
Accelerating Convolutional Networks via Global & Dynamic Filter Pruning

Shaohui Lin1,2, Rongrong Ji1,2∗, Yuchao Li1,2, Yongjian Wu3, Feiyue Huang3, Baochang Zhang4

1Fujian Key Laboratory of Sensing and Computing for Smart City, Xiamen University, China
2School of Information Science and Engineering, Xiamen University, China

3BestImage, Tencent Technology (Shanghai) Co.,Ltd, China
4School of Automation Science and Electrical Engineering, Beihang University, China

Contact author: rrji@xmu.edu.cn

Abstract

Accelerating convolutional neural networks has
recently received ever-increasing research focus.
Among various approaches proposed in the litera-
ture, filter pruning has been regarded as a promising
solution, which is due to its advantage in significant
speedup and memory reduction of both network
model and intermediate feature maps. To this end,
most approaches tend to prune filters in a layer-
wise fixed manner, which is incapable to dynami-
cally recover the previously removed filter, as well
as jointly optimize the pruned network across lay-
ers. In this paper, we propose a novel global & dy-
namic pruning (GDP) scheme to prune redundant
filters for CNN acceleration. In particular, GDP
first globally prunes the unsalient filters across all
layers by proposing a global discriminative func-
tion based on prior knowledge of each filter. Sec-
ond, it dynamically updates the filter saliency all
over the pruned sparse network, and then recov-
ers the mistakenly pruned filter, followed by a re-
training phase to improve the model accuracy. Spe-
cially, we effectively solve the corresponding non-
convex optimization problem of the proposed GDP
via stochastic gradient descent with greedy alter-
native updating. Extensive experiments show that
the proposed approach achieves superior perfor-
mance to accelerate several cutting-edge CNNs on
the ILSVRC 2012 benchmark, comparing to the
state-of-the-art filter pruning methods.

1 Introduction

Convolutional neural networks (CNNs) have achieved re-
markable success in various applications such as image clas-
sification [He et al., 2016; Krizhevsky et al., 2012; Simonyan
and Zisserman, 2014], object detection [Girshick et al., 2014]

and semantic segmentation [Long et al., 2015]. However, the
promising performance is accompanied by significant com-
putation cost, which raises huge difficulty to deploy these

∗Corresponding author

CNNs in real-time applications without the support of highly-
efficient Graphic Processing Units (GPUs). As a result, the
acceleration of convolutional networks has become emerging.

Recent works in convolutional neural network acceleration
can be categorized into three groups, i.e., low-rank decompo-
sition, parameter quantization, and network pruning. Among
them, network pruning has received ever-increasing research
focus, which merits in limited memory footprints due to the
small amount of filter parameters and intermediate activation,
which is highly required for memory-light online inference.
Methods in network pruning can be further categorized into
either non-structured or structured pruning. Non-structured
pruning [LeCun et al., 1989; Hassibi and Stork, 1993; Han
et al., 2015a; 2015b] targets at directly pruning parameters
independently in each layer, which will cause irregular mem-
ory access that adversely impacts the efficiency of online in-
ference. Under such a circumstance, specialized hardware
[Han et al., 2016] or software [Liu et al., 2015; Park et al.,
2017] designs are required to further speedup the pruned
unstructured CNNs. Instead, structured pruning [Anwar et
al., 2015; Lebedev and Lempitsky, 2016; Wen et al., 2016;
Li et al., 2016; Luo et al., 2017; Molchanov et al., 2017;
Hu et al., 2016] aims at directly removing filters as a whole,
which is far more efficient and independent to specialized
hardware/software platforms. For instance, Anwar et al. [An-
war et al., 2015] introduced the structured sparsity to ei-
ther filter-wise or channel-wise convolutional filter selection,
based on which pruned filters with regularity by using parti-
cle filtering. Luo et al. [Luo et al., 2017] implicitly associ-
ated the convolutional filter in the current layer with the input
channel in the next layer, based on which pruned filters in the
current layer via input channel selection of the next layer.

However, the existing structured pruning schemes prune
the convolutional neural network in a layer-by-layer fixed
manner, which is less adaptive, less efficient, and less effec-
tive. First, in local pruning, iterative layer-wise pruning and
local fine-tuning are required, which is computational inten-
sive. Second, mistaken pruning of the salient filter is irre-
trievable, which is inadaptive and the pruned network cannot
achieve an optimal performance.

In this paper, we present a novel global & dynamic prun-
ing (GDP) scheme to prune redundant filters to address above

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2425



…

…

In
p

u
t

C
o

n
v

La
y
e

rs
F
C

 l
a

y
e

rs Output

… Pre-trained model 

with full masks

… ⊙ …

…

Global 

Pruning
…

Intermediate 

parameters

Dynamic 

updating

… ⊙ …

…

Update Parameters W*

and reselect m

W* m

… ⊙ …

W* m W* m

…Filters W*: Global mask m:⊙: Khatri-Rao product
1 0

Figure 1: An illustration of GDP. Each rectangle with color (e.g.,
red rectangle) is a filter in the filter set W∗ , while a global mask
m with binary values determines the saliency of filters (i.e., � indi-
cates the corresponding filter is salient, and � is unsalient). First, a
pre-trained model and a full global mask are employed to initialize
the network. Then, the redundant filters are globally pruned across
all layers by masking out the corresponding value as 0. Finally, it-
eratively dynamic updating of filters and global mask is done to im-
prove the accuracy of the pruned network. (Best viewed in color.)

