out-of-order
processor.

Thus, despite our blind unrolling of all loops, implementing no optimizations towards
minimizing energy, and no exploitation of memory-level parallelism, the VSFG-based
hardware is able to approach levels of parallelism achievable in a superscalar processor,
while incurring only a fraction of the energy cost of even an in-order conventional pro-
cessor. I expect further improvements in both performance and energy efficiency to be
available once we incorporate (a) alias-analysis to parallelize memory access, (b) effec-
tively balance speculation with predication.

Figure 6.10: Energy Consumption comparison: VSFG vs LegUp vs Altera Nios II/f vs a
hypothetical out-of-order processor based on the Core i7.

6.3 Estimating ILP

In order to more clearly illustrate the potential advantage of the VSFG in exposing in-
struction level parallelism, this section presents an estimation of the average instructions
executed per cycle (IPC) by each of the implementations.

Due to the difficulty of making a fair comparison of IPC across the varying instruction
sets (LLVM for LegUp and VSFG, x86 for the Core i7 and Altera’s proprietary ISA for
the Nios processor), I have chosen to instead approximate a measure of IPC by divid-
ing the cycle-count results obtained for each type of processing element in Section 6.2.1
with the number of useful13 LLVM instructions that are expected to execute within each

13i.e. excluding the misspeculatively executed instructions
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benchmark. A similar form of instrumentation to that described in Section 6.2.4 (used
to generate Figure 6.9b) was used to count the number of useful instructions executed by
each benchmark.

Figure 6.11: Estimated Instructions Per Cycle achieved by LegUp and VSFG (predicated
subgraphs) implementations, as well as the Nios II/f and Core i7 processors.

The estimated IPC results are presented in Figure 6.11. Unfortunately these results
could only be generated for six of the eight benchmarks, due to the toolchain’s aforemen-
tioned fragility. As can be seen, increased loop unrolling typically allows the VSFG-based
implementations to achieve better ILP than LegUp generated hardware, and far better
than the in-order Nios. For the epic and adpcm benchmarks, the Core i7 still retains an
advantage over the best VSFG version due to the single state-edge constraint on paral-
lelism in the latter, while all versions of the VSFG exhibit better IPC than both processors
for dfsin.

6.4 Summary

This chapter presented a performance, area, power and energy comparison of hardware
generated from the VSFG-based high-level synthesis toolchain against hardware generated
using LegUp. In addition, a performance and energy comparison was presented against
two types of conventional processors: a simple, in-order Altera Nios II/f soft-processor,
and a simulated hypothetical out-of-order soft-processor based on the Intel Nehalem Core
i7.

The VSFG-based hardware demonstrated both higher cycle-counts and operating fre-
quency than hardware generated by LegUp, a state-of-the-art academic high-level synthe-
sis tool. Furthermore, with multi-level loop unrolling, the static-dataflow VSFG hardware
is able to match, if not exceed the cycle-count performance of the Intel Nehalem Core i7
processor on control-intensive sequential code, except in cases of memory intensive code,
where the VSFG performance is limited due to the strict sequentialization it currently
imposes on all memory operations.

For this performance advantage, the best performing VSFG-based hardware incurs an
average energy dissipation cost 3−4× greater than LegUp-generated hardware, while the
baseline VSFG 0 version incurs an average 2× greater energy cost. However, I consider
this a worst-case cost for the selected benchmarks, as no optimizations have yet been
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applied to the VSFG to improve energy efficiency, nor have any memory disambiguation
mechanisms been incorporated to improve memory-level parallelism. For future work on
utilizing the VSFG to compile to spatial architectures, the following optimizations are
considered essential:

• Efficiency would be improved by carefully balancing between speculation and pred-
icated execution in the VSFG. One could start by adapting prior work on profile-
directed hyperblock formation [MLC+92], and apply it to re-factor VSFG subgraphs
and hierarchy, and then selectively applying predicate-promotion on the most fre-
quently executing subgraphs.

• Utilizing profiling to identify and selectively unroll loops would help improve both
area and energy efficiency.

• Incorporating static memory disambiguation is essential for improving performance
scaling of the VSFG, particularly for memory intensive benchmarks. Performance
improved in this way would also translate to lower energy requirements, as no addi-
tional power dissipation overhead is incurred from static-memory disambiguation.

• Incorporating dynamic memory disambiguation should also be explored, as done
previously by Budiu et al [Bud03, BVCG04]. However, the increased power dissi-
pation due to dynamic memory disambiguation would need to be balanced against
the performance (and thus indirectly energy) improvements that it may provide.

