
Accelerating Design Space Exploration Using Pareto-Front Arithmetics∗

Christian Haubelt and Jürgen Teich
University of Paderborn

D-33098 Paderborn, Germany

{haubelt|teich }@date.upb.de

Abstract— In this paper, we propose an approach for the syn-
thesis of heterogeneous (embedded) systems, while exploiting a hi-
erarchical problem structure. Particular to our approach is that
we explore the set of so-calledPareto-optimal solutions, i.e., opti-
mizing multiple objectives simultaneously. Since system complex-
ity grows steadily leading to giant search spaces which demand
for new strategies in design space exploration, we proposePareto-
Front Arithmetics (PFA) using results of subsystems to construct
implementations of the top-level system. This way, we are able
to reduce the exploration time dramatically. An example of an
MPEG4 coder is used to show the benefit of this approach in real-
life applications.

I. I NTRODUCTION

Simultaneously optimizing multiple conflicting objectives
like power consumption, implementation cost, etc. becomes
more and more important in SoC design. Since it is possible to
implement different functions of the system on different hard-
ware components, the design space is very complex. The ques-
tion which function has to be performed by which hardware
component on the discussed conditions is a multi-objective op-
timization problem which can be formalized and is often called
system synthesis[2]. Moreover, the basic problems are to find
anallocationof components and to find abindingof functions
to components while regarding data dependencies. Our main
goal is to formalize these tasks in order to be able to understand
the complexity of finding optimal allocations and bindings.

Due to the large complexity of the design space, heuristic
optimization techniques are mostly used to solve the optimiza-
tion problem. Different heuristic optimization techniques are
discussed in the literature for non-hierarchical system synthe-
sis (see [2, 5]). In this paper, we proposePareto-Front Arith-
metics(PFA) to deal with the increased complexity in the prob-
lem of finding optimal solutions, the so-calledPareto-set. PFA
is based on a hierarchical model of embedded systems [10].
This model allows the specification of design alternatives of
the application algorithm as well as alternatives of different
hardware architectures. In contrast to other hierarchical mod-
els (see [4, 3]), this model supports the specification of re-
source constraints. Not only that this hierarchical approach
helps designers to cope with complexity, but it also captures

∗Supported in part by the German Science Foundation (DFG), Project
SFB 614 “Selbstoptimierende Systeme des Maschinenbaus”.

the knowledge of problem composition.
The idea of PFA is to start exploring the Pareto-fronts by

mapping the leaves in a given hierarchical specification. Later,
these Pareto-fronts are combined to generate the Pareto-front
on higher hierarchical levels. This way, we reduce the explo-
ration time. But we will show that the constructed front might
not be the true Pareto-front. Nevertheless, while using only a
small fraction of time, we are able to find a substantial number
of Pareto-optimal solutions.

The concept of PFA was already mentioned in [7] and for-
malized in [1]. While [7] only shows experimental results,
Abraham et al. [1] discuss a very special kind of search space
which possesses certain monotonicity properties that we show
do not hold in SoC design.

The rest of the paper is organized as follows: We start with
an introduction to system synthesis. The characteristics of hi-
erarchical design spaces of embedded systems are shown in
Section III. The novel approach of Pareto-Front Arithmetics
for fast design space exploration is outlined in Section IV. Sub-
sequently, we propose an algorithm based on PFA and uncer-
tain objectives in order to improve the quality of the design
points. We capture the results (Section V) of these approaches
for the example of an MPEG4 coder which is the running ex-
ample in this paper.

II. SYSTEM SYNTHESIS

The task of system synthesis is to find the set of optimal
feasible implementations for a given specification. Here, an
implementation consists of two parts ([10]):

1. theallocationα is the set of all used hardware resources
like processors, IP cores, etc. as well as the set of imple-
mented tasks.

2. thebindingβ determines the hardware resource used for
the execution of each task in the allocation.

Example 1 We use the model of a so-calledspecification
graph(see also [10]) in order to specify embedded systems.
A specification graph consists of three main components:

• The problem graphgp describing the behavior of the sys-
tem modeled by a process graph.

• The architecture graphga models the set of possible ar-
chitectures.

