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Accelerating Convolutional Sparse Coding for

Curvilinear Structures Segmentation by

Refining SCIRD-TS Filter Banks
Roberto Annunziata* and Emanuele Trucco

Abstract—Deep learning has shown great potential for curvilin-
ear structure (e.g. retinal blood vessels and neurites) segmentation
as demonstrated by a recent auto-context regression architecture
based on filter banks learned by convolutional sparse coding.
However, learning such filter banks is very time-consuming,
thus limiting the amount of filters employed and the adapta-
tion to other data sets (i.e. slow re-training). We address this
limitation by proposing a novel acceleration strategy to speed-
up convolutional sparse coding filter learning for curvilinear
structure segmentation. Our approach is based on a novel initial-
isation strategy (warm start), and therefore it is different from
recent methods improving the optimisation itself. Our warm-
start strategy is based on carefully designed hand-crafted filters
(SCIRD-TS), modelling appearance properties of curvilinear
structures which are then refined by convolutional sparse coding.
Experiments on four diverse data sets, including retinal blood
vessels and neurites, suggest that the proposed method reduces
significantly the time taken to learn convolutional filter banks (i.e.
up to −82%) compared to conventional initialisation strategies.
Remarkably, this speed-up does not worsen performance; in fact,
filters learned with the proposed strategy often achieve a much
lower reconstruction error and match or exceed the segmentation
performance of random and DCT-based initialisation, when used
as input to a random forest classifier.

Index Terms—convolutional sparse coding, segmentation, reti-
nal blood vessels, neurites.

I. INTRODUCTION AND RELATED WORK

A
UTOMATED segmentation of curvilinear structures such

as retinal blood vessels and neurites is a particularly

active area of research, e.g. [1]–[20]. This task is critical for

a whole category of medical image analysis algorithms [21],

for instance: (1) screening or monitoring diseases such as

diabetic retinopathy, glaucoma, or age-related macula degen-

eration; (2) computer-assisted diagnosis and risk stratification;

(3) biomarkers, i.e., determine whether the occurrence of

measurable features in the images is associated with specific

conditions [22], [23]. In neuroscience research, reconstructing

neuronal trees is a fundamental step to better understand

how networks of neurons work. Despite recent advances,

neuronal reconstructions are largely obtained manually. Given

This research was supported by the EU Marie Curie ITN REVAMMAD,
no 316990. Asterisk indicates corresponding author.

R. Annunziata and E. Trucco are with the School of Science and
Engineering (Computing), University of Dundee, Dundee, DD14HN, UK. E-
mail:{r.annunziata, e.trucco}@dundee.ac.uk.

Manuscript received Month day, year; revised Month day, year.
Copyright (c) 2015 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Fig. 1. A filter bank learned using convolutional sparse coding with random
initialisation. The DRIVE data set was used for this experiment.

the resolution currently available, reconstructing neurites of a

single cell may take months [24].

Most of the existing methods for automated curvilinear

structure segmentation rely on hand-crafted filters (henceforth

HCFs) designed to model local geometric properties of ideal

tubular shapes [1], [4], [7], [13], [23]. However, HCFs often

require manual parameter tuning (e.g. width, length and ori-

entation) [1], [4], [7], [13], which does not guarantee optimal

performance. Today research is moving towards fully/deep

learning architectures (henceforth, DLA) given their excellent

results on several challenging tasks [25]–[29]. An attractive

property of DLAs is their capability of finding the optimal

shape of each adopted filter automatically.

Experimental results show that lower layers of DLAs with

convolutional structure (e.g. CNN) tend to learn a subset of

filters similar to well-known HCFs (e.g. Gabor filters, see [16],

[20], [25], [26], [30], [31]). This is also the case for convolu-

tional sparse coding (henceforth, CSC) as shown in Figure 1.

We argue that employing such complex architectures to learn

filters similar to HCFs is inefficient; a more efficient approach

would be finding an optimal parameter setting (e.g. width,

length and orientation) for some HCFs automatically and
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learning only appearance characteristics not included in the

hand-crafted models. These appearance characteristics could

be data-specific (due to a disease, for instance) or particular

structure configurations (and their variations) difficult to model

(e.g. crossings, bifurcations, parallel structures).

Recently, an auto-context framework (multi-layer) based on

unsupervised filter learning has been shown to outperform

CNN and modifications [12] on curvilinear structure segmen-

tation in the medical domain [17], [32]. The framework pro-

posed in [17], [32] relies on filters learned through CSC [11],

[16], but learning them is very time-consuming as reported in

[11] (several days to learn 121 filters using MATLAB code and

state-of-the-art machines). Therefore, the filter bank learned at

the first layer is kept unchanged across the other ones, due

to the prohibitive cost of learning layer-specific filter banks

[32]. This limitation is particularly relevant for medical imag-

ing applications, where the visual appearance of curvilinear

structures may vary significantly and the range of acquisition

modalities may lead to different image characteristics in terms

of contrast and noise. As a consequence, re-training could be

necessary to achieve good performance.

Motivated by the above and inspired by the observation that

filters learned by CSC for curvilinear structure segmentation

are often similar to well-known HCFs, we propose an efficient

approach to learning CSC filters.

