
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2021.DOI

Accelerating Edit-Distance Sequence
Alignment on GPU using the Wavefront
Algorithm
QUIM AGUADO-PUIG1, SANTIAGO MARCO-SOLA1,2, JUAN CARLOS MOURE1,
DAVID CASTELLS-RUFAS1, LLUC ALVAREZ2,3, ANTONIO ESPINOSA1 and
MIQUEL MORETO2,3
1Departament d’Arquitectura de Computadors i Sistemes Operatius, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain.
2Computer Sciences Department, Barcelona Supercomputing Center, Barcelona, 08034, Spain.
3Departament d’Arquitectura de Computadors, Universitat Politècnica de Catalunya, Barcelona, 08034, Spain.

Corresponding author: Quim Aguado-Puig (e-mail: quim.aguado@uab.cat)

ABSTRACT Sequence alignment remains a fundamental problem with practical applications ranging
from pattern recognition to computational biology. Traditional algorithms based on dynamic programming
are hard to parallelize, require significant amounts of memory, and fail to scale for large inputs. This
work presents eWFA-GPU, a GPU (graphics processing unit)-accelerated tool to compute the exact edit-
distance sequence alignment based on the wavefront alignment algorithm (WFA). This approach exploits the
similarities between the input sequences to accelerate the alignment process while requiring less memory
than other algorithms. Our implementation takes full advantage of the massive parallel capabilities of
modern GPUs to accelerate the alignment process. In addition, we propose a succinct representation of the
alignment data that successfully reduces the overall amount of memory required, allowing the exploitation
of the fast shared memory of a GPU. Our results show that our GPU implementation outperforms by 3-9×
the baseline edit-distance WFA implementation running on a 20 core machine. As a result, eWFA-GPU is up
to 265 times faster than state-of-the-art CPU implementation, and up to 56 times faster than state-of-the-art
GPU implementations.

INDEX TERMS Approximate String Matching, Compute Unified Device Architecture (CUDA), Edit-
Distance, Graphics Processing Unit (GPU), Levenshtein distance, Pairwise Sequence Alignment, Wavefront
Alignment Algorithm (WFA).

I. INTRODUCTION

SEQUENCE comparison constitutes a fundamental prob-
lem for many practical applications in numerous fields

such as pattern matching [1], information retrieval [2], net-
work security [3], and computational biology [4], to name
a few. In general, assessing the similarity (or dissimilarity)
between two sequences is an essential building-block within
multiple applications for data mining [5], spell correction [6,
7], speech recognition [8], signature matching [9], image
analysis [10], and more [11, 12, 13, 14, 15].

In the past decade, sequence alignment has acquired a spe-
cial relevance in computational biology and bioinformatics.
In particular, it is a critical component for methods like read
mapping [16, 17, 18], de-novo genome assembly [19, 20],
variant detection [21, 22], multiple sequence alignment [23],

and many others [24, 25]. Due to the unprecedented data-
production rates of modern DNA sequencing machines, the
need for fast and accurate algorithms for sequence analysis
has become paramount. In the past years, computation has
become a growing fraction of genomics cost as sequence data
production has increased drastically and its costs have been
significantly reduced [26]. Moreover, with ever-increasing
sequence lengths, third-generation sequencing technologies
pose an additional challenge to these algorithms and their
ability to scale [27].

The need to process large volumes of genomic data has
motivated the mainstream adoption of high-performance
computing (HPC) methods and resources. In turn, the
demanding computational requirements have forced re-
searchers to investigate solutions using more efficient hard-

VOLUME 4, 2021 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3182714

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

ware accelerators such as GPUs. Compared to multi-core
processors, modern GPUs provide both higher computation
throughput and memory bandwidth. For that reason, GPUs
have been widely adopted as effective accelerators for many
scientific and commercial applications [28, 29, 30, 31].

Sequence alignment algorithms have been intensively
studied for more than 40 years, applying multiple strategies
(including dynamic programming [32, 33], automata [34, 35,
36], and bit-parallelism techniques [37, 38]). Nonetheless,
these algorithms require quadratic time and memory on the
length of the sequences. With increasing sequence length,
using these classical algorithms becomes impractical or not
even possible. As opposed to classical methods, our proposal
is based on the wavefront alignment algorithm (WFA) [39].
This novel method exploits similarities between sequences
to accelerate the computation of the optimal alignment. As a
result, its time complexity O(ne) depends on the sequence
length n and the optimal edit-distance e (i.e., the error be-
tween the sequences).

This paper presents a GPU implementation of the WFA
algorithm for the exact computation of the edit-distance
alignment between DNA sequences on GPUs. We propose
an algorithmic adaptation of the WFA algorithm to exploit
the parallel computing capabilities of GPU architectures.
Moreover, we introduce a compact piggyback-encoding of
the intermediate wavefront data that allows computing each
alignment using the GPU fast on-chip memories. Further-
more, we propose using a bit-parallel strategy within the
WFA to accelerate DNA sequence comparisons on the GPU.
As a result, we provide a high-performance implementation
based on specialised alignment kernels for input sequences
with different alignment errors. Also, we implement a batch
processing based system that allows computing thousands
of alignments in parallel, overlapping data transfers with
computations. We characterise the performance of our im-
plementation and present the different performance trade-offs
of our solution. Ultimately, experimental results demonstrate
that our implementation outperforms other state-of-the-art
proposals.

The rest of the paper is structured as follows. Section II
presents the definitions and methods on which our algorithm
is based. Section III describes the proposed algorithmic adap-
tations and optimisation strategies of the GPU implementa-
tion. Then, Section IV shows experimental results, compares
the performance of our method against other state-of-the-art
implementations for both CPU and GPU, and studies the
performance trade-offs of our GPU implementation. Next,
Section V presents an overview of the most relevant se-
quence alignment methods presented in the literature fo-
cusing on GPU-based implementations. Finally, Section VI
summarises the main results and contributions of this work.

