
Accelerating Correlated Quantum Chemistry
Calculations Using Graphical Processing Units

Citation
Watson, Mark A., Roberto Olivares-Amaya, Richard G. Edgar, Tomás Arias, and Alán Aspuru-
Guzik. 2010. Accelerating correlated quantum chemistry calculations using graphical processing
units. Computing in Science and Engineering 12(4): 40-51.

Published Version
doi:10.1109/MCSE.2010.29

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:8519264

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:8519264
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Accelerating%20Correlated%20Quantum%20Chemistry%20Calculations%20Using%20Graphical%20Processing%20Units&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=965c06770ca754793ec3ccddef7321fd&departmentChemistry%20and%20Chemical%20Biology
https://dash.harvard.edu/pages/accessibility

Accelerating correlated quantum chemistry calculations
using graphical processing units

Mark A. Watson, Roberto Olivares-Amaya, Richard G. Edgar, and Alán Aspuru-Guzik∗
Department of Chemistry and Chemical Biology,

Harvard University, Cambridge, Massachusetts 02138.

Tomás Arias
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853.

Graphical processing units are now being used with dramatic effect to accelerate quantum chem-
istry applications. The authors give a brief introduction to electronic structure methods and describe
their efforts to accelerate a correlated quantum chemistry code. They propose and analyze two new
tools for accelerating matrix-multiplications where single-precision accuracy is insufficient.

I. INTRODUCTION

With the advent of modern quantum theory a century
ago, scientists quickly realized that quantum mechanics
could offer a predictive theory of chemistry, revolution-
izing the subject in the same way that Newton’s laws
had transformed the study of classical mechanics. Over
the intervening decades, we have witnessed an exponen-
tial increase in available computing power. Coupled with
tremendous advances in theory and algorithmic meth-
ods, as well as the painstaking development of sophisti-
cated program suites often consisting of millions of lines
of code, the scope of phenomena now amenable to the
predictive techniques of quantum chemistry is large and
continually growing.

Modern computational chemistry has an important
role to play in many practical applications, such as the
discovery of new drugs or industrial catalysts, and the de-
velopment of new materials or technologies to meet global
energy and environmental challenges. Its widespread ap-
plication has resulted in major efforts to reduce its com-
putational cost: accurate quantum chemistry methods
consume a significant fraction of computing resources at
national laboratories.

As a result, we are witnessing a new era in the op-
timization of quantum chemistry codes following an ex-
plosion of interest in the utilization of coprocessors such
as graphical processing units (GPUs). This interest in
GPUs and other accelerators is largely driven by their
combination of formidable performance and relatively
low cost. But another key reason for their emergence
in scientific fields was the release of NVIDIA’s CUDA
(compute unified device architecture) toolkit that dra-
matically simplified the process of developing code for
GPUs.

Already, GPUs have started to be used by computa-
tional chemists to treat a wide range of problems. These
include molecular dynamics and quantum Monte Carlo
simulations, density-functional theory and self-consistent

∗Electronic address: aspuru@chemistry.harvard.edu

field calculations [1, 2] as well as correlated quantum
chemistry applications [3, 4]. Efficiency gains of be-
tween one and three orders of magnitude have been re-
ported compared to conventional implementations on a
CPU. Thus new domains of scientific application are now
possible where, previously, extremely expensive and rare
supercomputing facilities would have been required.

A very important area for many scientific applications
is the acceleration of linear algebra operations, which
are quite well-suited for GPU architectures. Included
in the CUDA software development toolkit is an imple-
mentation of the BLAS linear algebra library, named
CUBLAS. By simply replacing the BLAS *GEMM rou-
tines with corresponding CUBLAS SGEMM calls to ac-
celerate key matrix multiplications, our group [3] was
able to achieve a speedup of 4.3x when calculating the
RI-MP2 (resolution-of-the-identity second-order Møller-
Plesset perturbation theory [5, 6]) correlation energy of
doeicosane (C22H46).

This initial effort was one of the first quantum chem-
istry applications to leverage GPUs, but it revealed sev-
eral issues for future work. For example, while mod-
ern GPU cards designed for research can have up to
4 GiB of RAM, consumer level cards may have as lit-
tle as 256 MiB. Without some means to overcome the
memory bottleneck, our first attempts to use GPUs to
accelerate RI-MP2 calculations were limited to systems
with less than 600 basis functions.

Another issue is numerical precision. The vast major-
ity of GPU cards currently in use worldwide support only
single-precision arithmetic. Single precision is generally
insufficient to achieve ‘chemical accuracy’ of 1 kcal/mol
in calculations on anything but the smallest and sim-
plest systems, since the errors quickly accumulate for
larger molecules. An interesting topic in the computer
science [7, 8] community has been the development of
libraries which achieve precision beyond the hardware
specification through algorithmic techniques. In this
work, we consider this problem in detail for the special
case of single-precision GPU devices and applications to
quantum chemistry.

In summary, we describe our efforts to develop tools
for the GPU acceleration of correlated quantum chem-

2

istry calculations [3, 4]. We address the issues of limited
GPU device memory, as well as achieving higher accuracy
using only single-precision GPU operations. We begin in
section II with an overview of basic quantum chemistry
theory, followed by the algorithms behind our new li-
braries. Next we report the efficiency of our methods for
general matrix multiplications and in the context of ac-
celerating quantum chemistry calculations. We end the
article with a brief conclusion and our future perspective.

