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ABSTRACT

Precise dynamic race detectors report an error if and only
if more than one thread concurrently exhibits conflict on a
memory access. They insert instrumentations at compile-
time to perform runtime checks on all memory accesses to
ensure that all races are captured and no spurious warnings
are generated. However, a dynamic race check for a par-
ticular memory access statement is guaranteed to be redun-
dant if the statement can be statically identified as thread
interference-free. Despite significant recent advances in dy-
namic detection techniques, the redundant check remains a
critical factor that leads to prohibitive overhead of dynamic
race detection for multithreaded programs.

In this paper, we present a new framework that elimi-
nates redundant race check and boosts the dynamic race
detection by performing static optimizations on top of a se-
ries of thread interference analysis phases. Our framework
is implemented on top of LLVM 3.5.0 and evaluated with an
industry dynamic race detector TSAN which is available as
a part of LLVM tool chain. 11 benchmarks from SPLASH2
are used to evaluate the effectiveness of our approach in ac-
celerating TSAN by eliminating redundant interference-free
checks. The experimental result demonstrates our new ap-
proach achieves from 1.4x to 4.0x (2.4x on average) speedup
over original TSAN under 4 threads setting, and achieves
from 1.3x to 4.6x (2.6x on average) speedup under 16 threads
setting.
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•Software and its engineering Ñ Compilers; Software
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Figure 1: TSAN ’s performance slowdown over native code
for SPLASH2 benchmarks (under compiler option -O0).

1.1 Motivation
Languages like C and its variants are the de facto stan-

dard for implementing a wide variety of system software
such as language runtime, device drivers, network servers
and performance-critical software. A substantial number of
these applications are written in multithreading paradigm
(e.g., using pthread) to better utilize resources for parallel
computing. However, multithreaded programs are notori-
ously prone to data race, which presents a big challenge for
software testing and analysis.

A data race occurs when two threads concurrently perform
conflicting memory accesses that read or write the same lo-
cation, where at least one access is a write. The order in
which the conflicting accesses are performed may affect the
program’s subsequent state and behavior, likely with unin-
tended or erroneous consequences. Such problems may arise
only on rare interleavings, making them difficult to detect,
reproduce.

The problems caused by data races have motivated much
work on detecting races via static [1, 5, 33, 49, 26, 14, 16] or
dynamic analysis [13, 28, 48, 52]. Among them, the dynamic
approach is to have the compiler instrument the compiled
code with runtime checks that ensure the safety of memory
related accesses. For instance, ThreadSanitizer [39] (TSAN)
that is an industry-strength precise dynamic race detector is
available as part of LLVM tool chain. It consists of a com-
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Figure 2: Static analyses and optimizations framework. Our
main work is dotted framed.

piler instrumentation module and a run-time library to per-
form dynamic detection algorithm similar to FastTrack[15].

However, despite the development of a variety of imple-
mentation techniques (including vector clocks [32], epochs
[52], accordion clocks [9], and others), the overhead of pre-
cise dynamic race detectors can still be prohibitive. Figure 1
shows the TSAN ’s slowdown on SPLASH2 benchmarks with
NATIVE inputs. The SPLASH2 slowdowns introduced by
TSAN is from 15.0x to 40.3x, 26.2x on average, on 4 threads
setting and from 13.4x to 30.9x, 24.3x on average, on 16
threads setting on a machine with Intel Xeon 4-core CPU
E5450 3.0GHz and 32GB memory, running ubuntu linux.

1.2 Contributions
In this paper, we present a static flow- and context-sensitive

thread interference analysis framework shown in Figure 2 for
identifying and eliminating redundant race checks. The ac-
celeration of dynamic data race detection is obtained by per-
forming a series of static thread interleaving analysis phases
and the source-level instrumentation for multithreaded C
programs with Pthreads. We demonstrate its effectiveness
against TSAN using all the 11 SPLASH2 programs. Specif-
ically, this paper makes the following contributions:

‚ We present a new static analysis framework for accel-
erate dynamic race detection of multithreaded C pro-
grams with pthreads.

‚ We describe a series thread interference analyses for
pruning memory access pairs so that it is sufficiently
accurate in eliminating the redundant checks for mul-
tithreaded programs.

‚ We have fully implemented our approach on top of
LLVM (version 3.5.0) and evaluated using 11 multi-
threaded programs from SPLASH2 benchmarks. The
results shows its effectiveness in accelerating TSAN ,
the state-of-the-art race detector for C/C++ using
source-code level instrumentation. Our approach gains
from 1.4x to 4.0x (2.4x on average) speedup under 4
threads setting, and from 1.3x to 4.6x (2.6x on aver-
age) speedup under 16 threads setting.

