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Abstract 
Recent breakthroughs in the development of multi-layer convolutional neural networks have led to state-

of-the-art improvements in the accuracy of non-trivial recognition tasks such as large-category image 

classification and automatic speech recognition [1].  These many-layered neural networks are large, 

complex, and require substantial computing resources to train and evaluate [2].  Unfortunately, these 

demands come at an inopportune moment due to the recent slowing of gains in commodity processor 

performance. 

Hardware specialization in the form of GPGPUs, FPGAs, and ASICs1 offers a promising path towards major 

leaps in processing capability while achieving high energy efficiency. To harness specialization, an effort is 

underway at Microsoft to accelerate Deep Convolutional Neural Networks (CNN) using servers augmented 

with FPGAs—similar to the hardware that is being integrated into some of Microsoft’s datacenters [3].  

Initial efforts to implement a single-node CNN accelerator on a mid-range FPGA show significant promise, 

resulting in respectable performance relative to prior FPGA designs and high-end GPGPUs, at a fraction of 

the power. In the future, combining multiple FPGAs over a low-latency communication fabric offers further 

opportunity to train and evaluate models of unprecedented size and quality.  

Background  
State-of-the-art deep convolutional neural networks are typically organized into alternating convolutional 

and max-pooling neural network layers followed by a number of dense, fully-connected layers—as 

illustrated in the well-known topology by Krizhevsky et al. in Figure 1 [1].  Each 3D volume represents an 

input to a layer, and is transformed into a new 3D volume feeding the subsequent layer.  In the example 

below, there are five convolutional layers, three max-pooling layers, and three fully-connected layers.    

 

Figure 1. Example of Deep Convolutional Neural Network for Image Classification. Image source: [1]. 

                                                                 
1 General Purpose Computing on Graphics Processing Units, Field Programmable Gate Arrays, Application-

Specific Integrated Circuits. 



2 

 

In this paper, we primarily discuss the problem of 3D convolution, although other operations such as pooling 

and fully-connected layers are also targeted.  Figure 2 illustrates the basic pattern of 3D convolution.  A 3D 

input volume of dimensions N x N x D is convolved with H kernels of dimension k x k x D and stride S.  Each 

3D kernel is shifted in a sliding-window-like fashion (with a shift offset defined by parameter S) across the 

input volume.  During each shift, every weight belonging to the 3D kernel is multiplied and added with every 

pair-wise input element from the overlapping region of the 3D input volume.  After convolution, an optional 

pooling operation (defined by parameters p and s) is used to subsample the convolved output by sliding a 

2D window across the 3D convolved output and selecting the maximum (or average) value over the window.  

 
Figure 2. Pattern of 3D convolution and pooling. 

Accelerating Deep Convolutional Neural Networks in the Datacenter 
In 2014, Microsoft announced the Catapult project, which successfully demonstrated an effort to accelerate 

Bing Ranking by a factor of nearly 2X using FPGAs in the datacenter [3].  Leveraging the infrastructure 

pioneered in Catapult, our team at Microsoft Research has developed a high-throughput Convolutional 

Neural Network FPGA accelerator that achieves excellent performance while consuming a small fraction of 

server power. 

Figure 3 gives a high-level view of the CNN FPGA accelerator designed to efficiently compute forward 

propagation of convolutional layers. The key features of this design are: (1) a software configurable engine 

that can support multiple layer configurations at run-time (without requiring hardware re-compilation), (2) 

an efficient data buffering scheme and on-chip re-distribution network that minimizes traffic to off-chip 

memory, and (3) a spatially distributed array of processing elements (PEs) that can be scaled easily up to 

thousands of units.   

In normal operation, the CNN accelerator is capable of accepting an input image and processing multiple 

convolutional layers in succession.  During the initial layer, input image pixels are streamed on-chip from 

local DRAM, then stored into a multi-banked input buffer.  These inputs are then streamed into multiple PE 

arrays, which perform independent dot-product operations in the 3D convolution step.   A top level 

controller orchestrates the sequencing, addressing, and delivery of data to each of the PE arrays.  Finally, 
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accumulated results are sent to a specialized network-on-chip, which re-circulates the computed output 

layer to the input buffers for the next round of layer computation2.  

 

 
 

Figure 3. Top-Level Architecture of the Convolutional Neural Network Accelerator. 

The accelerator highlighted in Figure 3 targets a dual-socket Xeon server equipped with a Catapult FPGA 

card, which includes a mid-range Stratix V D5 FPGA and 8GB of DDR3-1333 [3].  Each FPGA card supports 

up to 8GB/s of bandwidth over PCIe 3x8 and up to 21.3 GB/s of bandwidth to local DRAM.  More 

specifications of the hardware are described in the original Catapult paper [3]. 

Table 1 shows the throughput of image classification (forward propagation only) using well-known models 

such as CIFAR-10 based on cuda-convnet [4], and ImageNet-1K based on Krishevsky et al [1]. We further 

evaluate the largest and most challenging model available to us, the ImageNet 22,000-category deep 

convolutional neural network trained using Project ADAM at Microsoft [2].  

In general, our current Catapult server equipped with a mid-range Stratix V D5 FPGA achieves competitive 

processing throughput relative to recently published state-of-the-art FPGA solutions [5] and Caffe+cuDNN 

running on high-end GPGPUs [6].  It is worth noting that the GPGPU solutions require up to 235W of power 

to operate [7], making them impractical to deploy at scale in our power-constrained datacenters. In 

contrast, the FPGA solution consumes no more than 25W of power, incurring a less than 10% overhead in 

overall power consumption of the server. Also, our design achieves nearly 3X speedup relative to the most 

recently published work on accelerating CNNs using a Virtex 7 485T FPGA [5].    

                                                                 
2 Although not shown in Figure 3, additional logic is present to handle pooling and rectified linear 

operations. 
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 CIFAR-10 [4] ImageNet 1K [1] ImageNet 22K [2] Max 

Device 

Power 

Catapult Server + Stratix V D5 [3] 2318 images/s 134 images/sec 91 images/sec 25W 

Catapult Server + Arria 10 GX1150 [8] - ~233 images/sec 

(projected) 

~158 images/sec 

(projected) 

~25W 

(projected) 

Best prior CNN on Virtex 7 485T  [5] - 46 images/sec3 - - 

Caffe+cuDNN on Tesla K20 [6] - 376 images/sec - 235W 

Caffe+cuDNN on Tesla K40 [6] - 500-824 images/sec4 - 235W 

Table 1: Comparison of Image Classification Throughput and Power. 

Our CNN accelerator is parameterizable and can be scaled to newer and faster FPGAs with minimal effort.  

Our team is currently mapping the design to Altera’s new Arria 10 FPGA, which offers dedicated support for 

floating-point operations, and can deliver over 1 TFLOPS with very high energy efficiency [8].  Table 1 lists 

our conservative projection in expected gains once the design is adapted to Arria 10.  

In conclusion, this paper described an investigation to accelerate deep convolutional neural networks using 

FPGAs. Initial results are promising and have shown that hardware specialization can achieve high levels of 

performance at low power consumption. In the future, we anticipate further significant gains when 

mapping our design to newer FPGAs such as the Arria 10 and Stratix 10, and when combining a large number 

of FPGAs together to parallelize both evaluation and training.  
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3 Computed based on Table 7 from [5]. 
4 Requires disabling ECC and setting clock boost to 875MHz. 


