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Accelerating Convergence of Trigonometric
Approximations

By William B. Jones and G. Hardy

Abstract. Lanczos has recently developed a method for accelerating the convergence of
trigonometric approximations for smooth, nonperiodic functions by modifying their
boundary behavior. The method is reformulated here in terms of interpolation theory and
is shown to be related to the theory of Lidstone interpolation. Extensions given include a
new type of modifying function and the establishment of criteria for the convergence of
associated interpolation series. Applications are given for the error function and its
derivative.

1. Introduction. We are concerned with the problem of accelerating the con-
vergence of trigonometric approximations, such as truncated Fourier series and
trigonometric sums for interpolation at equally spaced points. Let fix) be a real
valued function of a real variable x defined on the interval [— 1, 1]. If fix) is integrable
on [— 1, 1], its Fourier series is given by

(1.1) -r +  zl (ak cos kirx + bk sin krx),2 *«i
where

(1.2) ak =   /    fit) cos kirt dt,        bk =   /    fit) sin kirt dt.

The «th partial sum of (1.1) will be denoted by 5„(x). The sum
j|t n— 1 ¡|c

(1.3) S*(x) = -—■ + ^ (a? cos kirx + b* sin kirx) + — cos nirx.
2 t-i 2

where
1     n~* i     n—\

(1.4) a? = -  £   f(xa) cos kirxa,        /_>? = -  23   fixa) sin kirxa,
ft   ai'—n "   a»—n

is called the trigonometric interpolation sum of order n relative to the 2n points

ct
(1.5) xa = - ,        a =  —n, • ■ • ,0, ■ ■ ■ , n — 1.

n

It is well known that

(1.6) S*(xa) = f(xa),        a =-«,••• ,0, ••• ,n - 1,

and that the partial sums of (1.3) are best approximations of fix) at the points (1.5)
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548 WILLIAM B. JONES AND G. HARDY

in the sense of least squares. It is shown by Jackson [5, pp. 22, 50, and 123] that if,
ïov p ^ 1, fv)ix) exists and is bounded on [—1, 1], and if

(1.7) /<l)(-D = f\l),       k = 0, 1, ••• ,p,

then there exist constants A, B, and C such that for n = 2, 3, • ■ •

(1.8a) \fix) - Snix)\ ^ iA log n)/n",        -1 Sïa 1,

(1.8b) \an\ =g B/n", \bn\ è B/n",

(1.8c) I/O) - S*ix)\ ^ (C log n)/n\ -lgxil.

Although somewhat sharper results are known, for our purpose the simplified
form summarized above suffices to indicate the important connection between the
rate of convergence of trigonometric approximations of fix) and the smoothness
and boundary conditions (1.7) satisfied by fix). Conditions (1.7) make it possible
to extend the definition of fix) as a periodic function with a pth derivative over the
entire real line. Thus, if fix) were a smooth function on [—1, 1] (even analytic) but
did not have the boundary behavior (1.7). its trigonometric approximations could
converge extremely slowly.

Lanczos, in 1964 [8] and 1966 [9], developed a method for dealing with this
problem by modifying a given function fix) by a polynomial hvix) so that the
corrected functions

(1.9) gv(x) = fix) - hBix)

will have both the smoothness of fix) and the desired boundary behavior. He intro-
duced a basic system of polynomials Bkix) that plays a central role in the method,
and considered two types of modifying functions hvix). We introduce a third type
and show that all of the types studied so far have a simple and natural formulation
in the framework of interpolation theory (Section 2). In connection with this, certain
combinations of the polynomials Bkix) and related linear functionals are shown to
form biorthogonal sets in terms of which the Ap(x) are easily derived. We have also
studied the additional question of convergence of the sequences of modifying func-
tions [hvix)\. For each type considered we are able to give sufficient conditions for
uniform convergence and uniform estimates of the truncation error (Section 4). In
the course of this study, we found that the modifying function Ap(x) of Section 2,
Method 2 (considered by Lanczos the most useful) is, in fact, an interpolation poly-
nomial introduced by Lidstone [10] in 1929 and later investigated by Whittaker
[11], Widder [12], Boas and Buck [2] and others. We also found that the odd poly-
nomials B2k+lix) coincide with the so-called Lidstone polynomials Ak(x) and that
some of Lanczos' work on this problem contributes to the study of Lidstone inter-
polation.