II. BACKGROUND
A. EDIT-DISTANCE SEQUENCE ALIGNMENT
Also known as Levenshtein distance, edit-distance is a metric
that measures the difference between two sequences. It is

defined as the minimum number of edit operations (i.e., mis-
match, insertion, and deletion) required to transform one se-
quence into the other. For instance, the edit-distance between
the sequences P = ”GATTACA” and T = ”GAATA” is
e = 3. That is to say, the minimum number of edit operations
required to transform P into T is 3 (i.e., substitute the first T
for an A, and remove the last two elements of the sequence
P). Computing the edit-distance between two sequences is
commonly solved using a dynamic programming (DP) ap-
proach [4, 33]. Given two sequences P = [p0, ..., pn − 1]
and T = [t0, ..., tm − 1] (of length n and m, respectively),
the edit-distance e between the two sequences can be com-
puted using the recurrence presented in the Eq. 1 (being
e = Mn,m). By means of storing all the intermediate Mi,j

values of the DP-matrix, we can trace back the edit operations
that originated the minimum edit-distance (i.e., the sequence
alignment). It follows that classical algorithms based on this
DP approach exhibit quadratic time complexity and quadratic
space complexity on the sequence length (i.e., O(nm)).

Mi,j =

i if j = 0

j if i = 0

min

Mi−1,j−1 + δ(Pi, Tj)

Mi,j−1 + 1

Mi−1,j + 1

Otherwise

(1a)

δ(pi, tj) =

{
0 if pi = tj

1 if pi 6= tj
(1b)

These DP-based solutions have been extensively stud-
ied and used for many years and in different application
contexts. However, they exhibit a series of computational
shortcomings that limit their scalability and prevent the im-
plementation of effective parallelization techniques. First,
the quadratic memory requirements limit their practical ap-
plication to compute the alignment of long sequences (i.e.,
thousands of characters). Second, the computational pattern
shown in Eq. 1 depicts data dependencies that hinder straight-
forward usage of SIMD (vector) instructions, which could
accelerate execution speed. Also, in its classical formulation,
the algorithm explores unnecessary regions of the DP-matrix
that do not contribute to the optimal solution and generate
needless computations.

Over the past years, many variations and optimizations
have been proposed to overcome these limitations. These
solutions include techniques such as computing the DP-
matrix antidiagonal-wise [40], banded approaches that only
compute a portion of the DP-matrix [41], data-layout organi-
zations that allow using SIMD instructions [42, 43, 44], bit-
packed encodings [45, 37], and other heuristic methods [33,
46, 47]. Due to its importance and performance impact in
many applications, multiple libraries have emerged imple-
menting those algorithms. Among the most widely used, it is
worth mentioning Edlib [48] and BGSA [49], fast CPU im-
plementations of the Myers bit-vector algorithm (BPM) [37];

2 VOLUME 4, 2021

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3182714

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

DAligner [50], an efficient implementation of the O(ND)
algorithm [45]; and NVBio [51], a GPU accelerated library
for sequence alignment.

B. THE WAVEFRONT ALIGNMENT ALGORITHM

Recently, in [39], the authors proposed a fast and exact pair-
wise alignment algorithm: the WFA algorithm. As opposed
to other approaches, the WFA algorithm proposes an alter-
native encoding of the DP-matrix and an efficient algorithm
to compute partial alignments of increasing distance. As a
result, the WFA algorithm only needs to calculate a small
number of DP-matrix cells to find the optimal alignment.
This way, WFA exploits similarities between sequences to
reduce the time complexity to O(ne), being n the sequence
length and e the optimal edit-distance, reducing the memory
requirements to O(e2). In the following, we formally present
the WFA algorithm to compute the edit-distance alignment.

For a given distance e, let a wavefront W̃e,k be a vector
of integer offsets that, for each diagonal k, encodes the
diagonal offset from the leftmost column of the DP-matrix
to the farthermost cell that has distance e. As opposed to
DP methods that explicitly represent the distance of each cell
in the DP-matrix, the WFA algorithm uses wavefront offsets
W̃e,k that encodes only the farthermost cell in the diagonal
k that has distance e. Then, starting from W̃0,0 = 0 (i.e., the
upper-left corner of the DP-matrix), the WFA algorithm pro-
gressively computes wavefronts W̃e of increasing distance
until a wavefront reaches the bottom-right corner of the DP-
matrix (i.e., the end position of the alignment). For that, the
WFA algorithm repeatedly applies two operators: extend()
and computeNext().

Given an initial wavefront W̃e, the extend() opera-
tor increases each offset of the wavefront vector ac-
cording to the number of contiguous matching charac-
ters between the sequences. This way, the WFA algo-
rithm exploits the property that diagonals are monotoni-
cally increasing [52]. In particular, for a given cell Mi,j

of the DP-matrix, we know from Eq. 1 that Mi,j =
min(Mi−1,j−1 + δ(Pi, Tj),Mi,j−1 + 1,Mi−1,j + 1). IfPi =
Tj , there is no better outcome than retaining the same
cell value along the diagonal; that is, Mi,j = Mi−1,j−1.
Moreover, note that the Mi,j−1 and Mi−1,j values do not
affect this computation and therefore it is not necessary to
explicitly compute these cells. WFA exploits this operation,
denoted diagonal extension (Algorithm 1), to find the farthest
reaching (f.r.) offset on each diagonal for a given distance.

Once all the offsets of a wavefront have been diago-
nally extended, the algorithm checks whether any offset
W̃e,k reaches the bottom-right cell (m,n). If that is not
the case, WFA proceeds to generate the next wavefront
W̃e+1 using the computeNext() operator. For each diago-
nal k, computeNext() uses the previous offsets in W̃e (i.e.,
W̃e,k−1, W̃e,k, W̃e,k+1) to compute the f.r. offset with dis-
tance e + 1 on diagonal k. Using Eq. 2, computeNext() finds
the most advanced position with distance e + 1 considering

Algorithm 1: WFA extend() operator

Function extend(P, T, W̃e):
for k ← −e to e do

// Compute (v,h) position

v← W̃e,k − k
h← W̃e,k

// Compute diagonal matches
while Pv = Th do

v ← v + 1
h← h+ 1

W̃e,k ← W̃e,k + 1

a deletion, an insertion, or a mismatch from the f.r. offsets of
the previous wavefront W̃e (Algorithm 2).