Our work differs fundamentally from recent acceleration

methods like those reported by Heide et al. [31], Bristow et

al. [30], and Bao et al. [33], [34], which rely on efficient

mathematical formulations to solve the CSC optimisation

problem. Such methods typically initialise filters with random

values or by a discrete cosine transform (henceforth, DCT).

While this solution is general and effective, it does not exploit

prior knowledge about the target curvilinear structure and its

appearance. One of the first attempts to exploit this information

was done by Rigamonti et al. [11], who proposed to combine

fast HCFs responses with those of a few filters learned by CSC,

hence faster to learn. This solution combines the advantages

of HCFs and learned filters, i.e. speed and discriminative

power, respectively. However, since CSC filters are learned

independently of the HCFs used (i.e. CSC filters are learned

directly on original image patches), this approach may lead to

redundant filters already included in the HCF bank [15].

The main novelty of our acceleration strategy lies in the

integration of curvilinear structure modelling within the CSC

learning pipeline, with the aim of leveraging prior information

about the target application and reducing the training time (if

possible without compromising detection performance). For

the modelling part, we propose a new formulation of the

recent SCIRD ridge detector [13], [23], denoted as SCIRD-

TS, which improves the detection of thin structures. Moreover,

we formulate the problem of identifying the optimal set of

SCIRD-TS filters to be used to initialise the CSC optimisation

as a compression task, and motivate the adoption of a K-means

algorithm to perform this task.

CSC filter learning is at the core of state-of-the-art curvilin-

ear structure segmentation pipelines (e.g. [17], [32]), therefore

our acceleration strategy, combined with state-of-the-art (and

future) fast CSC solvers (e.g. [30], [31], [35]), could poten-

tially contribute to advance the field further (e.g., faster re-

training for different data sets and curvilinear structures, the

possibility to learn a much larger filter bank which could lead

to better segmentation performance, among others).

MATLAB implementation of the whole framework can be

found at http://staff.computing.dundee.ac.uk/rannunziata/.

II. PROPOSED METHOD

We achieve CSC acceleration by a novel warm-start initial-

isation strategy based on SCIRD-TS (HCF ridge detector).

Specifically, the proposed warm-start strategy identifies the

optimal set of initial filters from a large amount of HCFs

generated by spanning the range of parameters related to

the structures of interest. It is worth noting that setting the

ranges for HCF parameters is very intuitive, as they represent

geometric properties of the target structure and their effects

can be checked visually. These filters are then refined by using

CSC to incorporate specific properties of the structures (e.g.

retinal blood vessels, neurites) of a specific data set. Intuitively,

the speed-up is achieved by learning only the “properties”

which have not been modelled and by refining the ones already

modelled (e.g. width or elongation).

An overview of the proposed method is shown in Figure 4.

A. Optimal warm-start strategy

SCIRD for thin structures (SCIRD-TS). Curvilinear struc-

tures such as blood vessels and neurites share appearance

characteristics which can be easily modelled, rather than

learned. In recent years, important efforts have been made

in this regard and several HCFs have been proposed (e.g.,

Frangi [1], Gabor [4], OOF [7]). These methods assume that a

curvilinear structure is “locally straight” and well contrasted.

However, these assumptions are violated by structures such

as blood vessels and neurites, appearing fragmented, showing

some level of tortuosity or captured with low signal-to-noise

ratio. As a consequence, detection performance may degrade

significantly. We addressed these modelling issues in our

previous work [13], [23] by proposing a novel ridge detector,

SCIRD, which adds curvature and contrast invariance to that

of previous HCFs (i.e., scale, rotation and elongation).

In [13], [23] (SCIRD), we model a curvilinear structure

with a curved-support Gaussian function. Then, the curved

ridge detection is obtained by measuring the second directional

derivative along the gradient of each curved-support Gaussian.

This derivation results in a ridge detector which consists of

a ratio of first and second derivatives of the curved-support

Gaussian function, thus leading to “0/0” indeterminate form

in particular cases, e.g. when the first derivatives vanish. Un-

fortunately, this compromises the detection of thin structures,

as shown qualitatively in Figure 2 (second row).

To address this limitation and avoid indeterminate forms,

we modify the derivation of the curved-support ridge detector.

Specifically, instead of curving the curvilinear structure model

(as done for SCIRD), we first derive a straight ridge detector.

Then, we apply a non-linear transformation to curve the ridge

detector. This new ridge detector is therefore curved as SCIRD

is, but when adopting straight filters (i.e. curvature is 0), it

http://staff.computing.dundee.ac.uk/rannunziata/
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Fig. 2. First row: ideal thin structure (1 pixel wide); second row, from left to
right: SCIRD filter, SCIRD response and its cross-sectional profile along the
blue line; third row, from left to right: SCIRD-TS filter, SCIRD-TS response
and its cross-sectional profile along the blue line. Notice that while the SCIRD
response is approximately 0 on the thin structure (i.e. SCIRD does not detect
it), the SCIRD-TS one is maximum, hence leading to a correct detection.

does not lead to indeterminate pixel values, as shown Figure

2 (third row). This improves the detection of thin structures,

as shown qualitatively in Figure 3 and quantitatively in Figure

7.