The method of accelerating convergence of trigonometric approximation is
applicable to functions defined either by an analytical expression for a continuous
interval or by a set of tabulated values at equally spaced points. We have earlier
used the method for representing seasonal variations of ionospheric characteristics
[6] and vertical profiles of ionospheric electron density [7]. As a further illustration
we include here applications to the error function and its derivative (Section 2).
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2. Modifying Functions. In this section we will determine modifying functions
h„ix) such that g„(x) defined by (1.9) will have a bounded pth order derivative and
satisfy boundary conditions of the form (1.7). Each of the cases dealt with here reduces
to an interpolation problem in the following sense: Let V denote a linear space of
dimension N over the real numbers and let Lu • • • , LN denote linear functionals
defined on V. Then, given a set of real values wu ■ ■ ■ , wN, the problem of interpolation
is to find an element h belonging to V such that

(2.1) L,ih) = w„       j = 1,2, ••• , N.

Elements F¡, ■ ■ ■ , FN in V and linear functionals Lu •■■ , LN are said to form a
biorthogonal set if

(2 2) L¡iFk) = Sik = 0,    if   j^k,

= 1,    if   j = k.

It is well known [3] that a solution to (2.1) is given by
AT

(2.3) h =  S wkFk,
k-l

provided the Fk and L¡ form a biorthogonal set. In the following we restrict V to
spaces of polynomials and consider three interpolation problems. In each case the
solution is developed in the form (2.3). First, however, we must introduce Lanczos'
system of polynomials.

Definition 2A. Let the sequence {Bkix)\ be defined as follows:

Boix) = 1,        B^x) = x,

B'kix) = *»_»(*),       k = 2, 3, ••• ,

£2i+1(0) = B2k+1H) =0,       k - 1,2, ••• .

Remarks. The following statement can be verified by induction: For each
k = 0, 1,2, • • • , Bkix) is a uniquely determined polynomial of degree k and, further-
more,

(2.4) B2ki—x) = B2kix),        (even function)

B2k+ii—x) = -ß2i+iWi        (odd function)

Blm\x) = Bk.mix),        0 ^ m á /c

= 0, m > k.

Lanczos [9] has pointed out a close connection between the Bkix) and Bernoulli
polynomials.

The biorthogonality relations needed are established by
Theorem 2.1. Each of the systems of functions Fk and linear functionals Lt given

below forms a biorthogonal set:

L,ih) = /V"(l) - ft("(-l),       / - 0, 1, •• • , p.

Fkix) = %Bk+l(x), k - 0, 1, • • • , p.

(2.5)

(2.6)

A.

(2.7)
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550 WILLIAM B. JONES AND G. HARDY

B.

(2.8)

C.

(2.9)

LIi+1(k) = A<2,)(0),        LÏJ+2(A) = h2"il),        j = 0, 1, • • •  , m,

F2k+1ix) = 52i+1(l - x),        F2k+2ix) = Bît+1ix),        k = 0, 1, ■•

L2i+lih) = A(2,+1)(0),        L2i+2(h) = hWiL)(l),        j = 0, 1,

F2k+iix) = -B2k+2il - x),       F2k+iix) = B2k+2ix),      k = 0, 1, •••, m.

Proof.    In case A we have

L,iFk) = fröl'id) - AÍÍ.'i(-l)].
Thus if 7 5¿ /c, then L,(Ft) = 0. For if y > k + 1 then 5£}(;c) s 0 and if y = k + 1
then B¿í\ix) = 1. If 7 < /c then /3t+1_,(l) = Bt+1_X-l) when fc + 1 - j is even
and fil+1_,-(l) = fit+I_,(-l) = 0whenA:+ 1 - j is odd. On the other hand, LfF.) =
?,[/3,(l) — /?,(— 1)] = 1. In case B we obtain the following:

LM+1(FM+1) = AÍ2n,(l) = 0,    if   ;>/<,

(2.10) = 52*+1-2,(l) = 0,    if   j < k,

=  1,     if   ./ = A.

L2i+liF2k+2) = B22k{\i0) = 0,    if   j > k,

(2.11) = fl2t+1_2)(0) = 0,    if   ./ ^ A.
Lsi+2(F„+1) = BiVMO) =0       as in    (2.11).

L2i+2iF2k+2) = 52t+i(l) = o,-*    as in    (2.10).

