
Overview

Accelerating data mining
workloads: current approaches
and future challenges in system
architecture design
Alok N. Choudhary,∗ Daniel Honbo, Prabhat Kumar,
Berkin Ozisikyilmaz, Sanchit Misra and Gokhan Memik

Conventional systems based on general-purpose processors cannot keep pace
with the exponential increase in the generation and collection of data. It is there-
fore important to explore alternative architectures that can provide the compu-
tational capabilities required to analyze ever-growing datasets. Programmable
graphics processing units (GPUs) offer computational capabilities that surpass
even high-end multi-core central processing units (CPUs), making them well-
suited for floating-point- or integer-intensive and data parallel operations. Field-
programmable gate arrays (FPGAs), which can be reconfigured to implement an
arbitrary circuit, provide the capability to specify a customized datapath for any
task. The multiple granularities of parallelism offered by FPGA architectures,
as well as their high internal bandwidth, make them suitable for low complex-
ity parallel computations. GPUs and FPGAs can serve as coprocessors for data
mining applications, allowing the CPU to offload computationally intensive tasks
for faster processing. Experiments have shown that heterogeneous architectures
employing GPUs or FPGAs can result in significant application speedups over ho-
mogenous CPU-based systems, while increasing performance per watt. C© 2011 John
Wiley & Sons, Inc. WIREs Data Mining Knowl Discov 2011 1 41–54 DOI: 10.1002/widm.9

DATA MINING AND DOMAIN-
SPECIFIC ARCHITECTURES

L atest trends indicate beginning of a new era in
data analysis and information extraction. To-

day’s ‘connect anytime and anywhere’ society based
on the use of digital technologies is fueling data
growth, which is doubling every two months (if not
faster), akin to ‘Moore’s law for data’.1 This growth is
transforming the way business-, science-, and digital
technology-based world function. Various businesses
are collecting vast amounts of data to make fore-
casts and intelligent decisions about future directions.
The world’s largest commercial databases are over the
100 TB mark, whereas the database sizes on hybrid
systems are approaching the PB mark.2 Some of these
large databases are growing by a factor of 20 every
year. In addition, millions of users on the Internet are
making data available for others to access. Count-

∗Correspondence to: chhoudhar@eecs.northwestern.edu

Northwestern University. http://www.eece.northwestern.edu

DOI: 10.1002/widm.9

less libraries and databases containing photographs,
movies, songs, etc., are available to a common user. In
addition to the increasing amount of available data,
other factors make the problem of information ex-
traction particularly complicated. First, users ask for
more information to be extracted from their datasets,
which requires increasingly complicated algorithms.
Second, in many cases, the analysis needs to be done
in real-time to reap the actual benefits. For instance,
a security expert would strive for real-time analysis
of the streaming video and audio data in conjunction.
Managing and performing run-time analysis on such
datasets is appearing to be the next big challenge in
computing.

Data mining is the process of automated extrac-
tion of predictive information from large datasets.
With the ever-increasing computational demands,
current state-of-the-art central processing unit (CPU)
systems fail to keep pace. This performance gap
arises due to the fact that CPUs devote lots of re-
sources to keep relatively small number of execution
units busy, which is great for sequential code. Fur-
ther, to mitigate the effects of nonuniform memory

Volume 1, January /February 2011 41c© 2011 John Wi ley & Sons , Inc .



Overview wires.wiley.com/widm

access, conventional CPUs reserve a large percentage
of the silicon resource for caches. However, for ap-
plications that have a very structured memory access
pattern, an efficient design would call for a larger
percentage of the total available resources to be ded-
icated for processing. These limitations of the cur-
rent CPU systems have led application developers
to explore new architectures for improving perfor-
mance. Recent technological advancements have wit-
nessed domain-specific architectures penetrating the
realm of general-purpose computing. Graphics pro-
cessing units (GPUs), which were initially introduced
for the task of texture mapping and rendering, have
considerably increased in complexity. GPUs devote
more silicon ‘real estate’ to data processing rather
than data caching and flow control. They also have
become much more programmable compared to the
previous generation of fixed-pipeline graphics units.
Similarly, field-programmable gate arrays (FPGAs)
came into existence as a prototyping testbed to re-
duce the time-to-development for application-specific
integrated circuit (ASIC) chips. However, the rapid
progress in technology overcame the speed, size, and
power limitations of the previous generation FPGAs
and presented them as a system that offers the flexibil-
ity of on-the-fly reconfiguration. Exposing the lowest
level on silicon, these devices equip system architects
to utilize them as powerful computational engines.
The future era will keep producing new architec-
tures that will have characteristics catering to a subset
of the vast domain of applications. This hetero-
geneous pool of architectures presents an exciting
opportunity for designers to reinvent the concept

of high-performance application development. Data
mining applications are computationally expensive
and have a structured memory access pattern that
makes them a suitable candidate for utilizing these
architectures as high performance coprocessors.

CHARACTERIZING DATA MINING
APPLICATIONS

What makes the data mining applications unique is a
mix of high data rates combined together with high
computation power requirements. Typically, data
mining applications oscillate between such phases reg-
ularly. Previous studies prove that current processors
and architectural optimizations need to be enhanced
further in order to handle such unique data-intensive
applications.3–5 In addition, the tremendous increase
in data collection adds to the problem. As a result,
the gap between the expected performance for data
mining applications and the delivered performance of
processor architectures is bound to get worse. This
problem can be alleviated if current computer archi-
tectures are optimized or redesigned to accommodate
data mining applications. A data mining benchmark
called MineBench,6 designed for enabling research in
data mining architectures, provides insight for the di-
rections of such optimizations.

The architectural characteristics of data min-
ing applications share resemblance to each other and
are markedly different from applications that fall un-
der the domain of compute-intensive, multimedia,
streaming, and database applications. Table 1 shows
the classification of data mining applications.