Let us model a straight ridge-like structure by means of a

multivariate zero-mean (n-D) Gaussian function with diagonal

covariance matrix,

G(ϕ;σ) =
1√

(2π)n
∏n

i=1 σ
2
i

exp

(
−

n∑

i=1

ϕ2
i

2σ2
i

)
(1)

where ϕ = (ϕ1, ϕ2, . . . , ϕn) represents a point in the {ϕ}
coordinate system, and σ = (σ1, σ2, . . . , σn) describes the

standard deviation in each direction. A ridge detector can be

obtained by measuring the contrast between the part inside and

outside the ridge [1]. This can be achieved by measuring the

second derivative with respect to the variables along which we

observe the ridge-like profile. Using the separability property

of the n-D Gaussian, one can compute the second derivative

with respect to each variable and then combine the results (e.g.

by summing up all the contributions). The second derivative

of G(ϕ;σ) with respect to the variable ϕj has the form

Gϕjϕj
(ϕ;σ) = G(ϕ;σ)

[
1

σ2
j

(
ϕ2
j

σ2
j

− 1

)]
. (2)

If we assume (without loss of generality) that the struc-

ture shows a ridge-like profile only with respect to the

coordinate ϕj , the function Gϕjϕj
(ϕ;σ) represents a ridge

detector for straight structures. To extend this ridge de-

tector to more general curved-support objects, we con-

Fig. 3. Detecting thin vessels. Left: original image patch (green channel)
showing thin retinal blood vessels around the fovea; middle: enhancement
using SCIRD [13], [23]; right: enhancement using the proposed SCIRD-TS.
The thin vessels not enhanced by SCIRD are correctly enhanced by SCIRD-
TS.

sider a non-linear transformation T : R
n 7→ R

n with

T (x) = ϕ = (ϕ1, . . . , ϕj , . . . , ϕn) of the form

ϕj = xj +
n−1∑

i=1

kjix
2
i , 2 ≤ j ≤ n (3)

and ϕ1 = x1, where kji ∈ R and xi are the coordinates of

a point in the new {x} coordinate system. In the 2-D case

(i.e. n = 2), applying the transformation T in Eq. (3) to

Gϕjϕj
(ϕ;σ) in Eq. (2), leads to our SCIRD-TS filter:

F (x;σ, k) =
1

σ2
2 Z(σ)

[
(x2 + kx2

1)
2

σ2
2

− 1

]

× exp

(
−

x2
1

2σ2
1

)
exp

(
−

(
x2 + kx2

1

)2

2σ2
2

)
, (4)

where k21 (curvature parameter) is indicated as k for com-

pactness.

To make the ridge detector rotation invariant, SCIRD-TS

filters can be simply rotated by θ, applying the rotation matrix

to (x1, x2). Therefore, we will indicate the SCIRD-TS filters as

F (x;σ, k, θ). For completeness, the unsupervised version of

SCIRD-TS can be obtained by taking the maximum response

among the ones of all the filters, at each pixel.

A pre-defined convolutional filter bank can be generated by

spanning the range of the free parameters σ1, σ2, k and θ.

We observed experimentally that our CSC optimisation

initialised with random filters tends to converge to “bright”

and “dark” filters 1 (for instance, Figure 1 first row - column

4 and 8, respectively). For this reason, for each dark SCIRD-

TS filter (e.g. Figure 2, third row - left) we generate its

bright counterpart, i.e. −F (x;σ, k, θ), as well. Moreover, we

generate symmetric curved filters, i.e. 0.5F (x;σ,+k, θ) +
0.5F (x;σ,−k, θ) as they were found to speed-up CSC con-

vergence further.

Let S ⊆ R
p the space of all the curvilinear structures

in a particular data set, and assume that a subset of them,

s, can be detected by using SCIRD-TS filters in the space

F ⊆ R
q (Figure 4). The parameter ranges of these SCIRD-

TS filters can be easily estimated (e.g. by visual inspection of

1Bright/dark refers to the grey-level of the central pixels
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Fig. 4. Block diagram of the proposed method.

the curvilinear structures in S). Uniform sampling of such

parameter ranges guarantees a better approximation of the

filters in F as the sampling step δ vanishes. Let F ∈ R
q

be the space generated by uniform sampling. So, the first step

of our warm-start strategy consists of generating t SCIRD-

TS filters in F (t>s, in general) by sampling uniformly and

densely its parameter ranges.

Extracting the optimal set of prototype filters. Using the

entire set of SCIRD-TS filters generated in the previous step

is clearly unfeasible (t>20, 000 with our parameter setting).

So, we need to reduce the cardinality of F and map it to a

new space F̂ with a much lower cardinality (K ≪ t), while

still preserving a good representation of F (hence of F). A

key requirement for the success of sparse coding dictionary

learning strategies is building incoherent dictionaries (e.g.

[34]). The mutual incoherence of a dictionary D can be defined

as

µ(D) = min
i 6=j

‖di − dj‖
2
2 , (5)

where di and dj are two different dictionary elements (or

atoms) arranged as one-column vectors. So, a high value

of µ(D) for the learned dictionary is desirable. Moreover,

since our overall target is to accelerate CSC, the cardinality

reduction should be fast, so that most of the training time is

spent on the CSC phase. Of course, sampling uniformly and

sparsely SCIRD-TS parameter ranges would be fast, but it

would not guarantee high dictionary incoherence.