W̃e+1,k = max

W̃e,k+1 (Deletion)
W̃e,k + 1 (Mismatch)
W̃e,k−1 + 1 (Insertion)

(2)

Algorithm 2: WFA computeNext() operator

Function computeNext(W̃e,W̃e+1):
klo ← −(e+ 1)
khi ← (e+ 1)
for k ← klo to khi do

W̃e+1,k ← max{W̃e,k−1 + 1, W̃e,k + 1, W̃e,k+1}

The WFA algorithm (Algorithm 3) progressively computes
wavefronts (containing f.r. offsets) of increasing distance
applying the operators extend() and computeNext(). Once
a W̃e,k reaches the bottom-right cell (m,n), the algorithm
concludes that e is the minimum alignment distance. Ad-
ditionally, note that the sequence of operations that led to
the offset W̃e,k constitute the optimal alignment and can
be recovered by tracing back the path from W̃e,k to W̃0,0.
To put it into perspective, Figure 1 shows a side-by-side
comparison of the classical DP-based algorithm and the WFA
to compute the edit-distance between P = ”GATTACA”
and T = ”GAATA”. Note how the WFA operations have a
direct mapping on the DP-matrix.

Altogether, the WFA algorithm requires computing e
wavefronts to compute an alignment of distance e. From
the initial wavefront W̃0,0 of unitary length, each successive
wavefront increases its length by two. It follows that the
e-wavefront has length 1 + 2e and the total number of
wavefront-offsets needed is

∑e
n=0 1 + 2n = (e+ 1)2. Thus,

that the overall memory complexity isO(e2). Moreover, note
that the operator computeNext() runs in time proportional
to the wavefront length. Then, for each diagonal, the total
number of wavefront extensions performed by the extend()
operator is bounded by the maximum number of diagonally

VOLUME 4, 2021 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3182714

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Algorithm 3: WFA edit-distance alignment

Function WFA_align(P ,T ,W̃e,W̃e+1):
// Initial conditions

W̃0,0 ← 0

extend (W̃0,0)
// Compute wavefronts
e← 0

while W̃e,m−n 6= m do
computeNext (W̃e,W̃e+1)
e← e+ 1

extend (P ,T ,W̃e)

Figure 1. Edit-distance WFA depicted inside a DP table. Dotted lines
represent the computeNext operator, while continuous lines represent the
extend operator. The extend operator of the offset W̃2,−2 is shown as a red
line. At M2,4, as T2 = P4, the offset is extended. At M3,5, T3 6= P5, so the
extend operator stops.

matching characters (i.e., max{n,m}). Therefore, we con-
clude that the running time of the WFA algorithm is bounded
in the worst case by O(max{n,m} · e) or O(ne) when the
sequences have the same length.

Besides presenting a better time and memory complexity,
the WFA algorithm presents additional advantages compared
to classical DP-based alignment algorithms. Most notably,
WFA presents a simple data-processing pattern that allows
processing each wavefront offset independently and storing
them consecutively in memory. As opposed to traditional
DP-based algorithms, the WFA algorithm can be effectively
vectorized using SIMD instructions. Furthermore, the WFA
algorithm encodes offsets in the range of the sequence length
instead of storing the actual distance or score, as DP-based
algorithms do. Therefore, wavefront elements are bounded
by the maximum sequence length and can be encoded using
less memory. In turn, this succinct encoding allows enhanc-
ing SIMD performance further. In the present work, we aim
to exploit these advantageous properties to implement an ef-
ficient parallel strategy on GPUs using a SIMT programming
model.

C. GPU ARCHITECTURE AND CUDA PROGRAMMING
MODEL
GPUs are massively parallel devices containing multiple
throughput-oriented processing units called streaming mul-
tiprocessors (SMs). SMs execute hundreds of instructions in
parallel by using deep pipelines and aggressive fine-grained
multithreading. SMs share an L2 cache of a few MB and a
global memory of several GB. Each SM is equipped with
multiple SIMD cores capable of performing in-order execu-
tion of instructions. At the same time, each SM contains a
register file (around 256KB) and a fast on-chip scratchpad
memory that can be shared among threads (around 48KB per
block of threads).

Since its release in 2006, CUDA has become the most
popular programming model for general-purpose GPU com-
puting. CUDA comes with a software environment that al-
lows using a superset of C/C++, together with API calls, to
program one or multiple GPU devices. The CUDA program-
ming model provides a heterogeneous environment where the
host code runs on the CPU, and the device code runs on a
physically separate GPU. Both the host and device can main-
tain their own separate memory spaces; meanwhile, CUDA
supports data transfer between host and device memory. The
CUDA programming model defines a computation hierarchy
formed by kernels, thread blocks, warps, and threads:

• Kernel: Minimum unit of work sent from the CPU to
the GPU. In short, a kernel is a function executed in
parallel on a GPU by a large number of different CUDA
threads.

• Thread block: Group of threads that are executed by
one SM and cannot migrate to other SMs (except during
preemption or dynamic parallelism). Threads within
a block can cooperate via synchronization primitives,
using registers, or shared memory. Thread blocks are
scheduled non-deterministically for independent MIMD
execution into SMs.

• Warp: A thread block is divided into batches of 32
threads, called warps, which are the smallest scheduling
unit.

• Thread: Minimum execution unit of programmed in-
structions in CUDA.

GPU applications must launch kernels composed of tens
of thousands of threads to simultaneously achieve high-
performance executions. To that end, between 32 and 64
warps from one or multiple thread blocks are dynamically
scheduled for execution in the same SM. This mechanism,
often known as H/W multithreading, is the primary latency-
hiding strategy on GPUs. Furthermore, a GPU executes
warps of parallel threads using a SIMT model (Single In-
struction Multiple Threads), which allows each thread to
access its registers, load and store from divergent addresses,
and follow divergent control flow paths.

However, GPU executions can suffer from performance
limitations due to several factors. In particular, when threads
of a warp diverge due to conditional branches, only a subset

4 VOLUME 4, 2021

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3182714

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

of the threads are active, which may reduce the overall
performance. This situation is known as divergence, and it
is an inherent performance limitation of SIMD architectures
that must be addressed when designing the algorithm. Sim-
ilarly, another critical performance limitation can arise from
sparse memory accesses. When executing a SIMD load/store
instruction, the memory addresses provided by all the threads
in the same warp coalesce (i.e., combine) to generate one or
multiple memory block access requests. GPU applications
seek to coalesce data requests from global memory into a
few memory blocks to achieve efficient transfers. Access
to global memory is relatively slow compared to fast on-
chip memory (i.e., shared memory and registers). For that
reason, it is always preferred that all threads in a CUDA
block exploit local memory whenever possible. However, the
amount of shared memory and registers used by a CUDA
block limits the number of concurrent CUDA blocks running
on the same SM and may reduce the GPU occupancy (i.e.,
threads assigned per SM). Having a high occupancy is im-
portant to hide the latency of memory accesses and compute
operations.

