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Abstract: Some new exact solutions of Einstein’s field equations have emerged in a spatially

homogeneous and anisotropic Bianchi type-V space-time with minimally interacting perfect

fluid and anisotropic dark energy (DE) components, which has dynamic equation of state (EoS).

We consider Bianchi type-V space-time, introducing three different skewness parameters along

spatial directions to quantify deviation of pressure from isotropy. To obtain the deterministic

solution we choose the scale factor a(t) =
√
tnet, which yields a time-dependent deceleration

parameter (DP). We find that the time dependent value of deceleration parameter is reasonable

for the present day universe which yields a transition of the universe from the early decelerating

phase to the recent accelerating phase. For different values of n, we can generate a class of

physically viable DE models. It is found that quintessence model is suitable for describing

the present evolution of the universe. The physical and geometric properties of spatially

homogeneous and anisotropic cosmological models are discussed.
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1. Introduction

Now-days, it is strongly believed that the universe is experiencing an accelerated expan-

sion. Recent observations of type Ia supernova (SNIa) suggest that the expansion of

the universe is accelerating and two-thirds of the total energy density exists in a dark

energy component with negative pressure [1, 2] and recent observations of SNIa at high

confidence level [3, 4] have further confirmed this (for a recent review, see Padmanabhan

[5]; Copeland et al. [6]). In addition, measurements of the cosmic microwave background

[7, 8], large scale structure [9, 10]. and the galaxy power spectrum [11] also indicate the

existence of the dark energy. However, the observational data are far from being complete

(for a recent review, see Perivolaropoulos [12]; Jassal et al. [13]). It is not even known

what is the current value of the dark energy effective equation of state (EoS) parameter

ω = p/ρ which lies close to −1: it could be equal to −1 (standard ΛCDM cosmology), a

little bit upper than −1 (the quintessence dark energy) or less than −1 (phantom dark

energy). While the possibility ω � −1 is ruled out by current cosmological data from SN

Ia (Supernovae Legacy Survey, Gold sample of Hubble Space Telescope) (Riess et al. [14];

Astier et al. [15]), CMB (WMAP, BOOMERANGE) (Eisentein et al. [16]; MacTavish et

al. [17]) and large scale structure (Sloan Digital Sky Survey) (Komatsu et al. [18]) data,

the dynamically evolving DE crossing the phantom divide line (PDL) (ω = −1) is mildly

favoured. The simplest candidate for the dark energy is a cosmological constant Λ, which

has pressure PΛ = −ρΛ. Specifically, a reliable model should explain why the present

amount of the dark energy is so small compared with the fundamental scale (fine-tuning

problem) and why it is comparable with the critical density today (coincidence problem).

The study of Bianchi type V cosmological models create more interest as these models

contain isotropic special cases and permit arbitrary small anisotropy levels at some instant

of cosmic time. This property makes them suitable as model of our universe. The homo-

geneous and isotropic Friedman-Robertson-Walker (FRW) cosmological models, which

are used to describe standard cosmological models, are particular case of Bianchi type I,

V and IX universes, according to whether the constant curvature of the physical three-

space, t = constant, is zero, negative or positive. These models will be interesting to

construct cosmological models of the types which are of class one. Present cosmology

is based on the FRW model which is completely homogeneous and isotropic. This is

in agreement with observational data about the large scale structure of the universe.

However, although homogeneous but anisotropic models are more restricted than the in-

homogeneous models, they explain a number of observed phenomena quite satisfactorily.

This stimulates the research for obtaining exact anisotropic solution for Einstein’s field

equations (EFEs) as a cosmologically accepted physical models for the universe (at least

in the early stages). The anisotropy of DE within the frame work of Bianchi type is found

to be useful in generating arbitrary ellipsoidality to the Universe, and to fine tune the

observed CMBR anisotropies. Koivisto and Mota [19, 20] have investigated cosmological

models with anisotropic EoS and have also shown that the present SN Ia data allows large
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anisotropy. Among different models Bianchi type-V universes are the natural general-

ization of the open FRW model, which eventually become isotropic. Thus, the Bianchi

type-V models which remain anisotropic are of rather academic interest. Recently, Yadav

[21] and Kumar & Yadav [22] have dealed with a spatially homogeneous and anisotropic

Bianchi type-V DE models by considering constant deceleration parameter.