2. DESIGN
We first describe a static thread model used for handling

fork and join operations (Section 2.1). Then an overview of
our framework in Figure 2 is given (Section 2.2) to show how
to perform the subsequent static thread interference analysis
phases for multithreaded programs (Section 2.3) and finally
we discuss how to generate instrumentation code to perform
runtime race check (Section 2.4).

2.1 Static Thread Model

2.1.1 Abstract thread

An abstract thread t refers to a call of pthread create() at
a context-sensitive fork site during the analysis1, so that a
thread t always refers to a context-sensitive fork site, i.e.,
a unique runtime thread unless t is multi-forked, in which
case, t may represent more than one runtime thread.

Definition 1 (Multi-Forked Threads). A thread t P M is
a multi-forked thread if its fork site fki resides in a loop,
recursion or its spawner thread t1 P M.

Figure 3 shows examples of context-sensitive abstract thread
and multi-forked thread. A vertical line in the right sub-
figure is the execution order of one abstract thread. A hor-
izontal line stands for a fork or join site and the spawning
relation between two threads. It can be seen that the fork
and join site of thread t1ris are nested by two “symmetric”
loops separately, so that it is a multi-forked thread. We deal
with an abstract multi-forked thread by LLVM’s SCEV alias
analysis, discussed in Section 3.2. In addition, since main
function calls bar twice (cs1 and cs2), the statements in
bar, i.e. fk2, s6 and jn2, are executed twice by t0 with dif-
ference contexts. Hence, fk2 spawns two different abstract
threads t2 and t1

2.

2.1.2 Intra-thread Control Flow Graph

For an abstract t, its intra-thread control flow structure of
a thread is represented in a direct graph (aka. ICFG [23]),
where a node s represents a program statement and a edge
between statements corresponds to the control-flow.

We distinguish three kinds of control flow edges on ICFG:

(1) an intra-procedure control flow s
intra

ÝÝÝÑ s1 from state-
ment s to its successor s1; (2) an interprocedural call edge

s
callris

ÝÝÝÝÑ s1 from a call statement s to the entry statement s1

of a callee via callsite i; (3) an interprocedural return edge

s
retris

ÝÝÝÑ s1 from a return statement s of a callee function to
the statement s1 immediate after the callsite i at a caller.

1We assume a program starts with a default root thread at the
entry of the main function.



main(){ // t0
 s1 : …
       for i=1 to 10{
fk1:      fork(t1[i],foo);
       } 
s2 : …   
        for i=1 to 10{
jn1:       join(t1[i]);
        }
s3 :    …   
cs1:  bar();
s4 :    …   
cs2:  bar();    
}

fk1

jn1

t0

t1

s6

s2 s5

foo(){
s5 :     …   
}
bar(){
fk2:   fork(t2, foo);
s6 :     …   
jn2:   join(t2);    
}

s1

s3

s4

s6

s5

s5

fk2

jn2

fk2

jn2

t2

t’2

Figure 3: Examples of context-sensitive abstract thread and
multi-forked thread.

2.1.3 Modeling Thread Forks and Joins

In unstructured multithreaded programs, threads’ rela-
tions become more complicated. Imprecise modelling of syn-
chronisations (e.g., fork/join, lock/unlock) may lead to spu-
rious thread interleavings with overwhelming unrealizable
relations that affects the precision of race detection.

[T-FORK]
t

pc,fkiq
ùùùùñ t1 t1

pc1,fk
i1 q

ùùùùùñ t2

t
pc,fkiq
ùùùùñ t2

[T-JOIN]

t
pc,jniq
ðùùùù t1 t1

pc1,jn
i1 q

ðùùùùù
full

t2

t
pc,jniq
ðùùùù t2

[T-SIBLING]
t2 pc,fkiq

ùùùùñ t t2
pc1,fk

i1 q
ùùùùùñ t1 (i ‰ i1 _c ‰ c1)

t ’ t1

Figure 4: Static modeling of fork and join operations.

To model inter-thread relations between two threads, we

use t
pc,fkiq
ùùùùñ t1 to represent the spawning relation that a

spawner thread t creates a spawnee thread t1 via a context-
sensitive fork site pc, fkiq, where c refers to the context stack,
a sequence of callsites, [κ1 . . .κm], from program entry to
the fork site fki with callsites. SCC are treated insensitively
as intra-procedural control-flow.

For context stack c’s operations, c‘κ denotes an operation
for pushing a callsite κ into c. caκ denotes an operation for
popping κ from c if c contains κ as its top value or is empty
since a realizable path start and end in different functions.