C1 DL C2 CL C3 AL C4 FL C5

p = 200

FPGA2

p=700

c=500

SB
p=50
c=50

FPGA1

p=600

c=1000

RISC2
p=400
c=800

c=750
p=450

RISC1

Network
p=0
c=0

Scene
p=0
c=0

FPGA1

FPGA2CL

CL
p = 350

p = 400

p=10p=100p = 0 p=300p=10 p=0 p=100 p = 0

SB

Fig. 1. Implementation of an MPEG4 coder. All vertices and edges drawn
solid describe an allocation. The binding is given by the dashed edges.

• The user-defined mapping constraints, calledmapping
edgesEm, relate tasks and resources in the form: ”can
be implemented by”.

The example introduced here and used throughout the pa-
per is an MPEG4 coder. The problem graph of the MPEG4
coder is shown at the top of Fig. 1. We start with a given scene
which is decomposed (DL) into audio/visual objects (AVO).
Each AVO is coded by an appropriate coding algorithm (cod-
ing layer, CL). In a next step (Access Unit Layer, AL), the data
are provided with time stamps, data type (audio, video), etc.
In a last operation (Flexible Multiplexer) it is possible, e.g., to
group streams with the same quality of service requirements.

The target architecture for the problem graph is shown at
the bottom of Fig. 1. The architecture consists of four func-
tional resources, two programmable RISC processors, two field
programmable gate arrays (FPGAs), and a single shared bus.
Additionally, the processor RISC1 is equipped with two spe-
cial ports. The dashed edges between the two graphs are the
additional mapping edges. For example, operation DL can be
executed only on RISC1.

The mapping edges are annotated with additional power
consumptions which arise when this particular mapping edges
is part of the binding. Furthermore, all resources in Figure 1
are annotated with allocation cost and power consumptions.
These values have to be taken into account if the correspond-
ing resource is used in an implementation.

Consider the case that the operation CL in Figure 1 is
mapped onto the resource RISC2. All other operations are
non-ambiguously bound onto resources. The dashed mapping
edges shown in Figure 1 indicate a feasible binding if the al-
location is given by the two RISC processors, the shared bus,
and the two external interfaces.

Due to data dependencies, a binding could be infeasible. A
binding is called feasible if it guarantees that data communi-
cations imposed by the problem graph could by established by
the allocated resources. Furthermore, afeasible allocationis
an allocationα that allows at least one feasible bindingβ. In

order to restrict the combinatorial search space, it is useful to
determine the set of feasible allocations and bindings, With this
knowledge, we define an implementation as a pair(α, β).

The Task of System Synthesis With the model introduced
previously, the task of system synthesis can be formulated as
an optimization problem.

Definition 1 (System Synthesis)The task ofsystem synthe-
sis is the following multi-objective optimization problem:

minimize o(α, β),
subject to:

α is a feasible allocation,
β is a feasible binding,
ci(α, β) ≥ 0, ∀i ∈ {1, . . . , q}.

The constraints onα andβ define the set of valid implemen-
tations.Additionally, there are functionsci, i = 1, . . . , q, that
determine the set of feasible solutions.

Normally, theobjective functiono is n-dimensional, i.e.,
we optimize multiple objectives simultaneously. Furthermore,
there areq constraintsci, i = 1, . . . , q. All possible allocations
α and bindingsβ span the design spaceX. Only thesedesign
pointsx = (α, β) ∈ X that represent a feasible implementa-
tion and that satisfy all constraintsci, are in the set of feasible
solutions, or in short in thefeasible setcalledXf ⊆ X. The
image ofX is defined asY = o(X) ⊂ Rn, where the objective
functiono on the setX is given byo(X) = {o(x) | x ∈ X}.
Analogously, theobjective spaceis denoted byYf = o(Xf).

Since we are dealing with multi-objective optimization
problems, there is generally not only one global optimum, but
a set of so-calledPareto-points[8].

Definition 2 (Pareto-optimality) A feasible implementation
i = (α, β) ∈ Xf is said to be Pareto-optimal, if there is no
other design point̃i = (α̃, β̃) ∈ Xf which dominates it, i.e.,
@̃i ∈ Xf : ĩ � i, where1

i � ĩ (dominates) if o(i) < o(̃i)

i � ĩ (weakly dominates) if o(i) ≤ o(̃i)
i ∼ ĩ (is indifferent to) if o(i) � o(̃i) ∧ o(i) � o(̃i).

The set of all Pareto-optimal solutions is called thePareto-
optimal set, or for short thePareto-setXp. An approxima-
tion of the Pareto-setXp will be termedquality setXq subse-
quently.