The compression approach we adopt here to identify the set

of K prototype filters which represent optimally (in the sense

of minimising the quantisation error) the original SCIRD-TS

space F is K-means clustering using Euclidean distance2.

K-means clustering offers: (1) an optimal compression ap-

proach for any chosen K, thus meeting the requirement of

good representation of the original SCIRD-TS space; (2)

the desirable high mutual incoherence (i.e. high inter-cluster

Euclidean distance); (3) a fast compression algorithm (run time

negligible compared to the CSC phase). So, if we indicate

with f(i) the i-th SCIRD-TS filter in F (f(i) is F (x;σ, k, θ)
in Eq. (4) arranged as a one-column vector), the second step

of the proposed warm-start strategy consists of solving the

optimization problem

argmin
D,c

∑

i

∥∥∥Dc(i) − f(i)
∥∥∥
2

2
(6)

2We adopt the same distance used for the CSC phase.

subject to ||c(i)||0 ≤ 1, ∀i = 1, . . . ,mD and ||d(j)||2 =
1, ∀j = 1, . . . ,K, where c(i) is the code vector related to

the i-th original SCIRD-TS filter f(i), and d(j) is the j-th

column of the dictionary D of prototype filters (examples in

Figure 6-first column). In our experiments, we adopt the fast

K-means optimisation algorithm proposed by Coates and Ng

in [36]3. Careful seeding discussed in [37] is used to initialise

the clusters.

B. Refining the prototype filters by CSC

We refine the filter bank obtained with the warm-start

strategy by CSC. Specifically, we optimise the following

objective function [11]:

argmin
{D(j)}

{M
(j)
i

}

N∑

i=1




∥∥∥∥∥∥
Pi −

K∑

j=1

D(j) ∗M
(j)
i

∥∥∥∥∥∥

2

2

+ λ

K∑

j=1

∥∥∥M (j)
i

∥∥∥
1


,

(7)

where Pi is the i-th original image patch to reconstruct (N

patches in total), D(j) is the j-th refined filter (K filters in

total), M
(j)
i can be regarded as the j-th component (map)

of the representation related to Pi and λ is the sparsity

(regularization) parameter. Filters, original image patches and

representation maps are arranged as matrices. The symbol ∗
indicates convolution.

In essence, the goal of this CSC optimisation is to minimise

the total reconstruction error computed by approximating

each original image patch using the current filter bank. The

reconstruction is obtained by finding a sparse representation

(the second term in Eq. (7) penalises the ℓ1-norm of each

component of the representation) of the current patch. Since

the objective in Eq. (7) is not convex, several (sub-optimal)

optmisation strategies can be employed. For instance, Rig-

amonti et al. [11] adopted a proximal algorithm, i.e. ISTA

(iterative shrinkage thresholding algorithm) [38], [39]. To

speed-up the optimisation, we adopt a faster proximal method,

i.e. FISTA [35]. Moreover, we compute the high number

of convolutions in the Fourier domain by exploiting fast

Fourier transform algorithms. Finally, we adopt a batch-based

optimisation strategy as done, for instance, in [40], [41].

C. Impact of the warm-start strategy on CSC optimisation

We provide a brief analysis of the computational complexity

of CSC optimisation, in terms of number of multiplications,

to better investigate the impact of the proposed warm-start

strategy on the running time.

Let I1 ∈ R
r1×c1 and I2 ∈ R

r2×c2 be two images (or

patches) we want to convolve. Due to the high number of

convolutions involved in the CSC optimisation, we compute

them in the Fourier domain, hence requiring the following

steps:

1) Padding I1 and I2 with zeros so that they have the same

size r3 × c3, where r3 and c3 are the closest powers of

2 larger than r1 + r2 − 1 and c1 + c2 − 1, respectively;

3Notice that this algorithm does not guarantee convergence to the global
minimum but to a local one, so the compression is locally optimal.
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2) Computing the Fourier transform (DFT) of the two

images;

3) Multiplying the DFTs of the two images;

4) Computing the inverse Fourier transform (IDFT) of the

result.

Considering that a DFT (and also an IDFT) requires

6r3c3 log2(r3c3) real multiplications [16], and that a complex

multiplication requires 3 real multiplications, a single convo-

lution would require 3r3c3(6 log2(r3c3) + 1) multiplications.

The fast proximal method (FISTA) we adopt to optimise

Eq. (7) alternates between the optimisation w.r.t. the K filters

(D(j)) and the maps (M
(j)
i ) for each patch Pi (refer to the

MATLAB implementation for details):

Optimisation w.r.t. the filters. This can be obtained by

gradient descent, which amounts to computing K convolutions

between the residual error of reconstruction and the related

K maps, as the second term of Eq. (7) vanishes [42]. The

total number of multiplications needed to perform this step is

therefore4 3Kr3c3(6 log2(r3c3) + 1).
Optimisation w.r.t. the maps. From a computational com-

plexity perspective (refer to the MATLAB implementation for

details), this step requires the computation of the gradient of

the first term in Eq. (7) w.r.t. the maps M
(j)
i and a soft-

thresholding (proximal operator of the l1 norm [39], [42]).

