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Abstract

We study cosmological solutions in the low-energy effective heterotic string theory,

which is the Einstein gravity with Gauss-Bonnet term and the dilaton. We show that

the field equations are cast into an autonomous system for flat internal and external

spaces, and derive all the fixed points in the system. We also examine the time evolution

of the solutions and whether the solutions can give (transient) accelerated expansion

of our four-dimensional space in the Einstein frame.
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§1. Introduction

The recent cosmological observations have confirmed the existence of the early inflation-

ary epoch and the accelerated expansion of the present universe.1) An important problem is

then to derive such a model from fundamental theories of particle physics. The most promis-

ing candidates for such theories are the ten-dimensional superstrings or eleven-dimensional

M-theory, which are hoped to give models of accelerated expansion of the universe upon

compactification to four dimensions. There are many attempts to derive such models, but

most of them assume some additional matters or need special settings. From the viewpoint

of the fundamental theories, however, it is desirable if such models are obtained without

making special assumptions.

It has been shown that a model with certain period of accelerated expansion can be

obtained from the higher-dimensional vacuum Einstein equation if one assumes a time-

dependent hyperbolic internal space2) and that this class of models is obtained3) from what

are known as S-branes4), 5) in the limit of vanishing flux of three-form fields (see also Ref. 6)).

For other attempts at inflation in the context of string theories, see, for instance, Refs. 7)–9).

Unfortunately this class of models do not give sufficient inflation necessary to resolve the

cosmological problems.

On the other hand, it has been known that higher order corrections can give rise to

inflationary solutions.10) This is a very desirable setting since there are terms of higher

orders in the curvature to the lowest effective supergravity action coming from superstrings

or M-theory.11)–14) The simplest such correction is the Gauss-Bonnet (GB) term in the low-

energy effective heterotic string. (We ignore other gauge fields and forms for simplicity.) It

is thus important to examine what kind of time-dependent solutions are possible in these

theories.

There are many works discussing cosmology with the GB correction in four and higher

dimensions (see, for instance, 15)–19)). For example, it was shown that there are two expo-

nentially expanding solutions in the higher-dimensional space, which may be called gener-

alized de Sitter solutions since the size of the internal space also depends on time.15) Note

that this does not mean that the solutions gives accelerating expansion in four dimensions.
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Another interesting claim is that it is possible to obtain an inflationary solutions if the coef-

ficient of the Gauss-Bonnet term is negative,17) which is not the case in the effective theory

of the heterotic string, and hence may not be relevant in our consideration. Moreover most

of the work considers pure GB term without dilaton or assumes constant dilaton, which is

not the effective theory of the heterotic string, and does not discuss cosmological solutions

with dynamical dilaton in higher dimensions. It is thus important to analyze the system

including the dynamical dilatons. Some attempt to obtain inflationary solutions in M theory

with higher order quantum corrections has also been made.20)

Recently a more interesting approach is considered for Einstein theory with some ad-

ditional scalars.21), 22) In this dynamical system method, one considers the solution space

restricted by the constraint equation resulting from a component of the Einstein equation.

If the field equations are written as an autonomous system, we can find fixed points in this

space. Then all possible solutions are expressed as trajectories between these fixed points

in the solution space. This is a very powerful method to examine possible solutions which

is applicable even if exact solutions are not available. In particular, it is possible to find

solutions with (transient) accelerating expansion which may be relevant to cosmology. In

fact, the existence of an eternally accelerating solution, first found in Ref. 8), is established

for hyperbolic internal and external spaces without giving explicit solution.21)

In this paper, we consider cosmological solutions with a dilaton field and the GB cor-

rection from heterotic string theory by extending the above dynamical system method. We

find that the field equations may be cast into an autonomous system for flat internal and

external spaces for both theories with and without dynamical dilaton. We derive all the fixed

points and analyze their stability in the system. We also examine the time evolution of the

solutions and investigate whether the solutions can give (transient) accelerated expansion of

our four-dimensional space in the Einstein frame.

This paper is organized as follows. In § 2, we first write down the action of the Einstein

and GB theory, and our metric for D-dimensional space. We then summarize the field

equations. In § 3, we analyze the theory without the dilaton and find the solution space and

accelerating solutions. We show that the field equations become an autonomous system, and

find fixed points. We can see how the solutions evolve in time by looking at the solution
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space and the flow. We find that there is one fixed point corresponding to expanding solution

with acceleration, but it gives a singular super-inflation. In § 4, we extend the analysis to

the theory with the dilaton. At first sight, the field equations cannot be reduced to an

autonomous system, but judicious choice of the time variable enables us to do it. We

then discuss their flow and properties of the fixed points of our system. § 5 is devoted to

conclusions.