two issues, which can largely accelerate the pruned networks
while reducing the networks accuracy loss. Unlike the pre-
vious schemes of layer-by-layer fixed filter pruning, our key
innovation lies in evaluating the importance/saliency of indi-
vidual filter globally across all network layers, upon which
dynamically and iteratively prune and tune the network, with
the mechanism to recall filters that are mistakenly pruned in
the previous iterations. Figure 1 demonstrates the flowchart
of the proposed framework. In particular, we first initialize
a pre-trained convolutional network and globally mask all fil-
ters to be equal to 1 (i.e., an external switch which determines
whether the filter is pruned). Then, we design a global dis-
criminative function to determine the saliency scores of indi-
vidual filters. Such scores guide us to globally prune the un-
salient filters across all layers, which equivalently masks out
unsalient filters as 0. Finally, we iteratively tune the sparse
network and dynamically update the filter saliency in a top-
down manner. By such operations, filters that are previously
masked out is possible to recalled, which significantly im-
proves the accuracy of the pruned network. In terms of op-
timization, GDP can be described as a non-convex optimiza-
tion problem, which is then effectively solved via the stochas-
tic gradient descent with greedy alternative updating.

The proposed GDP is evaluated on the ImageNet 2012
dataset [Russakovsky et al., 2015] and implemented on the
widely-used AlexNet [Krizhevsky et al., 2012], VGG-16 [Si-
monyan and Zisserman, 2014] and ResNet-50 [He et al.,
2016]. Comparing to the state-of-the-art filter pruning meth-
ods [Wen et al., 2016; Li et al., 2016; Luo et al., 2017;
Molchanov et al., 2017; Hu et al., 2016], the proposed GDP
scheme achieves the superior performance by a factor of
2.12× GPU speedup with 1.15% Top-5 accuracy loss on
AlexNet, 2.17× CPU speedup with 1.45% Top-5 accuracy
loss on VGG-16, and 1.93× CPU speedup with 2.16% Top-5
accuracy loss on ResNet-50.

2 Related Work

LeCun et al. [LeCun et al., 1989] and Hassibi et al. [Hassibi
and Stork, 1993] proposed a saliency measurement to remove

unimportant weights, which is determined by the second-
order derivative matrix of the loss function with respect to the
parameters. Recently, Han et al. [Han et al., 2015a; 2015b]

proposed to prune parameters by using iterative thresholding
to remove unsalient weights with small absolute values. Guo
et al. [Guo et al., 2016] pruned weights by using connection
splicing to avoid incorrect pruning. However, such scheme
can only be worked in a local manner layer-by-layer. Differ-
ent from connection splicing, the proposed dynamic updating
is conducted in a global manner, which can restore important
filters that were mistakenly removed across all layers.

In line with our work, a few methods have been pro-
posed for filter-level/channel pruning (i.e., structured prun-
ing), which can reduce both network size and inference speed.
Li et al. [Li et al., 2016] measured the importance of each
filter by calculating the ℓ1-norm to prune unsalient filters to-
gether with their corresponding feature maps. Hu et al. [Hu et
al., 2016] computed the Average Percentage of Zeros (APoZ)
of each filter, i.e., the percentage of zero values in the output
feature map associated with the corresponding filter, which
serves as its score to guide pruning. Lebedev et al. [Lebe-
dev and Lempitsky, 2016] and Wen et al. [Wen et al., 2016]

utilized group sparsity regularization to prune convolutional
filters in a group-wise fashion during the training, which is
however less efficient since only stochastic gradient descend
is used. Recently, a new criterion based on Taylor expan-
sion has been introduced in [Molchanov et al., 2017] to glob-
ally prune one filter and then fine-tune the pruned network.
However, it was prohibitively costly when applying to deep
networks, as time-consuming fine-tuning has to be done after
pruning each filter. Our method is different to all above meth-
ods, in terms of globally removing unsalient filters across
all layers, as well as dynamically restoring salient filters that
were previously mislabeled removed.

Orthogonal methods to our work include low-rank de-
composition [Denton et al., 2014; Jaderberg et al., 2014;
Lin et al., 2016; 2017; Lebedev et al., 2014; Kim et al., 2015],
parameter quantization [Gong et al., 2014; Wu et al., 2016;
Courbariaux et al., 2015; Courbariaux and Bengio, 2016;
Rastegari et al., 2016], which have also widely used to ac-
celerate convolutional networks. Low-rank decomposition
[Denton et al., 2014; Jaderberg et al., 2014; Lin et al., 2017;
Lebedev et al., 2014; Kim et al., 2015] typically decomposed
convolutional filters into a sequence of tensor based convo-
lutions with fewer parameters. For parameter quantization,
Gong et al. [Gong et al., 2014] and Wu et al. [Wu et al.,
2016] employed product quantization over parameters to re-
duce the redundancy in the parameter space. Recently, di-
rectly predicting the model with binary weights has been pro-
posed in [Courbariaux et al., 2015; Courbariaux and Bengio,
2016; Rastegari et al., 2016]. It is worth to note that, our
scheme can be integrated with the above orthogonal methods
to further accelerate the pruned network.

3 Globally Dynamic Pruning

3.1 Notations

CNN can be viewed as a feed-forward multi-layer architec-
ture that maps the input image to a certain output vector. In

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2426



CNN, the convolutional layers are most time-consuming. Let
us denote a set of image feature maps in the l-th layer by
Zl ∈ R

Hl×Wl×Cl with size Hl × Wl and individual maps
(or channels) Cl. The feature maps can either be the in-
put of the network Z0, or the output feature maps Zl with
l ∈ [1, 2, · · · , L]. In addition, we denote individual feature

map by Z
(k)
l ∈ R

Hl×Wl with k ∈ [1, 2, · · · , Cl]. The in-
dividual output feature map of the l-th convolutional layer

Z
(k)
l is obtained by applying the convolutional operator (∗)

to a set of input feature maps with filters parameterized by

W
(k)
l ∈ R

d×d×Cl−11, i.e.,

Z
(k)
l = f(Zl−1 ∗W

(k)
l ), (1)

where f(·) is a non-linear activation function, e.g., rectifier
linear unit (ReLU).