II. QUANTUM CHEMISTRY THEORY

Traditional quantum chemistry strives to solve the
time-independent Schrödinger equation,

Ĥ(r,R)ψ(r,R) = E(R)ψ(r,R) (1)

where ψ(r,R) is the electronic wavefunction for a molec-
ular system defined by the Hamiltonian Ĥ(r,R) in terms
of a set of coordinates for the electrons, r, and nuclei, R.
The total molecular energy is given by the eigenvalue
E(R) and is often referred to as the potential energy sur-
face. It is parameterized in terms of the nuclear coordi-
nates since we have assumed the Born-Oppenheimer ap-
proximation, and is fundamental to the ab initio theory
of chemical reaction dynamics.

The solution of eqn. (1) yields the electronic wavefunc-
tion for a given nuclear configuration, and in turn the
probability density for finding an electron at a given point
in space. Exact solution is intractable, even numerically,
for all but the simplest systems due to the formidable
nature of the many-body problem inherent in the form
of Ĥ(r,R), which describes not only the electronic ki-
netic energy, but also the complex Coulomb interactions
between the electrons and nuclei. Only for one-electron
systems, where there is no electron-electron coupling, are
exact solutions readily available.

Nevertheless, it is a hallmark of quantum chemistry
that there is a well-defined hierarchy of methods for solv-
ing eqn. (1) approximately. Indeed, given sufficient com-
putational power, a solution may be improved systemat-
ically to yield a wavefunction of arbitrary numerical ac-
curacy. The simplest method in the hierarchy is a mean-
field approach known as Hartree-Fock (HF) theory.

In HF theory, we write the electronic wavefunction for
an N -electron system as an antisymmetrized product of
molecular orbitals, φ(ri), which are wavefunctions for a
single electron under a one-electron Hamiltonian known
as the Fock operator,

f̂(r,R) = ĥ(r,R) +
N/2∑
j=1

[
2Ĵj(r)− K̂j(r)

]
(2)

The Coulomb, Ĵj(r), exchange, K̂j(r), and one-electron,

ĥ(r), operators are given by

ĥ(r,R) = −1
2
∇2 + v(r,R) (3)

Ĵj(r) =
∫
φ∗j (r

′)φj(r′)
|r− r′|

dr′ (4)

K̂j(r)φi(r) =
∫
φ∗j (r

′)φi(r′)
|r− r′|

dr′φj(r) (5)

where v(r,R) is the nuclear potential. The associated
Hartree-Fock equations,

f̂φi(r) = εiφi(r) (6)

permit a complete set of eigenfunctions. In the simplest
case where N is even, each of the N/2 orbitals corre-
sponding to the lowest eigenvalues is associated with two
electrons of opposite spin. These occupied orbitals are
used to construct the many-electron wavefunction; they
are labelled by the subscripts i, j, . . . The remaining func-
tions form the virtual orbitals and are indicated by the
subscripts a, b,

Although in some implementations, the Hartree-Fock
equations are solved numerically, the traditional ap-
proach is to expand the molecular orbitals (MOs) in a
basis of atomic orbitals, {ηα},

φp(r) =
Nb∑
α

cαpηα(r) (7)

The optimized coefficients, cαp, and orbital energies, εp,
are determined from the secular equations, which in ma-
trix notation can be written as

FC = SCε (8)

where S is the atomic orbital (AO) overlap matrix,
〈ηα|ηβ〉, F is the AO Fock matrix, 〈ηα|f̂ |ηβ〉, C is the
matrix of MO coefficients and ε is the diagonal matrix
of MO energies. These are the celebrated Roothaan-Hall
self-consistent field equations.

The Hartree-Fock solution (in a complete AO basis)
generally recovers more than 99% of the exact energy,
which is remarkable. The neglected energy is known as
the correlation energy, and its accurate and efficient re-
covery is the central challenge in quantum chemistry. In-
deed, for the purposes of predictive chemistry, we are
largely interested in energy differences which are of sim-
ilar magnitude to the correlation energy: about 0.04 Eh

(100 kJ mol−1) for two electrons in a doubly occupied
orbital.

Currently the most popular approach for solving
eqn. (1) including electron correlation, is density func-
tional theory (DFT). DFT, which bypasses explicit con-
struction of the many-body wavefunction and focuses
only on the much simpler 3-dimensional electron density
as the basic variable, is extremely useful due its favorable
balance between accuracy and efficiency.

3

Instead, we examine in this article another ap-
proach: a widely-used and computationally efficient cor-
related wavefunction-based method, known as second-
order Møller-Plesset perturbation theory (MP2)[5]. MP2
is known to produce equilibrium geometries of compa-
rable accuracy to density functional theory (DFT) and
in particular is able to capture long-range correlation ef-
fects such as the dispersion interaction. For many weakly
bound systems where DFT results are often questionable,
MP2 is essentially the least expensive and most reliable
alternative.