Again, the gradient can be computed efficiently by convolving

the K filters with the residual error of reconstruction [42],

hence requiring 3Kr3c3(6 log2(r3c3) + 1) multiplications. In

addition, the K soft-thresholding operations require Kr3c3
multiplications [30].

Since we optimise over N patches (also called “mini-batch”

in batch-based optimisation strategies [40], [41], [43]) and

iterate several times (every pass over all the N patches is

denoted as “epoch”, Ne), the total number of multiplications

required to optimise Eq. (7) is:

Ne ×N × [6Kr3c3(6 log2(r3c3) + 1) +Kr3c3]. (8)

The number of patches N , the number of filters K and the

dimension of the filters are application-dependent. Once the

optimisation algorithm is fixed (FISTA, in our case), the only

other parameter which could have a significant impact on the

complexity is the number of epochs Ne (multiplicative factor).

We demonstrate experimentally in Section IV that initialising

CSC with our warm-start strategy reduces Ne (and often

achieves lower reconstruction errors, thus potentially leading

to more discriminative filter banks).

III. DATA SETS AND EVALUATION CRITERIA

We employed four benchmark data sets to validate the

proposed CSC acceleration strategy. They include two of the

most used public data sets to validate retinal blood vessel

segmentation, DRIVE [3] and STARE [2], and two data sets

showing neurites, BF2D and VC6, used as benchmark in

recent work [11], [13], [15], [16], [32]. In this section, we

first describe the data sets (visual examples in Figure 8) and

discuss the evaluation criteria. Then, we discuss and report the

adopted parameters setting.

4We could pre-compute the DFT of the residual error and reduce the
number of multiplications further.

A. Data sets

DRIVE5 [3] has been widely adopted as benchmark data

set for vessel segmentation [4]–[6], [8]–[12], [16]–[20]. It

includes 40 colour retinal images from a diabetic retinopa-

thy screening program in the Netherlands. The images were

acquired by a fundus camera (CR5 non-mydriatic 3-CCD,

Canon, Tokio, Japan) with 45 degrees field of view. Each

image is 768 × 584 pixels. The data set was originally split

in training and testing set in [3], each including 20 images,

and we adopted the same set partition. Manual segmentations

were generated by two different specialists for each image.

Following the literature (e.g. [4], [10]), we adopted the first

observer as ground truth.

BF2D was first used by the authors in [11]. It consists

of two minimum projections of bright-field micrographs that

capture neurons. The images have high resolution; their size is

1024× 1792 and 768× 1792 pixels. We adopted the same set

partition described by the authors. The data set includes masks

to eliminate the nucleus and manual segmentations generated

by an expert.

VC6 was created by the authors also in [11] from a set

of 3D images showing dendritic and axonal subtrees from

one neuron in the primary visual cortex. The original 3-D

images are part of the publicly available data set used recently

for the international DIADEM segmentation challenge (Visual

Cortical Layer 6 Neuron) [24]. This data set includes three

high-resolution images (882× 378, 630× 441 and 817× 588
pixels) obtained by computing minimum intensity projections

of three image stacks (3-D images). We adopted the same set

partition used by the authors, using two images for training

and retaining the third for testing. The data set includes manual

segmentations provided by experts.

STARE6 [2] is another data set including fundus images,

widely used as benchmark for retinal vessel segmentation [4]–

[6], [9]–[11], [18]–[20]. The full data set includes 397 colour

images captured by a TopCon TRV-50 fundus camera at 35

degrees field of view. Each image is 605×700 pixels. A subset

of 20 images (10 normal and 10 abnormal) were manually

segmented by two experts [2]. Following the literature (e.g.

[4], [10]), we adopted the first observer as ground truth.

Poor and variable contrast, low-resolution, non-uniform illu-

mination, structure fragmentation, irregularities in the staining

process (VC6), confounding non-target structures (e.g. optic

disk, exudates and haemorrhages in DRIVE and STARE;

blob-like structures in BF2D and VC6) make these data sets

particularly challenging for automatic segmentation.

B. Performance Evaluation

Since the CSC optimisation problem aims to find a sparse

representation for each original image patch minimising the

total reconstruction error, we first assessed the performance in

terms of reconstruction error and time to convergence. Then,

we evaluated segmentation performance.

Reconstruction error and time to convergence. For these

experiments, we randomly sampled 1, 000 49 × 49 pixels

5http://www.isi.uu.nl/Research/Databases/DRIVE/
6http://www.ces.clemson.edu/∼ahoover/stare/

http://www.isi.uu.nl/Research/Databases/DRIVE/
http://www.ces.clemson.edu/~ahoover/stare/
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original image patches (i.e. the “batch”) from the training

set of DRIVE, BF2D and VC6 separately and measured the

total reconstruction error against the number of epochs7. For

STARE, we excluded the 20 manually segmented images

used for assessing segmentation performance and carried out

this experiment on the 377 images left. We compare the

performance of our initialisation strategy against the random

(adopted in most of the related work, e.g. [11], [16], [30],

[31]) and DCT-based (adopted in [33], [34]) one. We used the

same batch for the proposed method and the baselines, for

fair comparison. To assess the influence of the dictionary size

on the total reconstruction error we ran experiments for banks

including 49, 100 and 144 learned filters.