Case C follows in a similar manner and hence is omitted.
We can now derive the desired modifying functions A„(x).
Method 1.    Let fix) have a bounded derivative of order p on [— 1, 1]. Then

(2.12) gPix) = fix) - hvix)

will have a bounded pth order derivative on [—1, 1] and satisfy conditions of the
form (1.7), provided hPix) is a polynomial satisfying

(2.13) Ai"(l)- Ap'l-l) = /("(1) -/'"(- 1).        y = 0, 1, •••  ,p;

that is, /¡„(a:) is a polynomial solution of the interpolation problem (2.1), where the
functionals L, are defined by (2.7) and w, = f°(l) - /'"(-1). j = 0, 1, • • • , p. By
(2.3) and Theorem 2.1A, the desired h„ix) is given by

(2.14) hvix) - i ¿ [/(t)(l) - /(W(-1)]2W*).

The trigonometric approximations (1.1) and (1.3) will converge to gvix) according
to (1.8). It should be noted that if fix) is defined by a set of tabulated values, the
derivatives f'\±\) appearing in (2.14) must be approximated by numerical methods
of differentiation (see [3] for standard techniques of numerical differentiation;
Lanczos [8] discusses a special technique for approximating the derivatives of even
order). In certain problems it is advantageous to have the modifying function hvix)
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expressed in terms of only even- or only odd-order derivatives of fix). Such expres-
sions are formulated by the following two methods.

Method 2.   Let fix) have a bounded derivative of order p — 2m + 1 on [0, 1].
Define g„(x) as an odd function by

(2 15) gv(x) - fix) - hr(x),        0 ^ x ^ 1,

=  -*,(-*), -1ÍK0,

where h„ix) is a polynomial such that /ip(0) = /(0), so that gp(0) = 0. Now in order
for gvix) to be p times differentiable on [—1, 1], it is necessary and sufficient that

(2.16) ¿"(0-) = ¿"(0+),       y = 0, 1, ••• ,p,

where #"'(0—) and g')(0+) denote the left and right derivatives at x = 0, respec-
tively. Thus gPix) must satisfy two sets of boundary conditions, (2.16) and

(2.17) ¿"(-i) = ¿"(i),     ; - 0, 1, ••• ,p.

Although (2.16) and (2.17) comprise 4/77 + 4 conditions, half of these (those with
odd j) will be satisfied automatically since gJix) is an odd function. For it follows
from the oddness of gPix) that

(2.18) ¿"+MW = ¿""'i-*).       * - 0. I, .••. m.

Moreover, gp24)(x) = -gp2t)(-*) implies gF2i,(0) = 0, and together with (2.17),
£¿M)0) = 0- Therefore, it suffices that the polynomial /»„(*) satisfy the 2m + 2 con-
ditions

(219) c»-/«».   »_„,.....„
*i'"(D - /""«),

that is, that /7p(x) be a polynomial solution of the interpolation problem (2.1), where
the functionals L, are given by (2.8) and w2i+1 = /(2,)(0), w2i+2 = /<2,)(1), j =
0, 1, • • • , /Ti. Thus, by (2.3) and Theorem 2.IB the desired hvix) is given by

(2.20) hrix) =  ¿ [/<2,)(0)Ä2, + 1(1 - x) + fW)ü)B2i+1ix)].
í-0

This is the interpolation problem whose solution (2.20) was given by Lidstone [10].
Again we obtain a function gp(x) whose trigonometric approximations (1.1) and (1.3)
converge according to (1.8). A useful feature of this method (pointed out by Lanczos)
is that, although (2.20) involves only derivatives of fix) up to order 2m, g„ix) has the
advantage of having a bounded derivative of order 2m + 1. Thus, for m = 0, no
derivatives of fix) are required in (2.20), but giix) is differentiable and satisfies g{(— 1)
= gi(l)- This case is particularly useful for approximating tabulated functions fix)
whose derivatives are unknown.

Method 3.    Let fix) have a bounded derivative of order p = 2m + 1 on [0, 1].
Let gPix) be defined as an even function by

(2 21) *,(*) = /(*) - h,ix),       0 ^ x ^ 1,

= *,(-*), -1 á x < 0.
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Again we wish to determine a polynomial h„ix) such that gp(x) will be p times dif-
ferentiable on [— 1, 1] and satisfy (2.17). But, as in Method 2, gp(x) must also satisfy
(2.16), giving a total of 4m + 6 boundary conditions. In this case more than half
{/2m + 4) of these conditions (those with /' even) will be satisfied automatically since
gXx) is an even function and hence

(2.22) gvw{x) = g?*\-x),       k = 0, 1, • • • , m + 1.