TABLE 1 Applications in MineBench

Algorithms Category Description

k-Means Clustering Mean-based data partitioning method
Fuzzy k-Means Clustering Fuzzy-logic based data partitioning method
BIRCH Clustering Hierarchical data segmentation method
HOP Clustering Density-based grouping method
Naive Bayesian Classification Statistical classifier
ScalParC Classification Decision tree based classifier
Apriori ARM Horizontal database, level-wise mining based on Apriori property
Eclat ARM Vertical database, equivalence class based method
SNP Bayesian network Hill-climbing search method for DNA dependency extraction
GeneNet Bayesian network Microarray-based structure learning for gene relationship extraction
SEMPHY Expectation maximization Phylogenetic tree based structure learning method for gene sequencing
Rsearch Pattern recognition Stochastic context-free grammar-based RNA sequence search method
SVM-RFE Support vector machines Recursive feature elimination based gene expression classifier
PLSA Dynamic programming Smith–Waterman optimization method for DNA sequence alignment
Utility ARM Utility-based association rule mining

42 Volume 1, January /February 2011c© 2011 John Wi ley & Sons , Inc .



WIREs Data Mining and Knowledge Discovery Accelerating data mining workloads

TABLE 2 Architectural Characteristics of Various Benchmark Suites

Benchmark Suite

Parameter† SPEC-INT SPEC-FP MediaBench TPC-H MineBench

Data references 0.8071 0.5502 0.5676 0.4831 1.1032
Bus accesses 0.0303 0.0344 0.0027 0.0104 0.0371
Instruction fetches 1.6427 1.6325 1.0000 1.3193 2.7247
ALU operations 0.2550 0.2920 0.2650 0.3000 0.3080
Cycles 1.7583 1.7077 1.1185 1.3625 1.4724
L1 misses 0.1789 0.2107 0.0472 0.2965 0.3976
L2 misses 0.0013 0.0019 0.0003 0.0019 0.0056

A comparative study presented in Table 2
shows the core differences between MineBench and
other application benchmarks: SPEC-INT, SPEC-
FP7 (benchmark suite for processor manufacturers),
MediaBench,8 and TPC-H9 (benchmark suite for me-
dia and communication processors). One key at-
tribute that signifies the differences is the number of
data references per instruction retired. For data min-
ing applications, this rate is 1.103, whereas for other
applications, it is significantly less. In Table 2, the
number of bus accesses originating from the proces-
sor to the memory (per instruction retired) verifies this
fact as well. These results reinforce the hypotheses
that data mining is data-intensive by nature. Another
important difference is the fraction of total instruc-
tion fetches to the instructions retired. This measure,
instruction fetches in Table 2, includes the noncached
instruction fetches, branch prediction fetches, and
also those fetched as a result of wrong predictions.
Besides, the number of arithmetic logic unit (ALU)
(computation) operations per instruction retired is
also surprisingly high for data mining applications,
which indicates the extensive amount of computa-
tions performed in data mining applications. What
really makes the data mining applications unique is
this combination of high data rates with high compu-
tation requirements.

Traditional CPU architectures are unable to
provide very scalable performance to data mining ap-
plications owing to their limited computation power
and memory bandwidth. The focus has thus shifted
to parallel multithreaded architectures such as the re-
cently introduced GPUs by NVIDIA (GeForce; Santa
Clara, CA, USA) and ATI (Radeon; Sunnyvale,
CA, USA), and FPGAs. GPUs devote a large frac-
tion of their resources for computations and hence
can provide orders of magnitude higher performance.
Higher memory bandwidth results in further im-
provements. On the other hand, FPGAs can be cus-
tomized ‘on-the-fly’ depending on the application

requirements and hence can challenge GPUs with
better computational power, but they lack the mem-
ory bandwidth provided by the GPUs. Because of their
unique capabilities, both these architectures can be
utilized to enhance the overall performance (in terms
of output quality, scalability, and execution times)
of data mining applications compared to traditional
CPUs. The following sections dive in details of these
architectures and present their potential benefits in
the data mining domain.

KEY COMPUTATIONAL BLOCKS
IN DATA MINING—IMPORTANCE
OF KERNEL

Data mining applications have several similarities
with streaming applications because a consistently
changing set of data is read for processing. But they
are different from pure streaming applications by the
fact that there are bursts of streaming data instead
of data arriving at a consistent arrival rate. Figure 1
shows a generic data flow in such an application.
These applications, therefore, can be characterized as
multiphase, with each phase consisting of one or more
kernels. These kernels form pieces of core operations,
for example, histogram, distance calculation, corre-
lations, tree-search, etc. These phases repeat many
times, and the data that are consumed in each phase
may change their execution characteristics. In other
words, kernel is defined to be an abstract represen-
tation of a set of operations that are performed fre-
quently in an application. Here, we try to extract the
kernels in data mining applications in our quest for
understanding their nature. Extraction of such kernels
also helps in identifying how the kernel actually maps
to the underlying architecture components, including
the processor, memory, and other resources.

Table 3 presents the top three kernels of
each application considered in this study. For each

Volume 1, January /February 2011 43c© 2011 John Wi ley & Sons , Inc .



Overview wires.wiley.com/widm

Kernel

Data supply

Nonkernel

Time

Burst Burst Burst

Kernel KernelNonkernel Nonkernel

FIGURE 1 | Multiphased data burst and kernel operations seen in data mining.

application, the name of the kernel and the percent-
age of the system time spent executing the kernel are
presented. The last column shows the cumulative sum
of the three kernels. It is evident that the top three ker-
nels constitute to most of the execution time (ranging
from 71% to 99%); in some cases, even a single ker-
nel can constitute a majority of the execution. For
example, in k-means, distance calculation takes 68%
of the execution time. On the other hand, in applica-
tions such as HOP, the execution is evenly distributed
among several kernels. Overall, we can conclude that

these applications spend a majority of their execu-
tion time in a relatively small number of kernels, as
depicted in Table 3.