Due to lack of the observational evidence in making a distinction between constant

and variable ω, particularly the EoS parameter (ω) is considered as a constant (Kujat et

al. [23]; Bartelmann et al. [24]; ’ Yadav [21], Kumar and Singh [25]) with phase wise

value −1, 0,−1
3
and +1 for vacuum fluid, dust fluid, radiation and stiff dominated uni-

verse, respectively. But in general, ω is a function of time or redshift (Ratra and Peebles

[26]; Jimenez [27]; Das et al. [28]). Some literature are also available on models with

varying fields, such as cosmological models with variable EoS parameter in Kaluza-Klein

metric and wormholes (Steinhardt et al. [29]; Rahaman et al. [30]). In recent years var-

ious form of time dependent ω have been used for variable Λ models by Mukhopadhyay

et al. [31]. Setare [32]−[34] and Setare & Saridakis [35] have also studied the DE models

in different contexts. Recently, dark energy models with variable EoS parameter have

been studied by Ray et al. [36], Akarsu and Kilinc [37, 38], Yadav et al. [39], Yadav

and Yadav [40], Pradhan and Amirhashchi [41], Pradhan et al. [42] and Amirhashchi et

al. [43, 44]. In well-known reviews on modified gravity (Nojiri and Odintsov [45, 46], it

is clearly indicated that any modified gravity may be represented as effective fluid with

time dependent ω. The dark energy universe EoS with inhomogeneous, Hubble param-

eter dependent term is considered by Nojiri and Odintsov [47]. Later on, Nojiri and

Odintsov [48] have also presented the late-time cosmological consequences of dark energy

with time-dependent periodic EoS in oscillating universe.

Recently, Pradhan and Hassan [49] studied accelerating dark energy models in Bianchi

type-V space-time. In this paper, we have revisited the solution [49] and obtained some

physically realistic and totally anisotropic Bianchi-V models with anisotropic DE and

perfect fluid which is different from the previous one. We have assumed time-dependent

skewness parameter which modify EoS to study the anisotropic nature of DE. This pro-

vides the exact solution of the Einstein’s field equations together with time dependent

deceleration parameter which also yields time dependent scale factor. This paper is or-

ganized as follows: the metric and the field equations are presented in Sect. 2. Sect. 3

deals with the exact solutions of the field equations and the physical behaviour of the

model. Discussions and concluding remarks are given in Section 4.

2. The Metric and the Field Equations

We consider the space time metric of the spatially homogeneous and anisotropic Bianchi

type-V of the form

ds2 = −dt2 + A2dx2 + e2αx
[
B2dy2 + C2dz2

]
, (1)
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where the metric potentials A, B and C are functions of cosmic time t alone and α is a

constant.

We define the following physical and geometric parameters to be used in formulating

the law and further in solving the Einstein’s field equations for the metric (1).

The average scale factor a of Bianchi type-V model (1) is defined as

a = (ABC)
1
3 . (2)

A volume scale factor V is given by

V = a3 = ABC. (3)

We define the generalized mean Hubble’s parameter H as

H =
1

3
(Hx +Hy +Hz), (4)

where Hx =
Ȧ
A
, Hy =

Ḃ
B
and Hz =

Ċ
C
are the directional Hubble’s parameters in the direc-

tions of x, y and z respectively. A dot stands for differentiation with respect to cosmic

time t.