Moreover, g'2i+1)(x) = -gr2k+1)i-x), implies g¿"+1)(0) = 0, and together with
(2.17), gp"+1)(l) = 0. Thus it suffices for the polynomial hvix) to satisfy the 2m + 2
conditions

(2.23) k = 0, 1, • • • , m;
hv2k+l\\) = /(2t+1,(l),

that is, that /zp(x) be a solution to the interpolation problem (2.1), where the func-
tionals L¡ are given by (2.9) and w2i+1 = /(2,+u(0), w2j+2 = /(2,+1)(l), j = 0, 1,
• ■ • , m. By (2.3) and Theorem 2.1C the desired A„(x) is given by

m

(2.24) h„ix) =  £ [ri+1)H)B2i+2{x) - f2i+1){0)B2i+2(l - x)].
i-0

All of the modifying functions (2.14), (2.20) and (2.24) arise in a simple and natural
way when we consider the associated interpolation problems and biorthogonality
relations of Theorem 2.1. The first two modifying functions are given by Lanczos
[9]. The new function (2.24) has the advantage that the corrected function (2.21) can
be extended as a periodic function with 2m + 2 derivatives, although (2.24) involves
only derivatives up to order 2m A- 1. In practice (2.24) would therefore be more
appropriate than (2.20) when the derivatives f'\ö) and /'"(l) are known up to an odd
order, say, j = 2m + 1 but not for j = 2m + 2. For example, if the values of the first
derivative f(0), /'(I) were given but /"(O), /"(l) were unknown, then (2.24) would
be more suitable than (2.20).

The following examples illustrate the use of Methods 2 and 3 in accelerating the
convergence of trigonometric interpolation sums. For Method 2, gp(x) is odd so that
its interpolation sum (1.3) reduces to a pure sine series. If this sum is truncated after
K terms, the resulting approximation of fix) has the form

K

(2.25) Yv,K{x) = hv{x) + 23 b* sin kirx, 1 g K g n - 1, p = 2w + 1,

where

(2.26) bt = - £ gl-j sin kir - ,
n ¿Ti     \nj n

and where Ap(x) and gp(x) are defined by (2.20) and (2.15), respectively. For Method 3,
gJix) is even, so that its sum (1.3) is a pure cosine series, which, when truncated after
K terms, gives an approproximation to fix) of the form

*        K
(2.27) Yv.K{x) = hv(x) + ^ +  23 «? cos k*x,     l^K^n-l, p=2m + 2,

¿ k -  !
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where

(2.28) a? = - § gl-) cos kit - + - [&,(()) + (- l)"gPil)],n ZT[     \n/ n       n

and where /¡„(x) and gp(x) are given by (2.24) and (2.21), respectively. For convenience
we list the first few polynomials Bkix):

x2      1
B,{x) = x, B2(x) = — - - ,

(2.29) B3(x) - £ - X , B4(x) = Y4~T2 + W0'

53-, 6 4 n    2 *)<_ . . * x 7.x „ , .        x x.7jc 31
120       36       360 ' 8V 720       144      720       15120

Example 1.   Let fix) denote the error function with normalized variable
2   r2x

(2.30) fix) = erf 2x = -y  /     e-'   ar, 0 ^ x ^  1.
V7T Jo

The following values of the derivatives of fix) are used:

v 12 3 4 5

Vt/("(0) 4 0 -32 0 768

Vxe*/("(1) 4 -32 224 -1280 4864

Table 1 contains the coefficients (2.26) and (2.28), k = 0, 1, • • • , 10, calculated with
7i = 200 for each of the values tti = 0, 1, and 2. Also included in Table 1 are the values
of the maximum absolute error

(2.31) A/P.t = max {|/(a/200) -   r„,t(a/200)|: a =  1, 2, •••  , 200}.