OVERVIEW

General-purpose computation on graphics processing
unit (GPGPU) is a relatively new concept in high per-
formance computing. Although mass-market three-
dimensional graphics accelerators existed as far back

TABLE 3 Top Three Kernels for Every Application in MineBench and Their Contributions to Total
Execution

Top Three Kernels (%)

Application Kernel 1 (%) Kernel 2 (%) Kernel 3 (%) Sum (%)

k-Means Distance (68) Clustering (21) minDist (10) 99
Fuzzy k-Means Clustering (58) Distance (39) fuzzySum (1) 98
BIRCH Distance (54) Variance (22) Redistribution (10) 86
HOP Density (39) Search (30) Gather (23) 92
Naive Bayesian ProbCal (49) Variance (38) dataRead (10) 97
ScalParC Classify (37) giniCalc (36) Compare (24) 97
Apriori Subset (58) dataRead (14) Increment (8) 80
Eclat Intersect (39) addClass (23) invertClass (10) 71
SNP CompScore (68) updateScore (20) familyScore (2) 90
GeneNet CondProb (55) updateScore (31) familyScore (9) 95
SEMPHY bestBrnchLen (59) Expectation (39) lenOpt (1) 99
Rsearch Covariance (90) Histogram (6) dbRead (3) 99
SVM-RFE quotMatrx (57) quadGrad (38) quotUpdate (2) 97
PLSA pathGridAssgn (51) fillGridCache (34) backPathFind (14) 99
Utility dataRead (46) Subsequence (29) Main (23) 98

44 Volume 1, January /February 2011c© 2011 John Wi ley & Sons , Inc .



WIREs Data Mining and Knowledge Discovery Accelerating data mining workloads

as the mid-1990s, at that time, they implemented
highly specialized, fixed functions and were therefore
useful only for graphics.

NVIDIA’s NV20 architecture,10 released in
2001, marked the first advance toward GPGPU with
the introduction of programmable shaders. Using
graphics-specific application programming interfaces
(APIs), short programs could be used to control
the vertex- and pixel-shading stages of the graphics
pipeline. With programmable shaders, GPGPU be-
came technically possible, but mapping an application
to a GPU was a very cumbersome process because the
application needed to be coaxed into conforming to
the rigid graphics pipeline and the limited APIs.

By 2006, flexibility and performance demands
for GPUs had led to the adoption of a unified shading
architecture. Instead of a rigid, feed-forward pipeline
in which vertex and pixel shaders are implemented
separately, a unified shading architecture employs a
flexible control mechanism with a pool of generic
computational units capable of handling any shader
operation. Adding support for general-purpose pro-
gramming languages made GPGPU practical, as a
GPU could then be repurposed as a many-core, multi-
threaded, general-purpose coprocessor.

At present, both AMD/ATI and NVIDIA, the
two largest discrete GPU manufacturers, support
GPGPU for their high-end product offerings, allow-
ing the massive floating-point capabilities of commod-
ity GPUs to be applied toward accelerating a broad
range of applications. GPU-accelerated applications
are written with C-style syntax, with the aid of either
a proprietary set of extensions or the standards-based
OpenCL framework.11

MAPPING APPLICATIONS OF GPUs

GPUs offer approximately an order of magnitude
greater floating-point computational capabilities and
an order of magnitude greater memory bandwidth
than CPUs.12 Because of the high compute capabili-
ties of GPUs, data parallel applications often map well
to GPUs. But compared to a CPU, the GPU lacks the
robust control logic required to keep the processing
units busy for all but the simplest sequences of opera-
tions. Also, the cost of moving input data and results
between the GPU’s memory and the CPU’s memory
weighs against speedups afforded by the GPU’s com-
putational capabilities. In general, floating-point in-
tensive applications with abundant parallelism, pre-
dictable memory accesses, data reuse, and little or no
divergent control flow are the best candidates for GPU
acceleration.

EXAMPLE: NVIDIA GPU
ARCHITECTURE

The G80 architecture, released in 2006, was
NVIDIA’s first GPU family to employ a unified shader
architecture. From the GPGPU standpoint, the G80
architecture resembles a many-core single instruc-
tion multiple data (SIMD) processor.12 Each core,
or streaming multiprocessor, is composed of a set of
SIMD processing units and a shared memory region.
The GPU card has its own external memory, which
is connected to the GPU core via a high-bandwidth,
low latency link.

The top-of-the-line consumer G80 card, the
8800 Ultra, has 128 processing units, configured as
16 streaming processors of eight processing units
each, and 768 MB GDDR3 RAM.13 The peak single-
precision performance of this card is 384 Gflop/s and
the memory bandwidth is 104 GB/s. NVIDIA’s lat-
est GPU series, the GT200, is available in single-
chip configurations up to 240 processing units, with
as much as 2 GB GDDR3 RAM. Peak performance
for these cards can exceed 1 Tflop/s and the mem-
ory bandwidth is as high as 159 GB/s.14 Adding to
this list, NVIDIA released their newest Tesla Proces-
sor based on Fermi architecture with 448 process-
ing units and 1.03 Tflop/s peak floating-point per-
formance. The ATI’s Radeon series provide similar
performance. To put these figures into perspective,
CPUs released in similar timeframes are rated at ap-
proximately an order of magnitude lower floating-
point performance and memory bandwidth.

PROGRAMMING NVIDIA GPUs

Work is dispatched to the multiprocessors as indepen-
dent blocks of threads. Compared to a thread running
on the CPU, GPU threads are lightweight and simple.
A single CPU thread will far outperform a single GPU
thread, but the GPU as a whole is capable of outper-
forming the CPU because it can execute instructions
from hundreds of threads simultaneously.

NVIDIA describes its recent GPUs as single
instruction multiple thread (SIMT) architectures.12

From the programming perspective, SIMT is similar
to the single program multiple data (SPMD) program-
ming model used commonly in distributed computing
applications. In both cases, tasks are broken down
into identical threads that operate on different data.
Threads have independent control and are free to di-
verge from one another at any time, implying task
parallelism capabilities.