From Eqs. (2)-(4), we obtain

H =
1

3

V̇

V
=

ȧ

a
=

1

3

(
Ȧ

A
+

Ḃ

B
+

Ċ

C

)
. (5)

The physical quantities of observational interest in cosmology i.e. the expansion scalar

θ, the average anisotropy parameter Am and the shear scalar σ2 are defined as

θ = ui
;i =

(
Ȧ

A
+

Ḃ

B
+

Ċ

C

)
, (6)

σ2 =
1

2
σijσ

ij =
1

2

[
Ȧ2

A2
+

Ḃ2

B2
+

Ċ2

C2

]
− θ2

6
, (7)

Am =
1

3

3∑
i=1

(�Hi

H

)2

, (8)

where �Hi = Hi − H(i = x, y, z) represents the directional Hubble parameter in the

direction of x, y, z respectively. Am = 0 corresponds to isotropic expansion.

The Einstein’s field equations ( in gravitational units 8πG = c = 1) read as

Ri
j −

1

2
Rgij = −T (m)i

j − T
(de)i
j , (9)
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where T
(m)i
j and T

(de)i
j are the energy momentum tensors of perfect fluid and DE, respec-

tively. These are given by

T
(m)i
j = diag[−ρ(m), p(m), p(m), p(m)], (10)

and

T
(de)i
j = diag[−ρ(de), p(de)x , p(de)y , p(de)z ],

= diag[−1, ωx, ωy, ωz]ρ
(de),

= diag[−1, ω + δ, ω + γ, ω + η]ρ(de), (11)

where ρ(m) and p(m) are, respectively the energy density and pressure of the perfect fluid

component; ρ(de) is the energy density of the DE component; δ(t), γ(t) and η(t) are skew-

ness parameters, which modify EoS (hence pressure) of DE component and are functions

of the cosmic time t; ω is the EoS parameter of DE; ωx, ωy and ωz are the directional EoS

parameters along x, y, and z coordinate axes, respectively. We assume the four velocity

vector ui = (1, 0, 0, 0) satisfying uiuj = −1.

In a co-moving coordinate system (ui = δi0), Einstein’s field equations (9) with (10)

and (11) for B-V metric (1) subsequently lead to the following system of equations:

B̈

B
+

C̈

C
+

ḂĊ

BC
− α2

A2
= −p(m) − (ω + δ)ρ(de), (12)

C̈

C
+

Ä

A
+

ĊȦ

CA
− α2

A2
= −p(m) − (ω + δ)ρ(de), (13)

Ä

A
+

B̈

B
+

ȦḂ

AB
− α2

A2
= −p(m) − (ω + η)ρ(de), (14)

ȦḂ

AB
+

ȦĊ

AC
+

ḂĊ

BC
− 3α2

A2
= ρm + ρde, (15)

2Ȧ

A
− Ḃ

B
− Ċ

C
= 0. (16)

We assume that the perfect fluid and DE components interact minimally. Therefore, the

energy momentum tensors of the two sources may be conserved separately.

The law of energy-conservation equation (T
(m)ij
;j = 0) of the perfect fluid gives

ρ̇(m) + 3(ρ(m) + p(m))H = 0, (17)

where as energy-conservation equation (T
(de)ij
;j = 0) of the DE component leads to

ρ̇(de) + 3ρ(de)(ω + 1)H + ρ(de)(δHx + γHy + ηHz) = 0, (18)

where we have used the equation of state p(de) = ωρ(de).



164 Electronic Journal of Theoretical Physics 9, No. 27 (2012) 159–176

The Raychaudhuri equation is found to be

θ̇ = −1

2

(
ρ(de) + 3p(de)

)− 1

3
θ2 − 2σ2 − 1

2
(3ω + δ + γ + η + 1)ρ(de). (19)

The field equations (12) − (15) can be reduced in terms of H, σ2 and q as follows:

p(m) +
1

3
(3ω + δ + γ + η)ρ(de) = H2(2q − 1)− σ2 +

α2

A2
, (20)

ρ(m) + ρ(de) = 3H2 − σ2 − 3α2

A2
. (21)

3. Solution of the Field Equations and its Physical Significance

We have revisited the solution [49]. Following, Akarsu and Kilinc [37, 38, 50] and Yadav