For a thread t forked at pc, fkiq, we write srt to stand
for the start routine procedure of t, where the execution
of t begins. Entrypsrtq “ pc1, sq maps srt to its the entry
context-sensitive statement pc1, sq, where c1 “ c ‘ i where
thread t is forked at pc, fkiq.

The spawning relation t
pc,fkiq
ùùùùñ t1 is transitive represent-

ing the fact that thread t can create t1 directly or indirectly
via fork site fki ([T-FORK]).

In pthread programs, a thread can be joined fully along
all program paths or partially along some but not all paths.

Two joining relation t ðù t1 and t1 ðù t2 is also transitive
([T-JOIN]) if and only if thread t1 fully joins t1.
As our pre-analysis is flow- and context-insensitive, we

achieve soundness by requiring t1 joined at a join site pthread
_join() in the program to be excluded from M, so that
t1 represents a unique runtime thread (under all contexts).
Note that the joining relation is not transitive in the same
sense as the spawning relation. In Pthreads programs, a
thread can be joined fully along all program paths or par-

tially along some but not all paths. Given t
pc,jniq
ðùùùù t1 and

t1
pc1,jn

i1 q
ðùùùùù t2, t

pc,jniq
ðùùùù t2 holds when t1

pc1,jn
i1 q

ðùùùùù t2 is a full

join, denoted t1
pc1,jn

i1 q
ðùùùùù

full

t2.

If neither t
pc,fkiq
ùùùùñ t1 nor t1

pc1,fk
i1 q

ùùùùùñ t holds, then t and t1

are siblings, denoted t ’ t1 ([T-SIBLING]). In this case, t
and t1 share a common ancestor thread t2, where t ‰ t1 and
t ‰ t2. Furthermore, t and t1 do not happen-in-parallel if
one happens before the other (as defined below).

Definition 2 (Happens-Before (HB) Relation for Sibling
Threads). Given two sibling threads t and t1, t happens be-
fore t1, denoted t ą t1, if the fork site of t1 is backward reach-
able to a join site of t along every program path.

Algorithm 1 presents how to build the Thread Create
Tree (TCT) [4] which represents a set of spawning relations
([T-FORK]) of the whole program. The algorithm perfor-
mance iterative data flow analysis on call graph to process
fork edges and call edges until a fixed point is reached. As is
standard, recursion cycles discovered in the call graph of the
program are collapsed into SCCs. The context-sensitivity is
ignored inside a SCC. W represents the worklist containing
context- and thread- sensitive procedure tuples in the form
of pc, t, pq for iterative resolution. T ptq maps a thread to its
context-sensitive forksite. We assume a program starts with
a default main thread at the entry of the main function with
empty context and a dummy forksite.

2.2 Framework
We present a new race detection framework for handling

multithreaded programs in Figure 2.
As shown in Figure 2, our framework, which is imple-

mented in LLVM, comprises seven phases (described below)
with five thread interference analyses. The arrows in the
figure denote the order in which the phases and analyses are
performed. In “Memory Pairs Collection”, every write-write
or write-read pair in a program is first collected. For exam-
ple, in Figure 5, statements s1 and s2 operate two writes
on variable p, and they are treated as a memory access pair
ps1, s2q. Five optimizations are then performed to refine the
over-approximated sets of memory accesses pairs which may
be involved in a race. They are“Reachability Optimization”,
“Interleaving Optimization”, “Alias Optimization”, “Thread-
Local Optimization”and“Lockset Optimization”. These op-
timizations rely on five static thread interference analyses:
“Call Graph Construction”, “Interleaving Analysis”, “Pointer
Analysis”, “Thread-Local Analysis” and “Lockset Analysis”.
The optimization (on the right of the red dashed line) and



Algorithm 1: TCT Construction

Data: Call graph
Result: Context-sensitive thread creation tree

1 Call graph SCC detection.
2 Let F be all fork sites of the program.
3 Let tm be the main thread and pm be main procedure of
the program.

4 Let srt be the start routine procedure of thread t

5 W :“ W Y tpH, tm, pmqu;
6 while W ‰ H do

7 pc, t, pq :“ SELECT pW q;
8 foreach context-sensitive fork edge

pc, t, pq
fkiÝÝÑ pc ‘ i, t1, p1q from procedures p do

9 TCT :“ TCT Y tt
pc,fkiq
ùùùùñ t1u

10 T pt1q :“ pc, fkiq
11 W :“ W Y tc ‘ i, t1, srt1 u

12 foreach context-sensitive call edge

pc, t, pq
i

ÝÑ pc ‘ i, t, p1q from procedures p do

13 W :“ W Y tc ‘ i, t, p1u

its dependent analysis (on the left of the red dashed line) are
framed into the same colourful block. The bi-directional ar-
row between“Call Graph Construction”and“Pointer Analy-
sis” denotes that they are mutually dependent and are com-
puted simultaneously. Also, the other three analyses depend
upon both the call graph construction and pointer analysis.