III. GPU IMPLEMENTATION OF THE WFA ALGORITHM
Nowadays, analysing large-scale workloads requires aligning
millions of relatively large sequences to a given reference
genome in a very short time. Previous research work has
shown the capabilities of modern GPUs to accelerate HPC
applications in general and alignment tools in particular.
Specifically, parallel programming using CUDA can be very
effective to accelerate string matching algorithms, as shown
in many recent studies [47, 30, 53, 54, 55, 56]. This section
presents our proposed method to accelerate edit-distance
sequence alignment using the WFA algorithm on GPU. In
the following, we present the main challenges to adapt the
WFA algorithm to the CUDA programming model and the
contributions and trade-offs of the proposed implementation.

Mainly, there are two strategies to parallelize computations
on GPU devices: coarse and fine-grained. In the case of
the WFA algorithm, a coarse-grained parallelization strategy
devotes each CUDA thread to compute a single alignment,
whereas, in a fine-grained strategy, multiple CUDA threads
collaborate to align a single pair of sequences.

In a coarse-grained approach, each thread within the block
requires its own pair of sequences and wavefront data struc-
tures to perform the alignment. Due to the limited size of
the shared memory, using this approach forces storing data
in global memory space, resulting in long-latency memory
accesses. Moreover, a coarse-grained strategy is bound to
generate divergence across threads’ execution within a block
as each alignment requires a different amount of computa-
tions. Ultimately, a coarse-grain approach faces significant
performance limitations that can largely reduce the overall
execution speed of the algorithm on a GPU.

In contrast, a fine-grained strategy computes each align-
ment using a thread block. This way, all threads within the
block cooperatively work to compute one alignment problem.

Figure 2. Mapping of CUDA resources into WFA work.

This approach heavily reduces the consumption of shared
memory and registers, allowing the storage of the wavefront
structures in shared memory for several thread blocks, which
can operate concurrently in the same SM (increasing the
occupancy). Furthermore, the computational pattern depicted
by the WFA algorithm allows to efficiently map the compu-
tations across the threads of a block (Figure 2). We exploit
the fact that computations on each diagonal are independent,
allowing to compute every element in each wavefront W̃e

in parallel for both operations extend() and computeNext().
Our solution exploits this parallelism approach where each
thread block computes a single alignment problem, and each
thread within the block is assigned a different diagonal offset
to compute. This way, we implement Algorithm 3 to be
computed using a thread block. For each wavefront W̃e

(containing 2e+1 diagonals), threads within the block extend
independently each diagonal k offset (i.e., apply operator
extend()); and then, compute the corresponding k offset of the
next wavefront W̃e+1 (i.e., apply operator computeNext()).

Nevertheless, this approach faces some performance chal-
lenges of its own. Concerning the memory utilisation, wave-
fronts naturally become larger as the alignment error e con-
sidered grows during the alignment computation (i.e., |W̃e| =
1 + 2e). It follows that the overall number of wavefront
elements required to align a pair of sequences with alignment
error e is given by

∑e
n=0 1 + 2n = (e + 1)2. Note that all

the wavefronts need to be stored to retrieve the edit opera-
tions that originated the minimum edit-distance alignment.
Consequently, the memory requirements grow quadratically
with the alignment error, posing a scalability limitation when
storing the data on shared memory. To palliate this limitation
and exploit the benefits of using the fast shared memory, we
propose a succinct encoding scheme where the wavefronts
store partial backtraces as the alignment is computed (Section
III-A).

VOLUME 4, 2021 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3182714

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Depending on the alignment error between the input se-
quences, some alignments may require more shared memory
than others. Requesting memory for the worst-case align-
ments will limit the number of concurrent thread blocks
running on an SM and, ultimately, the performance of the
whole execution. For that reason, we implement three dif-
ferent kernel specialisations, each one supporting a different
maximum alignment error. This way, our implementation can
optimise the resource usage for each scenario and achieve
higher performance for cases where the alignment error is
bounded (Section III-B).

Moreover, the computation performed by the extend() op-
erator can be largely irregular as it depends on the number
of matching characters on each diagonal. To minimise thread
divergence, we use a packed sequence encoding that allows
performing bit-parallel sequence comparisons (i.e., block-
wise comparisons), reducing the chances of divergence, and
saving memory at the same time (see Section III-C).

Additionally, modern GPUs allow simultaneous data trans-
fers and kernel execution to exploit parallelism further. In
this way, the system minimises the impact of data offloading
from the host and overlaps transference with computation
on the device. Our solution implements an alignment batch
system that allows multiple alignment problems to be solved
in parallel while performing data transfers HtoD and DtoH
(see Section III-D).

A. PIGGYBACKED ALIGNMENT OPERATIONS
As stated before, the WFA algorithm requires storing all
the intermediate wavefront vectors W̃e to be able to trace
back the optimum alignment. As a result, the memory
consumption of the algorithm grows quadratically with the
alignment error, posing a severe constraint on the shared
memory scalability. Here, we propose a succinct encoding
of the wavefronts based on storing partial backtraces as the
alignment is computed.

For an alignment of distance e, the WFA backtrace algo-
rithm computes the optimum alignment path from (n,m)

to (0, 0), traversing all the wavefront vectors from W̃e to
W̃0. In particular, each step of the backtrace checks the
adjacent offsets (e.g., from W̃e,k to W̃e−1,k+1, W̃e−1,k, or
W̃e−1,k−1) for the one that originated the minimum cost
alignment according to Eq. 2. In essence, each iteration in the
backtrace process computes a step in the alignment path. To
avoid storing explicitly all the wavefront offsets, we propose
to explicitly compute each backtrace step (i.e., ←,↖,↙)
and store it together with the previous steps in a backtrace
vector. In this way, our implementation piggybacks the partial
backtraces B̃e,k from every offset W̃e,k to the beginning of
the alignment W̃0,0. As a result, our solution only needs to
store two wavefronts (i.e., W̃e and W̃e+1) and their partial
backtraces B̃e and B̃e+1 for each step of the algorithm.

Figure 3 illustrates our proposal aligning the sequences
T = ”GAATA” and P = ”GATTACA”. The example
shows that the alignment process ends at W̃3,−2 (i.e., the

Figure 3. Wavefront data layout for aligning the sequences T = ”GAATA”
and P = ”GATTACA”.

minimum edit-distance between P and T is e = 3). The
alignment path from W̃3,−2 to W̃0,0 is explicitly stored in
the backtrace vector at B̃e,k = ”←↖↖ ”.