Nevertheless, despite the lack of the aforementioned optimizations, these results demon-
strate the ILP exposing potential of the VSFG intermediate representation. Through its
aggressive support for speculative execution, control-dependence analysis, and exploita-
tion of multiple-flows of control, the VSFG IR has been demonstrated to be a strong
candidate for addressing the amenability issue with spatial computation. ILP is exposed
statically within the representation, from sequential, control-intensive code, meaning that
there is less need to incur the energy cost of dynamic mechanisms for overcoming con-
trol flow, as with earlier work on spatial architectures such as TRIPS [SNL+04], and
DySER [GHN+12, GHS11].

Chapter 7 now concludes this dissertation, as well as discussing potential directions for
future work based on the VSFG IR. To mitigate the effects of dark silicon, of particular
interest would be the development of an energy efficient spatial architecture capable of not
only accelerating numeric applications, but also matching, if not exceeding superscalar
performance on sequential applications, while retaining its orders-of-magnitude energy
efficiency advantage.
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CHAPTER 7

Conclusions and Future Work

Computer architects are facing several critical issues that must be addressed in order to
continue scaling performance with Moore’s Law. In particular, the end of Dennardian
scaling has led to the Utilization Wall: for a fixed power budget, with each technology
generation, only an ever diminishing proportion of on-chip resources can be activated
at any time. Also, due to the difficulty of parallelizing applications for shared-memory
multicore processors, Amdahl’s law further limits the speedups achievable in the manycore
era.

Together, the Utilization Wall and Amdahl’s Law result in the problem of Dark Sili-
con [EBSA+11], which constrains performance scaling far below the promise of Moore’s
Law. To mitigate the effects of the Utilization Wall, architects are increasingly looking
towards spatial computation (application-specific custom hardware in particular), due to
its potential for orders-of-magnitude improvements in energy efficiency over conventional
processors. Unfortunately, while it achieves very high performance on numeric and mul-
timedia style applications, spatial computation exhibits poor performance on sequential,
control-intensive code relative to conventional processors. This means that despite the
high efficiency, Amdahl’s law still restricts achievable speed-ups.

In this dissertation, my goal has been to improve the performance of sequential,
control-intensive code when implemented as spatial computation. Furthermore, this was
to be achieved without overly compromising the inherent advantages of spatial compu-
tation, namely computational density, scalablilty, architectural simplicity, and of course
high energy efficiency. Noting that control-flow was the primary constraint on achieving
higher sequential performance [LW92], I devised a new compiler IR for spatial computa-
tion based on the Value State Dependence Graph [Law07, Joh04], as well as presenting
eager, dataflow execution semantics for it. This Value State Flow Graph elides most
control flow from the original imperative program representation, instead emphasizing
only the true dataflow and state-ordering dependencies that must be respected for correct
program execution. The VSFG also enables aggressive control-dependence analysis, and
is capable of exposing and exploiting multiple flows of control.

As a case study for evaluating this new representation, I developed a high-level synthe-
sis tool that compiles imperative code to the VSFG, then implements it as static-dataflow
custom hardware. Hardware generated by this toolchain was compared with an existing,
established academic high-level synthesis tool called LegUp, as well as with a simple in-
order Altera Nios II/f soft processor and a simulated Intel Nehalem Core i7 processor.
The results show that the VSFG based hardware achieves a performance im-
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provement of as much as 35% over LegUp, at a 3× higher average energy cost.
Performance (in cycle-counts) is comparable to that of the Core i7, while in-
curring only a fraction of the energy cost (1/4× the energy cost of an in-order
Altera Nios II/f soft-processor, and 1/8× the energy cost of an extrapolated
Core i7-like soft-processor).

7.1 Future Work

7.1.1 Incremental Enhancements

These results for the VSFG-based hardware are particularly promising given that they are
achieved without any significant optimizations to the VSFG IR and hardware that could
further improve both efficiency and performance. Listed below are some of the enhance-
ments and optimizations suggested in this dissertation to further improve performance,
energy-efficiency, and/or coverage of imperative language features:

• Hybridization of the VSFG-S IR (and associated toolchain) with the dynamic-
dataflow execution model, to enable support for true function calls and general
recursion.

• Incorporation of alias analysis based static memory disambiguation within the LLVM-
to-VSFG compiler, in order to expose memory level parallelism at compile-time,
thereby improving run-time performance as well as energy-efficiency.

• Incorporation of dynamic memory disambiguation hardware in the memory infras-
tructure to expose further memory level parallelism at run-time. This would further
improve performance, though its energy impact must be evaluated.

• Optimization of memory-access network in hardware. Pipelining the memory access
network, as well as the introduction of local cachelets closer to memory operations
would also improve both performance and energy efficiency [HRRJ07, VBCG06,
PBD+08, SVGH+11].