Segmentation. To assess segmentation performance, we

convolve each image with the K learned filters and represent

each pixel with the K local responses (i.e. K-D feature

vector). Then, we give this feature vector as input to a

random forest classifier to infer the probability of each pixel

of belonging to a curviliear structure. For DRIVE, BF2D and

VC6, the training set was formed by pixel samples from the

provided training images; for STARE, we adopted a leave-one-

out cross-validation on the 20 images manually segmented, as

typically done in the literature (e.g. [4], [20]). We adhere to the

evaluation protocol adopted in [11], [13], [15], [16], [23], [32],

among others. Specifically, given the noticeable imbalance

between true negatives (TNs) and the other measures of the

contingency matrix, i.e. true positives (TPs), false negatives

(FNs) and false positives (FPs)8, we adopt precision-recall

(PR) curves and area under PR curves (AUPRC) to assess

segmentation performance. In addition to the baselines adopted

above (i.e. CSC with random and DCT initialisation), we

compare the proposed method performance with widely used

HCFs (i.e. Gabor [4], Frangi [1], OOF [7]), SCIRD [13], [23]

and the combination method proposed by Rigamonti et al.

[11].

C. Parameters Setting

HCFs. Parameters for SCIRD-TS and baseline methods

were tuned separately to achieve their best performance on

each data set, to provide a fair comparison.

Warm-start strategy. Parameters ranges for generating the

large SCIRD-TS filter bank were set manually by visually

inspecting DRIVE training images, with the idea of covering

a suitable range in terms width, elongation, curvature and

rotation resolution. We adopted a conservative setting (i.e.,

wide ranges and high resolution) without careful tuning or

specific optimisation. In particular, σ1 = [1, 10] with step 0.5,

σ2 = [1, 10] with step 0.5 (filters are forced to be elongated,

i.e. filters with σ2>σ1 are discarded), k = [−0.1, 0.1] with

step 0.025 and θ = [15, 180] with step 15 degrees. To test the

generalisation of this setting, we adopted it for BF2D, VC6

and STARE as well, although they show different curvilinear

structures (neurites vs retinal blood vessels) resolution and

7In batch-based optimisation strategies, an epoch represents one pass over
the entire batch.

8The number of true background pixels is much higher than that of true
vessel or neurite pixels in the images.

TABLE I
TOTAL TIME TO CONVERGENCE (IN MINUTES) FOR THE CSC PHASE

INITIALISED WITH OUR METHOD, AND THE BASELINES. IN BRACKETS,
OUR WARM START PROCESSING TIME (IN SECONDS).

DRIVE Number of learned filters

Method 49 100 144

Random 167’ 458’ 1085’
DCT 167’ 242’ 2049’
Ours 51’(6”) 106’(11”) 195’(16”)

BF2D Number of learned filters

Method 49 100 144

Random 152’ 209’ 1062’
DCT 198’ 418’ 1474’
Ours 58’(6”) 141’(11”) 247’(16”)

VC6 Number of learned filters

Method 49 100 144

Random 132’ 374’ 467’
DCT 345’ 734’ 743’
Ours 54’(6”) 117’(11”) 203’(16”)

STARE Number of learned filters

Method 49 100 144

Random 120’ 291’ 466’
DCT 313’ 397’ 751’
Ours 61’(6”) 94’(11s) 159’(16”)

non-target structures. We set the number of K-means iterations

to 100, although a few tens are typically sufficient (negligible

impact on the total time to convergence of the proposed

acceleration strategy). We assessed the influence of the number

of filters (i.e., K) on the reconstruction performance, and used

K = {49, 100, 144}. For comparison, the maximum number

of CSC filters learned in [17] (the current benchmark on

DRIVE) is 121.

CSC phase. When random initialisation is used, setting the

sparsity parameter λ manually is not trivial. In fact, low values

tend to produce noisy filters, whereas high ones lead to a slow

convergence. We found λ = 2 to yield good results on the

DRIVE data set (we investigated the impact of different λ

values and report the results below). To test robustness, we

used the same setting (i.e. λ = 2) for BF2D, VC6 and STARE

as well.

Classifier. We trained a random decision forest [44], [45]

(henceforth, RF) using 144-D feature vectors (i.e. number

of learned filters K = 144) with 100 trees for each data

set, to achieve a good compromise between segmentation

performance and processing time. Each tree’s depth was

set automatically, by evaluating the out-of-bag error during

training. We randomly sampled 200, 000 training instances

from the training partition of each data set to build the related

RF model. We adopted the same filter size used in [11], [16],

[17], i.e. 21 × 21 pixels for all the data sets, as size was not

found to affect performance significantly on the same data

sets.

All the experiments were carried out on a laptop equipped

with Intel i7-4702 CPU at 2.2GHz and 16GB RAM (MATLAB

implementations).