Example 2 An example of a two-dimensional objective space
is given in Figure 4(a). Assume that the objectiveso1 and
o2 are both to be minimized. There are five Pareto-optimal
points,p31,p32,p33,p34, andp35. The Pareto-set is given by
{p31,p32,p33,p34,p35}. The remaining points are all domi-
nated by at least one Pareto-optimal solution.

1The relations◦ ∈ {=,≤, <,≥, >} are defined as:o(i) ◦ o(̃i) iff ∀j =

1, . . . , n : oj(i) ◦ oj (̃i)

CL

HILN

H.261VTC

NaturalSound

AudioCoder

Image&Video

MPEG2Coder

CELPCoder MPEG4VideoCoder

VisualCoder

SyntheticObjects

Fig. 2. Complete functional specification of the MPEG4 coding layer.

III. H IERARCHICAL SYSTEM SYNTHESIS

By looking at the MPEG4 standard, one can see that the cod-
ing layer consists of several different coding schemes which
cannot be expressed in the given specification model. In or-
der to model these refinements, here, we introduce a hierar-
chical model. Thishierarchical specification graphis based
on the (non-hierarchical) specification graph described in the
previous section and the concept ofhierarchical graphs[10].
Mapping edges in the hierarchical specification graph map leaf
vertices of the problem graph to leaf vertices of the architec-
ture graph. An example of a hierarchical specification graph is
shown in Figure 3.

Example 3 Figure 2 shows possible refinements of the coding
layer. There are two possible codings: audio and visual cod-
ing, i.e., CL.G = {AudioCoder,VideoCoder}. The audio
coder subgraph consists of only one vertexAudioCoder.V =
{vac} and no edgesAudioCoder.E = {}. In the next level
of the hierarchy, we can refinevac by a single subgraph
NaturalSound. Due to space limitations, we omit the details
of the different coding schemes. The six leaf graphs can be
refined with the non-hierarchical model.

In the following we use the notation(gs, g) to denote apar-
tial specificationwhereg is any subgraph in the problem graph
of the given specificationgs. (gs, g) is obtained by removing
all vertices and subgraphs from the problem graph leaving only
g and all its associated subgraphs. To guarantee a meaning-
ful specification, all unconnected mapping edges are removed
from the specification graph, too. Furthermore, vertices in the
architecture graph which are not incident to any mapping edge,
will also be deleted.

Obviously, the partial specification(gs, gp) corresponds to
the original specificationgs with gp being the original prob-
lem graph. In the following, we denote this particular partial
specification astop-level specification.

With the notion of a partial specification, we can decompose
our system: AdecompositionΘ(gs, gp) of a top-level specifi-
cationgs is a partition ofgs into disjunctive partial specifica-
tions.

Example 4 The decomposition of our MPEG4 codergs given
in Figure 2 into its leaf specifications is given by (Here, we use

⊗ as the decomposition operator, see also [10]):

Θ(gs, gp) = (gs,CELP)⊗ (gs,MPEG2)⊗ (gs,HILN)⊗
(gs,VTC)⊗ (gs,MPEG4)⊗ (gs,H.261)

With the definitions given above, we use the notationX(gs, g)
to denote the partial design space regarding the partial specifi-
cation(gs, g). Furthermore, letXp(gs, gp) andXf(gs, gp) de-
note the Pareto-set and the feasible set of specification graphgs

while meeting the imposed constraintsc = (c1, c2, . . . , cq), re-
spectively.Yf(gs, gp) is the objective space regarding(gs, gp).

Hierarchical Design Space A typical design space for an
embedded system exploration consists very often of many in-
feasible solutions. The probability of finding a feasible im-
plementation ,,ad hoc” is nearly zero. Here, we present a fast
approach which relies strongly on the hierarchical decomposi-
tion of a system.

We consider the case of composing a top-level design by
solutions of its subsystems. The exploration of the solutions
of the subsystems and the composition of these solutions is
calledhierarchical design space exploration. The three main
advantages for using hierarchical design space exploration are:

1. The size of each subsystem’s design space is smaller than
the top-level design space.

2. The evaluation effort for each subsystem design is low
because of the smaller complexity of the subsystem.

3. The number of evaluated top-level design points is a small
fraction of the original search space. This is due to the fact
that a valid implementation is only composable of valid
solutions of its subsystems.