In many deep learning frameworks like Caffe [Jia et al.,
2014] and Tensorflow [Abadi et al., 2016], the tensor-based
convolution operator is reformulated as a matrix-by-matrix
multiplication by lowering the input and reshaping the filters,
such as:

Z
∗

l = f(Z∗

l−1 ×W
∗

l ), (2)

where each row of the matrix Z
∗

l−1 ∈ R
HlWl×d2Cl−1 is

related to the spatial position of the output tensor trans-
formed from the input tensor Zl−1, and the matrix W

∗

l ∈

R
d2Cl−1×Cl is reshaped from filter Wl

2.

3.2 The Proposed Pruning Scheme

Our goal is to globally prune redundant filters. To that effect,
a large network can be directly converted into a compact one
without repeatedly evaluating each filter saliency and fine-
tuning the pruned network layer-by-layer. We introduce a
global mask to temporally mask out unsalient filters in each
iteration during training. Therefore, Eq. 2 can be rewritten as:

Z
∗

l = f
(

Z
∗

l−1 × (W∗

l ⊙ml)
)

, s.t. l = 1, 2, · · · , L, (3)

where ml =
{

0, 1
}Cl

is a mask with binary values. mk
l = 1

if the k-th filter is salient in the l-th layer, and 0 otherwise. ⊙
denotes the Khatri-Rao product operator.

As we argued, pruning the filters in an irretrievable/fixed
way is inflexible and ineffective in practice, which will cause
severe performance loss. Note that the filter saliency may
change dramatically after pruning a certain layer, as there
exists complex interconnections among filters [Guo et al.,
2016]. Therefore, dynamic pruning, i.e., enabling the roll-
back of masked filters in a global perspective, is highly de-
sired to improve the discriminability of the pruned network.

To better describe the objective function for the pro-
posed GDP, we denote filters of the entire network as

W∗ =
{

W
1∗
1 ,W2∗

1 , · · · ,WCL∗

L

}

and a global mask as

m =
{

0, 1
}

∑
L

l=1
Cl

. We further give a set of train-

ing examples D =
{

X =
{

X1,X2, · · · ,XN

}

,Y =

1For simplicity, we discuss the problem without the bias term.
2These efficient implementations can take advantage of highly

optimized linear algebra packages, such as Intel MKL and BLAS.

{

Y1,Y2, · · · ,YN

}

}

, where Xi and Yi represent an input

and a target output, respectively. We propose to solve the fol-
lowing optimization problem:

min L
(

Y, g
(

X ;W∗,m
)

)

s.t. m = h(W∗)
∥

∥m
∥

∥

0
≤ β

∑L

l=1 Cl,

(4)

where L(·) is a loss function for the pruned network, e.g.,

cross-entropy loss. g
(

X ;W∗,m
)

takes the input X , the fil-
ters W∗ and the global mask m to map to an s-dimensional
output (s is the number of classes). h(·) is a global discrim-
inative function to determine the saliency values of filters,
which depends on the prior knowledge of W∗. The output
entry of function h(·) is binary, i.e., to be 1 if the correspond-
ing filter is salient, and 0 otherwise.

Eq. 4 is the core function in our GDP framework, which is
non-convex and whose solver will be introduced in Sec. 3.3.
β ∈ (0, 1] is a threshold to determine the sparsity of the
pruned network. The problem Eq. 4 is NP-hard, because of
the ‖ · ‖0 operator. We simplify this NP-hard problem by
bounding m on prior knowledge of W∗. Then, it is solved
by greedy and alternatively updating W∗ and m by using the
stochastic gradient descent, which will be introduced in detail
in Sec. 3.3.

3.3 The Solver

We first investigate the constraint in Eq. 4, which can be re-

laxed by greedily selecting an amount of β
∑L

l=1 Cl most
important filters, which determines the global discriminative
function h based on the prior knowledge of W∗. Then, we
only need to solve the objective function in Eq. 4 through the
stochastic gradient descent. Since every filter has a mask, we
update W∗ as below:

W
∗

l = W
∗

l − η
∂L

(

Y, g(X ;W∗,m)
)

∂(W∗

l ⊙ml)
, l = 1, · · · , L, (5)

where W∗

l ∈ R
d2Cl−1×Cl has Cl filters, η is the learning rate.

The global mask m and the filters W∗ are updated iteratively
to dynamically adapt to the pruned network. Algorithm 1
presents the detailed optimization algorithm.

In Eq. 5, we employ back-propagation to calculate the par-
tial L with respect to W

∗

l ⊙ml, instead of filters W∗

l . In the
framework of greedy alternative updating, m depends on the
knowledge of W∗, and is implemented by the global discrim-
inative function h, which can be constructed by sorting the
importance of each filter and signing all entries with 0 or 1.
After that, all filters W∗ are then masked by the global mask
m to be updated to adapt to a newly pruned network.

Comparing to the existing solvers in layer-wised pruning,
the above solver has two following advantages:

1. The saliency evaluation of filters are global (i.e., across
all layers), and the corresponding pruning is conducted
only one time, rather than layer-by-layer.

2. We enable a dynamic updating of filters that are incor-
rectly masked out, which constitutes a closed circular
procedure to improve the accuracy and flexibility of the
pruned network.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2427



Algorithm 1 The proposed global dynamic pruning scheme

Input: Training data D = {X ,Y}, reference model W =

{W1
1, · · · ,W

CL

L }, sparsity threshold β, learning rate η, thresh-
old of updating mask e, maximum iterations T .