Volume 1, January /February 2011 45c© 2011 John Wi ley & Sons , Inc .



Overview wires.wiley.com/widm

The underlying GPU architecture is what makes
SIMT distinct. The multiprocessors in the GPU are
inherently SIMD, and the SIMT model, which ex-
plicitly calls for scalar operations within each thread,
maps groups of threads to each multiprocessor for
concurrent execution. Threads within a group have
the same physical instruction fetch and data cache,
and can share data through a local store on the mul-
tiprocessor. This is in contrast to a standard SPMD
model, in which threads are assumed to require asyn-
chronous communication to share data and otherwise
operate completely independently of one another. In
SIMT, when the active threads on a multiprocessor
are all executing the same instruction, they execute
concurrently, enabling fine-grained data parallelism.
When threads have diverged from one another, their
execution is serialized in the multiprocessor, pro-
viding the flexibility to implement task parallelism
at the thread level, although at the cost of reduced
utilization.

NVIDIA provides a proprietary framework for
programming its GPUs, called compute unified device
architecture (CUDA),12 as well as an OpenCL driver.
In either case, C-style syntax is used to specify the be-
havior of the GPU and orchestrate overall application
control flow. The GPU acts as a coprocessor, so an
application running on the host CPU is required to
manage the overall application control flow, config-
ure the GPU for computation, and schedule memory
transfers between the GPU and the host system.

BASIC STATISTICS ON GPUs

Computational scientists generate large amounts of
data from experimental, observational, and compu-
tational simulation. These data need to be analyzed
and interpreted to gain insight. The basic operations
that are applied to the data are called descriptive
statistics. They provide simple summaries about the
sample. Together with simple graphics analysis, they
form the basis of further more complex quantitative
analysis of data. A few of these basic statistical func-
tions include min, max, mean, standard deviation,
variance, histogram, and summation functions. The
first two statistics, min and max, provide the range
of the data. Mean is the arithmetic average of the
data observations. The standard variation is the most
commonly used measure of the spread or dispersion
of data around the mean. The standard deviation is
defined as the square root of variance (the expected
squared deviation from the mean). A histogram shows
the shape of the probability distribution function ID
data, checks for homogeneity, and suggests possible

outliers. These functions have different characteris-
tics/computational requirements that result in varied
performance gains when implemented on GPUs.

The GPU implementation of the summation
function follows a tree-based approach. In this ap-
proach, the datapoints are summed in pairs at the
root node. The results follow the similar pattern of
pair summation and continue till the final result is
obtained. The other functions, except histogram, can
be implemented by simple modifications to the tree
approach. Histograms are traditionally quite difficult
to compute efficiently on GPUs due to nonuniform
memory access pattern and provide limited speedup
compared to other functions.15

DATA MINING APPLICATIONS
FOR GPUs

Clustering and classification algorithms are composed
of kernels that are computationally very demanding.
As an example, k-means16 is a clustering algorithm
that divides the input dataset into k clusters. It is an
iterative algorithm composed of two main kernels:
distance computation and cluster update. The dis-
tance computation kernel calculates the distance of
every input data point to the k cluster centers and
assigns it to the cluster that is closest to it. This is
followed by the cluster update kernel that calculates
the new cluster centers for the next iteration by com-
puting the mean of all the datapoints in a cluster. In
the first kernel, the computation of distance of a dat-
apoint is independent of other datapoints. Hence, the
massive number of threads of GPUs can be very suit-
able to accelerate the distance computation kernel.
The latter kernel is similar to the histogram (men-
tioned in the basic statistics section) implementation
and its performance is limited by the memory access
pattern.

A modified k-means algorithm is fuzzy
k-means.17 The distinguishing feature of fuzzy k-
means is that it allows each datapoint to have a de-
gree, in terms of probability, of membership to each
cluster. This means that instead of assigning a data-
point to a particular cluster, every datapoint belongs
to a cluster with certain probability. The computa-
tion of this probability makes fuzzy k-means more
compute-intensive compared with k-means. Further,
the memory access pattern is more uniform in the
cluster update kernel compared with k-means that re-
sults in fuzzy k-means having a higher performance
improvement on GPUs.

Another example of a data mining application,
which is suitable for GPUs, is principal component

46 Volume 1, January /February 2011c© 2011 John Wi ley & Sons , Inc .



WIREs Data Mining and Knowledge Discovery Accelerating data mining workloads

analysis (PCA).18 PCA is a powerful tool to iden-
tify patterns in high dimensional data. It aims at
finding principal components that are representative
of the input dataset. The algorithm can be divided
into three kernels: tridiagonalization kernel, eigen-
value kernel, and principal component kernel. The
first kernel transforms the covariance matrix of the
input dataset into a tridiagonal matrix. The second
kernel uses the tridiagonal matrix to compute the
eigenvalues of the input covariance matrix. (Convert-
ing the matrix to a tridiagonal form and comput-
ing the eigenvalues is more efficient than computing
the eigenvalues of the matrix directly.) The principal
component kernel takes the first k eigenvalues and
computes the corresponding eigenvectors that form
the principal components of the input dataset. The
kernels involve matrix operations that are shown to
perform an order of magnitude higher on the GPUs
as compared to the traditional CPU implementation.

GPU IMPLEMENTATION

As mentioned in the previous section, k-means com-
prises of a distance computation kernel and a cluster
update kernel, both of which can be separately im-
plemented on GPU. The first kernel can have various
possible implementations resulting in different perfor-
mance benefits. A naive way of implementation would
be to assign each datapoint to a GPU thread and let
it compute the cluster membership of that datapoint
(i.e., the thread computes the distance of the datapoint
from the k-cluster centers and assigns it to the cluster
closest to it). The NVIDIA GPUs have different levels
of memory with different latencies and sizes. Hence,

the performance depends heavily on where the clus-
ter center data for the current iteration are stored. If
the cluster centers are stored in the device memory
of the GPU, then there will be a lot of memory con-
flicts as all threads will try to read the cluster center
data simultaneously, which will result in poor per-
formance. To improve the performance, the cluster
centers can be copied to the on-chip shared memory,
which is an order of magnitude faster than the device
memory. Further, because the threads are grouped as
blocks, and each block has its own shared memory,
replicating the cluster centers will reduce the num-
ber of conflicts, thus boosting the performance. The
implementation of cluster update closely follows the
histogram implementation. Because the averaging is
done for all the attributes present in the dataset, the
computation is distributed across arrays of blocks,
with each array handling one attribute.