If HF theory can be thought of as a first-order solution
to eqn. (1), then MP2 theory is the second-order solution
within the framework of perturbation theory, where the
many-electron Hamiltonian is partitioned as

Ĥ =
∑
i

f̂(ri) + λĤ(1) (9)

We have introduced an order parameter, λ, to expand
the energy and wavefunction,

E = E(0) + λE(1) + λ2E(2) + · · · (10)

Ψ = ΨHF + λΨ(1) + λ2Ψ(2) + · · · (11)

where ΨHF is the zero-order (Hartree-Fock) wavefunc-
tion, and the zero and first-order energies are given by

E(0) =
∑
i

εi (12)

E(0) + λE(1) = 〈ΨHF|Ĥ|ΨHF〉 (13)

The second-order (MP2) correlation energy takes the
form

E(2) =
∑
ijab

(ia|jb)2 + 1
2 [(ia|jb)− (ib|ja)]2

εi + εj − εa − εb
(14)

where the MO integrals,

(ij|ab) =
∑
µνλσ

CµiCνjCλaCσb(µν|λσ) (15)

are obtained by transforming the AO integrals,

(µν|λσ) =
∫ ∫

ηµ(r1)ην(r1)ηλ(r2)ησ(r2)
|r1 − r2|

dr1dr2 (16)

One way to considerably reduce the computational cost
of MP2 calculations is to exploit the linear dependence
in the product space of atomic orbitals. This allows us to
expand products of AOs as linear combinations of atom-
centered auxiliary basis functions, P ,

ρµν(r) = ηµ(r)ην(r) ≈ ρ̃µν(r) =
∑

Cµν,PP (r) (17)

and to therefore approximate eqn.(16) in terms of only 2
and 3-index quantities as˜(µν|λσ) =

∑
P,Q

(µν|P)(P |Q)−1(Q|λσ) (18)

The idea is equivalent to an approximate insertion of the
resolution-of-the-identity (RI),

I =
∑
m

|m)(m| ≈
∑
P,Q

|P)(P |Q)−1(Q| (19)

from which the name RI-MP2 is derived.
Our work is implemented in a development version of

Q-Chem 3.1 [9], where the RI-MP2 correlation energy is
evaluated in five steps, as described elsewhere [3]. Previ-
ously we showed that steps 3 and 4, the formation of the
approximate MO integrals, were by far the most expen-
sive operations for medium to large-sized systems, and
require the matrix multiplications

˜(ia|jb) ≈
∑
Q

Bia,QBjb,Q (20)

and

Bia,Q =
∑
P

(ia|P) (P |Q)−1/2 (21)

These are the two operations we will concentrate on
accelerating in this work.

III. GPU ACCELERATION OF GEMM

In this section we first describe our cleaving algorithm
to allow matrix multiplications of arbitrary size to be ac-
celerated on the GPU (assuming sufficient CPU mem-
ory). Next, we propose two different algorithms for
the MGEMM (‘mixed-precision general matrix multiply’) li-
brary, using two different schemes to partition the matri-
ces into simpler components.

A. Cleaving GEMMs

Consider the matrix multiplication

C = AB (22)

where A is an (m×k) matrix, B is an (k×n) matrix, and
C an (m × n) matrix. We can divide A into a column
vector of r + 1 matrices

A =


A0

A1

...
Ar

 (23)

where each entry Ai is a (pi × k) matrix, and
∑r
i pi =

m. In practice, all the pi will be the same, with the
possible exception of pr, which will be an edge case. In
a similar manner, we can divide B into a row vector of
s+ 1 matrices

B =
(
B0 B1 · · · Bs

)
(24)

4

where each Bj is an (k×qj) matrix and
∑s
j qj = n. Again

all the qj will be the same, with the possible exception of
qs. We then form the outer product of these two vectors

C =


A0

A1

...
Ar

(B0 B1 · · · Bs

)
(25)

=


A0B0 A0B1 · · · A0Bs

A1B0 A1B1 A1Bs

...
. . .

ArB0 ArBs

 (26)

Each individual Cij = AiBj is an (pi × qj) matrix, and
can be computed independently of all the others. Gen-
eralizing this to a full *GEMM implementation, which in-
cludes the possibility of transposes being taken, is tedious
but straightforward.

We have implemented this approach for the GPU as a
complete replacement for *GEMM. The pi and qj values are
chosen such that each sub-multiplication fits within the
currently available GPU memory. Each multiplication
is staged through the GPU, and the results assembled
on the CPU. This process is hidden from the user code,
which simply sees a standard *GEMM call. In this way,
we are able to multiply matrices of arbitrary size using
MGEMM regardless of the available GPU memory.

B. Bitwise MGEMM algorithm

Consider the partitioning of a double-precision (DP)
floating point number, A = m ∗ 2k,

A ≈ Au +Al (27)

where Au and Al are single-precision (SP) numbers stor-
ing the uppermost nu, and the next lowest nl, significant
bits of m, respectively. Consider next the multiplication
of two scalars, A, B. Applying the bitwise partitioning,
we can approximate the full DP multiplication as four
SP multiplications,

AB ≈ AuBu +AuBl +AlBu +AlBl (28)

where the result of each SP multiplication is accumulated
in DP. For eqn. (28) to be exact, nu and nl must now
be sufficiently small such that no round-off error occurs
when storing each of the four multiplications in SP.