Abraham et al. define necessary and sufficient conditions of
the composition function of the objectives which guarantee
Pareto-optimality for the top-level system depending on the
Pareto-optimality of its subsystems [1]. For our problem we
can formulate these conditions as: A given decomposition
Θ(gs, gp) of a top-level specification(gs, gp) is called (weak
or strong)monotonicif the top-level Pareto-setXp(gs, gp) is
given by the composition of the Pareto-setsXp(gs, gi) for all
subsystems(gs, gi) ∈ Θ(gs, gp). This is true if the composi-
tion function of each objective is a monotonic function.

Although this result is important and interesting, the op-
timization goals in SoC design unfortunately do not possess
these monotonicity properties as will be shown later. Hence,
we cannot assume that a Pareto-optimal top-level design is
composed of Pareto-optimal subsystem implementations.

Objective Space We consider a three-dimensional objective
space which is defined by the most important objectives for
SoC design: the cost, the overall power consumption and the
flexibility of an implementation.

Implementation Cost: Theimplementation costcost(i) for
a given implementationi = (α, β) is given by the sum of costs
of all allocated resources.

g1

g22v

gp

v1

c=200
r 1

r 2

c=100

ga

Fig. 3. Sample Specification.

Example 5 Again, we look at Example 1. In order to calcu-
late the implementation costcost(i), we have to compute the
set of allocated resources. With this set we calculate the imple-
mentation cost of this implementationi:

cost(i) = cost(RISC1) + cost(RISC2) + cost(SB) +
cost(Network) + cost(Scene)

= 750 + 800 + 50 + 0 + 0 = 1600

Now, we can show that the composition function of the imple-
mentation cost is indeed a non-monotonic function.

Theorem 1 The composition function for the objective cost of
an embedded system is non-monotonic.

Proof 1 We prove this theorem by contradiction: Given the
specification graphgs depicted in Figure 3. Let the al-
location cost forr1 and r2 be 200 and 100, respectively.
The cost objective for the Pareto-optimal design regarding
the cost of allocated resources of the subsystems are given
by cost(Xp(gs, g1)) = {(100)} and cost(Xp(gs, g2)) =
{(200)}. When considering subsystem(gs, g1) alone, we
would allocate resourcer1 as a cost-minimal implementation.
When considering subsystem(gs, g2) alone, the resourcer2

would determine its cost-optimal implementation. By com-
bining both implementations, we obtain an implementation of
the top-level design(gs, gp). Due to the allocation of both
resources, we get implementation cost ofcost(Xp(gs, g1)) ⊗
cost(Xp(gs, g2)) = 300 for the combined implementation
which is obviously suboptimal ascost(Xp(gs, gp)) = 200. �

Power Consumption: The overall power consumption
pow(i) of a given implementationi = (α, β) is approximated
by the sum of power consumption of all allocated resources
plus the additional power consumption annotated at the map-
ping edges.

Example 6 The implementation described in Example 1 pos-
sesses the following overall power consumption:

pow(i) = pow(RISC1) + pow(RISC2) + pow(SB) +
pow(Network) + . . .+ pow((C5,Network))

= 450 + 400 + 50 + 0 + 0 + 0 + 100 + 10 +
200 + 10 + 300 + 0 + 100 + 0 = 1520

The third objective is the reciprocal of the flexibility of an im-
plementation [10]:

Flexibility: Without loss of generality, we only treat sys-
tems throughout this paper where the flexibilityf(gp) equals

14
p

p
11

p
12

13
p

p
21

p
22 p

23 p
24 p

25

o2

o1

o1

o2

o2

o2

o2

o1

o1

o1

p
31

p
32

p
33 p

34
p
35 p

36 37
p

p
38

p
36

p
35

p
34

p
33

p
32

p
31

p
31

p
32 p

33 p
34 p

35

(a)

(b)

(c)

Fig. 4. Example Pareto-Front Arithmetics operations (a) union, (b)
maximum, and (c) addition of objectives of Pareto-points.

the number of used leaf graphs of the problem graphgp. For
the problem graph in Figure 2 we obtain a maximum flexibil-
ity of g(CL) = 6 by using the CELP, MPEG2, HILN, VTC,
MPEG4, and H.261 coder in our implementation. For a com-
prehensive introduction to the flexibility of an embedded sys-
tem see [6].