The tabulated values of fix) used as input were taken from [1] with ten significant
digits and most of the calculations were performed with double-precision arithmetic
to reduce errors of roundoff. The acceleration of convergence is evident both in the
series of coefficients a*k and b*k and in the values of Mp,k. For example, with/) = 1,
the \b*k\ decrease from |6*| È3X 10~l to \b*0\ S 2.KT5, whereas, withp = 5, they
decrease from |/j*|^4X 10"' to \b*\^ 1 X 10~10. Also, it is seen that M,,I0 = 7.3 X
10~6, whereas M5,8 = 8.0 X 10~10. In this example the convergence is somewhat
faster with Method 2 than with Method 3. This is probably due to the fact that fix)
is naturally an odd function. In the next example, Method 3 gives faster convergence,
but then we are dealing with an even function.

Example 2.   Here we consider the derivative of the error function (with nor-
malized variable)

(2.32) fix) = „-í>-<2i>\        O^x^l.
V""
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Table 1.    Coefficients a*    and b*   and Maximum Absolute Errork k
M    ,   From Analysis of erf 2 x,   0 í x álp, k

0
]
2
3
4
5
6
7
8

10

0
1
?.
3
4
3
6
7
8
9

) 0

0
1
2
3
4
5
6
7
8
9

10

Method 2 (m = 0, p = 1)

b*,k

3462463177
0259554394
0013111854
0002449383
0001435006
0000877068
0000570549
000039023)
0000277945
0000204646

M l,k

X 10"s

X 10-3
5.4 x 10-4
3.6 x 10'4

x 10-*

2.7
1.6

8 x 10~4
4 x 10-4

2
1
1
1
8. 8 x 10
7. 3 x 10

1 10"

Method 2   (m = 1,   p =  3)

3249169740
0286216074
0005212097
0000883327
0000271341
0000110401
0000051298
0000026358
0000014638
00000086468

M3,k

2. 9  x 10-E
5.9 x ÎO"4
1. 3 x 10"4
4.6 x ÎO-5
2. 1 x 10"5
1. 1
6. 1
3. 7
2. 4
1. 6

x 10-E
x 10"G
x 10"s
x 10"R
x 10 -F

Method 2   (m = 2,   p - 5)

b*k

.4113615483

.0259202145

.0008769487

.0000039141

.00000052818

.000000076746

.000000013603

.0000000023012

.00000000012557

M5,k

2. 7 x 10~3
8. 8x 10"4
4.4X JO"6
6. 2x  10-7
9. 2x   10"8
1. 6 x 10"s
2. 7 X 10"9
8.0X 10"10
9. 2X 10"10

Method 3    (m = 0,   p = 2)

.00000000023073   6. 9 x   10~10

1.4367884391
. 0842190610

-.0336517436
-.0065131039
-.0019205011
-.0005950163
-.0003421257
-.0001439425
-.0001053547
-.0000512496
-.0000426522

Method 3   (m =

a*k
1.4367884391

.4073791302
-. 0075135659
-.0025234734
-.0002868649
-, 0000779602
-.000019432]
-.0000093485
-.0000032524
-.0000019948
-.00000083105

Method 3   (m =

1.4367884391
1.4133394885

.0049370204
-.0011435552
-.0000923245
-.0000135787
-.0000023531
-.00000079797
-.00000021273
-.00000010196
-. 000000034214

M2,k

4. 4 x 10"s
9. 8 x 10-3
3. 3 x ÎO"3
1.4 x 10"3
7.9 x 10"4
4.5 X 10"4
3. 1 x 10"4
2.0 x 10 -4

1.5 x 10"
1.1  x 10

1.   P = 4)

M4,k

-4

1.0 x 10-2
2.9 x 19~3

X
y,
x

10""4
10~4
10~s

-s

4. 0
1. 1
3.6
1.7X10
7.6 X 10~s
4. 3 x io-6
2. 3 x io-e
1. 5 X i0"e

2,   p = 6)

M6,k

6. 0 x 10-3
1. 3 x 10~3

x 10~4
x 10-s
X io-6

1. 2 x 10'G
3.9 X 10"7

X
x

1. 1
1. 7
3. 5

1.
7.4
3.9

10~7
10-8
ÎO"8
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For this example the following values of the derivatives of fix) are needed :

v 12 3 4 5

Vt/("(0) 0 16 0 384 0

v^V'O) -16 112 -640 2432 1024

Table 2 contains the coefficients a% and b*k and values of Mp, k calculated with n = 200.
Again it is clear that both Methods 2 and 3 accelerate the convergence, but Method 3
appears to be better suited in this example. As an illustration of this we note that
M3,7 = 1.0 X 10"4, whereas Mi7 = 3.6 X 10~8.