Anticipating the performance of eqn. (28), we can
introduce an alternative approximation, involving only
three SP multiplications,

AB ≈ AuBu +AuBl +Al(Bu +Bl) (29)

where Bu+Bl is replaced by the SP cast of B. In general,
we can expect the round-off error associated with AlBu

to be of the same order of magnitude, on average, as the
round-off error associated with Al(Bu +Bl).

Finally, we can generalize eqn. (29) for the matrix mul-
tiplication,

AB ≈ AuBu + AuBl + Al(Bu + Bl) (30)

where, for each element of X ∈ {A,B},

Xij ≈ Xu
ij +X l

ij (31)

As above, the final term may be considered as either
two separate multiplications, or as a single multiplica-
tion where Bu + Bl is pre-summed. All the multipli-
cations may be evaluated efficiently using the CUBLAS
SGEMM library routines on the GPU. The results may then
be accumulated in DP on the CPU to yield the final ap-
proximation for AB.

For eqn. (30) to be exact, in addition to the issues for
scalar multiplication, we have the additional round-off
errors arising from the multiply-add operations. Specifi-
cally, if A is a M ×K matrix and B is a K ×N matrix,
AB effectively consists of MN dot products of length K.
As K increases, or as the range of magnitudes of Xij be-
comes wider, more round-off error will occur due to the
accumulation in SP. We explore these issues more in the
benchmarks below.

C. Heterogeneous MGEMM algorithm

A different way to improve the precision is to consider
the magnitudes of the matrix elements from the out-
set. That is, we decompose the matrix multiplication,
C = AB, by splitting A and B into ‘large’ and ‘small’
components, giving

C =
(
Alarge + Asmall

) (
Blarge + Bsmall

)
= ABlarge + AlargeBsmall + AsmallBsmall (32)

where we have taken the simple approach of introducing
a cutoff value, δ, to define the split. i.e. if |Xij | > δ, the
element is considered ‘large,’ otherwise it is considered
‘small.’

The AsmallBsmall term consists entirely of ‘small’ num-
bers, and can be run with reasonable accuracy in single
precision on the GPU (using the cleaving approach de-
scribed above, if needed). The other two terms contain
‘large’ numbers, and need to be run in double precision
to achieve greater accuracy. However, since each of the
‘large’ matrices will often be sparse, these terms each
consist of a dense-sparse multiplication.

We only store the nonzero terms of the Alarge and
Blarge matrices, cutting the computational complexity
significantly. Consider

C ′ik = AijB
large
jk (33)

Only a few Blarge
jk will be nonzero, and we consider each in

turn. For a particular scalar Blarge
jk , only the kth column

5

FIG. 1: Pictorial representation of the heterogeneous MGEMM

algorithm. The bottom-left and top-right panels show the A
and B matrices and their separation into matrices with large
and small elements, given a cutoff parameter δ. The right-
bottom panel shows the components of the final AB matrix,
where the green component involves a dense matrix multipli-
cation computed with cublas-SGEMM, while the blue com-
ponents involve sparse matrix multiplications computed with
a daxpy-like algorithm (explained in the text). The blocks
follow the nomenclature shown on eqn. 32.

of C′ will be nonzero and is equal to the product of Blarge
jk

and the jth column vector of A. This nonzero column
vector C ′ik can be added to the final result, C, and the
next Blarge

jk considered. A similar process can be applied
to the AlargeBsmall term (producing row vectors of C).
Again, this approach can be generalized to a full *GEMM
implementation including transposes. Figure 1 shows a
cartoon of the heterogeneous MGEMM algorithm described
above.

IV. MGEMM BENCHMARKS

We now explore the accuracy and efficiency of the two
MGEMM algorithms for various matrix structures. Clearly,
the aim is to achieve greater accuracy than a simple
SGEMM call on the GPU, but with minimal extra com-
putational cost. Throughout this section, calculations
were made using an Intel Xeon E5472 (Harpertown) CPU
clocked at 3.0 GHz attached to an NVIDIA Tesla C1060.

A. Bitwise MGEMM benchmarks

First we examine the MGEMM algorithm described in
Sec. III B. In the following, we chose to only bench-

 0.1

 1

 10

 100

 1000

 10000

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

E
nh

an
ce

m
en

t

nu bits

N=1
N=10

N=100
N=1000

N=10000

FIG. 2: MGEMM enhancement versus the number of upper
bits, nu, (and nl = 23) for N × N matrices where N ∈
{1, 10, 100, 103, 104}. The matrices were initialized with uni-
form random numbers on the range [1, 2].

mark the implementation using 3 multiplications, as in
eqn. (29). Numerous test calculations showed that using
4 explicit multiplications gave no significant improvement
in accuracy over the scheme with 3 multiplications. Since
the latter is faster, it should obviously be favoured.

To quantify the accuracy, we found it useful to intro-
duce a new metric which we call the enhancement, χ.
Using DGEMM as the reference, if s and m are the root
mean square (RMS) errors in a matrix element for SGEMM
and MGEMM, respectively, then we define χ = s/m. Note
that when multiplying two N × N matrices, the RMS
errors are evaluated from N2 data points. For the small
matrices, therefore, the number of data points was insuf-
ficient to obtain reliable statistics. To remedy this, we re-
peated the smaller matrix multiplications (with different
random numbers) to get more data points. The number
of repeats was chosen to ensure that the standard error
of the mean was at least two orders of magnitude smaller
than the RMS error.