Figure 5 presents how these optimizations refine the inter-
ference -free pairs phase by phase. In this example, spawner
thread t0 creates spawnee thread t1, there are seven memory
access (write or read) statements labelled from s1 to s7. All
memory access pairs are shown in the following table, where
the column and row of each entries stand for two statements
of a pair. “R”means that this pair will be pruned by“Reach-
ability Optimization”. Similarly, “I”, “A”, “T” and “L” stand
for pruned pairs by“Interleaving Optimization”,“Alias Opti-
mization”, “Thread-Local Optimization” and “Lockset Opti-
mization” respectively. “P”means that the two accesses may
happen in parallel, which may lead to a race at runtime.

Note that a pair may satisfy pruning requirements of more
than one optimization. Such a pair is labelled with multiple
optimizations that any of them can prune this pair.

2.3 Static Analyses
As shown in Figure 2, our framework consists of five anal-

yses passes to statically infer non-interference pairs to ac-
celerate dynamic data race detection. This section focuses
on how to perform these five static analyses for refining the
original pairs that are collected during “Memory Pairs Col-
lection” phase.

2.3.1 Reachability Analysis

The reachability analysis prunes pairs using the fact that
a pair of accesses may be involved in a race only if each
access is reachable from main function of the program.

The set of reachable pairs, a subset of original pairs, is
computed by traversal of call graph to eliminate accesses in
dead functions. For instance, in Figure 5, function bar is not
called through main direct or indirectly, so that the state-
ment s7 cannot be executed by any active threads. There-

int *p, *q, a, b;
p=&a; q=&b;
mutex m;
main(){ // t0
    s1 :  *p=…
    fork(t1,foo);
    lock(m)
    s2 :  *p=…
    unlock(m)
    s3 :  …=*q
    join(t1); 
}

fork

join

t0 t1

s3

s2

s1

(t0 , s2)||(t1, s5)

s5

s4

s6

foo(){
    int *x;
    s4 :  *x=…
    s5 :  …=*p
    lock(m)
    s6 :  …=*p
    unlock(m)
}
bar(){
    s7 :  *p=…
}

s7

s1 s2 s3 s4 s5 s6 s7
s1 I I IAT I I R
s2 IA AT P L R
s3 AT A A R
s4 IT IT R
s5 I R
s6 R
s7

Figure 5: An example of pruning thread interference-free
memory access pairs. ‖ denotes may-happen-in-parallel.

fore, the pairs made up by s7 is pruned from potential race
pairs.

2.3.2 Interleaving Analysis

As shown in Figure 2, our static framework invokes inter-
leaving analysis to compute pairs potentially involved in a
race. The objective here is to reason about fork and join
operations to identify all may-happen-in-parallel statements
in the program.

Our interleaving analysis operates flow- and context-sensitively
on the ICFGs of all the threads (but uses points-to informa-
tion from the pointer analysis). For a statement s in thread
t’s ICFGt, our analysis approximates which threads may run
in parallel with t when s is executed, denoted as Ipt, c, sq,
where c is a calling context to capture one instance of s

when its enclosing method is invoked under c. For example,
if Ipt1, c, sq “ tt2, t3u, then threads t2 and t3 may be alive
when s1 is executed under context c in t1.
Statement s1 in thread t1 may happen in parallel with

statement s2 in thread t2, denoted as pt1, c1, s1q ‖ pt2, c2, s2q,
if the following holds (with M from Definition 1):

#

t2 P Ipt1, c1, s1q ^ t1 P Ipt2, c2, s2q if t1 ‰ t2

t1 P M otherwise
(1)

Given
pc,fkiq
ùùùùñ (spawning relation),

pc,jniq
ðùùùù (joining re-

lation), ’ (thread sibling) and ą (HB from Definition 2),
that are collected by performing Algorithm 1, our interleav-
ing algorithm is formulated as solving a forward data-flow
problem with semilattice pV,[, F q. Here, V represents the
set of all thread interleaving facts, [ is the meet operator
(set union Y). F : V Ñ V represents the set of transfer
functions associated with each node on ICFGs.