[21], we split the conservation of energy momentum tensor of the DE into two parts,

one corresponds to deviations of EoS parameter and other is the deviation-free part of

T
(de)ij
;j = 0:

ρ̇(de) + 3ρ(de)(ω + 1)H = 0, (22)

and

ρ(de)(δHx + γHy + ηHz) = 0. (23)

According to (22) and (23) the behaviour of ρ(de) is restrained by the deviation-free part

of EoS parameter of DE but deviations will bear upon ρ(de) indirectly, since, as can be

observed later, they pretend the value of EoS parameter. Naturally, the choice of skewness

parameters are quite arbitrary but, since we are searching visually for a physically feasible

models of the universe consistent with observation, we consider the skewness parameters

δ, γ and η as to be function of cosmic time. We restrained δ, γ and η by assuming a

special dynamics of skewness parameters on x−, y− and z− axes consistent with (23) as

δ(t) = k(Hy +Hz)
1

ρ(de)
, (24)

γ(t) = −kHx
1

ρ(de)
, (25)

η(t) = −kHx
1

ρ(de)
, (26)

where k is an arbitrary constant, which parameterizes the anisotropy of DE.

Secondly, we assume that ω = constant, so that we can study different models related to

the DE by choosing different values of ω, viz. phantom (ω < −1), cosmological constant

(ω = −1) and quintessence (ω > −1). In view of these assumptions (24)-(26) and ω =

constant, Eq. (22) can be integrated to obtain

ρ(de)(t) = ρ0a
−3(ω+1), (27)
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where ρ0 is a positive constant of integration.

Integrating (16) and engrossing the constant of integration in B or C, without any loss

of generality, we obtain

A2 = BC. (28)

To solve Einstein’s field equations (12) − (15), subtracting (12) from (13), (12) from

(14), and (13) from (15) and taking second integral of each, we obtain the following three

relations respectively:

A

B
= d1 exp

[
k1

∫
dt

a3
− αρ0

ω

∫
dt

a3(ω+1)

]
, (29)

A

C
= d2 exp

[
k2

∫
dt

a3
− αρ0

ω

∫
dt

a3(ω+1)

]
, (30)

and
B

C
= d3 exp

(
k3

∫
dt

a3

)
, (31)

where d1, d2, d3, k1, k2 and k3 are constants of integration. From (29)−(31) and (28),

the metric functions can be explicitly obtained as

A(t) = a exp

[
−2αρ0

3ω

∫
dt

a3(ω+1)

]
, (32)

B(t) = ma exp

[
�

∫
dt

a3
+

αρ0
3ω

∫
dt

a3(ω+1)

]
, (33)

C(t) =
a

m
exp

[
−�
∫

dt

a3
+

αρ0
3ω

∫
dt

a3(ω+1)

]
, (34)

where

m = 3
√
(d2d3), � =

(k2 + k3)

3
, d2 = d−11 , k2 = −k1. (35)

Finally, following Saha et al. [51] and Pradhan & Hassan [49], we take following ansatz

for the scale factor, where increase in term of time evolution is

a(t) =
√
tnet, (36)

where n is a positive constant. This ansatz generalized the one proposed by Amirhashchi

et al. [52]. In literature it is common to use a constant deceleration parameter [37, 38,

41, 53, 21, 22] as it duly gives a power law for metric function or corresponding quantity.

The motivation to choose such time dependent DP is behind the fact that the universe is

accelerated expansion at present as observed in recent observations of Type Ia supernova

[1]−[4] and CMB anisotropies [54]−[56] and decelerated expansion in the past. Also,

the transition redshift from deceleration expansion to accelerated expansion is about 0.5.

Now for a Universe which was decelerating in past and accelerating at the present time,

the DP must show signature flipping [57]−[59]. So, there is no scope for a constant DP
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at the present epoch. So, in general, the DP is not a constant but time variable. The

motivation to choose such scale factor (36) yields a time dependent DP.