§2. Field equations

We consider the low-energy effective action for the heterotic string:

S =
1

2κ2
D

∫

dDx
√

−g̃ e−2φ̃
[

R̃ + 4(∂µφ̃)
2 + α2R̃

2
GB

]

, (2.1)

where κ2
D is a D-dimensional gravitational constant, φ̃ is a dilaton field, α2 = α′/8 is a

numerical coefficient given in terms of the Regge slope parameter, and R̃2
GB = R̃µνρσR̃

µνρσ −
4R̃µνR̃

µν+ R̃2 is the GB correction. In the Einstein frame the dilaton φ̃ is minimally coupled

to the metric and has a canonical kinetic term

S =
1

2κ2
D

∫

dDx
√
−g

[

R− 1

2
(∂µφ)

2 + α2e
−γφR2

GB

]

, (2.2)

where gµν = e−4φ̃/(D−2)g̃µν , φ =
√

8/(D − 2) φ̃ and γ =
√

2/(D − 2). Let us consider the

metric in D-dimensional space

ds2D = −e2u0(t)dt2 + e2u1(t)ds2p + e2u2(t)ds2q , (2.3)

where D = 1 + p + q. The external p- and internal q-dimensional spaces (ds2p and ds2q) are

chosen to be maximally symmetric with the signature of the curvature given by σp and σq,

respectively. Though we are mainly concerned with flat internal and external spaces in this

paper, it may be useful to give field equations for more general case.

We find that the Riemann tensors are given by

Rt
itj = e−2u0Xgij ,

Rt
atb = e−2u0Y gab ,

Ri
jkl = e−2u0Ap(g

i
kgjl − gilgjk) ,
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Ri
ajb = e−2u0u̇1u̇2g

i
jgab ,

Ra
bcd = e−2u0Aq(g

a
cgbd − gadgbc) , (2.4)

where i, j and a, b run over p- and q-dimensional spaces, respectively, and

Ap ≡ u̇2
1 + σpe

2(u0−u1), Aq ≡ u̇2
2 + σqe

2(u0−u2),

X ≡ ü1 − u̇0u̇1 + u̇2
1, Y ≡ ü2 − u̇0u̇2 + u̇2

2 . (2.5)

The GB term is given by

R2
GB = e−4u0

{

p3A
2
p + 2p1q1ApAq + q3A

2
q + 4u̇1u̇2(p2qAp + pq2Aq) + 4p1q1u̇

2
1u̇

2
2

+ 4pX [(p− 1)2Ap + q1Aq + 2(p− 1)qu̇1u̇2]

+ 4qY [p1Ap + (q − 1)2Aq + 2p(q − 1)u̇1u̇2]
}

, (2.6)

where we have defined

(p−m)n ≡ (p−m)(p−m− 1)(p−m− 2) · · · (p− n) ,

(q −m)n ≡ (q −m)(q −m− 1)(q −m− 2) · · · (q − n) , (2.7)

Multiplying (2.6) by
√−ge−γφ = eu0+pu1+qu2−γφ and making partial integration, one finds

that the action reduces to the following (up to an overall factor):

(1) Einstein-Hilbert action

L1 = e−u0+pu1+qu2

[

p1Ap + q1Aq − 2(p1u̇1
2 + pqu̇1u̇2 + q1u̇2

2) +
1

2
φ̇2
]

. (2.8)

(2) GB action

L2 = e−3u0+pu1+qu2−γφ
{

p3Ap
2 + 2p1q1AqAp + q3Aq

2

− 4Ap(p3u̇1
2 + p2qu̇1u̇2 + p1q1u̇2

2)− 4Aq(p1q1u̇1
2 + pq2u̇1u̇2 + q3u̇2

2)

+
4

3
(2p3u̇1

4 + 2p2qu̇1
3u̇2 + 3p1q1u̇1

2u̇2
2 + 2pq2u̇1u̇2

3 + 2q3u̇2
4)