However, the backtrace vector does not contain the full
alignment path but just the edit operations (i.e., mismatches,
insertions, and deletions) within the alignment. To recover
the full alignment path, we need to recover the matches
between backtrace steps. To that purpose, we use the WFA’s
extend() operator to compute stretches of matches between
successive backtrace steps. This strategy is shown in Algo-
rithm 4. Note that this algorithm only has to operate a single
time over the backtrace vector of the optimum alignment, and
its time complexity is proportional to the alignment path.

In practice, each backtrace step can be efficiently com-
puted within the computeNext() operation and encoded using
two bits (i.e., 32 backtrace steps for each 64-bit word). For
that, we piggyback each offset in Eq. 2 with its corresponding
backtrace step on its two less significant bits. After the maxi-
mum calculation, the resulting backtrace step is appended to
the backtrace vector at the end.

The succinct encoding of the backtrace steps leads to
a significant reduction in memory consumption. Using 32-
bits offsets, the straightforward implementation of the WFA
algorithm requires (e + 1)2 × 4 bytes to align a pair of
sequences of error e. Using the proposed scheme, we reduce
the required memory structures to the last two computed
wavefronts and their corresponding backtrace vectors (i.e.,
4e × (4 + 2e/8) bytes). For any sufficiently large e, this
represents up to a 4x reduction in memory usage. In practice,
for moderately large e values, all the backtrace vectors can
be fitted in shared memory. Furthermore, to enable coalesced
memory accesses and avoid bank conflicts, we implement a
struct-of-arrays approach, separating the wavefront offsets

6 VOLUME 4, 2021

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3182714

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Algorithm 4: Algorithm to retrieve the alignment
from the backtrace vector

Function retrieveAlignment(P ,T ,W̃e,W̃e+1):
offset← 0
k ← 0
A← ∅
for i← 0 to e do

m← extend(P,T,k,offset)

A← A+’M’,
(m)
· · · ,’M’

op← B̃k[i]
switch op do

case↖ do // Deletion
k ← k − 1
A← A+’D’

case← do // Mismatch
offset← offset+ 1
A← A+’X’

case↙ do // Insertion
offset← offset+ 1
k ← k + 1
A← A+’I’

m← extend(P,T,k,offset)

A← A+’M’,
(m)
· · · ,’M’

from the backtrace vectors. As a result, subsequent backtrace
vectors are stored contiguously, enabling fast accesses when
all threads in a warp access the backtrace vectors.

B. KERNEL SPECIALISATION
Even though the introduction of the backtrace vectors (Sec-
tion III-A) reduces the memory requirements, shared mem-
ory usage is a major performance limitation when scaling
to larger alignment errors (see Section IV-C). In practice,
our implementation uses bit-vectors to store the backtrace
vectors. For instance, using 64-bit words, we could store
up to 32 edit operations (i.e., each edit operation encoded
using 2 bits). As the maximum alignment error increases,
this approach requires longer bit-vectors. In turn, large bit-
vectors put additional pressure on the share memory usage
and hinder performance. Therefore, it is important to bound
the maximum alignment error for each batch of sequences
and use the most suitable configuration that minimises the
memory used by the backtrace vectors.

On that account, we implemented three different kernels,
each one supporting a different maximum alignment error:
32, 64, and 128 errors. For convenience, we call these kernels
E32, E64, and E128, respectively. Each kernel requires stor-
ing 64-bits, 128-bit, and 256-bits words per diagonal of the
wavefront and therefore require more shared memory as the
alignment error supported increases. The execution of these
kernels display different performance tradeoffs discussed in

Section IV-C.
It is important to note that the length of the backtrace

vector imposes a limit on the maximum alignment error
but not on the maximum sequence supported. For instance,
the E128 implementation could be used to align sequences
of 1000 nucleotides up to a 12.8% error rate or 10K long
sequences up to a 1.28% error rate. For moderately long
sequences (i.e., between 100 and 1000 nucleotides), our
implementation supports alignments up to more than a 10%
error rate. Nevertheless, it is possible to extend this approach
to higher error rates, using longer bit-vectors, at the cost of
using more memory and potential performance slowdowns
(see Section IV-C).

C. BIT-PARALLEL PACKED SEQUENCE COMPARISON
As opposed to the computeNext() operation, the extend() op-
eration can require performing a different amount of compu-
tations per diagonal. Specifically, the inner loop of Algorithm
1 iterates as many times as the total characters that match
along each diagonal. Thus, threads within a block executing
this operation are bound to diverge, which can diminish the
overall performance.

To mitigate this problem, we use a packed sequence en-
coding that allows performing bit-parallel sequence com-
parisons; that is, comparing blocks of characters, antici-
pating comparisons, and reducing the variability between
diagonals. Taking advantage of the reduced DNA alphabet
(i.e., nucleotides A, C, G, and T), we propose to use a
2bits-packed encoding scheme to increase the number of
nucleotides compared per block (i.e., 16 nucleotides per 32
bits word). Furthermore, packing and reducing the size of
the input sequences reduces the memory requirements on
the shared memory and, in turn, allows fitting more CUDA
blocks in the same SM.

Nonetheless, this approach introduces the need of packing
the input sequences beforehand. Sequence packing can be
performed on the host CPU, or it can be offloaded to the
GPU. Although packing sequences on CPU would help to
reduce the amount of data that has to be transferred to the
GPU, packing computations and memory transfers can be
overlapped with the alignment kernels (see Section III-D).
Not to mention that current high-speed transfer technologies,
such as NVLink, allow even faster transfers from the host to
the device. For instance, using a Nvidia V100, the offloading
of raw sequences and packing on the GPU turns out to be
faster than packing the sequences on the CPU and transfer-
ring the packed sequences.

Furthermore, sequence packing turns out to be a straight-
forward operation. Due to the ASCII representation of the
DNA letters (i.e., A=1000001, C=1000011, G=1000111,
T=1010100), it only requires to extract the bits on position
1 and 2 (unique bits in every DNA letter encoded in the
ASCII). This encoding has been extensively used in mul-
tiple bioinformatics and genomics applications for packing
DNA sequence databases and genome references. However,
our implementation does not assume the preprocessing of

VOLUME 4, 2021 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3182714

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Figure 4. Compute kernels of multiple batches are overlapped with data
transfers (DthH and HtoD).

the input sequences and allows using ASCII-encoded DNA
sequences, packing its content on the GPU.