NVIDIA provides a library of basic linear al-
gebra subprograms (BLAS) functions in the form of
CBLAS library.19 The library offers a rich implemen-
tation of various operations on matrices and vectors.
The kernels in PCA algorithm involve a combination
of matrix–matrix, matrix–vector, and vector–vector
operations. Thus, GPU implementation provides an
order of magnitude higher speedup compared with
the CPU implementation.

GPU VERSUS CPU PERFORMANCE

Experiments performed on NVIDIA’s GeForce
8800GT show performance gains of the applica-
tions mentioned above, which outperform the tra-
ditional single-CPU implementation. Figure 2 shows

Basic statistical kernels

1M 2M 4M 8M 16M 32M

S
p

e
e
d

u
p

40

35

30

25

20

15

10

5

0

Min Max Mean Variance Standard

deviation

Histogram

64

Histogram

256

Sum

FIGURE 2 | Speedup of GPU versus CPU for basic statistical kernels for different data sizes.

Vo lume 1, January /February 2011 47c© 2011 John Wi ley & Sons , Inc .



Overview wires.wiley.com/widm

10K

k-means Fuzzy k-means

50K 100K 250K 500K 1M

S
p

e
e
d

u
p

 (
C

P
U

/G
P

U
)

S
p

e
e
d

u
p

 (
C

P
U

/G
P

U
)

80

70

60

50

40

30

20

10

0

35

30

25

20

15

10

5

0

0 100

256 512 1024 2048

200 300 400 500 600

No. of principal componets

Principal component analysisClustering algorithm

FIGURE 3 | Speedup of GPU versus CPU for different data mining algorithms.

the speedups for the various basic statistical kernels.
Figure 3(a) shows the results of the clustering algo-
rithms with 20 attributes and different size of the
input data ranging from 10,000 to 1 million data
records. Similarly, Figure 3(b) shows the results from
PCA algorithm with different size of the input data
and different number of principal components. Lim-
ited memory on the GPU device restricts the maxi-
mum number of data elements that can be processed
by the GPU device.

FPGA OVERVIEW

An FPGA is a type of integrated circuit whose func-
tionality can be specified after the fabrication process.
Because it is designed to have the flexibility to imple-
ment any logical function, an FPGA can be used to
prototype ASICs or replace them altogether.

At the core of an FPGA’s architecture is an
array of logic blocks. The specific architecture of
these logic blocks varies between manufacturers and
product lines, so a generic example is shown in
Figure 4. The LookUp table in the logic block can
be programmed to implement an arbitrary combina-
tional logic function, and the register allows each logic
block to hold state. Multiple logic blocks can be used
collectively to specify very complex logic functions.

Signal routing between logic blocks is accom-
plished with a hierarchy of programmable intercon-
nect resources. Short lines, connecting neighboring
blocks, paired with long lines, connecting distant
blocks, allow signals to move freely within the FPGA.
FPGAs also implement dedicated clock and reset lines
designed to minimize timing problems.

Modern FPGAs typically embed fixed-function
blocks, such as block RAM elements, digital sig-
nal processor modules, high-speed I/O transceivers,

and even general-purpose processors, into the FPGA.
Embedded function blocks are faster and more
space-efficient than equivalent implementations us-
ing reconfigurable resources, and enable FPGAs to
implement complex, customizable System-on-Chip
architectures.

With sufficient resources, an FPGA can imple-
ment an arbitrarily complex circuit. And because
many FPGA solutions allow run-time reconfiguration,
the functionality provided by a single FPGA is limited
only by one’s ability to specify configurations. Com-
pared with ASICs, products targeting FPGAs have
a much shorter time to market, require much lower
nonrecurring engineering costs, and can be updated
for bug fixes or improved functionality at any time.
They are, however, significantly slower than ASICs
and more expensive at high volumes.

RECONFIGURABLE COMPUTING

The design flexibility afforded by FPGAs, in addi-
tion to their ever-growing gate counts and compar-
atively low overall power consumption, has gener-
ated recent interest in reconfigurable computing. In
the realm of high-performance computing, reconfig-
urable architectures typically employ one or more FP-
GAs as coprocessors of the CPU. Software running on
the CPU drives the execution of the application as a
whole and offloads computationally intensive tasks to
the FPGA.

Although FPGAs operate at relatively low clock
speeds (200 MHz is common), they are capable of
performing many operations in parallel and can be
tailored to the specific data flow of a task requiring
acceleration. Also, the vast programmable intercon-
nect network of an FPGA provides very high internal
bandwidth for moving inputs and intermediate data

48 Volume 1, January /February 2011c© 2011 John Wi ley & Sons , Inc .



WIREs Data Mining and Knowledge Discovery Accelerating data mining workloads

Interconnect

fabric

Switch block

Configurable

logic block

FIGURE 4 | Generic implementation of FPGA logic cells.

within the FPGA. Taking these factors into account,
certain data-intensive tasks can be performed more
quickly and efficiently on an FPGA than on a CPU.

PROGRAMMING FOR FPGAs

FPGA configurations are commonly specified using
a hardware design language (HDL) such as VHDL
or Verilog. The desired functionality of the FPGA
can be specified down to the gate level, and FPGA
manufacturers and third parties provide commonly
used functional blocks, such as arithmetic, memory
controllers, and communications, which can be inte-
grated into the HDL description. A tool chain specific
to the target device maps the HDL description to the
FPGA and produces a configuration file, which can
be loaded onto the FPGA when necessary.