Our interleaving analysis is presented in Algorithm 2. The
algorithm uses a standard data-flow analysis by propagating
interleaving information iteratively along inter-procedural
program control-flow. For a context-sensitive fork site pc, fkq



Algorithm 2: Interleaving Analysis

Data: TCT
Result: Context-sensitive interleaving information I

1 Let Entrypsrtq be the entry of start routine function of
t

2 Let sat be the statement immediately after t’s fork site
3 foreach context-sensitive thread t in TCT do

Let pc, fkq be the context-sensitive fork site which
creates t

4 W :“ W Y tpt, c, Entrypsrtqqu;
/* update ascendant threads */

5 foreach tasc P Ascptq do

6 Let pc1, fk1q be the context-sensitive fork site
which creates tasc

7 Iptasc, c
1, satasc

q :“ Iptasc, c
1, satasc

q` ă t ą;
8 if Iptasc, c

1, satasc
q changes then

9 W :“ W Y tptasc, c
1, satasc

qu

/* update sibling threads */

10 foreach tasc P Ascptq do

11 foreach tsib P Sibptasc) do

12 if tsib č tasc and tsib č tasc then

13 pc2, fk2q “ TCT ptsibq
14 Iptsib, c

2, srtsibq :“ Iptsib, c
2, srtsibq ` ă

t ą;
15 if Iptsib, c

2, srtsibq changes then

16 W :“ W Y tptsib, c
2, srtsibqu

17 while W ‰ H do

18 pt, c, sq :“ SELECT pW q;

19 if s is fork site t
pc,sq
ùùñ t1 then

20 Ipt1, c ‘ i, st1 q :“
Ipt1, c ‘ i, st1 q [ Ipt, c, sq ` ă t ą

21 if Ipt1, c ‘ i, st1 q changes then

22 W :“ W Y tpt1, c ‘ i, st1 qu

23 if s is join site of t
pc,sq
ðùù t1 then

24 Ipt, c, sq :“ Ipt, c, sq { ă t1 ą

25 foreach outgoing control flow edge ss Ð s from
s do

26 if ss
intra

ÐÝÝÝ s then

27 c1 :“ c

28 else if ss
callris

ÐÝÝÝÝ s then

29 c1 :“ c ‘ i

30 else if ss
retris

ÐÝÝÝ s then

31 c1 :“ c a i

32 Ipt, c1, ssq :“ Ipt, c1, ssq [ Ipt, c, sq;
33 if Ipt, c1, ssq changes then

34 W :“ W Y tpt, c1, ssqu

Algorithm 3: Get Ascendant Threads Asc(t)

/* Return the thread set ASC that is the

ancestor of t and t itself */

1 ASC :“ ttu;
2 foreach t1 in TCT do

3 if t1 pc,fkq
ùùùñ t then

4 ASC :“ ASC Y tt1u

5 return ASC;

Algorithm 4: Get Sibling Threads Sib(t)

/* Return the thread set SIB that is the

sibling of t */

1 SIB :“ H;
2 foreach t1 in TCT do

3 if t ’ t1 then

4 SIB “ SIB Y tt1u

5 return SIB;

which creates thread t, the algorithm first analysis the in-
terleaving information of its ascendant threads by updating
I of the statements that locate immediately after the fork
sites of t’s ascendant threads tasc with t (line 5-9).
Next, the entry statements of the start routines of tasc’s

sibling threads tsib (Algorithm 4) is updated with t (line
10-16). The ascendant and sibling threads are computed in
Algorithm 3 and 4.

Then, an iterative flow- and context-sensitive analysis is
performed on the inter-procedural control-flow by matching
calls and returns (line 33-34). If the interleaving information
I of a context- and thread- sensitive statement changes, it
will be added into the work list for fixed point resolution (line
19–36). For a fork site during resolution, the spawner thread
t is added to the interleaving set of the entry statement
in a spawnee’s start routine procedure (line 19-20). For a
join site, fully joined thread is removed from the current
interleaving set (line 23-24).

In the example shown in Figure 5, the interleaving in-
formation of six statements (s7 is pruned in the previous
optimization) is as follows: Ipt0, c, s1q “ tu, Ipt0, c, s2q “
tt1u, Ipt0, c, s3q “ tt1u, Ipt1, c, s4q “ tt0u, Ipt1, c, s5q “ tt0u,
Ipt1, c, s6q “ tt0u. According to Equation 1, s1 cannot hap-
pen in parallel with the other statements, so that the pairs of
s1 are pruned. In addition, Equation 1 guarantees that the
pair executed by the same non-multi-forked thread cannot
happen in parallel, therefore, pair (s5, s6) is also pruned.

2.3.3 Pointer Analysis

We use Andersen’s inclusion-based pointer analysis to prune
alias pairs. The implemented analysis is field-sensitive. Each
field of a struct is treated as a separate object, but arrays are
considered monolithic. Distinct allocation sites are modeled
by distinct abstract objects. We use the wave propagation
technique [31, 34] for constraint resolution. The positive
weight cycles (PWC s) [30] are detected using Nuutila’s SCC
detection algorithm [29]. A program’s call graph is built on
the fly and points-to sets are represented using sparse bit
vectors.