IV. H IERARCHICAL DESIGN SPACE EXPLORATION

This section proposes a novel approach, namelyPareto-
Front Arithmetics(PFA) in design space exploration exploiting
the hierarchical structure of the underlying specifications.

A. Pareto-Front Arithmetics

The inputs to Pareto-Front Arithmetics are the qual-
ity sets from the mutually disjunctive partial specifica-
tions(gs, g1), (gs, g2), . . . , (gs, gn). Two partial specifications
(gs, g1), (gs, g2) are mutually disjunctive iffg1∩g2 = ∅. Here,
we consider each partial specification as a non-hierarchical
specification associated with a leaf graph of the problem graph.
In order to optimize such a partial specification, we use evo-
lutionary algorithms (EA) as described in [2]. The resulting
quality sets are then used by the PFA to construct a quality set
for the top-level specification(gs, gs.gp).

Figure 4 shows three possible operations used by PFA.
The first operation (Figure 4(a)) is the union of two or more
Pareto-fronts, i.e., each Pareto-optimal solution is added to
the resulting set. All points not dominated in the resulting
set are Pareto-optimal. The second operation is to take the
maximum of each objective of two (or more) points (Fig-
ure 4(b)). Here, each Pareto-optimal pointp1i is combined
with each Pareto-optimal solutionp2j . The resulting objectives
(o1, o2) = (max(o1(p1i), o1(p2j)),max(o2(p1i), o2(p2j)))
are filtered regarding Pareto-optimality..

p
11

p
12

13
p

p
14

o1

o2

p
21

p
22 p

23 p
24 p

25
o1

o2

o2

o1

Fig. 5. Example Pareto-Front Arithmetics operations using uncertain
objectives.

Figure 4(c) outlines the addition of the objective of two or
more Pareto-points: Each Pareto-optimal solutionp1i is com-
bined with each pointp2j . Here, the resulting objectives are
calculated as the sum of the objectives of the subsystems, i.e.,
ok(p3x) = ok(p1i) + ok(p2j) for k = 1, 2.

More formally, PFA operations can be defined as:

o = h(y1, y2, . . . , yn), whereyj = o(xj) ∀1 ≤ j ≤ n

The objectives used in optimization of embedded systems are
more complex due to resource sharing, power consumption
being dependent on the binding, etc. Consequently, most of
these operations are non-monotonic. Hence, we cannot claim
Pareto-optimality for the implementations in the resulting opti-
mality set when using PFA in general. But note: Even if we do
not construct the best solutions, we are able to producegood
implementations in less time by using PFA. This is due to the
fact that we avoid the NP-complete computation of a feasible
binding at higher hierarchical levels.

Section V shows a case study using PFA.

B. PFA with Uncertain Objectives

To get a better approximation of the Pareto-front, we have
to prevent the algorithm described above from rejecting good
points. We propose an improvement of the PFA as described
above in a sense that the quality of the results increases by
still benefiting from short exploration times. This is done by
considering a lower and upper bound of the objectives, e.g.,
the implementation cost of a system that is composed of two
subsystems can be restricted by the maximum implementation
cost of the subsystems and the sum of those cost. The maxi-
mum of the cost of the two subsystems corresponds to the case
were both subsystems share the same resource (e.g., IP core),
while the sum of the cost model the fact that both subsystems
are implemented using dedicated resources.

Figure 5 shows the concept of PFA using so-calleduncer-
tain objectives. The objectiveso1, o2 are uncertain. Both
objectives (k = 1, 2) are given byok(ok(p1i), ok(p2j)) =
[max(ok(p1i), ok(p2j)), ok(p1i) + ok(p2j)]. Here,[ol, ou] de-
notes a so-calledproperty intervalthat is defined by its lower
ol and its upperou bound.

o1

o2

d

a

c
b

e

Fig. 6. Dominance in Case of Property Intervals. Here, b� e but we do not
know if c� d or d� c.

Generally, we can define an uncertain objectiveo by a prop-
erty interval[ol, ou]. In this paper, we only consider discrete
objectives represented by positive integers. Hence, we restrict
our uncertain objective byo ∈ [ol, ou] ∩ Z. We restrict our-
selves to the case that the lower and upper bounds are defined
as follows:

ol((gs, gi), (gs, gj)) = max(ol((gs, gi)), ol((gs, gj)))
ou((gs, gi), (gs, gj)) = ou((gs, gi)) + ou((gs, gj))

Unfortunately, by using property intervals, our definitions
for domination become meaningless (Figure 6). In Figure 6
five different design points are represented by discrete property
intervals. An actual design point is one of the points shown in
each interval. Clearly, all (actual) points ine are dominated by
any actual point inb. Thus, we sayb � e. Unfortunately, we
cannot assume thatc � d or d � c, since there are actual de-
sign points inc andd which are worse ino2 or o1, respectively.