+ 4γφ̇
[

(p2u̇1 + p1qu̇2)Ap + (pq1u̇1 + q2u̇2)Aq −
2

3

(

p2u̇
3
1 + q2u̇

3
2

)]}

. (2.9)

If we set φ = 0, this agrees with the results in Ref. 20).
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Now the field equations are

F ≡ F1 + F2 = 0 , (2.10)

F (p) ≡ f
(p)
1 + f

(p)
2 +X

(

g
(p)
1 + g

(p)
2

)

+ Y
(

h
(p)
1 + h

(p)
2

)

− Z i(p) = 0 , (2.11)

F (q) ≡ f
(q)
1 + f

(q)
2 + Y

(

g
(q)
1 + g

(q)
2

)

+X
(

h
(q)
1 + h

(q)
2

)

− Z i(q) = 0 , (2.12)

Fφ ≡ Z + α2γe
2u0−γφR2

GB = 0 , (2.13)

where R2
GB is given in Eq. (2.6) and

Z = φ̈+ (−u̇0 + pu̇1 + qu̇2)φ̇ ,

F1 = p1Ap + q1Aq + 2pqu̇1u̇2 −
1

2
φ̇2 ,

f
(p)
1 = (p− 1)2Ap + q1Aq + 2(p− 1)qu̇1u̇2 +

1

2
φ̇2 ,

f
(q)
1 = p1Ap + (q − 1)2Aq + 2p(q − 1)u̇1u̇2 +

1

2
φ̇2 ,

g
(p)
1 = 2(p− 1) ,

g
(q)
1 = 2(q − 1) ,

h
(p)
1 = 2q ,

h
(q)
1 = 2p , (2.14)

and

F2 = α2e
−2u0−γφ

{

p3A
2
p + 2p1q1ApAq + q3A

2
q + 4(p2qAp + pq2Aq + p1q1u̇1u̇2)u̇1u̇2

− 4γφ̇
[

(p2u̇1 + p1qu̇2)Ap + (pq1u̇1 + q2u̇2)Aq + 2(p1qu̇1 + pq1u̇2)u̇1u̇2

]

}

,

f
(p)
2 = α2e

−2u0−γφ
{

(p− 1)4A
2
p + 2(p− 1)2q1ApAq + q3A

2
q

+ 4 [(p− 1)3qAp + (p− 1)q2Aq + (p− 1)2q1u̇1u̇2] u̇1u̇2

+ 4γφ̇
[

((p− 1)2Ap + q1Aq + 2(p− 1)qu̇1u̇2)(u̇1 + γφ̇)

+ 2((p− 1)2u̇1Ap + q1u̇2Aq + (p− 1)qu̇1u̇2(u̇1 + u̇2))
]

}

,

f
(q)
2 = α2e

−2u0−γφ
{

p3A
2
p + 2p1(q − 1)2ApAq + (q − 1)4A

2
q

+ 4 [p2(q − 1)Ap + p(q − 1)3Aq + p1(q − 1)2u̇1u̇2] u̇1u̇2

+ 4γφ̇
[

(p1Ap + (q − 1)2Aq + 2p(q − 1)u̇1u̇2)(u̇2 + γφ̇)

+ 2(p1u̇1Ap + (q − 1)2u̇2Aq + p(q − 1)u̇1u̇2(u̇1 + u̇2))
]

}

,
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g
(p)
2 = 4(p− 1)α2e

−2u0−γφ
[

(p− 2)3Ap + q1Aq + 2(p− 2)qu̇1u̇2 − 2γ((p− 2)u̇1 + qu̇2)φ̇
]

,

g
(q)
2 = 4(q − 1)α2e

−2u0−γφ
[

p1Ap + (q − 2)3Aq + 2p(q − 2)u̇1u̇2 − 2γ(pu̇1 + (q − 2)u̇2)φ̇
]

,

h
(p)
2 = 4qα2e

−2u0−γφ
[

(p− 1)2Ap + (q − 1)2Aq + 2(p− 1)(q − 1)u̇1u̇2

− 2γ((p− 1)u̇1 + (q − 1)u̇2)φ̇
]

,

h
(q)
2 = 4pα2e

−2u0−γφ
[

(p− 1)2Ap + (q − 1)2Aq + 2(p− 1)(q − 1)u̇1u̇2

− 2γ((p− 1)u̇1 + (q − 1)u̇2)φ̇
]