Alias optimization obtains alias information from pointer



Algorithm 5: Thread-Local Analysis

Data: Points-to information
Result: Setntl: the set of all escaped objects

1 foreach argument pointer ap passing into a spawnee
procedure of a forksite do

2 Ptspapq represents the points-to targets of pointer
argument ap

3 W :“ W Y Ptspapq

4 foreach global pointer gp do

5 Ptspgpq represents the points-to targets of global
pointer gp

6 W :“ W Y Ptspgpq

7 while W ‰ H do

8 o :“ SELECT pW q
9 Setntl :“ Setntl Y tou

10 Ptspoq represents the points-to targets of o
11 foreach o1 P Ptspoq do

12 if o1 R Setntl then

13 W :“ W Y to1u

analysis and prunes the non-aliased pairs. For instance, the
statements s3 and s5 in Figure 5 operate two pointers p and
q that points-to different objects a and b. Therefore, p and
q are not aliased here and the pair ps3, s5q will be pruned.

2.3.4 Thread-Local Analysis

The fourth phase of our approach refines alias pairs us-
ing thread-local analysis that identifies whether objects es-
cape from thread or not. An object is not thread-local if
it escapes via some arguments at a fork site or it escapes
via global pointers. Thread-local analysis depends on our
pointer analysis results.

Algorithm 5 presents how our thread-local analysis iden-
tifies escaped objects. In first step, the algorithm collects
the objects that are pointed to by arguments of fork site
(line 1–3) and global pointers (line 4–6). Then the algo-
rithm recursively collects all other objects (field-sensitively)
that may be pointed to by the identified objects (line 7–13).

Our optimization keeps the pairs that access thread es-
caped objects, because only such a kind of pair may be in-
volved in a data race. Take the statements s2 and s4 in
Figure 5 as an example, x accessed by s4 is a thread-local
object so that s4 does not occurs data race with other ac-
cesses. Therefore, the pair ps2, s4q is pruned.

2.3.5 Lockset Analysis

Statements from different mutex regions are interference-
free if these regions are protected by a common lock. By
capturing lock correlations, many pairs locked by a common
lock can be pruned, such as ps2, s6q in Figure 5. The opti-
mizer does this by performing a flow- and context-sensitive
analysis for lock/unlock operations (based on the points-to
information).

The implementation of lockset analysis is similar to in-
terleaving analysis. Firstly, all the context-sensitive locks is
collected. Then we iteratively resolves context-sensitive lock
spans for context-sensitive statements on inter-procedural
CFG until a fixed point is reached.

2.4 Guided Instrumentation

1081 for(i=0;i<nprocs-1;i++){ //fork loop

1082 Error=pthread_create(&PThreadTable[i],

NULL,(void*)(slave),NULL);

1087 }

......

1100 for(i=0;i<nprocs-1;i++){ //join loop

1101 Error=pthread_join(PThreadTable[i],NULL);

1106 }

......

Figure 6: A multi-forked thread example in ocean_ncp

from the SPLASH2 benchmark suite.

Original TSAN ’s strategy is to check all variables and
statements in a program, expect const variables. Actually,
a statement s may need to be checked only if exists a pair
with s in the static result pairs set that is refined by all
optimizations. Instead of TSAN ’s full instrumentation, our
static approach refines and prunes the original memory pairs
by performing a set of optimizations and only a subset of all
pairs to be instrumented at run time.

The implementation contains two steps: annotation and
instrumentation. Based on the refined pairs generated after
the five static optimization phases (Figure 2), an instruction
is annotated for checking if there exists a refined pair con-
taining this instruction. Then, we simply enable TSAN ’s
instrumentor to instrument TSAN ’s library functions at an-
notated memory accesses for runtime check.

3. EVALUATION
The objective is to show that our static may-happen-in-

parallel analysis enables to significantly accelerate TSAN to
check multithreaded programs using Pthreads.

3.1 Experiment Setup
We have selected a set of 11 multithreaded programs from

SPLASH2 benchmark, as shown in Table 1. All our experi-
ments were conducted on a platform consisting of a 3.00GHz
Intel Xeon(R) Quad E5450 processor with 32 GB memory,
running Ubuntu Linux (kernel version 3.11.0).

The source code of each program is compiled into bit code
files using clang and then merged together using LLVM Gold
Plugin at link time stage (LTO) to produce a whole-program
bc file. In addition, the compiler option mem2reg is turned
on to promote memory into registers.