IV. EXPERIMENTS AND RESULTS

A. Reconstruction error and time to convergence

In Table I we report the total time to convergence for CSC

using our acceleration method and the baselines, for each data
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Fig. 5. Experiments: reconstruction error and time to convergence. Performance evaluation in terms of total reconstruction error for CSC with random,
DCT and SCIRD-TS initialisation. Each row shows the influence of the dictionary size on the total reconstruction error, for each data set. Optimisations were
stopped at convergence. Notice that the proposed initialisation approach (“SCIRD-TS warm start”) achieves the lowest reconstruction error for each filter size,
and simultaneously has much faster convergence, compared to conventional initialisations.
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Fig. 6. Visualisation of a CSC-refined SCIRD-TS filter bank. SCIRD-TS filter banks obtained after the fast warm-start strategy (first column), refinement
by CSC (second column) and difference (third column) for DRIVE, BF2D and VC6 (refer to Table I for time to convergence). Some of the original filters
are unchanged, while most of the others are only modified in length or width.
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set and dictionary size. We observe that (1) the time to run

our warm-start strategy is negligible compared to the total

time to run CSC (i.e. a few seconds against tens of minutes);

(2) the proposed CSC acceleration takes much less time

to obtain discriminative filter banks than conventional CSC

initialisation strategies, e.g. up to 82% less time, when 144

filters are learned. Remarkably, our acceleration strategy does

not compromise performance either in terms of reconstruction

error or segmentation performance. Figure 5 shows the total

reconstruction error against the number of epochs needed

to achieve convergence for our initialisation method and the

baselines, for the four data sets and different dictionary size.

We notice that (1) our warm-start strategy based on SCIRD-

TS achieves both the lowest total reconstruction error and the

fastest convergence on each data set and for each dictionary

size9; (2) initialising the filter bank with DCT (as done in

[33], [34]) does not lead to either faster convergence or lower

reconstruction error compared to random initialisation, for data

sets including curvilinear structures; (3) although the adopted

SCIRD-TS parameters were set using DRIVE training images,

the total reconstruction error on BF2D, VC6 and STARE

is always lower, and sometimes substantially, than random

initialisation, thus suggesting good generalisation.

Figure 6 shows how the initial filter banks generated using

the proposed warm-start strategy were refined by the adopted

CSC approach on each data set (for compactness, only the

largest filter banks are shown). A large subset of filters is left

unchanged or refined lightly (in terms of width and elongation,

for instance), while other filters are modified significantly to

reduce the reconstruction error and compensate for the part

HCFs are not capable to model. This observation confirms our

hypothesis that a well-designed HCF bank includes already a

large portion of the filters suitable for curvilinear structures

segmentation in the medical domain, and that our approach

(optimal warm-start) obtains highly discriminative filter banks

in a more efficient way (compared to conventional initialisa-

tion).

B. Segmentation

Figure 7 shows the segmentation performance on the four

data sets in terms of precision-recall curves for state-of-

the-art and widely used HCFs (i.e. Gabor [4], Frangi [1],

OOF [7]), SCIRD [13], [23], the proposed SCIRD-TS, the

combination approach proposed by Rigamonti et al. [11] and

CSC initialised with random (as done by [11], [16], [30]–[32]),

DCT (as done by [33], [34]) and the proposed warm-start

strategy. First, the proposed SCIRD-TS outperforms SCIRD

[13], [23] (and the other HCFs baselines) on the four data

sets, as it detects thinner structures not detected by SCIRD.

Second, due to their modelling limitations and suboptimal

parameter setting, HCFs are outperformed by methods based

on discriminative filter learning.

Remarkably, precision-recall curves suggest that our ac-

celeration strategy leads to filter banks matching or even

exceeding the segmentation performance of CSC strategies

9In Figure 5, random initialisation achieves slightly less reconstruction
error on “DRIVE - 144 filters”, with a substantially higher number of epochs.

TABLE II
COMPARISON IN TERMS OF AUPRC, F-MEASURE, JACCARD INDEX AND

TRAINING TIME (IN MINUTES), BETWEEN RANDOM, DCT-BASED AND THE

PROPOSED INITIALISATION STRATEGY (DENOTED AS “OURS”).

DRIVE Performance measure

Method AUPRC F-measure Jaccard Time

Random 0.85 0.77 0.62 1085’
DCT 0.84 0.76 0.61 2049’
Ours 0.87 0.79 0.64 195’

BF2D Performance measure

Method AUPRC F-measure Jaccard Time

Random 0.83 0.77 0.62 1062’
DCT 0.83 0.76 0.61 1474’
Ours 0.84 0.76 0.62 247’

VC6 Performance measure

Method AUPRC F-measure Jaccard Time

Random 0.81 0.74 0.59 467’
DCT 0.77 0.70 0.54 743’
Ours 0.83 0.76 0.62 203’

STARE Performance measure

Method AUPRC F-measure Jaccard Time

Random 0.84 0.75 0.58 466’
DCT 0.83 0.74 0.57 751’
Ours 0.86 0.77 0.60 159’

TABLE III
INFLUENCE OF THE SPARSITY PARAMETER λ ON THE SEGMENTATION

PERFORMANCE (AUPRC) OF THE PROPOSED INITIALISATION METHOD

(Ours) AND THE BEST BASELINE METHOD (Random) ON DRIVE.

λ

Init. method 0.2 2 20

Random 0.8418 0.8515 0.8461
Ours 0.8638 0.8676 0.8655

initialised randomly or with general purpose HCFs (i.e. DCT),

while converging in much less time. This is confirmed by

quantitative results in terms of AUPRC, F-measure, Jaccard

Index (aka Intersection Over Union, or IOU) and time needed

to converge reported in Table II. Qualitative comparisons

(probability maps) with the best performing baseline (i.e.

random initialisation) are reported in Figure 8.