,

i(p) = α2e
−2u0−γφ4γ

[

(p− 1)2Ap + q1Aq + 2(p− 1)qu̇1u̇2

]

,

i(q) = α2e
−2u0−γφ4γ

[

p1Ap + (q − 1)2Aq + 2p(q − 1)u̇1u̇2

]

, (2.15)

The basic Eqs. (2.10) – (2.13) are not all independent. They satisfy

Ḟ + (pu̇1 + qu̇2 − 2u̇0)F = pu̇1F
(p) + qu̇2F

(q) − φ̇Fφ . (2.16)

We are now going to examine cosmological solutions in this system. In this paper, we only

consider flat internal and external spaces, i.e., σp = σq = 0. Henceforth, we set p = 3 and

q = 6 though we write formulae for more general cases as much as possible.

§3. Solutions in Einstein and Gauss-Bonnet theory

In this section, let us first consider the theory without dilaton (or the case when dilaton

is constant) as a consistency check. Namely we set φ = 0 by hand to investigate the system

without the dilaton field, and study possible cosmological solutions in Einstein and Gauss-

Bonnet theory without dilaton. This is the system examined in Ref. 15), but the question

whether the accelerating expansion occurs or not in the four-dimensional spacetime was not

examined, and we clarify this point by making systematic analysis of the solutions by the

dynamical system method. We can set u0 = 0 by using time-reparametrization invariance.

It is also possible to put α2 = 1 by choosing a suitable unit of time.20)

Equation (2.10) is a constraint equation, and any cosmological solutions must satisfy

this. In this sense, this gives the space in which all the possible solutions live, which we call

solution space. This is depicted in Fig. 1 in (u̇1, u̇2)-plane.

Solving Eqs. (2.11) and (2.12) for ü1 and ü2, we find that the field equations (2.11) and
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-4 -2 2 4

-2

-1

1

2

-4 -2 2 4

-2

-1

1

2

u̇1

u̇2

Fig. 1. Solution space and flow. The dots indicate fixed points.

(2.12) become an autonomous system for u̇1 and u̇2. We then find the five fixed points of

these variables for p = 3, q = 6 in the unit of α2 = 1 are given by

(u̇1, u̇2) = (0, 0), (±0.88603,∓0.13845), (±0.48296,∓0.34141), (3.1)

which are also shown in Fig. 1. We can also derive the flow of the solutions along the time

lapse between the fixed points as shown in the figure. Due to the time-reversal symmetry of

the system, the figure is symmetric under π rotation (with the reversed time flow). All this

agrees with the results in Ref. 15).

Our cosmological model is higher-dimensional, and there are two kinds of frames that we

can take to discuss cosmologies, the original frame and the Einstein frame in four dimensions.

Note that this Einstein frame is different from the one defined in Eq. (2.2) with respect to the

dilaton. Instead it is a new frame which is defined to eliminate the scalar fields which appear

from the internal space by Kaluza-Klein compactification to the external space. This is the

frame in which the Newton constant is really constant. We must determine which frame is

important for a successful inflationary scenario. Since flatness and horizon problems should

be explained in our four-dimensional spacetime, that is, in the Einstein frame, we should

require a successful inflation in the Einstein frame.

Now let us examine if there is any region where the accelerating expansion is realised in

the four-dimensional Einstein frame. The Einstein frame is obtained by

ds2D = e−
2q

p−1
u2ds2E + e2u2ds2q. (3.2)
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So

ds2E = e
2q

p−1
u2(−dt2 + e2u1ds2p)

= −dτ 2 + a2(τ)ds2p, (3.3)

where we have defined the cosmic time τ and scale factor by

dτ

dt
= e

q

p−1
u2, a(τ) = eu1+

q

p−1
u2 . (3.4)

For p = 3, q = 6, the condition for expansion is

da

dτ
=

dt

dτ

da

dt
= (u̇1 + 3u̇2)e

u1 > 0, (3.5)

and the condition for accelerated expansion is

d2a

dτ 2
=

dt

dτ

d

dt

(

(u̇1 + 3u̇2)e
u1

)

= {ü1 + 3ü2 + (u̇1 + 3u̇2)u̇1}eu1−3u2 > 0. (3.6)

Substituting ü1 and ü2 into (3.6), we find that the accelerating regions are those shown in

Fig. 2, and the solution space in these regions are depicted in Fig. 3.