7.1.2 Mitigating the Effects of Dark Silicon

Spatial computation architectures such as Coarse-Grained Reconfigurable Arrays, and
Massively Parallel Processor Arrays exhibit significant advantages over conventional pro-
cessors, as they are far more scalable, energy-efficient, have higher computational density
and lower design and verification costs. With worsening wire scaling [HMMH01], and the
dark silicon problem, spatial architectures represent a potentially revolutionary improve-
ment in computer architecture.

By developing the VSFG-S compiler IR specifically with the goal of implementing
conventional, imperative programming languages onto spatial architectures, while achiev-
ing high sequential performance, I have demonstrated that two of the primary hurdles
to the utilization of such spatial architectures – amenability and programmability – can
now be resolved. I hope that the work presented in this dissertation will facilitate more
pervasive, even ubiquitous utilization of such architectures, particularly to mitigate the
effects of Dark Silicon. Several important future research directions are described below
to further this end:
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• Develop an efficient Coarse Grained Reconfigurable Array to directly implement
VSFG-S static dataflow graphs. Ideally, the objective of this research would be
to develop a complete replacement for conventional processors – similar to the
Wavescalar [SSM+07] or TFlex [KSG+07] approaches – instead of implementing yet
another hybrid architecture like Conservation Cores [VSG+10], DySER [GHS11] or
Tartan [MCC+06], that relies on an attached conventional processor to implement
part of the functionality. The recently developed Triggered Instructions architecture
adopts a guarded atomic actions style execution model that is very similar to our
static-dataflow approach, and may prove a good place to start [PPA+13].

• In addition to developing a new CGRA, the extensive existing research into the
development of Massively Parallel Processor Arrays could benefit from the develop-
ment of compilation back-ends via the VSFG. This would potentially allow the im-
plementation of imperative code distributed onto such fine-grained message-passing
many-cores while still achieving high sequential performance. Examples of such
architectures include Loki [Bat14], Mamba [Cha12], and the MIT RAW [TLM+04].

Existing work on compiling dataflow languages to coarse-grained Von Neumann /
Dataflow hybrid architectures would be good places to seek inspiration on compiling
to MPPAs [YAMJGE13, Ian88, GTK+02]. Notable work in this area utilizes coarse-
grained dataflow models like Kahn Process Networks [LP02].

• Conventional high level synthesis tools rely on static scheduling to identify at com-
pile time when any given operation should execute. Given this schedule, subsequent
allocation and binding phases in the tool are used to implement area and energy
optimizations by reusing hardware resources like adders, multipliers, registers etc.
The VSFG-based HLS toolchain described in Chapter 5 does not presently consider
the issues of allocation and binding, primarily because this work would have been
outside the scope of this research.

Nevertheless, consideration of how allocation and binding can be incorporated into
a high-level synthesis tool that relies on dynamically scheduled execution merits
further study, given the demonstrated performance advantages of such hardware.

• In addition to homogeneous spatial architectures like CGRAs, MPPAs, the struc-
ture and semantics of the VSFG are well suited for describing computation using
heterogeneous components. Given that the VSFG is hierarchical, and that nested-
subgraphs are isolated from each other, each nested-subgraph may be implemented
on a completely different substrate from every other. A parent graph may execute
on a CGRA, while its nested subgraph is implemented on an embedded processor,
so long as the dataflow style communication semantics between the two subgraphs
are maintained.

Further pursuing this line of thinking might provide insightful new solutions to
the design specification, implementation, and utilization of modern heterogeneous
system-on-chip architectures.

• Currently the VSFG is tailored for the implementation of sequential languages.
However, given the increasing and urgent shift towards parallel programming mod-
els and languages, an important topic for research would be to see if the VSFG
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could be extended to express and implement such concurrent languages. For in-
stance, message passing could be implemented by utilizing the existing signal and
wait operations, while non-determinism could be incorporated by utilizing the mu
operation beyond loop entry points, and independently of the inGate operation.

Furthermore, the key function of many shared memory parallel programming mod-
els like OpenMP and OpenCL is to allow the programmer to specify concurrency of
operations. This explicit concurrency would manifest itself as a further partitioning
of the VSFG state-edge beyond that already implemented by static-memory disam-
biguation at the compiler-level. Further research is warranted to assess if all features
of such parallel programming models can be completely supported by extending the
VSFG IR without compromising any of its inherent advantages.

The utility and impact of the VSFG-S IR can be extended dramatically if it can
serve as a compilation target for multiple concurrent programming models, while also
providing target implementation back-ends for custom hardware, CGRAs, MPPAs or
even heterogeneous architectures.
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