Output: The updated parameters and their binary masks W∗ =

{W1∗
l , · · · ,WCL∗

L },m = {0, 1}
∑

L

l=1
Cl .

1: Initialize W∗ by W , m = 1, and t = 0.
2: repeat
3: Forward Pass:

Choose a minibatch from D, conduct forward propagation
and loss computation with W∗,m via Eq. 3.

4: Backward Pass:

Compute the gradient of filter ∇W
∗
l by

∂L

(

Y,g(X ;W∗,m)
)

∂(W∗

l
⊙ml)

.

5: Update:
if Mod((t + 1), e) == 0 then update m by function h(·)
based on the current W∗;
Update W∗ via Eq. 5 and the current gradient ∇W∗

l .
6: t := t+ 1.
7: until convergence or t reach maximum iterations T .

To accelerate the convergence of Algorithm 1, we set a low
frequency for the global mask updating, which is controlled
by the threshold e. And the global mask is not updated when
the network is in the warm-up phase (i.e., right after finishing
the mask updating). To explain, with a large loss of the net-
work in the unstable warm-up phase, frequently updating the
global mask cannot provide useful information to guide the
network pruning. Therefore, we set e to be a large value in
the warm-up phase, which aims to slowing down the updat-
ing frequency of the global mask. After the warm-up phase,
we decrease the value e to accelerate the updating of both the
global mask and the filter weights. For different networks,
the detailed setups of the threshold e are discussed in our ex-
periments subsequently.

3.4 The Global Mask

To obtain the global mask m, a global discriminative function
is further required to evaluate the importance of each filter.
We introduce a criterion to measure the contribution of filters
based on the Taylor expansion, termed TE.

Taylor expansion (TE). We propose a criterion based on
Taylor expansion, which identifies and removes redundant
filters whose removal has a limited impact to the loss func-

tion. Let Wk∗
l be the k-th filter from the l-th layer, as pre-

sented in Sec. 3.2. For notation convenience, we consider the
global output function, which has a global mask with all en-
tries equal to 1, i.e., g(X ;W∗,m = 1) = g(X ;W∗). To
consider all filters with a probability to be selected as salient
filters, all entries in the global mask are first set to be 1, we
have:

∣

∣

∣
∆L

(

Y, g(X ;Wk∗
l )

)

∣

∣

∣
=
∣

∣

∣
L
(

Y, g(X ;Wk∗
l = 0)

)

− L
(

Y, g(X ;W∗)
)

∣

∣

∣
,

(6)

where L
(

Y, g(X ;Wk∗
l = 0)

)

evaluates the loss in the
case that the k-th filter from the l-th layer is pruned, while
L
(

Y, g(X ;W∗)
)

evaluates the loss when keeping all filters.

To facilitate discussion, the notation in Eq. 6 is simplified as:
∣

∣

∣
∆L

(

W
k∗
l

)

∣

∣

∣
=

∣

∣

∣
L
(

D,Wk∗
l = 0

)

− L
(

D,W∗
)

∣

∣

∣
. (7)

Therefore, we can estimate the change of the loss
∆L

(

W
k∗
l

)

by approximating L
(

D,W∗
)

with the first-order

Taylor expansion at Wk∗
l = 0:

∣

∣

∣
∆L(Wk∗

l )
∣

∣

∣
≈

∣

∣

∣

∂L(D,W∗)

∂Wk∗
l

W
k∗
l

∣

∣

∣
, (8)

where the value
∂L(D,W∗)

∂Wk∗

l

is obtained via back-propagation.

Since the filter Wk∗
l is a d2Cl−1-dimensional vector, we cal-

culate the change of the loss
∣

∣∆L(Wk∗
l )

∣

∣ by accumulating
the product of the loss function’s gradient and the own value
of filter as below3:

∣

∣

∣
∆L(Wk∗

l )
∣

∣

∣
≈

∣

∣

∣

R
∑

r=1

∂L(D,W∗)

∂Wk∗
l,r

W
k∗
l,r

∣

∣

∣
, (9)

where R is the dimension of a filter. Therefore, we construct
a function to measure the saliency score of a filter, i.e., fT :

R
d2Cl−1 → R

+ with

fT (W
k∗
l ) =

∣

∣

∣

d2Cl−1
∑

r=1

∂L(D,W∗)

∂Wk∗
l,r

W
k∗
l,r

∣

∣

∣
. (10)

The global saliency scores of all filters IndT is constructed,
which are sorted by a descending order, i.e., IndT =

sort
(

{

fT (W
1∗
1 ), · · · , fT (W

CL∗

L )
}

)

. Therefore, each ele-

ment mi, i = 1, 2, · · · ,
∑L

l=1 Cl in the global mask can be

constructed by taking the corresponding top-β
∑L

l=1 Cl in-
dex in the set:

mi = hi(W
∗) =















1, i ∈ IndT [1 : β

L
∑

l=1

Cl],

0, otherwise.

(11)

4 Experiments

4.1 Experimental Settings

We evaluate the proposed GDP approach on AlexNet
[Krizhevsky et al., 2012], VGG-16 [Simonyan and Zisser-
man, 2014] and ResNet-50 [He et al., 2016] in ImageNet
2012 dataset [Russakovsky et al., 2015], which contains
about 1.2M training images and 50K validation images of
1,000 classes. Training images in the ImageNet dataset are
rescaled to the size of 256×256, with a 224×224 (227×227
for AlexNet) crop randomly sampled from each image and its
horizontal flip. The accuracy is measured on the validation set
using single-view testing (central patch only).

Implementation Details. We implement our global dy-
namic pruning in Tensorflow [Abadi et al., 2016]. To get
the baseline accuracy of each network, we train AlexNet,

3In practice, the entire training data is divided into M minibatch,
we average the

∣

∣∆L(Wk∗
l )

∣

∣ over M .