3. Fourier Series for the Bkix). In Section 4 we shall make use of the Fourier
series for the polynomials Bkix), which are given in the present section, together with
some helpful uniform bounds. Using (1.1) and (1.2) one can easily show that the
Fourier series ßiix) for ß,(x) on [—1, 1] reduces to

(3.1) ßAx) = 2 ¿(-1) i+i sin Á7r.r
kir

This series converges absolutely and uniformly to t3,(x) on every closed subset of
(—1, 1); at x = ±1 it converges to zero. By successive integration of ß^x), we
obtain a sequence of functions {ßkix)\ given by

(3.2) ß2^{x) = 2(-l)"+I  ¿ (-1)*^^
t-i (for)

(3.3) &„(*) = 2(-l)"+I  ¿(-1)'
cos kirx
{kir)2"

1, 2,

n =  1,2,

where the boundary conditions j32n+i(0) = /?2n+1(l) = 0, n è   1, determine the
constants of integration. The convergence of the series (3.2) and (3.3) is uniform and
absolute for all x. Definition 2.1 implies that /jt(x) = Bk(x) for — 1 g x ¿ 1, k ^ 2.

Theorem 3.1.   For n = 1, 2, • • ■ , and all x

(3.4) |(-l)"&,,+.(*) - 2sin7rV7r2"+1| Ú M/{2ir)2n+1,

and

(3.5) |(-1 )"&„(.*) - 2 cos ttjc/V2"! ^ A//(2tt)2",

where M = 8(ir2/6 - 1).
Proof.    From (3.2) and (3.3) we obtain for n = 1,2,

(-ir&n+1(*)
2 sin TTX
ikirY ^   E ikirY (27T)¡-sen-

and

i    i\'+1a   i \       2 cos TTX(— 1)        P2nto   — (2tt)-
<   f _!_ =      2     f /2Y".
-   fcí (/ctt)2"        (2,r)2" fe W
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Table 2.    Coefficients a*    and b*    and Maximum Absolute Errork 2
M From Analysis of   —  e  ~(2X>   ,   0  á X á 1

p, k /tt

0
1
2
3
4
5
6
7
8
9

10

Method 2 (m = 0, p = 1)

0
)
2
3
4
5
6
7
8
9

10

.1322909918

.1057200701

.0306922785

.0120668632

.0046732464

.0032244576

.0015827289

.0013239247

.0007245222

.0006699766

M.

1. 3
4.6
2. 1
1. 2
7. 8
5. 3
4. 1
3. 1
2. 5
2. 0

l.k

îo-1
lO'2
10"E
IQ"2

x 10 • a

io-3
10"3
10
10
10

3

Method 2 (in = 1, p : 3)

0
1
2
3
4
5
6
7
8
9

10

b*.

6399096414
0236045634
0118915881
0018024255
0006122979
0001831435
0001027920
0000408712
0000282015
0000130542

M3, k

y 10
xlO
X 10
x 10

-2

-3
-3

-4

3.
1.
2.
9.
3. 7 xlO-4
2. 0 xlO"4
1.0 xlO"4
6. 5 xlO""5
4. 0 xlO""5
2. 8 x)0"s

Method 2   (m = 1  p = 5)

2200684770
0155101070
0053888769
0005800920
0001066470
0000221778
0000087741
0000026733
0000014414
00000053749

M.

2.
6.
7.
1.
3.
] .
5.
2.
].
7.

5,k

X 10
y. 10

10
.10
10
10
10
10
10

-■?,
-3

-4

-4

-5

-5

-6

-6

-S

Method 3 (m = 0, p = 2)

a*k

9953222650
5103783892
0899174316
0024561430
0005550106
0002131106
0001040505
0000564048
0000331222
0000206943
0000135823

M

9.3
2.9
1.0
4. 8
2.7
1.6
1. 1
7. 3
5. 3
3.9

2,k

10~2
10"3
10""3
10~4
10
10
10
10
10
10

Method 3 ( m = 1, p = 4)

M4,k

8.6
4
2
5

9953222650
6461652090
0814307553
0041325235
0000245933
0000041483
00000072329
00000014953
000000028876
0000000017781
0000000036552  1.6 x 10"