Figure 2 shows the enhancement for the multiplication
of random N×N matrices with varying number of upper
bits, nu, (and nl = 23). Five curves are shown for N ∈
{1, 10, 100, 103, 104}. The matrices were initialized with
numbers uniform in the range [1, 2].

The enhancement is dominated by round-off errors in
the AuBu terms. On average, these errors are of the
same order of magnitude as the SGEMM errors, thus MGEMM
will only show an improvement when these errors vanish.
We can achieve this by first remembering that a single-
precision float can only store 24 significant bits in the
mantissa. Therefore, if we only multiply floats with less
than 12 significant bits, there will be no round-off error
associated with the operation.

For N = 1, the effect is clear in Figure 2: the en-
hancement suddenly decreases for nu > 12. For N > 1,
the number of bits, nu, must be sufficiently small to also
prevent round-off errors when accumulating results from

6

100

101

102

103

104

100 101 102 103 104

E
nh

an
ce

m
en

t

N

Range=(1,2)
Range=(1,1E2)
Range=(1,1E3)
Range=(1,1E4)
Range=(1,1E5)

FIG. 3: MGEMM peak enhancement versus matrix size using
uniform random numbers on 5 ranges: [1, 2], [1, 100], [1, 103],
[1, 104], and [1, 105]. Optimal values of nu upper bits (and
nl = 23) were used for all data points.

many multiply-add operations. As N becomes larger,
this effect is exacerbated, so the optimal nu decreases.

Decreasing nu, however, introduces larger errors into
the other terms, such as AuBl. These errors are smaller
than the AuBu errors, but increase exponentially as nu
decreases. Decreasing nu is therefore favourable until
the AuBu errors vanish, but there is no advantage to
decreasing nu further. In general, the combination of
these effects means that the peak enhancement decreases
with N .

Figure 3 explores the peak enhancement in more de-
tail. Each curve uses the optimal nu values and initializes
A and B with uniform random numbers on one of 5 in-
tervals: [1,W] where W ∈ {2, 100, 103, 104, 105}.

For W = 2, the enhancement decreases from O(103) to
O(101) as N increases, for reasons discussed above. For
errors corresponding to a classical random walk, we’d
expect χ to decrease as

√
N , which implies a gradient

of 1/2 in the log-log plot; this is approximately true for
W = 2. For W > 2, however, the gradient in the log-
log plot is reduced, and the enhancements are almost 2
orders of magnitude smaller for all N > 1. In summary,
bitwise MGEMM is clearly most effective in a few special
cases, such as for very small matrices, or when all the
matrix elements are the same order of magnitude.

Table I highlights the issues regarding speedup when
running bitwise MGEMM on the GPU compared to DGEMM
on the CPU for different N . In addition, we catalogue the
optimal values of nu, as a function of N and W (the range
of random numbers [1,W].) As expected, the speedup in-
creases as N increases, but unfortunately, bitwise MGEMM
is only faster for the very largest matrices. The overheads
of using the GPU, such as data transfer costs and memory
access latencies, are well known; for N < 1000 the accel-
eration can be marginal (see also Figure 4). In addition,
in our simple implementation of eqn. (29), there is also a
significant overhead from splitting and processing the A

Optimal nu

N Speedup W = 2 W = 100 W = 103 W = 104 W = 105

1 0.01 12 12 12 12 12

10 0.01 10 6 6 6 6

100 0.07 9 5 4 4 4

1000 0.52 7 4 4 4 4

10000 2.87 5 3 3 3 3

TABLE I: Speedups relative to CPU DGEMM and optimal num-
ber of upper bits, nu, when using bitwise MGEMM for various
matrix sizes with random elements on five intervals [1,W].

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2000 4000 6000 8000 10000 12000
S

pe
ed

-u
p

re
la

tiv
e

to
 C

P
U

 D
G

E
M

M
Matrix size

MGEMM fSalt = 10-2

MGEMM fSalt = 10-3

MGEMM fSalt = 10-4

SGEMM (Cleaver)
DGEMM (Cleaver)

FIG. 4: Speedup for various *GEMM calls as a function of ma-
trix size. Most elements were in the range [−1, 1], with the
‘salt’ values in the range [90, 110]. Times are scaled relative
to running DGEMM on the CPU.

and B matrices. Eqn. (30) implies three matrix multipli-
cations, which are independent of each other. Therefore,
it has not escaped our attention that this scheme is paral-
lelizable. In summary, we see up to 3 times speedup over
CPU DGEMM for large N , but a slowdown for N ≤ 1000.

B. Heterogeneous MGEMM benchmarks

We now benchmark the second MGEMM algorithm, de-
scribed in Sec. III C. Figure 4 shows the speedup for a
variety of *GEMM calls on the GPU with respect to the
size, N , of a N × N matrix, relative to the time taken
for the corresponding DGEMM call on the CPU.