We have also examined the stability of the fixed points. We find that the fixed points,

(0, 0), corresponding to the flat Minkowski space, (−0.88603, 0.13845) and (0.48296,−0.34141),

corresponding to a contracting universe, are unstable. The fixed points (−0.48296, 0.34141)

and (0.88603,−0.13845) are stable. Among these, only the last one gives accelerating ex-

pansion. The behavior of the scale factor is like a ∝ |τ |−1.13 for negative τ . This is what is

called super-inflation and exhibits singularity near τ ∼ 0. There is a solution flowing into

this fixed point which exhibits accelerating expansion for its whole evolution. Such a super-

inflation may also arise in phantom cosmological models.23) This is also called a Big Rip

and should be avoided.20) However, there are several (transient) accelerating cosmological

solutions. For example, there is a solution coming out of the flat Minkowski space flowing

into the direction of positive u̇1 and negative u̇2 with transient acceleration. Whether this

solution gives viable cosmological solution or not remains to be examined.
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Fig. 2. accelerating region in the solution space.
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Fig. 3. accelerating solutions.

§4. Solutions with a dynamical dilaton

In this section, we extend our analysis to the more interesting theory with a dynamical

dilaton with p = 3 and q = 6, which appears as a low-energy effective theory of the heterotic

string. We note again that u0 = 0 can be chosen by time reparametrization, and the choice

of a suitable unit of time can be used to set α2 = 1.20)

In this system, there are exponential factors of the dilaton in the field equations (2.10) –

(2.13), and this appears to prevent us from writing them as an autonomous system. However,
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if we introduce new time variable T by

∂t = eφ/4∂T , i.e.
dT

dt
= eφ/4, (4.1)

then it is possible to rewrite them as an autonomous system. In what follows, derivatives

with respect to T will be denoted by the prime ′. Then the field equations (2.10) – (2.13)

remain the same if we make the following replacement in Eqs. (2.5), (2.14) and (2.15):

ü1 → u′′

1 +
1

4
u′

1φ
′, ü2 → u′′

2 +
1

4
u′

2φ
′, φ̈ → φ′′ +

1

4
(φ′)2, (4.2)

and remove the exponential factors in Eqs. (2.13) and (2.15).

This is again an autonomous system for x ≡ u′

1, y ≡ u′

2 and z ≡ φ′. Among these,

the constraint (2.10) gives the solution space. In this case, because we have 3 variables

x, y and z, the space consists of 2-dimensional surfaces embedded in 3 dimensions. The

surfaces have the shape of hyperbolic surfaces. Since it does not seem to be so instructive

to draw the surface in 3 dimensions, we show the shapes of slices of the solution space at

φ′ = 2, 1, 0.7, 0.585906, 0.3, 0 in Figs. 4 – 9, respectively. We see that reconnections of the

surfaces occur as φ′ varies. Note also that the region for φ′ < 0 has just the π-rotated shape

due to time reversal symmetry.

We find that there are seven fixed points in this system

(x, y, z) = M(0, 0, 0), P1(∓0.292373,±0.36066,±0.954846),

P2(±0.91822,∓0.080285,±0.585906), P3(±0.161307,±0.161307,∓9.30437), (4.3)

where the labels are indicated for upper signs and those lower signs are denoted with tildes.

Their properties are summarized in Table I.

The expansion criterion (3.5) with replacement (4.2) tells us that the solutions of P̃1,

P2 and P3 give the expanding solutions in the Einstein frame. Among these, only P2 gives

accelerating expansion. In this accelerated solution, we have

T =
4

φ′
e

φ′

4
t,

dτ

dT
= e3u2−φ/4 = e−0.387T . (4.4)

We then find that this solution with

a(τ) = eu1+3u2 = e0.677T ∼ |τ |−1.75, (4.5)
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Fig. 7. Slice at φ′ = 0.5859 in the solution space.
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Fig. 8. Slice at φ′ = 0.3 in the solution space.
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Fig. 9. Slice at φ′ = 0 in the solution space.

gives again a super-inflation and τ changes from −∞ to 0 as T changes from −∞ to ∞.