These problems arise when two property intervals overlap.
This is also shown in Figure 6. According to [9], we use the
notion ofprobabilistic dominancefor Pareto-optimality. Here,
we consider the case of uniform distributed design points, i.e.,
each discrete pointp ∈ P in a given property intervalP is with
the same probability the actual design point. Furthermore, we
assume that all objectives are statistically independent.

For any two design pointsa andb, andm statistically inde-
pendent objective functionso1, o2, . . . , om the probability that
a dominatesb weakly is given by (see [9]):

P [a � b] =

m∏
i=1

P [oi(a) ≤ oi(b)],

whereP [oi(a) ≤ oi(b)] denotes the probability that the ob-
jective valueoi(a) of design pointa is less or equal than the
corresponding objective valueoi(b) of design pointb. Here,
we assume a uniform distribution of the objectives within the
property intervals. Hence, the probabilityP [oi(a) ≤ oi(b)] is
given as:

0 if oiu(b) < oil(a)
1 if oiu(a) < oil(b)∑

j∈[oil (a),oiu(a)]
P [j≤oi(b)]

oiu(a)−oil(a)+1
else

with P [j ≤ oi(b)] =
∑
oi(b)≥j

1
oiu(b)−oil(b)+1 . The first two

cases are obvious and correspond to the case when both prop-
erty intervals do not overlap. The third case, is simply the

probability thatoi(a) has a certain value multiplied with the
probability thatoi(b) takes a greater or equal value.

Example 7 Considering the property intervals given in Fig-
ure 6, we get probabilistic dominance values like:

P [a � b] = 1
3
·
(
2 · 4

4
+ 3

4

)
· 1

7
·
(

3
5

+ 2
5

+ 1
5

)
≈ 15.71%

P [b � a] = 1
4
·
(

2
3

+ 1
3

)
· 1

5
·
(
3 · 7

7
+ 6

7
+ 5

7

)
≈ 22.86%

In order to narrow our search space, we reject points which are
dominated with a greater probability than a given, user speci-
fied probability boundpmax.

Example 8 With Example 7 and a probability bound of
pmax = 20%, we reject the pointa since it is dominated with a
probability of22.86%.

With this approach, we narrow our search space but still re-
gard a great number ofgoodpoints. Nevertheless, if we use
a probability boundpmax it still may happen that we reject a
Pareto-optimal solution with a probability of1− pmax.

V. CASE STUDY

This section presents first results obtained by using our new
techniques in hierarchical design space exploration presented
in this paper. Figure 2 shows the complete functional specifi-
cation for our MPEG4 coder. There are six leaf graphs, each
representing a different coding algorithm. Our goal is to im-
plement at least one of these algorithms with the objective to
minimize both cost and power.

As described in section II, we also need the architecture on
which we can execute the tasks given by the problem graph.
Here we use the same architecture template for all subgraphs.
Due to space limitations, we omitted the detailed specification
of the leaf graphs, the architecture graph as well as the map-
ping edges. For a full description of the case study see [10].
The search space for the example used in this paper consists of
more than2200 points.

As due to complexity reasons, we do not know the true
Pareto-set, we compare the quality sets obtained by each ap-
proach against the quality set obtained by combining all these
results and taking the Pareto-set of this union of optimal points.
This set possesses 38 Pareto-optimal design points. A good
measure of comparing two quality setsA andB is then to
compute the so-calledcoverageC(A,B) = |{b∈B|∃a∈A:a�b}|

|B| .
Obviously, a coverage ofC(A,B) = 1 corresponds to the fact
that all elements inB are weakly dominated by at least one
element ofA. On the other hand, a coverage ofC(A,B) = 0
means that none of the elements inB is weakly dominated by
the elements ofA.

When using PFA to construct a quality set, we have to

1. Generate leaf graph Pareto-fronts for each leaf graph in
Figure 2 using one non-hierarchical evolutionary algo-
rithm like [2] each time.