Using (36) into (32)-(34), we get the following expressions for scale factors:

A(t) =
√
tnet exp

[
−2αρ0

3ω

∫
(tnet)−

3
2
(ω+1)dt

]
, (37)

B(t) = m
√
tnet exp

[
�

∫
(tnet)−

3
2dt+

αρ0
3ω

∫
(tnet)−

3
2
(ω+1)dt

]
, (38)

C(t) = m−1√tnet exp

[
−�
∫

(tnet)−
3
2dt+

αρ0
3ω

∫
(tnet)−

3
2
(ω+1)dt

]
. (39)

The expressions for physical parameters such as directional Hubble parameters (Hx, Hy,

Fig. 1 The anisotropic parameter Am versus t. Here ρ0 = 5, α = � = 1, n = 0.5.

Hz), the Hubble parameter (H), scalar of expansion (θ), shear scalar (σ), spatial volume

V and the anisotropy parameter (Am) are, respectively, given by

Hx =
1

2

(n
t
+ 1
)
− 2αρ0

3ω
(tnet)−

3
2
(ω+1), (40)

Hy =
1

2

(n
t
+ 1
)
+ �(tnet)−

3
2 +

αρ0
3ω

(tnet)−
3
2
(ω+1), (41)

Hz =
1

2

(n
t
+ 1
)
− �(tnet)−

3
2 +

αρ0
3ω

(tnet)−
3
2
(ω+1), (42)
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θ = 3H =
3

2

(n
t
+ 1
)
, (43)

σ2 = �2(tnet)−3 +
α2ρ20
3ω2

(tnet)−3(ω+1), (44)

V = (tnet)
3
2 exp (2αx) (45)

Am =
4

3

(
t

t+ 1

)2
[
2�2(tnet)−3 +

2α2ρ20
3ω2

(tnet)−3(ω+1)

]
. (46)

It is observed that at t = 0, the spatial volume vanishes and other parameters θ, σ, H

diverge. Hence the model starts with a big bang singularity at t = 0. This is a Point

Type singularity [60] since directional scale factor A(t), B(t) and C(t) vanish at initial

time. Figure 1 depicts the variation of anisotropic parameter (Am) versus cosmic time t.

The figure suggests that for ω ≤ −1 (cosmological constant and phantom scenario), Am

increases with time but for ω > −1 (quintessence region), Am decreases with time and

tends to zero as t → ∞. Thus, the observed isotropy of the universe can be achieved

in the quintessence model. The shear tensor also tends to zero in this model. Thus, in

our analysis, the quintessence model is turning out as a suitable model for describing

the present evolution of the universe. The other models, viz., phantom and cosmological

models possibly represent relatively earlier epoch of the universe.

We define the deceleration parameter q as usual, i.e.

Fig. 2 The deceleration parameter q versus t
.
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Fig. 3 The plot of directional EoS parameters (ωx, ωy, ωz) versus t. Here ρ0 = 5, n = 2, α = 0.1,
ω = −0.8 .

Fig. 4 The plot of energy conditions versus t in quintessence region. Here ρ0 = 5, n = 2,
ω = −0.8 .

q = − äa

ȧ2
= − ä

aH2
. (47)
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Fig. 5 The plot of energy conditions versus t in phantom region. Here ρ0 = 5, n = 2, ω = −1.2
.

Using Eq. (36) into Eq. (47), we find

q =
2n

(n+ t)2
− 1. (48)

From Eq. (48), we observe that q > 0 for t <
√
2n− n and q < 0 for t >

√
2n− n. It is

observed that for 0 < n < 2, our model is evolving from deceleration phase to acceleration

phase. Also, recent observations of SNe Ia, expose that the present universe is accelerat-

ing and the value of DP lies to some place in the range −1 < q < 0. It follows that in our

derived model, one can choose the value of DP consistent with the observation. Figure

2 graphs the deceleration parameter (q) versus time which gives the behaviour of q from

decelerating to accelerating phase for different values of n.