We investigated the influence of the sparsity parameter (λ)

on the segmentation performance when the random and the

proposed initialisation strategy are employed. Specifically, we

repeated the experiments with λ decreased and increased by

a factor 10 compared to the adopted setting (i.e. λ = 0.2 and

λ = 20, respectively) on DRIVE data set. Experimental results

(Table III) suggest that CSC initialised with our warm-start

strategy is more robust against this critical parameter setting,

compared to random initialisation, an important advantage in

terms of adaptation to different data sets (if confirmed by

future experiments).

It is worth noting that our segmentation pipeline is single-

layer, yet it achieves the same level of performance of the

multi-layer architecture proposed by Sironi et al. [32] on

DRIVE (F-measure = 0.79); the latter is based on CSC

filter banks leveraged by an auto-context regression pipeline

recently improved by a post-processing strategy and shown to

achieve state-of-the-art segmentation performance [17]. How-

ever, the authors report that learning a different convolutional
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Fig. 7. Experiments: segmentation. Performance evaluation in terms of precision-recall curves for pixel-level segmentation. Notice that we employed a RF
with only 100 trees, compared to the method proposed by Rigamonti et al. [11] in which 600 trees were used, hence slower at testing time.

Fig. 8. Experiments: segmentation. Probability maps computed on images from DRIVE (first row), BF2D (second row), VC6 (third row) and STARE
(fourth row). For each row, from left to right, we report original image, result of the best performing baseline (i.e. “CSC, random init.”), proposed method’s
result and ground truth.

filter bank for each layer of this auto-context architecture

is prohibitively expensive [32], hence they learn a single

filter bank (121 filters) and use it for all the layers. Given

the speed-up obtained by using the proposed acceleration

strategy (without performance degradation for reconstruction

and segmentation), (1) a convolutional filter bank could be
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learned for each layer to model higher-order properties of

curvilinear structures and potentially improve segmentation

performance; (2) alternatively, the proposed acceleration strat-

egy could significantly reduce its training time and therefore

speed-up adaptation to other data sets.

V. DISCUSSION AND CONCLUSIONS

CSC is a central machine learning strategy in current state-

of-the-art approaches to curvilinear structure segmentation

in the medical domain (e.g. [17]). Its main drawback is

that learning large filter banks is very time consuming [32],

and accelerating CSC has recently become a particularly

active area of research. Previous approaches have focussed

on the optimisation itself (e.g. [31]) and important advances

have been made. We address acceleration from a different

perspective, i.e. initialisation, with the important benefit of

being complementary to approaches focussing on the optimi-

sation. Driven by the observation that filter banks obtained by

CSC applied to curvilinear structures often incorporate filters

closely resembling hand-crafted ones, we have proposed and

tested a novel approach to accelerate CSC based on carefully

designed HCFs and an optimal (fast) warm-start strategy.

Our approach obtains incoherent dictionaries from a large set

of filters generated by sampling uniformly and densely the

adopted HCFs ranges.

We have tested the performance of the proposed method

using two quantitative strategies: total reconstruction error and

segmentation performance.

Experiments measuring the reconstruction error of random

batches from four diverse data sets show that (1) CSC ac-

celerated with our warm-start strategy generates filter banks

much faster (e.g., up to 82% less time, when 144 filters

are learned) compared to conventional initialisation strategies

(i.e. random or DCT); (2) remarkably, the speed-up does

not degrade performance: the reconstruction error is often

substantially lower than that of the baselines; (3) adopting

HCFs designed for curvilinear structure segmentation (e.g.

SCIRD-TS) is crucial, as the general purpose DCT does not

lead to neither a speed-up, nor lower reconstruction error

on data sets including curvilinear structures, as aspect never

teased out before, to our knowledge.

Experiments on the target application, i.e. curvilinear struc-

ture segmentation, suggest that (1) HCFs alone are con-

siderably outperformed by methods based on discriminative

filter learning, due to modelling limitations and sub-optimal

(manual) parameter setting; (2) our strategy to accelerate

CSC outperforms random and DCT initialisation on DRIVE,

STARE and particularly on VC6, whereas it matches the

performance of random initialisation on BF2D (requiring 77%
less training time).

We have tested the parameter setting generalisation by

adopting the same setting used for DRIVE also for BF2D,

VC6 and STARE data sets, although the latter include different

curvilinear structures (retinal blood vessels in DRIVE and

neurites in BF2D, VC6) and different image characteristics in

terms of contrast and confounding structures (STARE includes

10 abnormal images).

Experiments show that most of the prototype filters obtained

by the warm-start strategy change lightly (i.e. only in terms

of width, elongation, curvature), while others more noticeably.

Although we expect that the latter may have a more positive

impact on the segmentation performance than the former,

future experiments will be carried out to investigate this aspect

further.

We reckon that combining our acceleration strategy, based

on initialisation, with the ones based on optimisation can lead

to a substantial speed-up of CSC-based curvilinear structure

segmentation approaches, yielding even faster training and,

therefore, faster adaptation to different data sets and/or better

segmentation performance, by enabling the learning of larger

filter banks. This is the research direction we will explore in

the near future.
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