The reconfigurable nature of FPGAs offers some
of the high-performance customizability of ASICs
with the flexibility of software solutions. Program-
ming an accelerator for an FPGA using an HDL is
a much simpler and shorter process than creating an
ASIC accelerator, but is much more difficult and time-
consuming than developing software for a general-
purpose processor. High-level synthesis tools address
the difficulty associated with creating HDL descrip-
tions by providing an algorithmic-level abstraction

of the hardware description. These tools allow a de-
signer to specify the desired functionality of a circuit
using a high-level language, such as C/C++, and rely
on automated tools to transform the specification into
an HDL description.

MAPPING APPLICATIONS TO FPGAs

Determining the suitability of an application for
FPGA acceleration requires an analysis of the applica-
tion’s control flow and data usage patterns. The best
candidates for FPGA acceleration are tasks featur-
ing a simple control flow, abundant data parallelism,
and low input data requirements. Mapping a task to
an FPGA generally amounts to the specification of
a custom datapath for that task, the goal of which
is to leverage the parallel computational capabilities
and high internal bandwidth of the FPGA to offset
the low operating frequency. Tasks in which an input
dataset can be streamed through a datapath are often
good candidates for FPGA acceleration because they
reduce data storage requirements and performance-
degrading memory access logic.

The capacity of FPGAs has grown to the point
at which they can feasibly be used for floating-point
arithmetic. But the computational intensity of the can-
didate application needs to be very high to achieve

Volume 1, January /February 2011 49c© 2011 John Wi ley & Sons , Inc .



Overview wires.wiley.com/widm

Cluster 0

Cluster 1

Cluster n

^2

^2

^2

^2

–

–

–

–

FIGURE 5 | k-means implementation on FPGA.

decent performance gains because the floating-point
capabilities of even the largest FPGAs are not vastly
better than commodity CPUs.

IMPLEMENTATION OF k-MEANS
ON FPGA

Consider, for example, the distance calculation phase
of k-means. At first glance, it seems like a prime can-
didate for FPGA acceleration due to embarrassing
parallelism, very simple control flow, and low stor-
age requirements. The computation maps easily to
the datapath shown in Figure 5. The datapath is ca-
pable of simultaneously calculating squared distances
for multiple dimensions between a single point and
multiple clusters. The input dataset streams through
the FPGA once per iteration.

The problem with this datapath is that
the floating-point operations consume a significant
amount of resources, so its computational capabili-
ties are not much better than a software implementa-
tion on a high-end CPU, especially when the overhead
of transferring data between the FPGA and CPU is
taken into account. In this case, the task maps well
to an FPGA, but its performance is constrained by
limitations on available resources.

Depending on the accuracy requirements of the
application and the nature of the input dataset, the re-
source utilization, and accordingly the performance,
of this datapath can be improved by moving to fixed-
point representations or implementing a simpler dis-
tance metric. Either solution would reduce the com-

plexity of the datapath, allowing the number of func-
tional blocks to be increased.

DECISION TREE CLASSIFICATION

Decision tree classification (DTC) is a basic technique
for generating a predictive classification model. Given
an input dataset consisting of multiple records of a
number of attributes, a decision tree model recursively
splits the dataset based on the value of a particular
attribute.

Consider, for example, a dataset with two con-
tinuous attributes, A and B, and a binary class ID
attribute, C. We wish to use the dataset to generate
a predictive model for C, based on the values of A
and B.

To create this model, the dataset is divided
into two partitions, P0 and P1, where P0 is initially
empty and P1 contains all records in the dataset. Gini
score, which measures the quality of the partition-
ing scheme, is calculated for the current partitioning
scheme, based on the following formula:

Gini =
1∑

i=0

⎧⎨
⎩

Ri

R

⎡
⎣1 −

1∑
j=0

(
Ri j

Ri

)2
⎤
⎦

⎫⎬
⎭

where R is the number of records in the dataset, Ri is
the number of records in partition i, and Rij is the
number of records in partition i bearing the class
label j.

The record in P1 associated with the smallest
value of A is then moved into P0 and a new Gini score

50 Volume 1, January /February 2011c© 2011 John Wi ley & Sons , Inc .



WIREs Data Mining and Knowledge Discovery Accelerating data mining workloads

Gini unit

Gini unit

Gini unit

Gini unit

Global min

Min

Min

Min

Min

Min

Min

FIGURE 6 | DTC implementation on FPGA.

is calculated. This process is repeated until all records
have been moved into P0. The lowest Gini score cal-
culated during this process is associated with the best
partitioning, or split position, of the dataset for at-
tribute A. The same process of sorting the dataset and
finding the best partitions is repeated for attribute B,
and the minimum Gini score for A and B is compared.

The dataset is split on the basis of the attribute
and position of the resulting global minimum Gini
score and the entire process is repeated on each par-
tition for the remaining attribute. The result is a tree
describing the predictive model for C. Nodes in the
tree represent a splitting decision for a particular at-
tribute, and leaves in the tree identify the predicted
class ID.

DTC: FPGA IMPLEMENTATION

A significant portion of the overall execution time
of the decision tree induction task is consumed in
determining the minimum Gini score for each at-
tribute. The determination of a global minimum split-
ting attribute and split position is a computationally
intensive process requiring a sequence of integer arith-
metic operations to be performed for each record over
each attribute in the dataset. The relative simplicity
of the arithmetic operations required to calculate Gini
scores, paired with the straightforward control flow
of the minimum score calculation process, makes this
operation a good candidate for FPGA coprocessing.

To accelerate optimal split position determina-
tion on the FPGA, an architecture is designed to si-
multaneously compute the minimum Gini score for
multiple attributes,20 as shown in Figure 6. The total
number of Gini units implemented in the datapath is

a power of 2 and is limited by the available FPGA
resources.