The skewness parameters of DE are found to be as

δ(t) =
α

ρ0

[(n
t
+ 1
)
(tnet)

3
2
(ω+1) +

2αρ0
3ω

]
, (49)

γ(t) = η(t) = − α

ρ0

[
1

2

(n
t
+ 1
)
(tnet)

3
2
(ω+1) − 2αρ0

3ω

]
. (50)

In view of (10), the directional EoS parameter of DE are obtained as

ωx = ω +
α

ρ0

[(n
t
+ 1
)
(tnet)

3
2
(ω+1) +

2αρ0
3ω

]
, (51)
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Fig. 6 The plot of total energy density parameter Ω versus t. Here ρ0 = 5, α = � = 1, ω = −1
.

ωy = ωz = ω − α

ρ0

[
1

2

(n
t
+ 1
)
(tnet)

3
2
(ω+1) − 2αρ0

3ω

]
. (52)

Figure 3 is a plot of the variation of directional EoS parameter (ωx, ωy, ωz) versus the

cosmic time t in evolution of the universe, as a representative case with appropriate choice

of constants of integration and other physical parameters using reasonably well known

situations (parameters are given in Figure caption). From the Figure 3, it is clearly ob-

served that directional EoS parameter along x-axis (ωx) is a decreasing function of time

whereas directional EoS parameter along y-axis (or z-axis) are found to be an increasing

function of time. But it is worth mentioned here that all the directional EoS parameters

approaches to −1 at the later stage of the evolution of the universe, as expected. The

same is anticipated by recent observations.

The energy density and pressure of DE components are given by

ρ(de) = ρ0(t
net)−

3
2
(ω+1), (53)

p(de) = ωρ0(t
net)−

3
2
(ω+1). (54)

From Eqs. (20) and (21), the pressure and energy density of the perfect fluid are obtained

as

p(m) =
n

t2
− 3

4

(n
t
+ 1
)2
− α2ρ20

3ω2
(tnet)−3(ω+1) − �2(tnet)−3
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+
α2

(tnet) exp

[
−4αρ0

3ω

∫
(tnet)−

3
2
(ω+1)dt

] − (ω +
2α2

3ω

)
ρ0(t

net)−3(ω+1), (55)

ρ(m) =
3

4

(n
t
+ 1
)2
− α2ρ20

3ω2
(tnet)−3(ω+1) − �2(tnet)−3

−ρ0(tnet)− 3
2
(ω+1) − 3α2

(tnet) exp

[
−4αρ0

3ω

∫
(tnet)−

3
2
(ω+1)dt

] . (56)

The dark energy with ω < −1, the phantom component of the universe, leads to un-

common cosmological scenarios as it was pointed out by Caldwell et al.[61]. First of

all, there is a violation of the dominant energy condition (DEC), since ρ + p < 0. The

energy density grows up to infinity in a finite time, which leads to a big rip, characterized

by a scale factor blowing up in this finite time. These sudden future singularities are,

nevertheless, not necessarily produced by a fluid violating DEC. Cosmological solutions

for phantom matter which violates the weak energy condition were found by Dabrowski

et al. [62]. Caldwell [63], Srivastava [64], Yadav [21] have investigated phantom models

with ω < −1 and also suggested that at late time, phantom energy has appeared as a

potential DE candidate which violets the weak as well as strong energy condition. The

left hand side of energy conditions have been depicted in Figures 4 and 5 for quintessence

and phantom models respectively.

From Figure 4, for ω = −0.5 (i.e. quintessence model), we observe that

(i) ρ(de) ≥ 0, (ii) ρ(de) + p(de) ≥ 0, (iii) ρ(de) + 3p(de) < 0.

Thus, from above expressions, we observe that the quintessence model violates the strong

energy conditions, as expected.

Further, from Figure 5, for ω = −1.5 (i.e. phantom model), we observe that

(i) ρ(de) ≥ 0, (ii) ρ(de) + p(de) < 0, (iii) ρ(de) + 3p(de) < 0.