The input matrices were initialized with uniform ran-
dom values in the range [−1, 1] and then ‘salted’ with
a fraction fsalt of random larger values in the range
[90, 110]. Both SGEMM and DGEMM were timed using the
GPU (the latter being possible for modern cards, and
included for reference). Three MGEMM runs were tested,
for fsalt = 10−2, 10−3 and 10−4. The size of the cutoff
parameter δ was chosen such that all the salted elements
were considered ‘large’. All timings were averaged over
ten runs.

Running CUBLAS SGEMM is approximately 17.1 times

7

10-7

10-6

10-5

10-4

10-3

10-2

10-1

 1000 3000 5000 7000 9000 11000

R
M

S
 E

rr
or

 r
el

at
iv

e
to

 C
P

U
 D

G
E

M
M

Matrix size

MGEMM fSalt = 10-2 salt = 102

MGEMM fSalt = 10-3 salt = 102

MGEMM fSalt = 10-4 salt = 102

MGEMM fSalt = 10-2 salt = 104

MGEMM fSalt = 10-3 salt = 104

MGEMM fSalt = 10-4 salt = 104

SGEMM (Cleaver)

FIG. 5: RMS error in a single element for various GEMM calls
as a function of matrix size compared to CPU DGEMM. Back-
ground elements were in the range [−1, 1], with the ‘salt’ val-
ues in the range [90, 110] or [9990, 10010].

faster than running DGEMM on the CPU for a matrix of
size 10048 × 10048, and is even faster for larger matri-
ces. This represents an upper bound for the speedups we
can hope to obtain with MGEMM for such matrices. Lever-
aging the GPU for small matrices is not effective, due
to well-known overheads such as memory transfer and
access latencies.

In contrast, the MGEMM speedups are strongly depen-
dent on the fraction fsalt, which determines how much of
the calculation is done in double-precision on the CPU.
For fsalt = 10−4, the speedups are approximately 10x,
but for fsalt = 10−3, speedups of approximately 2x rela-
tive to CPU DGEMM are observed. Indeed, for fsalt = 10−2,
MGEMM is actually slower than CPU DGEMM.

Next we consider the accuracy enhancement when us-
ing MGEMM compared to SGEMM. In Figure 5, we show the
root mean square (RMS) errors of each matrix element
relative to CPU DGEMM for different matrix sizes. As
above, all the matrices were initialized with uniform ran-
dom values in the range [−1, 1], but now the salting sizes
were grouped into two ranges: [90, 110] and [9990, 10010].
Results are shown for SGEMM and MGEMM for various salting
fractions.

As expected, SGEMM produces substantial errors. With
a fraction of salted values, fsalt = 1%, in the range
[90, 110], the errors are of O(0.01) for the medium-sized
matrices. In contrast, the errors are more than 2 or-
ders of magnitude smaller when using MGEMM, and are
the same regardless of the fraction or size of the salted
elements. The limiting MGEMM errors are the same as the
SGEMM errors for a pair of unsalted random matrices on
[−1, 1] because the MGEMM algorithm guarantees that all
the salted contributions are computed on the CPU. In-
deed, if the salts were larger or more numerous, the SGEMM
errors would be even larger, but the MGEMM errors would
be unchanged. This is in stark contrast to the behaviour
of the bitwise MGEMM algorithm.

C. Comparison of MGEMM schemes

The behaviour of the two MGEMM algorithms is very dif-
ferent. First, the speed of the bitwise MGEMM depends
only on the size of N , not on the elements of A or B.
Moreover, it is only 3 times faster than CPU DGEMM in
the best case. In contrast, the speed of the heteroge-
neous MGEMM algorithm strongly depends on the fraction
of ‘large’ elements. While it is up to 10 times faster than
CPU DGEMM for a 0.01% fraction of large elements, for a
1.0% fraction, it is actually slower.

Concerning the accuracy of the two algorithms, con-
sider the following cases. First, suppose the elements of
A and B are random numbers on the interval [1, 2]. Mean
errors produced by bitwise MGEMM are approximately 2 to
3 orders of magnitude smaller than SGEMM, depending on
the matrix size (c.f. Figure 2). In contrast, it is obvious
that no value of δ can be chosen to make the heteroge-
neous MGEMM useful. At the other extreme, consider two
matrices with a vast majority of elements in the range
[0, 1], and a small minority of scattered elements of un-
limited size. Now, the heterogeneous MGEMM will be ex-
tremely useful, while the bitwise algorithm is likely to
be quite ineffective due to the problems previously ex-
plained.

For this research, we are interested in accelerating
quantum chemistry. It turns out that the relevant A and
B for the RI-MP2 method have large N and very large
W , suggesting that the heterogeneous algorithm should
be the method of choice.

V. RI-MP2 ACCELERATION BENCHMARKS

We now show how the tools described above can ac-
celerate full RI-MP2 quantum chemistry calculations on
real molecules. To achieve this, we accelerate the evalu-
ation of eqn. (20) and eqn. (21) using MGEMM running on
a GPU. We compare to the use of standard DGEMM BLAS
on the CPU, and CUBLAS SGEMM on the GPU. For all
these benchmarks, we used an AMD Athlon 5600+ CPU
clocked at 2.8 GHz, combined with an NVIDIA Tesla
C1060 GPU with 4 GiB of RAM. The matrix cleaver and
MGEMM were implemented in a modified version of the Q-
Chem 3.1 RI-MP2 code described elsewhere [3].