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2428



Model Layer FLOPs
FLOPs% FLOPs%
GDP-D GDP

VGG-16

Conv1 1 89.91M 56.25% 56.25%
Conv1 2 1.85B 33.44% 42.24%
Conv2 1 926.45M 32.97% 41.63%
Conv2 2 1.85B 54.21% 54.21%
Conv3 1 925.65M 51.12% 51.50%
Conv3 2 1.85B 51.55% 52.75%
Conv3 3 1.85B 98.44% 98.05%
Conv4 1 925.25M 58.79% 49.02%
Conv4 2 1.85B 35.94% 12.60%
Conv4 3 1.85B 38.69% 12.56%
Conv5 1 462.52M 46.73% 42.52%
Conv5 2 462.52M 55.23% 79.35%
Conv5 3 462.52M 50.56% 87.52%

Total 15.36B 51.16% 48.03%

Table 1: FLOPs comparison of GDP and GDP-D, when β is set to
be 0.7. FLOPs% is the percentage of the remaining FLOPs.

Method Hy-P FLOPs
Speedup (ms) Top-1 Top-5

CPU GPU Acc. Acc.

AlexNet - 729.7M 2,990 36 56.60% 80.12%

SSL - 559.3M 2,493 30 55.28% 78.88%

FMP - 434.8M 1,839 27 54.73% 78.53%

GDP

0.7 455.2M 2,252 28 56.46% 80.01%

0.6 348.2M 1,760 22 55.83% 79.64%

0.5 263.1M 1,629 17 54.82% 78.97%

Table 2: Comparing different pruning methods for accelerating
AlexNet. Hy-P denotes the setting of hyper-parameter and batch
size is 32 (the same in the following tables).

VGG-16 and ResNet-50 from scratch and follow the same
pre-processing and hyper-parameter setting as Krizhevsky et
al. [Krizhevsky et al., 2012], Simonyan et al [Simonyan and
Zisserman, 2014] and He et al. [He et al., 2016], respectively.
We achieve the results of each reference model as shown in
Table 2, Table 3 and Table 4. We solve the optimization Eq. 4
by running on NVIDIA GTX 1080Ti GPU with 128GB of
RAM. All models are trained for a total of 30 epochs with
batch sizes of 128, 32 and 32 for AlexNet, VGG-16 and
ResNet-50, respectively. The learning rate is set to an initial
value of 0.001 and then scaled by 0.1 throughout 10 epochs.
The weight decay is set to be 0.0005 and the momentum is
set to be 0.9. To re-train the pruned network, we use an initial
learning rate of 0.0001 for a total of 20 epochs, with a con-
stant dropping factor of 10 throughout 10 epochs. In terms of
threshold e, we use different values for different CNNs. More
specifically, e = 3 for the first 10 epochs, e = 2 for the sec-
ond 10 epochs and e = 1 for the remaining epochs is used for
AlexNet. When training VGG-16 and ResNet-50, we use the
same value of e = 2 for the first 20 epochs and e = 1 for the
remaining 10 epochs. In terms of hyper-parameter β, we vary
β in the set of {0.5, 0.6, 0.7} with 3 values to select the best
trade-off between speedup rate and classification accuracy.

Evaluation Protocols. The Top-1 and Top-5 classification
accuracy on the validation set are employed as the evalua-
tion protocol. We further measure the speedup ratio under the
batch size of 32 to select the trade-off between speedup ra-
tio and classification accuracy in a single-thread Intel Xeon
E5-2620 CPU and NVIDIA GTX TITAN X GPU.

1 1.2 1.4 1.6 1.8 2 2.2
46
47
48
49
50
51
52
53
54
55
56
57

GPU speedup ratio

To
p−

1 
ac

cu
ra

cy
 (%

)

 

 

Ori
Scratch
L1
APoZ
SSL
FMP
GDP−D
GDP

(a) AlexNet acceleration

1 1.2 1.4 1.6 1.8 2 2.2
61
62
63
64
65
66
67
68
69
70
71

GPU speedup ratio

To
p−

1 
ac

cu
ra

cy
 (%

)

 

 

Ori
Scratch
L1
APoZ
FMP
CP
GDP−D
GDP

(b) VGG-16 acceleration

Figure 2: Comparison of different filter selection schemes for ac-
celerating AlexNet and VGG-16. “Scratch” means that the network
is trained from the scratch, and “Ori” denotes the original CNNs.
GDP-D refer to global pruning filter without dynamic updating.

Method Hy-P FLOPs
Speedup (ms) Top-1 Top-5

CPU GPU Acc. Acc.

VGG-16 - 15.5B 10,824 322 70.32% 89.42%

FMP - 4.2B 5,237 167 65.20% 84.86%

CP - 4.9B 5,618 159 67.34% 87.92%

GDP

0.7 7.5B 7,122 205 69.88% 89.16%

0.6 6.4B 6,680 188 68.80% 88.77%

0.5 3.8B 4,979 139 67.51% 87.95%

Table 3: The results of accelerating VGG-16.

4.2 Quantitative Evaluation

We compare the proposed GDP method with the state-of-the-
art filter pruning methods, including structured sparsity learn-
ing (SSL) [Wen et al., 2016], ℓ1-norm pruning (L1) [Li et al.,
2016], channel-based pruning (CP) [Luo et al., 2017], fea-
ture map based pruning (FMP) [Molchanov et al., 2017], and
average percentage of zeros (APoZ) [Hu et al., 2016].