Thus the derived phantom model violates the weak as well as strong energy conditions

as the same is predicted by current astronomical observations.

The perfect fluid density parameter (Ω(m)) and DE density parameter (Ω(de)) are given

by

Ω(m) = 1− 4

3

(n
t
+ 1
)−2

×
[
α2ρ20
3ω2

(tnet)−6(ω+1) + �2(tnet)−3 + ρ0(t
net)−

3
2
(ω+1)

+
3α2

(tnet) exp
{
−4αρ0

3ω

∫
(tnet)−

3
2
(ω+1)dt

}
]
, (57)
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Ω(de) =
4

3

(n
t
+ 1
)−2

ρ0(t
net)−

3
2
(ω+1). (58)

Thus the over all density parameter (Ω) is obtained as

Ω = Ω(m) + Ω(de)

= 1− 4

3

(n
t
+ 1
)−2

×
[
α2ρ20
3ω2

(tnet)−6(ω+1) + �2(tnet)−3+

3α2

(tnet) exp
{
−4αρ0

3ω

∫
(tnet)−

3
2
(ω+1)dt

}
]
. (59)

We observe that the last expression of Eq. (59) is easily integrable if we choose ω = −1.
Figure 6 depicts the variation of the density parameter (Ω) versus cosmic time t for

ω = −1 during the evolution of the universe. From the Figure 6, it can be seen that the

total energy density Ω tends to 1 for sufficiently large time which is supported by the

current observations. It is also worth mentioned here that whatever be the value of ω in

Eq. (59), we find Ω = 1 for large values of time.

Discussions and Concluding Remarks

This paper is an extension of the recent work of Pradhan & Amirhashchi [49]. In this

paper, we have studied a spatially homogeneous and anisotropic Bianchi type-V space

time filled with perfect fluid and anisotropic DE possessing dynamic EoS. The field equa-

tions in this paper have been solved exactly with suitable physical assumptions but in a

different manner. The solutions satisfy the Raychaudhuri Eq. (19) and the energy con-

servation Eq. (18) identically as earlier. Therefore, exact and physically viable Bianchi

type-V model stands. It is to be noted that our procedure of solving the field equations is

altogether different from what Yadav [21] and Kumar & Yadav [22]. Yadav [21] and Ku-

mar & Yadav [22] have solved the field equations by considering the constant DP whereas

we have considered time dependent DP. As we have already discussed in previous Sect. 3

that for a Universe which was decelerating in past and accelerating at the present time,

the DP must show signature flipping (see the Refs. Padmanabhan and Roychowdhury

[57], Amendola [58], Riess et al. [59]) and hence, scope for a constant DP gets dispensed

with. The main features of the model are as follows:

• The directional EoS parameters (ωx, ωy or ωz) evolve within the range predicted

by observations. It is worth mention here that for all the directional EoS parameters

approach to −1 at the later stage of the evolution of the universe (see, Figure 3). The

same is predicted by recent observations.
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• The present DE model has a transition of the universe from the early deceleration

phase to the recent acceleration phase (see, Figure 2) which agrees with recent observa-

tions (Caldwell et al. 2006).

• In the present study we find that the quintessence model is consistent with present

and expected future evolution of the universe. The quintessence model reaches isotropy

at late time (see, Figure 1). The other models, viz., phantom and cosmological constant

models possibly represent relatively earlier epoch of the universe.

• The derived quintessence model is found to violate the strong energy condition

whereas the phantom model violates the strong and weak energy conditions both (see,

Figures 4 & 5).

• The total density parameter (Ω) approaches 1 for sufficiently large time (see, Figure

6) which is sound agreement with current observations.

• For different choice of n, a class of DE models in Bianchi type-V space-time which

are found to be in good harmony with recent observations may be generated. Thus, the

present solutions may be of immense help in better understanding of the characteristic of

anisotropic DE in the evolution of the universe within the framework of Bianchi type-V

space-time.
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