Altogether, this approach accelerates the computations
performed within the extend() kernel, decreasing the execu-
tion divergence between threads, and reducing the number of
instructions executed as well as the overall shared memory
used. Compared to the vanilla implementation, our experi-
ments show that this strategy accelerates the kernel execution
time from 1.6× to 1.9× and reduces the number of executed
instructions by a factor of 1.7× to 2.1×. Most importantly,
it reduces between 1.2× and 1.7× the number of predicated-
off threads in a warp (i.e., inactive threads when divergent
branches occur and threads take separated paths).

D. BATCH EXECUTION. OVERLAPPING KERNEL
COMPUTATION WITH DATA TRANSFERS
At the system level, memory transfers from host to device
take a significant percentage of the total execution time since
all the sequences have to be stored in the device to perform
the alignment. Hiding transfer latencies with computation is
key to avoid performance slowdowns due to the offloading of
computation to the GPU. The CUDA programming model
allows the creation of various streams to overlap comput-
ing kernels with memory transfers. All operations within a
CUDA stream are synchronous; however, they can operate
asynchronously between other running streams. As a result,
launching independent kernels and memory transfers to dif-
ferent CUDA streams can effectively overlap computation
with memory transfers.

To effectively implement this strategy, we created batches
of sequences to be transferred and aligned in parallel. This
way, compute kernels of a given batch can be overlapped with
computations and memory transfers from other batches. This
concept is illustrated in Figure 4.

IV. EXPERIMENTAL EVALUATION
In this section, we present the experimental evaluation of the
eWFA-GPU. We compare our implementation against state-
of-the-art libraries and tools for pairwise sequence align-
ment. Then, we present a detailed study of the performance,
scalability, and limitations of our implementation, showing
a comprehensive profiling of the kernel executions on GPU.
Afterwards, we evaluate the performance effect of parameter
tuning our implementation and conclude presenting an eval-
uation on other GPU devices.

A. EXPERIMENTAL SETUP
We performed the experimental evaluation of our solution
on an IBM Power9 processor (20 cores with 4 threads per
core), equipped with an NVIDIA V100 GPU with 16GB
of HBM2 memory connected through NVLink. We used
synthetic datasets consisting of 10 million sequence pairs of
lengths 150, 300, and 1000 nucleotides, and error rates of 2%,
5%, and 10%. For comparison, we selected representative
and widely-used libraries and tools from the state-of-the-art.
We focused on those CPU and GPU implementations that
stand out in terms of performance or implement the latest
algorithmic approaches.

For the CPU evaluation, we selected Edlib [48]; eWFA, an
optimised CPU version of the WFA [39] adapted to the edit-
distance; BPM, a highly optimised version of the BitParallel
Myers algorithm [37]; and the O(ND) algorithm [45] used
at the core of the Linux diff-tool. All CPU executions were
performed using 80 threads.

From the multiple GPU implementations available, we
have selected those that could be deployed, executed without
faults, and had a competitive execution time. In particular,
we evaluated two methods from the widely-used NVBio [51]
framework, the WmCudaTile algorithm from xbitpar [57],
and the highly optimised GASAL2 [58]. Note that NVBio
implementation only computes the alignment distance, not
producing the complete alignment. Also, note that GASAL2
implements the gap-affine distance and, consequently, re-
quires more computation than edit-distance. Notwithstand-
ing, its inclusion in the benchmark is interesting for compar-
ison purposes. We tuned GASAL2’s gap-affine parameters to
this end, so the library computes the edit-distance alignment.

B. PERFORMANCE EVALUATION
In order to present a comprehensive evaluation of the dif-
ferent methods’ performance, Table 1 shows the alignment
time taken by each implementation for aligning 10 million
sequences of different lengths and error rates. We report total
execution time, including transfer times (i.e., host to device
and back) for the GPU executions. All CPU implementations
were executed using 80 threads. Overall, results show that
eWFA-GPU executes 2.9-265× faster than the CPU-based
methods and 8-56× faster than other GPU implementations.

Compared to established CPU alignment algorithms,
eWFA-GPU performs 24-102× faster than the BPM algo-
rithm and 19-100× faster than the O(ND) implementation.
Similarly, we obtain speedups of 31-265× compared to
Edlib. Compared to the CPU implementation of the eWFA,
our GPU implementation delivers 3-9× times more perfor-
mance. In particular, the speedups obtained by eWFA-GPU
increase with higher alignment error rates as the wavefronts
increase in size and more wavefront computation can be done
in parallel (see Section IV-C).

Regarding the GPU implementations, eWFA-GPU outper-
forms the widely-used NVBio library, achieving speedups of
2.5-7.4× compared to NVBio’s classical DP-based imple-
mentation and speedups of 4.5-7.2× compared to NVBio’s

8 VOLUME 4, 2021

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3182714

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Table 1. Alignment time (in milliseconds) for an input of 10 million alignments using different alignment implementations on CPU and GPU. Note that CPU
implementations were executed using 80 threads. The first half of the table presents alignment times of implementations that only compute the edit-distance (not
the alignment). The second half shows alignment times of implementations that compute the edit-distance and the full alignment path. Best execution times are
marked in bold.

length=150 length=300 length=1000

e=2% e=5% e=10% e=2% e=5% e=10% e=2% e=5% e=10%

Distance only GPU
NVBIO.DP 622 656 642 1013 1020 1050 2534 2506 2446
NVBio.BPM 608 630 658 856 833 894 2474 n/a n/a
eWFA-GPU 89 92 100 143 140 197 399 487 994

CPU

Edlib 8928 9001 9057 16853 16338 16591 120248 50988 59799
O(ND) 7872 7798 7444 14456 14350 13873 21217 38553 36110
BPM 6773 7204 6985 12484 12340 12526 46062 47043 45610

Full Alignment eWFA 577 758 1110 672 1150 2090 1310 3900 11500

GPU
GASAL2 1206 1228 1239 4365 4366 4394 n/a n/a n/a
wmCudaTile 734 1074 1473 2142 2836 5038 13706 30571 108447
eWFA-GPU 91 95 116 144 160 252 453 689 1928

BPM. Compared to wmCudaTile, eWFA-GPU achieves up
to 12× speedup for short sequences (i.e., 150 nucleotides)
and up to 56× speedup for longer sequences. Compared to
GASAL2, eWFA-GPU is 10-30× faster. In general, eWFA-
GPU execution time scales better with the sequence length,
compared to the other GPU implementations. In particular,
the performance of DP-based methods, like GASAL2, is
strongly limited by the sequence length. Ultimately, aligning
long sequences with GASAL2 becomes impractical (e.g.,
1000 nucleotides or more). For a fair comparison, it is impor-
tant to acknowledge that GASAL2 implements the gap-affine
distance, which is more complex and costly than computing
the edit-distance alignment.