AlexNet and VGG-16 on ImageNet. Both AlexNet and
VGG-16 contain several convolutional layers and 3 fully-
connected layers. We first compare our proposed GDP to
five layer-wise filter pruning methods on GPU speedup and
Top-1 accuracy. As shown in Figure 2, the results reveal three
key observations: (1) Without dynamic updating (GDP-D),
layer-wise pruning (e.g., L1 and APoZ) performs better than
global pruning. To explain, GDP-D prunes many filters with
potential inter-relation at once, which leads to a significant
accuracy loss even with global fine-tuning. Instead, local
fine-tuning is repeatedly utilized in L1, APoZ, CP and FMP
to reduce the accuracy loss, after each layer is pruned. How-
ever, repeating local fine-tuning is pretty time-consuming and
seriously affects the pruning efficiency. For example, prun-
ing each layer of VGG-16 in L1, APoZ and CP requires lo-
cal fine-tuning with average 10 epochs, which requires 130
epochs in total to finish pruning the entire network, which is
6.5 times and 2.5 times more epochs than GDP-D and GDP,
respectively. (2) We randomly initialize the model with the
same number of filters per layer to GDP and train it from
scratch, which achieves not as good accuracy as L1, APoZ
and GDP. This result explicitly verifies that the initialization
of deep model is pretty critical for non-convex optimization.
(3) Dynamic updating is very effective to improve the net-
work’s discriminability in GDP. Compared to GDP-D, GDP
employs the dynamic updating to iteratively tune the filters
in a retrievable way, which can restore the salient filters with
misjudgement and correspondingly improve the classification

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2429



0 2 4 6 8 10 12
x 105

1

2

3

4

5

6

7

Iteration number

Tr
ai

ni
ng

 d
at

a 
lo

ss

 

 
GDP−0.7
GDP−0.6
GDP−0.5

0 5 10 15 20 25 30
20

30

40

50

60

70

Epoch

To
p−

1 
ac

cu
ra

cy
 (%

)

 

 

GDP−0.7
GDP−0.6
GDP−0.5

(a) The training loss and testing Top-1 accuracy using GDP to prune VGG-16 at different β

0 1 2 3 4 5 6 7 8
x 105

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Iteration number

Tr
ai

ni
ng

 d
at

a 
lo

ss

 

 
Fine−tuning(GDP−0.7)
Fine−tuning(GDP−0.6)
Fine−tuning(GDP−0.5)

0 2 4 6 8 10 12 14 16 18 20
64

65

66

67

68

69

70

Epoch

To
p−

1 
ac

cu
ra

cy
 (%

)

 

 

Fine−tuning(GDP−0.7)
Fine−tuning(GDP−0.6)
Fine−tuning(GDP−0.5)

(b) The training loss and testing Top-1 accuracy for fine-tuning the pruned network by GDP at different β

Figure 3: Comparison of different β for pruning VGG-16 via GDP scheme.

Method Hy-P FLOPs
Speedup (ms) Top-1 Top-5

CPU GPU Acc. Acc.

ResNet-50 - 3.86B 9,822 345 75.13% 92.30%

CP
- 2.44B 5,999 278 72.04% 90.67%

- 1.71B 5,253 246 71.01% 90.02%

GDP

0.7 2.24B 6,616 279 72.61% 91.05%

0.6 1.88B 5,821 261 71.89% 90.71%

0.5 1.57B 5,012 242 70.93% 90.14%

Table 4: The results of accelerating ResNet-50.

accuracy of the pruned network. For example, GDP performs
3.9% higher in Top-1 accuracy than GDP-D when pruning
VGG-16 with about 2.32× speedup. Moreover, GDP tends to
prune more filters in the layers with high computation com-
plexity, which leads to the reduction of FLOPs and the in-
crease of CNN speedup. For example, as shown in Table 1,
GDP prunes more filters on the middle layers of VGG-16
with high computation complexity (e.g., Conv4 1, Conv4 2
and Conv4 3), while GDP-D tends to prune more filters on
the last layers (e.g., Conv5 2 and Conv5 3). By equipping
with the dynamic updating, GDP achieves the best perfor-
mance to prune both AlexNet and VGG-16 comparing to all
filter pruning schemes. For AlexNet, GDP achieves 1.1%
higher in Top-1 accuracy than FMP at the about 1.63× GPU
speedup. For VGG-16, the speedup rate is increased by a
factor of 2.32× with 67.51% Top-1 accuracy in GDP, com-
pared to 2.03× with 67.37% Top-1 accuracy in CP. Specifi-
cally, the detailed changed process of training loss and testing
Top-1 accuracy using GDP scheme to prune VGG-16 is pre-
sented in Figure 3. The figure shows that GDP converges to a
high accuracy after 30 epochs, and we can further improve the
classification of the pruned network by a simple fine-tuning.

Subsequently, GDP is also compared to several state-of-
the-art filter pruning methods about FLOPs reduction, CPU
and GPU speedup, which is shown in Table 2 and Table 3. For

better comparison, SSL [Wen et al., 2016] employs the filter-
wise sparsity regularization and achieves a limited computa-
tion reduction, i.e., about 170M FLOPs reduction with 1.2×
CPU speedup, but obtains 1.32% loss in Top-1 accuracy. As
for FMP [Molchanov et al., 2017], their motivation is simi-
lar to our TE mask, but with totally different filter selection
and training designs. Our GDP prunes the filters at once in a
retrievable way, while FMP prunes one filter permanently at
a time. As shown in Table 2, GDP achieves higher Top-1/5
accuracy with more FLOPs reduction than FMP. As for CP
[Luo et al., 2017], it conducts a greedy local channel selec-
tion to prune the channel with the smallest channel approx-
imated error. As shown in Table 3, CP yields a final pruned
network with 3.16× FLOPs reduction, 1.9× CPU speedup
and a 1.5% loss in Top-5 accuracy. Compared to CP, GDP is
faster to prune the redundant filters in a global manner with-
out intermediate feature responses, and achieve better perfor-
mance with about 4× FLOPs reduction, 2.17× CPU speedup
and a 1.47% Top-5 accuracy loss.