Each Gini unit calculates the best split value and
split position for a particular attribute, from which
the comparator tree identifies the global optimum
splitting attribute. The Gini score calculation for bi-
nary class IDs can be rewritten as:

Gini = 2 · R00 · R01

R0 · (R0 + R1)
+ 2 · R10 · R11

R1 · (R0 + R1)

R0 is equivalent to R00 + R01, R1 is equivalent to
R10 + R11, and R0 + R1 is constant over the process-
ing of an attribute, so the following modified formula
generates the same split position with less hardware:

Gini′ = R00 · R01

R00 + R01
+ R10 · R11

R10 + R11

A further refinement is based on the observation that,
given two partitions of known record counts and class
memberships, the number of records in a particular
partition with a particular class label changes by ei-
ther 0 or 1 when a record is moved from one partition
to the other. Product terms can therefore be calculated
with addition and subtraction operations instead of
multiplications. The resulting optimized Gini unit ar-
chitecture for binary class IDs is shown in Figure 7.

The overall application flow with the FPGA co-
processor proceeds as follows. First, software running
on the host CPU generates a representative bitmap of
class IDs. Each column of the bitmap holds a copy
of the class ID field of the dataset after the dataset is
sorted based on a distinct attribute. Software initial-
izes the Gini units on the FPGA accelerator by writ-
ing initial values of R0, R1, R00, R01, R10, and R11.
The class ID bitmap is then streamed to the FPGA
accelerator, which distributes each column of the

Volume 1, January /February 2011 51c© 2011 John Wi ley & Sons , Inc .



Overview wires.wiley.com/widm

+1

+1

–1

–1
R10

R11

R00

R00+R01

R00+R01

R10+R11

R10+R11

R01

+

+1

–

–1

/

+

/

FIGURE 7 | Logic implementing Gini calculation.

bitmap to a separate Gini unit. Once the FPGA ac-
celerator has processed the bitmap in its entirety, the
software application reads the optimal splitting at-
tribute and split position from the FPGA and uses it
to perform the actual partitioning of the dataset. The
process is repeated recursively for each partition until
a full predictive model has been generated.

Compared with a pure software implementa-
tion, a 6× speedup of the Gini calculation task
can be obtained with this accelerator on a small
FPGA.20 Using this accelerator on an XD1000 de-
velopment system from XtremeData, Inc., Schaum-
burg, IL, USA, which features a much larger FPGA
and a high-bandwidth, low latency link to the CPU,21

a speedup of 30× is possible. Taking only an ac-
celerated Gini calculation into account, the overall
application speedup for ScalParC,22 a popular DTC
algorithm, would be limited to 1.5× because the split
determination phase accounts for about one-third
of the overall algorithm execution time. The overall
speedup can be significantly improved by accelerat-
ing other time-consuming operations, such as dataset
sorting, using an FPGA or GPU.

PCA: FPGA IMPLEMENTATION

As has already been mentioned earlier, PCA produces
a set of principal components, which are orthonor-
mal eigenvalue/eigenvector pairs. In other words, it
projects a new set of axes that best represent the data.

The FPGA implementation of PCA can be di-
vided into two parts. The first part takes each data

element (i.e., vector x) and projects it along the new
set of orthonormal axes. In most data mining ap-
plications such as classification, the eigenvalues and
eigenvectors need to be calculated only once during
the initial training phase, which is frequently done of-
fline. But each new data item needs to be projected
along the new axes. Often, this needs to be done on-
line for high throughput requirements. Hence, this
is an ideal candidate for FPGA implementation. The
second part takes two vectors x and y projected along
the principal axes and calculates the distance between
them.

Each eigenvalue of a principal component cor-
responds to the relative amount of variation it encom-
passes. The larger the eigenvalue, the more significant
is its corresponding projected eigenvector. Therefore,
the principal components are sorted in the decreas-
ing order of significance. If any two data items are
projected along the upper set of the significant prin-
cipal components, it is likely that we can get a good
estimate of distance without projecting along all the
principal components. Hence, only a subset of the
most important principal components is needed to
estimate the distance between any two vectors.

The high level architecture of the principal com-
ponent score pipeline (PCSP)23 is shown in Figure 8.
There are many levels of parallelism to exploit in the
PCSP pipeline. They are depicted in the dashed line
boxes in Figure 8. First of all, subtracting the vec-
tor y from the vector x is done in parallel. If each
data point has p attributes [x = (x1, x2. . . xp)], then p
operations are performed in parallel. The next phase

52 Volume 1, January /February 2011c© 2011 John Wi ley & Sons , Inc .



WIREs Data Mining and Knowledge Discovery Accelerating data mining workloads

x – y

Principal component pipeline

x–y

x–y

ParC

Distance

x

y

e1..q

1..q

e1

e2

2

11

q q

2

eq
[eq (x–y)]2

ei

i

[e2 (x–y)]2

[e1 (x–y)]2

x1
y1

x2

y2

xp

yp

FIGURE 8 | FPGA implementation of principal component analysis.

for PCA is calculating the partial component scores
(parC).24 The element-by-element multiplication, us-
ing fixed-point arithmetic, is performed in parallel.
The first summation gives the projection of ‘x’–‘y’
along each principal component. This is accomplished
with an adder tree whose depth scales logarithmically
with the number of attributes [log2(p)]. The result is
then squared and divided by the eigenvalue of the ith
principal component. The next step is the summa-
tion of all parC scores. This is again computed by an
adder tree whose depth scales logarithmically with the
number of principal components provided [log2(q)].
Using this accelerator on an XtremeData XD1000
development system, speedup of about two orders
of magnitude can be achieved over pure software
implementation.