Method 3    (m = 2,   p = 6)

x lo-3
2 x 10-3
8 x 10-E
0 x 10"6

8.9 X 10-7
1.8 x 10"7
3. 6 x 10-8
1. 8 x 10"8
2.0 x IQ""8

X 10"

9953222650
6681781391
0810868033
0041627196
0000192190
0000055572
0000011951
00000033664
00000011285

,000000043199
0O0000018358

M

. 5

. 2

. 4

. 3

6,k

1. 7
5. 3
1.9

10"2
10"3
10
10
10
10"7
10

-8

8. 0 x 10-
3. 6 x 10
1.8x10
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It suffices to set

"-'SEMI-1)'        »^
A proof of (3.4) was given in [12].
Theorem 3.2.   For n = 0, 1, 2, • • • , and all x

(3.6) I/UOI á M,/x",
where M, = 2(?r2/3 — 1).

Proo/.    From Theorem 3.1

|fc.«C*)| ^ (2 + Ai/22"+1)/V2"+1,       « = 1, 2, • • • ,
and

IA.WI ^ (2 + M/22")A2", « =  1, 2, • • • ,
where Af = 8(tt2/6 - 1). Thus it suffices to let Ml = 2 + M/2. The cases ra = 0, 1
follow by inspection.

4. Convergence of Interpolation Series. Three interpolation problems were
solved in Section 2 by the polynomials hjjx) defined by (2.14), (2.20), and (2.24).
Taking the limit as p —» », we obtain interpolation series. In this section we give
sufficient conditions for uniform convergence of these series and explicit error bounds
for the partial sums. Our results will be expressed in terms of functions of class Q.

Definition 4.1. A function fix) is said to belong to class Q if fix) is entire and if
there exists a positive number q < ir such that
(4.1) /'»(O) = 0{qm),        im^o).

Remarks. Let pif) denote the order of an entire function /(z) of a complex
variable z and let r(/) denote the type of its order. Then it can be shown that class Q
consists of all entire functions /(z) such that either [0 ;£ pif) < 1] or [pif) = 1 and
0 ;£ rif) < t]. As examples of functions in class Q we mention all polynomials
and the transcendental functions e", sin az and cos az with |a| < ir. The following
useful property of class Q will be needed, a proof of which is given in [12]:

Lemma 4.1. Let fix) belong to class Q and let [a, b] be an arbitrary closed finite
interval. Then there exists a positive number q < x such that

(4.2) fim\x) = Oiqm)        (m^oo)

uniformly on a ¿ x g b.
Widder [12], in 1942, proved the following theorem for Lidstone series, which

arises from (2.20).
Theorem 4.2.   Let fix) belong to class Q. Then the series

(4.3) «0)^(1 - x) + KDB.ix) + f(2\0)B3il -x) + fmil)B3{x) + • • •

converges uniformly to fix) on [0, 1]. Moreover, there exists a constant M2 and a
positive number q < ir such that

(4.4) ¡fix) - Ux)\ ^ M2(^j,        Oá^l,    « = 1, 2, • •• ,

where /n(x) denotes the nth partial sum o/(4.3).
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We shall now derive similar results for the interpolation series arising from (2.14)
and (2.24). For that purpose we shall make use of the following two theorems.

Theorem 4.3.   Iffm+1\x) exists and is continuous on [— 1, 1], then for — 1 ^ x ^ 1
1   f1 i   m

Kx) = t / ko dt + -z E [/'"(i) - rk\~ i)]**..(*)
(4.5) 2 •'-, 2 t-°

-\J     f**l\t)ßm + l(3C  -   t   -   \)dt.

Remark.   Theorem 4.3 was derived by Lanczos [9, Eq. (16.38)] and hence will
not be proved here. The following is a similar result.

Theorem 4.4.   Let fi2m+1\x) exist and be continuous on [0, 1]. 77¡e7i

(4.6) fix) = Hmix) + GJx),       0 è x g 1,

where
-i

(4.7) HJx) =   /   f{t)dt + X [/'""(!)#,*(*) - /(,*""(0)Ä„(1 - *)]

and

(4.8) GmO) = ||  f2m+1)it)[ß2m + i{x + t - 1) - &..+i(;c - 7 - 1)] rff.