ResNet-50 on ImageNet. ResNet-50 is a more compact
structure with less redundancy than AlexNet and VGG-16.
Since significantly smaller FLOPs are located in the last layer
and the projection shortcut layer, we only prune the first two
layers of each residual block and leave the last layer and the
projection shortcut layer unchanged, as to match the dimen-
sion of output. In fact, FLOPs in the last convolutional layer
can be significantly reduced, since large number of channels
as the input have been reduced, which is caused by pruning
the number of filter in the second convolutional layer. As
shown in Table 4, GDP achieves better performance in terms
of pruning ResNet-50. With the increase number of filter
pruning, (i.e., the value of β is from 0.7 to 0.5), FLOPs can be
significantly reduced via GDP, but with slight increase in Top-
5 accuracy loss. Compared to CP, GDP achieves the higher
Top-5 accuracy (90.14% in GDP vs. 90.02% in CP) with

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2430



(a) Epoch 0

(b) Epoch 1

(c) Epoch 30

Figure 4: Dynamically update filters, masks and output feature maps
on the first layer of VGG-16. Left: filters and masks, Right: output
feature maps. In the left column, each rectangle contains filter and
mask, in which the black one indicates the mask is unchanged, and
the red one presents the filter and mask are updated. In addition, the
mask is a smaller rectangle, in which � indicates the corresponding
filter is salient, and � is unsalient. In the right column, the feature
maps changed correspondingly are shown in the red boxes.

a higher CPU and GPU speedup (5,012ms CPU and 242ms
GPU online inference in GDP vs. 5,253ms CPU and 246ms
GPU online inference in CP). To explain, dynamic updating
in GDP significantly improves the discriminability and gen-
eralization of the pruned network.

4.3 Visualization of Dynamic Updating

Quantitatively, we have testified the effectiveness of dynamic
updating in our global pruning scheme. To show the pro-
cess of dynamic updating, we visualize filters, masks and out-
put feature maps of the first convolutional layer for VGG-16
by using the proposed GDP method and setting β to be 0.5,
as presented in Figure 4. Before pruning the filters (i.e., the
masks all equal to 1), low-level features (e.g., edge, color and
corner detectors of various directions) can be found among
the listed filters and output feature maps, as shown in Fig-
ure 4(a). After the first-round mask updating, the network is
pruned temporarily by selecting the salient filters based on
TE, and then is updated to adapt to the pruned network, as

shown in Figure 4(b). After 30 epochs, the network is con-
vergent to adaptively obtain the salient filters and their masks
by dynamic updating. In Figure 4(c), several number of fil-
ters, masks and output feature maps are different with the
ones after the first updating, which indicates that the saliency
of filters were mistakenly judged in the beginning, but were
successfully updated during the dynamic updating.

5 Conclusion

This work presents a global dynamic pruning (GDP) scheme
to prune redundant filters for CNN acceleration. We employ
a global discriminative function based on prior knowledge of
each filter to globally prune the unsalient filters across all lay-
ers. To decrease accuracy loss caused by incorrect globally
pruning, we dynamically update the filter saliency all over
the pruned sparse network. Specially, we further handle the
corresponding non-convex optimization problem of the pro-
posed GDP, which is effectively solved via stochastic gradient
descent with greedy alternative updating. In experiments, the
proposed GDP achieves superior performance to accelerate
various cutting-edge CNNs on ILSVRC-12, comparing to the
state-of-the-art filter pruning methods.

Acknowledgments

This work is supported by the National Key R&D Pro-
gram (No.2017YFC0113000, and No.2016YFB1001503),
the Natural Science Foundation of China (No.U1705262,
No.61772443, No.61402388 and No.61572410), the Post
Doctoral Innovative Talent Support Program under Grant
BX201600094, the China Post-Doctoral Science Foundation
under Grant 2017M612134, Scientific Research Project of
National Language Committee of China (Grant No. YB135-
49), and Natural Science Foundation of Fujian Province,
China (No. 2017J01125 and No. 2018J01106).

References

[Abadi et al., 2016] Martı́n Abadi, Ashish Agarwal, Paul
Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, et al. Tensorflow: Large-scale machine learn-
ing on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

[Anwar et al., 2015] Sajid Anwar, Kyuyeon Hwang, and
Wonyong Sung. Structured pruning of deep convolutional
neural networks. arXiv preprint arXiv:1512.08571, 2015.

[Courbariaux and Bengio, 2016] M. Courbariaux and
Y. Bengio. Binarynet: Training deep neural networks
with weights and activations constrained to+ 1 or-1. arXiv
preprint arXiv:1602.02830, 2016.

[Courbariaux et al., 2015] M. Courbariaux, Y. Bengio, and
J. David. Binaryconnect: Training deep neural networks
with binary weights during propagations. In NIPS, 2015.

[Denton et al., 2014] Emily L Denton, Wojciech Zaremba,
Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting
linear structure within convolutional networks for efficient
evaluation. In NIPS, pages 1269–1277, 2014.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2431



[Girshick et al., 2014] Ross Girshick, Jeff Donahue, Trevor
Darrell, and Jitendra Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In
CVPR, pages 580–587, 2014.

[Gong et al., 2014] Yunchao Gong, Liu Liu, Ming Yang,
and Lubomir Bourdev. Compressing deep convolu-
tional networks using vector quantization. arXiv preprint
arXiv:1412.6115, 2014.