Unsurprisingly, DP-based implementations (i.e., BPM,
Edlib, NVBio, and GASAL2) are insensitive to the alignment
error, performing the same amount of computations to align
similar sequences as to align very divergent ones. As a
result, the performance of classical DP-based algorithms is
heavily constrained by the sequence length and not by the
sequences homology. For that reason, some tools, like Edlib,
implement heuristics that prune the DP computations at the
expense of potentially missing the optimal alignment (note
the reduction in the execution time when aligning sequences
of 1000 nucleotides with e>=5%). In contrast, error-sensitive
methods, like the eWFA-GPU, perform faster when align-
ing highly similar sequences, exploiting similarities between
the sequences to accelerate the alignment process. These
methods are only constrained by the nominal amount of
differences between the sequences.

C. PROFILING, SCALABILITY, AND LIMITATIONS
Our solution relies on exploiting the fast on-chip memory of
the GPU to improve the execution time. As explained in Sec-
tion III, our implementation stores the algorithm’s working
set (i.e., sequences, offsets, and backtraces) in shared mem-
ory, enabling fast accesses at the expense of limiting the max-
imum amount of memory that each alignment can use. As
the shared memory required by the algorithm grows quadrat-
ically with the alignment error, the memory consumed by

the offsets and backtraces becomes the most limiting factor.
In turn, increasing the shared memory consumed per each
alignment limits the amount of thread blocks that can be
executed concurrently on each SM. Therefore, the maximum
alignment error supported strongly constrains the number of
alignments that can be processed on each SM, thus limiting
the performance and scalability of the solution to high error
rates. Due to these limitations, our solution implements three
specialised alignment kernels, each supporting a different
maximum number of errors per alignment (i.e., 32, 64, and
128 errors; see Section III-B). In this section we show that
selecting the proper kernel, adjusted the maximum expected
alignment error, is crucial to obtain the best performance.

1) Overall system profiling
Having three different specialised kernels, the performance
of the executions change depending on the alignment error
between the sequences. Fig. 5 shows the application execu-
tion times aligning datasets with different error rates, broken
down into transference time (i.e., HtoD and DtoH), kernels
execution time, and total execution time. In the figure, each
execution is represented using three columns: the first one
showing the aggregated time of the memory copies between
CPU and GPU, the second one showing the GPU kernels
computation times, and the third one showing the overall
execution time. Note how transference times are being ef-
fectively overlapped with kernel computations.

In particular, when aligning homologous sequences (e.g.,
20 differences between the sequences) with the E32 kernel,
we observe that data transfers become the main performance
bottleneck. In this case, the kernels’ computation can be
effectively overlapped with transfers (disregarding initialisa-
tion times), resulting in the fastest execution times. As the
number of differences increases, our implementation requires
using kernels that support higher error rates. In these scenar-
ios (E64 and E128), the kernel’s computing time overtakes
the transfer time and becomes the main bottleneck. Most
notably, the alignment kernel time increases with higher error
rates (specially, due to increments in the size of the backtrace

VOLUME 4, 2021 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3182714

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Tran
sfe

ren
ce

Com
pu

te
Tota

l

Tran
sfe

ren
ce

Com
pu

te
Tota

l

Tran
sfe

ren
ce

Com
pu

te
Tota

l

Tran
sfe

ren
ce

Com
pu

te
Tota

l

Tran
sfe

ren
ce

Com
pu

te
Tota

l

0

50

100

150

200

250

E128E128E64E64E32
100 errors75 errors50 errors35 errors20 errors

Ti
m

e
(m

s)

Host to Device Device to Host Sequence packing
Backtrace Alignment Total time

Figure 5. Application execution time broken down into transference time (i.e.,
host to device and device to host), kernel execution time, and total execution
time. Each execution was performed using a dataset contain 1 million
sequences of 1000 nucleotides with different error rates (i.e., 20, 35, 50, 75,
and 100 nominal errors).

vectors from E64 to E128). As opposed, transfer, packing,
and backtrace times remain constant across all executions for
all datasets used (i.e., sequences of 1000 nucleotides).

2) Alignment kernel performance profiling
Due to its significance, we focus on the alignment kernel
to characterise its performance and understand the GPU
resource utilisation. Table 2 reports a summary of the most
relevant performance metrics of the execution of the three
alignment kernel specialisations.

Concerning memory utilisation, the alignment kernel only

Table 2. Performance metrics of each specialised alignment kernel on the
Nvidia V100 GPU. Executions were performed using datasets of 1M
sequences of 1000 nucleotides. Each dataset contains sequences that align
with an average error rate of 2%, 5%, and 10% (i.e., 20, 50, and 100 nominal
differences). Each execution was performed using the minimum alignment
error supporting kernel (i.e., E32, E64, E128)

Dataset: 1000nt
2% error

1000nt
5% error

1000nt
10% error

Alignment kernel executed E32 E64 E128
Maximum error supported 32 64 128
Threads per block. 32 64 128

Shared memory per block (KiB) 2.14 5.74 19.08
Occupancy (active warps per SM) 31.86 31.87 19.94

Kernel time (ms) 17.27 45.19 190.36
SM busy (%) 87.74 82.50 61.96
Global memory throughput (GiB/s) 35.86 14.05 3.46

Executed warp instructions (x109) 6.31 15.47 48.82
Avg. active threads per warp 10.10 21.36 27.40
Warp cycles per issued instruction 9.08 9.66 8.04

accesses global memory at the beginning of the execution
to copy the input sequences into shared memory. Due to
the limited usage of global memory, the effective throughput
reached is very low and rapidly decreases as the compute
time grows for executions using higher alignment error rates.
For the rest of the execution, the alignment kernel only
accesses the fast on-chip shared memory.