As anticipated in the previous section, the bitwise
MGEMM library does not give useful improvements com-
pared to a standard CPU DGEMM. In the evaluation of
eqn. (20), we observed no significant improvement in ac-
curacy using bitwise MGEMM, and an enhancement of only
2.5 for eqn. (21). Thus we decided not to study the use of
bitwise MGEMM further here. The results of applying the
heterogeneous MGEMM algorithm (just MGEMM, from now
on) were much more encouraging.

For our test systems we chose a set of linear alka-
nes (C8H18, C16H34, C24H50, C32H66, C40H82) as
well as two molecules of pharmaceutical interest, the
anti-cancer drugs taxol (C47H51NO14) and valinomycin

8

(C54H90N6O18). We used the cc-pVDZ and cc-pVTZ [10]
atomic orbital basis sets throughout.

Speedup SGEMM energy error

Molecule SGEMM DGEMM (kcal mol−1)

C8H18 2.1 1.9 -0.05616

C16H34 4.5 3.7 -0.12113

C24H50 6.9 5.2 -0.62661

C32H66 9.0 6.4 -0.75981

C40H82 11.1 7.2 -1.12150

Taxol 11.3 7.1 -6.26276

Valinomycin 13.8 7.8 -9.99340

TABLE II: Speedups using CUBLAS SGEMM and DGEMM and to-
tal energy errors relative to CPU DGEMM for various molecules
in a cc-pVDZ basis.

First, in Table II we benchmark the reference case
of using either CUBLAS SGEMM or DGEMM for each test
molecule using the double-ζ basis set. The table shows
the speedup in computing the RI-MP2 correlation energy
and the error relative to a standard CPU calculation (the
DGEMM errors are negligible). The speedups and SGEMM er-
rors are greater for the larger molecules, with the largest
speedups observed for valinomycin: 13.8x and 7.8x, using
SGEMM and DGEMM, respectively. However, while CUBLAS
DGEMM gives essentially no loss of accuracy, the SGEMM er-
ror is approximately -10.0 kcal mol−1, which is well be-
yond what is generally accepted as chemical accuracy.

Quantum chemistry generally aims to achieve a target
accuracy of 1.0 kcal mol−1. In Table III, we explore the
performance of MGEMM using a constant cutoff value of
δ=1.0 to try and reduce the SGEMM errors in Table II.
The results show speedups and total energy errors for
each molecule in both the double-ζ and triple-ζ basis sets.
In this particular case, we have limited the GPU to use
only 256 MiB of RAM to mimic the capability of older
cards and emphasize the use of the MGEMM cleaver. This
will naturally result in a loss of speedup compared to
utilizing a larger GPU memory. In the case of taxol the
reduction is approximately 20%.

Speedup Energy error

(kcal mol−1)

Molecule Double-ζ Triple-ζ Double-ζ Triple-ζ

C8H18 1.9 2.7 -0.01249 -0.03488

C16H34 3.8 5.6 -0.00704 -0.04209

C24H50 5.8 8.2 -0.14011 -0.33553

C32H66 7.9 9.2 -0.08111 -0.29447

C40H82 9.4 10.0 -0.13713 -0.51186

Taxol 9.3 10.0 -0.50110 -1.80076

Valinomycin 10.1 - -1.16363 -

TABLE III: MGEMM speedups and total energy errors with re-
spect to CPU DGEMM for various molecules in a cc-pVDZ and
cc-pVTZ basis.

Looking at Table III, the trends are the same as in
Table II, but the MGEMM errors are approximately an or-
der of magnitude less than the SGEMM errors (for the
larger molecules). For valinomycin in the cc-pVDZ ba-
sis, the SGEMM speedup is reduced from 13.8x to 10.1x
using MGEMM, but the error in the total energy is also re-
duced from -10.0 kcal mol−1 to -1.2 kcal mol−1, which
is now very close to chemical accuracy. Moreover, while
CUBLAS DGEMM clearly has the advantage (when avail-
able) of high accuracy, if -1.2 kcal mol−1 is deemed an
acceptable accuracy, MGEMM could be favoured since the
DGEMM speedup is only 7.8x compared to 10.1x. Note that
the errors are larger for the triple-ζ basis simply because
it requires more computation, which leads to greater er-
ror accumulation; this is a general issue not only for
higher quality basis sets, but also for larger molecules
using lower quality basis sets.

VI. CONCLUSION

We have demonstrated how computational quantum
chemistry can benefit from leveraging the power of graph-
ical processing units in a very simple way. Our new tools
are easy to incorporate into existing legacy codes where
matrix multiplications involve a substantial fraction of
the overall computational cost. Clearly, more efficient
use of the GPU can be achieved in special cases by devot-
ing time to rewriting and redesigning the algorithms for
GPU architectures. However, this is often not a feasible
option in practice, especially for a mature discipline such
as quantum chemistry where we typically employ large
program suites representing years or decades of coding
effort.