[Guo et al., 2016] Yiwen Guo, Anbang Yao, and Yurong
Chen. Dynamic network surgery for efficient dnns. In
NIPS, pages 1379–1387, 2016.

[Han et al., 2015a] Song Han, Huizi Mao, and William J
Dally. Deep compression: Compressing deep neural net-
work with pruning, trained quantization and huffman cod-
ing. CoRR, abs/1510.00149, 2, 2015.

[Han et al., 2015b] Song Han, Jeff Pool, John Tran, and
William Dally. Learning both weights and connections for
efficient neural network. In NIPS, pages 1135–1143, 2015.

[Han et al., 2016] Song Han, Xingyu Liu, Huizi Mao, Jing
Pu, Ardavan Pedram, Mark A Horowitz, and William J
Dally. Eie: efficient inference engine on compressed deep
neural network. In ISCA, 2016.

[Hassibi and Stork, 1993] Babak Hassibi and David G Stork.
Second order derivatives for network pruning: Optimal
brain surgeon. In NIPS, 1993.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, pages 770–778, 2016.

[Hu et al., 2016] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and
Chi-Keung Tang. Network trimming: A data-driven neu-
ron pruning approach towards efficient deep architectures.
arXiv preprint arXiv:1607.03250, 2016.

[Jaderberg et al., 2014] Max Jaderberg, Andrea Vedaldi, and
Andrew Zisserman. Speeding up convolutional neu-
ral networks with low rank expansions. arXiv preprint
arXiv:1405.3866, 2014.

[Jia et al., 2014] Yangqing Jia, Evan Shelhamer, Jeff Don-
ahue, Sergey Karayev, Jonathan Long, Ross Girshick, Ser-
gio Guadarrama, and Trevor Darrell. Caffe: Convolutional
architecture for fast feature embedding. In ACM MM,
pages 675–678. ACM, 2014.

[Kim et al., 2015] Yong-Deok Kim, Eunhyeok Park,
Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun Shin.
Compression of deep convolutional neural networks for
fast and low power mobile applications. arXiv preprint
arXiv:1511.06530, 2015.

[Krizhevsky et al., 2012] Alex Krizhevsky, Ilya Sutskever,
and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In NIPS, 2012.

[Lebedev and Lempitsky, 2016] Vadim Lebedev and Victor
Lempitsky. Fast convnets using group-wise brain damage.
In CVPR, pages 2554–2564, 2016.

[Lebedev et al., 2014] Vadim Lebedev, Yaroslav Ganin,
Maksim Rakhuba, Ivan Oseledets, and Victor Lempitsky.

Speeding-up convolutional neural networks using fine-
tuned cp-decomposition. arXiv preprint arXiv:1412.6553,
2014.

[LeCun et al., 1989] Yann LeCun, John S Denker, Sara A
Solla, Richard E Howard, and Lawrence D Jackel. Op-
timal brain damage. In NIPS, 1989.

[Li et al., 2016] Hao Li, Asim Kadav, Igor Durdanovic,
Hanan Samet, and Hans Peter Graf. Pruning filters for ef-
ficient convnets. arXiv preprint arXiv:1608.08710, 2016.

[Lin et al., 2016] Shaohui Lin, Rongrong Ji, Xiaowei Guo,
and Xuelong Li. Towards convolutional neural networks
compression via global error reconstruction. In IJCAI,
pages 1573–1759, 2016.

[Lin et al., 2017] Shaohui Lin, Rongrong Ji, Chao Chen, and
Feiyue Huang. Espace: Accelerating convolutional neural
networks via eliminating spatial & channel redundancy. In
AAAI, pages 1424–1430, 2017.

[Liu et al., 2015] Baoyuan Liu, Min Wang, Hassan Foroosh,
Marshall Tappen, and Marianna Pensky. Sparse convolu-
tional neural networks. In CVPR, pages 806–814, 2015.

[Long et al., 2015] Jonathan Long, Evan Shelhamer, and
Trevor Darrell. Fully convolutional networks for seman-
tic segmentation. In CVPR, pages 3431–3440, 2015.

[Luo et al., 2017] Jianhao Luo, Jianxin Wu, and Weiyao Lin.
Thinet: A filter level pruning method for deep neural net-
work compression. In ICCV, 2017.

[Molchanov et al., 2017] Pavlo Molchanov, Stephen Tyree,
Tero Karras, Timo Aila, and Jan Kautz. Pruning convo-
lutional neural networks for resource efficient inference.
In ICLR, 2017.

[Park et al., 2017] Jongsoo Park, Sheng Li, Wei Wen, Ping
Tak Peter Tang, Hai Li, Yiran Chen, and Pradeep Dubey.
Faster cnns with direct sparse convolutions and guided
pruning. In IJCAI, 2017.

[Rastegari et al., 2016] M. Rastegari, V. Ordonez, J. Red-
mon, and A. Farhadi. Xnor-net: Imagenet classification
using binary convolutional neural networks. arXiv preprint
arXiv:1603.05279, 2016.

[Russakovsky et al., 2015] Olga Russakovsky, Jia Deng,
Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael
Bernstein, Alexander C. Berg, and Li Fei-Fei. Ima-
geNet Large Scale Visual Recognition Challenge. Inter-
national Journal of Computer Vision (IJCV), 115(3):211–
252, 2015.

[Simonyan and Zisserman, 2014] Karen Simonyan and An-
drew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[Wen et al., 2016] Wei Wen, Chunpeng Wu, Yandan Wang,
Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In NIPS, 2016.

[Wu et al., 2016] Jiaxiang Wu, Cong Leng, Yuhang Wang,
Qinghao Hu, and Jian Cheng. Quantized convolutional
neural networks for mobile devices. In CVPR, 2016.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2432