3.2 Implementation
We have implemented our approach in LLVM (version

3.5.0). Andersen’s analysis (using the constraint resolution
techniques from [31]) is used to perform its pointer analysis
indicated in Figure 2.

In order to distinguish the concrete runtime threads rep-
resented by an abstract multi-forked thread (Definition 1)
inside a loop, we use LLVM’s SCEV alias analysis to cor-
relate a fork-join pair. Figure 6 shows a code snippet from
ocean_ncp, where a fixed number of threads are forked
and joined in two “symmetric” loops. Our interleaving can
recognize that any statement in a spawnee thread (with its
start routine slave) does not happen in parallel with the
statements after its join executed in the main thread.

3.3 Results and Analysis



Table 1: Benchmarks statistics (under compiler option -O0).
Pthread API Invocations Instrumented by TSAN Instrumented by Ours

Create Join Lock Trylock Unlock Read Write Ignored Read Write Ignored
barnes 1 1 12 0 12 2188 1222 395 982 601 2222
fft 1 1 8 0 8 1048 387 88 576 261 686
lu cb 1 1 6 0 6 1097 408 81 396 199 991
lu ncb 1 1 6 0 6 840 303 73 392 182 642
ocean cp 1 1 24 0 24 9531 2301 410 5722 1809 4711
ocean ncp 1 1 23 0 23 5465 1381 301 2909 1103 3135
radiosity 3 3 38 0 50 5250 1917 269 3006 1500 2930
radix 1 1 13 0 13 777 354 120 329 208 714
raytrace 1 1 13 0 16 6049 2368 359 2865 1057 4854
water nsquared 1 1 18 0 18 2188 703 181 1313 510 1249
water spatial 1 1 19 0 19 2437 833 211 1168 440 1873

3.3.1 Static Analysis

Table 1 gives the static statistic. For each benchmark, we
list its the static number of invocation numbers of Pthread
API, including Fork, Join, Lock, Trylock and Unlock. We do
not handled Wait and Signal statements, as in prior work,
resulting in sound, i.e., over-approximate results.

The “Instrumented by TSAN” shows the number of in-
strumented write and read statements for original TSAN .
The implementation of TSAN adds a simple refinement to
eliminates “const” variables from the need-check memory lo-
cations. “Ignored” shows the number of refined statements
that access “const” variables.

The “Instrumented by Ours” shows the number of instru-
mented write and read statements obtained by our new
framework. After pruning of static optimizations, our ap-
proach can identify an average of 46.7% fewer instrumented
statements than TSAN (achieving 60.5% at lu cb).

3.3.2 Dynamic Execution

At run time, the “native” data set is chosen as the input
of SPLASH2 benchmarks. Since runtime thread schedul-
ing might be different among each execution, the result of
data race detection is affected by scheduling and thus dif-
ficult to reproduce. Therefore, every benchmark is tested
ten times to record all appearing conflicts and indicate all
memory operations with race warning. The experimental re-
sult shows that every single warned statement detected by
original TSAN and optimised TSAN is identical, meanwhile
our static analyser accelerates the dynamic execution from
1.4x to 4.0x (2.4x on average) under 4 threads setting, and
from 1.3x to 4.6x (2.6x on average) under 16 threads setting,
shown in Figure 7.

4. RELATED WORK
We discuss the related work on thread interference anal-

ysis and race detection for multithreaded programs.

4.1 Interleaving Analysis for Multithreaded Pro-
grams

Past interleaving analyses have utilized a variety of tech-
niques for discovering whether two statements may execute
in parallel. In early works, Bristow et al. builds an ab-
straction, called Interprocess Precedence Graph, to indicate
the synchronization-imposed execution ordering among pro-
cesses [6]. Taylor models a concurrency graph based on a
reduced flow graph representation of every task [46]. Sev-
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Figure 7: Speedups our static analyzer over original TSAN

(under compiler option -O0).

eral projects tackled the concurrency-determination prob-
lem by deducing complementary knowledge, such as partial
execution orders and the Cannot-Happen-Together (CHT)
relation[7, 11, 25].
When considering the high level programming models, at-

tentions are paid to structured programming languages with
restricted structures, such as Clik, X10, etc. The interleav-
ing analysis turns to be more effective due to the simplified
problem based on async-finish parallelism model [2, 24].