2. Apply Pareto-Front Arithmetics to these fronts.

C(o(Xq, t), o(X
fm

p))

C(o(X
pfa
q, t), o(Xp))

), o(Xp))C(o(Xq, t
pfi, 33

), o(Xp))C(o(Xq, t
pfi, 45

100 200 300 400 500 600 700 800 900 1000 1100 1200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C

t

Fig. 7. Coverage of the Pareto-optimal implementations found after a given
number of generations compared to the Pareto-set. While PFA produces
better results as a non-hierarchical approach, we see that Pareto-Front
Arithmetics with uncertain objectives (PFI 33% and 45%) outperforms the
original PFA if a reasonable probability bound (pmax ≥ 33%) is chosen.
Furthermore, by setting the probablility bound topmax = 45%, we reach full
coverage of the Pareto-set.

Using the multi-objective evolutionary algorithm SPEA2
(see [11]) (with a crossover probability ofpc = 0.25, a mu-
tation probability ofpm = 0.2, an archive size of|P t| = 70,
and a population size|P | = 300) the Pareto-set for the partial
specification of the leaf graphs of the problem graph of Fig-
ure 2 were constructed. The calculation timeτ and number of
generationst are given below:

CELP AAC HILN VTC Image H.261
τ 2 s 19.6 s 600.4 s 2 s 450.4 s 116.6 s
t 1 3 99.4 1 62.4 18.4

A. Pareto-Front Arithmetics

The times given above show that the exploration of the de-
sign space of small leaf graphs may already be very time con-
suming. Thus, we cannot expect to explore the full flat design
space within a reasonable amount of computation time. As de-
scribed in Section IV, we propose Pareto-Front Arithmetics for
fast design space exploration as follows:

With the results for each leaf graph, we can start a quick
construction (< 1s for the given example) of our quality set
Xpfa

q,t after each generationt. Since this computation time is
an order of magnitude smaller than the time needed for explor-
ing the top-level design space (as experiments have shown),
this approach seems to be a fast method of approximating the
Pareto-setXp.

For our example, we obtained a coverage of≈ 78% of the
Pareto-set (see Figure 7). This is also the maximum coverage
we can expect, since this quality set was constructed from the
Pareto-sets of the leaf graphs. Furthermore, using Pareto-Front
Arithmetics, our results converged fast (< 350 generations).

B. Pareto-Front Arithmetics with Uncertain Objectives

Even better results are obtained by using Pareto-Front Arith-
metics with uncertain objectives. Here, we assume a discrete
uniform distribution of all design points in the property inter-
vals. Figure 7 shows that the Pareto-Front Arithmetics using
uncertain objectives produces better results if points dominated

at least by 33% are rejected. The Pareto-Front Arithmetics
with uncertain objectives yields slightly better results (≈ 85%)
than the original Pareto-Front Arithmetics. Nevertheless, by
using uncertain objectives the computation times after each
generation increases by a factor of approximately 10.

On the other hand, if we use a threshold of 20% our re-
sults are really poor (< 20%, not shown in Figure 7). But
also the computation time goes down to 0.2 s. Finally,
with a threshold of 45% we compute the true Pareto-set
(C(o(Xpfi,45%

q,1200), o(Xp)) = 100%). Since the number of inves-
tigated points increases disproportionately with the threshold,
we compare a remarkable fraction of the possible combina-
tions of the subsystems. This fact is reflected in the increased
computation time (≈ 10 min.) after each generation.

C. Non-Hierarchical EAs

In a last step, we compare our two new approaches against
a non-hierarchical approach. In this non-hierarchical explo-
ration algorithm, we explore the design spaces individually for
all 2k − 1 possible combinations wherek is the total number
of leaf subgraphs in the problem graph. Therefore, we perform
six different exploration runs for each individual leaf subgraph,(

6
2

)
= 15 runs for combinations that select exactly two leaf sub-

graphs, etc. All in all, there are26 − 1 = 63 combinations of
leaf subgraphs, where at least one leaf subgraph is chosen.2

For each of these 63 cases we apply the EA for a certain
number of generations for each combinationk to obtain the
quality set of the different leaf graph selections. Since we use
the same number of generations for each combination, we sim-
ulate the case were each combination is selected with the same
probability. With the given archivesP t,k, we are able to con-
struct the quality set of the top-level design, denoted byX fm

q,t,
by simply taking the union of all archivesP t,k of the combi-
nations and calculating the Pareto-optimal points in the union.
Figure 7 shows the result compared with the Pareto-set of our
particular problem. The exploration time by using this non-
hierarchical EA is nearly 1 day. Thus, we waste most of the
computation time by trying to improve suboptimal implemen-
tations.