In order to study the stability of the fixed points, we substitute linear perturbations

x → x+ δx, y → y+ δy and z → z+ δz about the fixed points into the field equations (2.10)

– (2.13). To the first order in the perturbations, we obtain two independent equations of

motion which can be written as





δx′

δy′



 = M





δx

δy



 , (4.6)

where M is a 2 × 2 matrix. Stability requires that both the eigenvalues of the matrix M,

λ1 and λ2 be negative. Our analysis shows that M , P1, P̃2 and P3 are unstable while P̃1, P2

and P̃3 are stable.
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Label (x, y, z) Eigenvalues (λ1, λ2) Stability da
dτ

d2a
dτ2

M (0, 0, 0) (0, 0) unstable – –

P1 (0.292373,−0.36066,−0.954846) (1.52555, 1.52555) unstable < 0 < 0

P̃1 (−0.292373, 0.36066, 0.954846) (−1.52555,−1.52555) stable > 0 < 0

P2 (0.91822,−0.080285, 0.585906) (−2.41943,−2.41943) stable > 0 > 0

P̃2 (−0.91822, 0.080285,−0.585906) (2.41943, 2.41943) unstable < 0 > 0

P3 (0.161307, 0.161307,−9.30437) (0.874329, 0.874324) unstable > 0 < 0

P̃3 (−0.161307,−0.161307, 9.30437) (−0.87433,−0.874324) stable < 0 < 0

Table I. Fixed points of the autonomous system and their properties.

The flow diagram for solutions around the fixed points is drawn in Fig. 10. We can

use it to examine what kind of solutions are possible. For example, there are solutions

starting from a decelerated expanding region which approach the accelerated expanding

solution (P2), solutions starting from a decelerated contracting region which approach the

accelerated contracting solution (P̃3), and solutions starting from a accelerated expanding

region which approach the decelerated expanding solution (P̃1). We see from this figure that

there are several accelerating cosmological solutions in this theory including those flowing

into non-accelerating fixed point P̃1 and those flowing into P2 with Big Rip singularity. It

is possible that stringy effects resolve this kind of singularity and these solutions may give

viable cosmologies.

It is interesting to investigate whether these solutions give viable cosmological solution or

not. A step towards this is to examine if we can get enough e-folding for solving cosmological

problems. A preliminary investigation of the solution flowing into the fixed point P2 indicates

that it is hard to get enough e-folding number before arriving at the fixed point but we can

easily get sufficient e-folding number if the solution arrives at the fixed point.

When we consider the accelerating expansion of the present universe, the fine-tuning

problem is always a nagging problem. To partially answer this question, we have examined

solutions by changing initial conditions near the fixed point P2, and find that there are

several solutions flowing into P2, as shown in Fig. 10. This means that there are certain
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Fig. 10. Solution space and flow in the case with a dynamical dilaton. The solid (red) lines

correspond to d2a/dτ2 > 0 and the dashed (green) lines correspond to d2a/dτ2 < 0.

range of initial conditions which lead to the accelerating expansion. In this sense, these

solutions have the possibility of explaining naturalness of the accelerating expansion. To

examine how large area of these initial conditions can give such a behavior and whether the

present model can give realistic one need further study.

§5. Conclusions

In this paper we have investigated cosmological solutions in the Einstein theory with

GB correction with and without a dilaton in higher dimensions. We are interested in this

theory because this is the low-energy effective theory of the heterotic string, and examined

what solutions are possible by the dynamical system method. For flat internal and external

14



spaces, we have shown that the field equations can be written as an autonomous system for

both the theories with and without dynamical dilaton. We obtained the fixed points and

analyzed their stability. We have found that both in the GB correction with and without

dilaton, there are solutions with accelerating expansion. Some of them are super-inflation

with future singularity.

The analysis in Ref. 21) indicates that even if there is no interesting cosmological solution

in the Einstein theory for flat internal and external spaces, there may exist an interesting

solution with eternally accelerating expansion for curved spaces. The existence of such

a solution was originally suggested in Ref. 8) by a perturbation around non-inflationary

solution, and it was shown that the solution is eternally expanding with acceleration after

some time. However, due to the limitation of the perturbation, the detailed properties of the

solution (like its eternal accelerating property for whole time) was not clear. The powerful

method of dynamical system allowed to show that the solution is eternally expanding with

acceleration for the whole time.21) It is thus possible that similarly interesting solutions may

exist in our Einstein-Gauss-Bonnet gravity coupled to dilaton. It would be very interesting

to extend our analysis to curved external and internal spaces, and check if there may be

additional interesting solutions.
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