In the case of unstructured languages, such as C, the in-
terleaving analysis is confronted with substantial challenges.
A number of studies have appeared, introducing a variety of
advanced techniques for discovering interleaving information
in a program [27, 26]. Joisha et al. [21] present a coarse-
grained analysis based on Procedural Concurrency Graphs
(PCGs) to detect interleaving information at the level of
procedures. Chen et al. [8] introduced a graph-based inter-
leaving algorithm with a context-insensitive thread model.
Shin et al.[40] presents a power-gating analysis framework
(MTPG) for multithreaded programs. MTPG analyzes MHP
information among threads to report the component us-
ages shared by multiple threads in hierarchical BSP models.
Compared to the above interleaving analyses, our work en-
ables fine-grained flow- and context-sensitive analysis that
achieves improved precision for C.



4.2 Pointer Analysis for Multithreaded Pro-
grams

Compared to pointer analysis for sequential programs [17,
45, 43, 44, 51, 19], flow-sensitive analysis for multithreaded
programs is relatively unexplored. Earlier, Rugina and Ri-
nard [35] introduced a pointer analysis for Clik programs
with structured parallelism. They solved a standard data-
flow problem to propagate points-to information iteratively
along the control flow and evaluated their analysis with
benchmarks with up to 4500 lines of code.

However, unstructured multithreaded C or Java programs
are more challenging to analyze due to the use of non-lexically-
scoped synchronization statements (e.g., fork/join and lock-
/unlock). For Java programs, a compositional approach [36]
analyzes pointer and escape information of variables in a
method that may be escaped and accessed by other threads.
The approach performs a flow-sensitive lock-free analysis to
analyze each method modularly but iteratively without con-
sidering strong updates. Flow-sensitivity is important to
achieve precision required for C programs. The prior anal-
yses on handling thread synchronizations are conservative,
by ignoring locks [36] or joins [21] or dealing with only par-
tial and/or nested joins [4]. In contrast, our work models
such synchronization operations more accurately to produce
precise results that can successfully guide instrumentations
that reduce runtime checking overhead.

4.3 Data Race Detection for Multithreaded Pro-
grams

In recent years, some static race detecting tools have been
presented [22, 33, 3] to analyze Posix C programs. Lock-
smith uses existential types to correlate locks and data in
dynamic date structures [33]. Goblint relies on a sound
thread-modular constant propagation and points-to analy-
sis, with considering conditional locking schemes [47]. Relay
presents an approach that enables to scale to millions of lines
of code. But it is typically sound except for a few exceptions,
and limits false positives as much as possible by performing
several filters [49].

Most typical dynamic race detectors are based on two
techniques: Lockset computation [37], Happens-Before (HB)
ordering [9, 15], and a hybrid of these two [52, 50, 13, 32].
Lockset-based algorithms attempt to detect inconsistent use
of locks by different threads [37]. These approaches are able
to detect those potential races that are not observed in the
execution being monitored with low overhead, but they are
imprecise (by reporting false positives) because ignoring the
ordering of events in program executions. The HB-based
approaches are precise theoretically, but they are often very
limited in detecting races because of conservative HB edges,
and have a large of runtime overhead as they need to track all
memory accesses. The state-of-practice HB-based detector
TSAN adopts improved FastTrack [15] to achieve the better
performance. Hybrid techniques focuse on combining Lock-
set and HB to extend the detecting coverage of HB-based
approach, but possibly report false positives [50]. To guar-
antee a sound result, Causally-Precedes [41] requires manual
post-processing to refine false positives. Huang et al. present
a sound predictive race detection technique to achieve the
maximal possible detection capability with respect to the
same input trace under the sequential consistency memory
model [18].

Several other approaches exist to deal with data races,

such as model checking [28]. Race warnings are obtained
by running the target program with many different thread
schedules, either concretely or symbolically. RaceFuzzer [38]
controls a randomized scheduler and creates an actual race
condition to detect races. IFRit [12] performs efficient dy-
namic data-race detection by exploring interference-free re-
gion via analysis of lock acquire and release operations. IFRit
is faster than FastTrack, but may miss some races. In con-
trast, our work identifies redundant memory checks and re-
ports races as accurate as TSAN .

5. CONCLUSION AND FUTURE WORK
This paper presents a new static flow- and context-sensitive

analysis framework to eliminate interference-free check of
dynamic data detector by performing a series of thread in-
terference analysis phases. Our framework is implemented
on top of LLVM 3.5.0 and effectively accelerates precise dy-
namic race detector TSAN . 11 programs from SPLASH2
benchmarks is used to evaluate the effectiveness of our tech-
niques. The experimental result demonstrates our frame-
work is 1.4x to 4.0x (2.4x on average) faster than original
TSAN under 4 threads setting, and 1.3x to 4.6x (2.6x on
average) faster under 16 threads setting.

This paper is an extension of our previous work [42, 10]. In
future work, we will extend our framework to support C++
programs. We also plan to combine this framework with
POCL [20] library to develop race detection techniques for
high-level programming languages in heterogeneous systems.
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