CONCLUSION

The increasing complexity and programmability of
high performance architectures, such as modern
GPUs, and current generation of FPGAs have paved
their way in the domain of applications exhibiting
high computational requirements and high memory
bandwidth. Data mining represents such a domain, in
which application characteristics necessitate the em-
bracement of coprocessing units to improve perfor-
mance and provide scalability. The chapter attempts
to provide an introduction of the characteristics of the
applications as well as the characteristics of the GPUs

and FPGA devices. It explores the different applica-
tions in detail and provides useful insight for imple-
mentation on these new architectures. Experimental
studies show that depending on the characteristics of
the applications, they can achieve speedups ranging
from 40× to 150×. Because the overall execution
time of a data mining algorithm is often dominated
by a few computationally intensive kernels, applying
GPUs and FPGAs can yield significant speedups over
the application as a whole. However, these copro-
cessors are not without limitations. GPUs show poor
performance if the data access pattern is not uniform,
whereas FPGAs might lose their benefit if a complex
datapath is implemented.

With the continuous advancement in the tech-
nology, we envision that the future systems will see the
emergence of heterogeneous computing units which
will include a collection of high performance archi-
tectures catering to different aspects of data analy-
sis. These heterogeneous units will form the build-
ing blocks of ultrascalable systems. Such systems
require more than just possessing high computational
capabilities. Without a high bandwidth link and high
performance storage, the overall performance of the
system will largely be limited. Hence, the technology
will progress in the direction of producing high per-
formance compute nodes and high performance IO
nodes along with a fast communication link between
the nodes to provide performance gains which will be
orders of magnitude higher than the state-of-the-art
systems of the present era.

Volume 1, January /February 2011 53c© 2011 John Wi ley & Sons , Inc .



Overview wires.wiley.com/widm

REFERENCES

1. Ramanathan R, Bruening F, Intel Corporation. Archi-
tecting the Era of Tera—Technical White Paper. Santa
Clara, CA: Intel Corporation.

2. WinterCorp Consulting Services, 2005. Top Ten
Program. Available at: http://www.wintercorp.com/
VLDB/2005 TopTen Survey/2005TopTenWinners.pdf
(Accessed December 14, 2009). Cambridge, MA.

3. Pisharath J, Choudhary A. Design of a hardware
accelerator for density based clustering applica-
tions. Proceedings of the International Conference on
Application-specific Systems, Architectures and Pro-
cessors; July 2005. Washington DC: IEEE Computer
Society, 101–106

4. Zambreno J, Ozisikyilmaz B, Pisharath J, Memik G,
Choudhary A. Performance characterization of data
mining applications using MineBench. Proceedings of
the International Workshop on Computer Architec-
ture Evaluation using Commercial Workloads; Febru-
ary 2006, 61–70.

5. Ozisikyilmaz B, Narayanan R, Zambreno J, Memik G,
Choudhary A. An architectural characterization study
of data mining and bioinformatics workloads. Proceed-
ings of IEEE International Symposium on Workload
Characterization. San Jose, CA: October 2006, 61–70.

6. Narayanan R, Ozisikyilmaz B, Zambreno J, Memik G,
Choudhary A. MineBench: a benchmark suite for data
mining workloads. Proceedings of IEEE International
Symposium on Workload Characterization: San Jose,
CA: October 2006, 182–188.

7. Standard Performance Evaluation Corporation. SPEC
CPU2000 V1.2, CPU Benchmarks. 2001.

8. Lee C, Potkonjak M, Mangione-Smith WH. Media-
bench: a tool for evaluating and synthesizing multime-
dia and communications systems. Proceedings of the
International Symposium on Microarchitecture. Re-
search Triangle Park, NC: 1997, 330–335.

9. Transaction Processing Performance Council. TPC-H
Benchmark Revision 2.0.0. 2004.

10. NVIDIA Corporation. The Infinite Effects
GPUs. Available at: http://www.nvidia.com/page/
geforce3.html (Accessed December 14, 2009).

11. KHRONOS Group. OpenCL—The open standard for
parallel programming of heterogeneous systems. Avail-
able at: http://www.khronos.org/opencl/ (Accessed
December 14, 2009).

12. NVIDIA Corporation. NVIDIA CUDA Programming
Guide. Version 2.3.1. 2009.

13. NVIDIA Corporation. GeForce 3. Available at:
http://www.nvidia.com/page/geforce3.html (Accessed
December 14, 2009).

14. NVIDIA Corporation. GeForce GTX 285. Available
at: http://www.nvidia.com/object/product geforce
gtx 285 us.html (Accessed December 14, 2009).

15. NVIDIA Corporation. Histogram Calculation in
CUDA. Version 1.1.1. November 2007.

16. Lloyd SP. Least squares quantization in PCM. IEEE
Trans Inf Theory 1982, 28:129–137.

17. Bezdek JC. Pattern recognition with fuzzy objective
function algorithms. Norwell, MA: Kluwer Academic;
1981.

18. Pearson K. On lines and planes of closest fit to sys-
tems of points in space. Philosl Mag 1901, 2:559–
572.

19. NVIDIA Corporation. CUDA CUBLAS Library. Ver-
sion 1.1. September 2007.

20. Narayanan R, Honbo D, Zambreno J, Memik G,
Choudhary A. An FPGA implementation of deci-
sion tree classification. Proceedings of the IEEE In-
ternational Conference on Design, Automation and
Test in Europe (DATE). Nice, France: April 2007,
1–6.

21. XtremeData Inc. XD1000 Development System.
Available at: http://old.xtremedatainc.com/index.php?
option=com content&view=article&id=109&Itemid
=170 (Accessed December 14, 2009).

22. Joshi M, Karypis G, Kumar V. ScalParC: a new scalable
and efficient parallel classification algorithm for mining
large datasets. Proceedings of the 11th International
Parallel Processing Symposium (IPPS). Orlando, FL:
1998, 573–579.

23. Das A, Misra S, Joshi S, Zambreno J, Memik G, et al.
An efficient FPGA implementation of principal com-
ponent analysis based network intrusion detection sys-
tem. Proceedings of Design, Automation & Test in
Europe (DATE). Munich, Germany: Munich; 2008,
1160–1165.

24. Jobson JD. Applied Multivariate Data Analysis, Vol-
ume II: Categorical and Multivariate Methods. New
York: Springer-Verlag; 1992.

54 Volume 1, January /February 2011c© 2011 John Wi ley & Sons , Inc .