Proof.    From successive integration by parts we obtain, for 0 î£ x ^ 1,

2Go(jc) =   Í   /'(7)rj3,U + 7 - 1) - ft(* - t - 1)] ¿7
Jo

=   23 \fk\0K-if~%+Ax + 7 - 1) + ßktl{x - t - 1)]¡!.„ + 2G„{x).
k-i

Now using the periodicity property ßXx + 2) = ß„ix) and cancelling terms in the
above sum, we have

(4.9) Goix) = ¿ [/"'""(DfluOc) - /<2t-"(0)ß2i(l - *)] + G„(*).
t-i

Here we have also replaced ß2kix) by B2k{x) and ß2kix — 1) by 52t(x — 1) = /?2i(l — x).
On the other hand we have, for 0 :S x = 1,

2G0(*)=   [   f'iMtix+t-Udt-f   f'{t)ßAx-t-\)dt-\   f'iWAx-t-Ddt
Jo Jo ->z

=   [   f'{t){x+t-[)dt- [   f'{t){x-t-\)dt-¡   f{t){x-t+l)dt
(4.10) Jo J° '

= 2^   tf'{t)dt + fix) - /(1)J

= 2^/W - f  f{t)dtj-
Combining (4.9) and (4.10) gives (4.6) and this completes the proof.
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We come now to the two main theorems of this section.
Theorem 4.5.   If fix) belongs to class Q, then the series

(4.11) \ [   fit) dt + \Í [/<è'(D - fwi-l)]Bk^{x)

converges uniformly to fix) on — 1 = x = 1.    If /„(x) denotes the nth partial sum of
(4.11) then there exists a positive number q < ir such that

(4.12) l/U) - /„00I = mQ",

/or rame constant M independent of n.
Proof.    By Theorem 4.3

-1 ¿ x ¿ 1,    » =  1, 2, 3,

1/00 - /„OOI = i  /"  f{n+l)(t)ßn+1{x - t - i) rf7

By Lemma 4.1 there exist positive numbers K and a < ir such that

\r\t)\ á tV+\        -1 £ t£ 1.    » - 1.2. ••• .
Combining this with the bound on /3,+,(x — f — 1) given by Theorem 3.2, we obtain

1/00 - /„OOI g (À-M,a)(y ,        -1 ¿ x á 1,    « = 1, 2, • • •

This completes the proof.
Theorem 4.6.   If fix) belongs to class Q, then the series

(4.13)      f   fit) dt+fn>{l)B1ix)-fn)iO)B2il-x)+fWH)Biix)+fi3\Q)Biil-x)+ ■■ ■
Jo

converges uniformly to fix) on 0 ^ x = 1. Iffnix) denotes the nth partial sum o/"(4.13),
then there exists a positive constant q < ir such that

A4) I/O0 - /.OOI ̂  M\£) ,        0(4.14) 1/00 - /„OOI = A/^y ,        0 = * =  1,    7i=l, 2,

/"or some constant M independent ofn.
Proof.    By Theorem 4.4

1/00 - /2m+iO)| = 1/00 - //„OOI = |GM(x)|,

where Hmix) and Gm(x) are given by (4.7) and (4.8), respectively. But by Lemma 4.
there exist positive numbers K and q < ir such that

(4.15) |/<B)(0I ="  Kg",        Ogigl,    n = 1.2, ••• .

Combining this with the bounds for /32„+i(x) asserted by Theorem 3.2, we obtain

(4.16) 1/00 - /a-+i(x)| =  KM\^)       ■
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Thus

1/00 - /„♦,(*)! = I/O) - /2m+100 - f2m+1)H)B2m+2ix)\
= 1/00 - /2m+,0)| + |/(2m+1,(i)732™+20)|

2irKM1 ig
g       \tt

where, in deriving the last inequality, we have used (4.15), (4.16) and (3.6). The proof
follows immediately.

Widder [12] proved that a real function can be expanded in an absolutely con-
vergent Lidstone series (4.3) if and only if it is the difference of two minimal com-
pletely convex functions. Widder's proof made strong use of the estimates (3.4) and
the additional bound

(4.17) (-l)2"+1/32„+lOO è M3/t2",        n = 1,2, ••• .

Since bounds of the form (4.17) do not exist for the even functions ß2„ix), it seems
unlikely that a similar characterization can be obtained for expansions of the form
(4.13).
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