In summary, our contribution has been the develop-
ment, testing and benchmarking of a general black-box
approach for the efficient GPU acceleration of matrix-
matrix multiplications. In particular, our new library,
which we call MGEMM [11], works for matrices of arbitrary
size, even if too large for the whole computation to be
held in the GPU’s onboard memory. Moreover, while as-
suming only single-precision operations to be available on
the GPU, we have demonstrated two algorithms whereby
orders of magnitude greater accuracy can be achieved
within the context of a mixed-precision approach.

To illustrate the utility of MGEMM for quantum chem-
istry, we combined it with the Q-Chem 3.1 [9] program
package and computed the MP2 correlation energy of
the 168-atom valinomycin molecule in a cc-pVDZ basis
set. Using SGEMM, MGEMM and (GPU) DGEMM, we observed
speedups of 13.8x, 10.1x and 7.8x, respectively, while
MGEMM was an order of magnitude more accurate than
SGEMM, thus achieving ‘chemical accuracy’.

Traditionally, GPUs have only had single-precision
(SP) support and it remains true that the vast majority of
GPU cards worldwide currently do not have double pre-
cision (DP) capability. Indeed, we are interested in using
commodity GPUs within a grid-computing environment,

9

such as that promoted by the Berkeley Open Infrastruc-
ture for Network Computing (BOINC) [12]. GPUs in a
typical BOINC client do not have DP support, yet com-
prise a formidable resource worldwide.

Nevertheless, DP devices and co-processors are now
available. Moreover, the trend seems to be towards the
release of more advanced DP support in the future, such
as the next-generation GPU from NVIDIA, currently
code-named Fermi. Fermi will reportedly have a DP
peak performance which is only a factor of 2 less than
the SP performance. (For NVIDIA’s C1060, the ratio is
approximately 12).

It is therefore valid to question the potential of mixed-
precision algorithms for next-generation GPU architec-
tures. We believe this is an open issue. For example,
practical calculations on GPUs are very often bound by
memory bandwidth, rather than raw operation count.
While DP cards are getting faster, this I/O bottleneck
is likely to remain. In these cases, the transfer and pro-
cessing of only SP data could effectively double the per-

formance compared to naive DP calculations. Overall,
we believe that mixed-precision algorithms could remain
important for applications were the highest performance
is a priority.

VII. ACKNOWLEDGMENTS

The authors would like to thank L. Vogt for help-
ful discussions and her contributions to the numerical
benchmarks. Financial support was provided by the NSF
“Cyber-Enabled Discoveries and Innovations” (CDI) Ini-
tiative Award PHY-0835713, as well as NVIDIA. R.O.A.
wishes to thank CONACyT and Fundación Harvard en
México for additional financial support. Technical sup-
port by the High Performance Technical Computing Cen-
ter at the Faculty of Arts and Sciences of Harvard Uni-
versity and the National Nanotechnology Infrastructure
Network Computation project was appreciated.

[1] K. Yasuda, J. Comput. Chem. 29, 334 (2008), URL
http://dx.doi.org.ezp-prod1.hul.harvard.edu/10.

1002/jcc.20779.
[2] I. S. Ufimtsev and T. J. Martinez, J. Chem. The-

ory Comput. 4, 222 (2008), ISSN 1549-9618, URL
http://pubs3.acs.org/acs/journals/doilookup?in\

_doi=10.1021/ct700268q.
[3] L. Vogt, R. Olivares-Amaya, S. Kermes, Y. Shao,

C. Amador-Bedolla, and A. Aspuru-Guzik, J. Phys.
Chem. A 112, 20497 (2008), ISSN 1089-5639, URL
http://pubs3.acs.org/acs/journals/doilookup?in\

_doi=10.1021/jp0776762.
[4] R. Olivares-Amaya, M. A. Watson, R. G. Edgar, L. Vogt,

Y. Shao, and A. Aspuru-Guzik, Journal of Chemical
Theory and Computation p. 091214115953059 (2009),
ISSN 1549-9618, URL http://pubs.acs.org/doi/abs/

10.1021/ct900543q.
[5] T. Helgaker, P. Jørgensen, and J. Olsen, Molecular

Electronic-Structure Theory (Wiley, Chichester, 2000).

[6] M. Feyereisen, G. Fitzgerald, and A. Komornicki, Chem.
Phys. Lett. 208, 359 (1993).

[7] X. Li, J. Demmel, D. Bailey, G. Henry, Y. Hida, J. Iskan-
dar, W. Kahan, S. Kang, A. Kapur, M. Martin, et al.,
ACM Transactions on Mathematical Software 28, 152
(2002).

[8] Y. Hida, X. S. Li, and D. H. Bailey, in ARITH ’01:
Proceedings of the 15th IEEE Symposium on Computer
Arithmetic (IEEE Computer Society, Washington, DC,
USA, 2001), p. 155.

[9] Y. Shao, L. Fusti-Molnar, Y. Jung, J. Kussmann,
C. Ochsenfeld, S. T. Brown, A. T. B. Gilbert, L. V.
Slipchenko, S. V. Levchenko, D. P. O’Neill, et al., Phys.
Chem. Chem. Phys. 8, 3172 (2006).

[10] T. Dunning Jr., J. Chem. Phys. 90, 1007 (1989).
[11] scigpu-gemm v0.8, http://scigpu.org.
[12] J. Bohannon, Science 308, 310 (2005).