For our particular problem, we see that both Pareto-
Front Arithmetics with or without uncertain objectives are
superior to the non-hierarchical exploration. By using
the flattened model, the coverage of the Pareto-front is
C(o(X fm

q,1200), o(Xp)) ≈ 52%. However, as in the case of
Pareto-Front Arithmetics with uncertain objectives, it should
be possible to find all Pareto-optimal solutions by using this
non-hierarchical EA.

VI. CONCLUSIONS

To handle the increasing complexity of embedded systems,
we proposed Pareto-Front Arithmetics for fast design space ex-
ploration using results of subsystems to approximate the set of

2Note that this method is in general not a feasible way to go as the number
of EA runs grows exponentially with the number of leaf graphs.

Pareto-optimal implementations of the top-level system. This
approach has proven to find a substantial number of Pareto-
optimal and additional feasible implementations while reduc-
ing the exploration time dramatically. A second approach
based on PFA and uncertain objectives improves the quality
of solutions once more. The penalty for this improvement lies
in the slightly increased exploration time.

REFERENCES

[1] S. G. Abraham, B. R. Rau, and R. Schreiber. Fast Design Space
Exploration Through Validity and Quality Filtering of Subsys-
tem Designs. Technical report, Hewlett Packard, Compiler and
Architecture Research, HP Laboratories Palo Alto, July 2000.

[2] T. Blickle, J. Teich, and L. Thiele. System-Level Synthesis Us-
ing Evolutionary Algorithms. In R. Gupta, editor,Design Au-
tomation for Embedded Systems, 3, pages 23–62. Kluwer Aca-
demic Publishers, Boston, Jan. 1998.

[3] K. S. Chatha and R. Vemuri. MAGELLAN: Multiway
Hardware-Software Partitioning and Scheduling for Latency
Minimization of Hierarchical Control-Dataflow Task Graphs.
In Proc. CODES’01, Ninth International Symposium on Hard-
ware/Software Codesign, Copenhagen, Denmark, Apr. 2001.

[4] L. A. Cortés, P. Eles, and Z. Peng. Hierarchical Modeling and
Verification of Embedded Systems. InProc. Euromicro Sympo-
sium on Digital Systems Design, Warsaw, Poland, Sept. 2001.

[5] R. Dick and N. Jha. MOGAC: A Multiobjective Genetic Al-
gorithm for Hardware-Software Cosynthesis of Distributed Em-
bedded Systems. InIEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems 17(10), pages 920–935,
1998.

[6] C. Haubelt, J. Teich, K. Richter, and R. Ernst. System Design for
Flexibility. In C. D. Kloos and J. da Franca, editors,Proceedings
of Design, Automation and Test in Europe, pages 854–861, Paris,
France, Mar. 2002. IEEE Computer Society.

[7] J. R. Josephson, B. Chandrasekaran, M. Carroll, N. Iyer,
B. Wasacz, G. Rizzoni, Q. Li, and D. A. Erb. An Architec-
ture for Exploring Large Design Spaces. InProceedings of the
National Conference of AI (AAAI-98), pages 143–150, Madison,
Wisconsin, July 1998.

[8] V. Pareto. Cours d’Économie Politique, volume 1. F. Rouge &
Cie., Lausanne, Switzerland, 1896.

[9] J. Teich. Pareto-Front Exploration with Uncertain Objectives.
In Proc. First International Conference on Evolutionary Multi-
Criterion Optimization, Zurich, Switzerland, Mar. 2001. In Lec-
ture Notes in Computer Science (LNCS), Vol. 1993, pp. 314-
328, Springer, 2001.

[10] J. Teich, C. Haubelt, S. Mostaghim, F. Slomka, and A. Tyagi.
Techniques for Hierarchical Design Space Exploration and their
Application on System Synthesis. Technical Report 1/2002, In-
stitute Date, Department of EE and IT, University of Paderborn,
Paderborn, Germany, 2002.

[11] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving
the Strength Pareto Evolutionary Algorithm. Technical report,
Swiss Federal Institute of Technology (ETH) Zurich, 2001. TIK-
Report 103. Department of Electrical Engineering.