Regarding computation on the GPU, in Table 2 we observe
that all the alignment kernel specialisations are consistently
between 60% and 87.74% of the maximum SM core instruc-
tion throughput (i.e., SM busy). Furthermore, a more detailed
profiling reveals that none of the SM computing pipelines
is fully saturated. In particular, the most used computing
pipeline, the ALU pipeline, reaches a 87% utilisation on
the E32 kernel, 80% on the E64 kernel, and 30% utilisation
on the E128 kernel. Additionally, note that the warp stall
time (i.e., warp cycles per issued instruction) remains similar
across all executions.

These results reveal that the real limiting factor of these
executions is not the lack of computing resources on the GPU
but the lack of computing parallelism. When aligning up to
higher alignment error rates, the wavefronts become larger;
and thus, an SM can exploit more threads to perform parallel
computations. Accordingly, Table 2 shows that the average
active threads per warp increases from 10.1 to 27.4 (out of a
maximum of 32 threads per warp) when executing kernels
with higher alignment error support. In turn, this increase
in parallelism is reflected on the total warp instructions ex-
ecuted. As the alignment error increases, we would expect an
O(e2) increase in the number of warp instructions. However,
we observe a much gentle growth alleviated by the utilisation
of more threads per each warp.

Nevertheless, this increase in the number of active threads
per warp does not immediately translates into higher SM
utilisation (i.e., SM busy). Note that higher alignment error
supporting kernels require more shared memory per block
(Table 2). Therefore, the maximum number of active warps
per SM is bounded by the total shared memory available
and the shared memory required per block. Table 2 shows
that the occupancy drops from 31.86 to 19.94 when aligning
sequences up to 100 nominal differences using the E128
kernel. As a result, the SM busy and the computing pipelines
usage is reduced from 87.74% to 61.96%. Ultimately, as
the profiling results show, the performance of the alignment
kernel execution attends to a trade-off between the shared
memory required by each thread block and the maximum
active threads per warp that can be exploited to perform the
alignment computations.

3) Alignment kernel selection
In order to maximise performance, it is crucial to select the
alignment kernel that minimises the shared memory con-
sumption while being capable of aligning up to the maximum
error required by the input dataset. Table 3 presents the
performance results from using the three different kernel
specialisation to align the same dataset. First, we can observe

10 VOLUME 4, 2021

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3182714

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

how gradually each alignment kernel requires more shared
memory (from 1.65KiB up to 18.61KiB per thread block),
reducing the occupancy (from 31.50 down to 4.88), and
ultimately leading to longer kernel execution times (i.e., an
slowdown of 11× from E32 to E128). When using the same
dataset, all three executions compute the same alignments
and process wavefronts of the same length. Consequently, the
effective parallelism attained is the same for all the kernels
(i.e., average active threads per warp) and the executed warp
instructions remains constant for all the executions (ignor-
ing overheads associated to operating with longer backtrace
vectors). Hence, the maximum amount of parallel computa-
tions depends on the maximum alignment error, not on the
alignment kernel specialisation. Considering that the three
kernels are capable of supporting the maximum alignment
error of the dataset, selecting an oversized kernel can lead to
a slowdown up to 3.8×.

In conclusion, utilising the best fitted kernel (in terms
of maximum alignment error supported and shared memory
consumed) is key for performance. Specially, for alignments
with a small alignment error where the parallelism is rather
limited and only a few threads per block can effectively
compute useful work in parallel. Balancing the number of
alignments per SM and the maximum number of active
threads per block is crucial for an efficient exploitation of
the GPU computing resources.

D. PARAMETER TUNING
Most often, GPU-based implementations depict specific pa-
rameters that can strongly impact performance and have to
be configured with caution. For the eWFA-GPU, the number
of threads per block (and, therefore, the number of threads
per alignment) determines the maximum work that can be
done in parallel computing an alignment. If there are more
threads than wavefront elements, some threads never per-
form useful work, and GPU resources are not efficiently
used. Conversely, if a wavefront is larger than the number
of threads in a block, the implementation requires multiple

Table 3. Performance metrics of each specialised alignment kernel on the
Nvidia V100 GPU. All executions were performed using 32 threads per block,
aligning a dataset of 1M sequences of 150 nucleotides with an average error
rate of 5% (i.e., average of 7.5 nominal differences). Each execution was
performed using a different alignment kernel; that is, E32, E64, and E128.

Dataset: 150 nucleotides
(5% alignment error)

Kernel
E32

Kernel
E64

Kernel
E128

Maximum error supported 32 64 128

Shared memory per block (KiB) 1.65 5.27 18.61
Occupancy (active warps per SM) 31.50 17.63 4.88

Kernel time (ms) 3.93 4.91 14.96
SM busy (%) 92.95 79.37 28.43
Global memory throughput (GiB/s) 37.15 33.00 12.43

Executed warp instructions (x109) 1.51 1.61 1.76
Avg. active threads per warp 10.48 11.34 13.03
Warp cycles per issued instruction 8.46 5.54 4.28

Table 4. Alignment time (in milliseconds) of 10 million alignments using a
different number of threads per block. All the datasets used for this
comparison have a 10% error rate.

Nucleotides Threads per block

32 64 128 256

150 116.2 121.3 149.5 228.9
300 252.0 255.8 327.9 436.6

1000 2795.2 2091.0 1928.1 2092.4

iterations; hence, losing parallelism.
Table 4 lists the performance trade-offs using a different

number of threads per block. For short sequences and small
error rates, using small blocks (e.g., one warp) reduces
the number of idle threads per block. In the case of short
and medium sequences (i.e., 150-300 nucleotides), using 32
and 64 threads per block gives very similar performance
results. However, using more threads per block leads to a
performance drop caused by idle threads consuming GPU
resources. Similarly, for aligning long sequences (i.e., 1000
nucleotides), the best performance is achieved by using 128
threads per block. Note that using fewer threads per block
leads to an underutilization of GPU resources and, using
more threads, to a waste of GPU resources by idle threads.

E. EVALUATION ON OTHER DEVICES
To offer a thorough analysis of the performance of the pro-
posed solution, we also evaluated our implementation using
two other GPU models: an Nvidia GeForce RTX 2080 Ti and
an Nvidia GeForce RTX 3080. The computing capabilities of
each device used are listed in Table 5.

The results of the execution on other GPU devices are
shown in Table 6. On the GeForce RTX 2080 Ti, our im-
plementation is bounded by the bandwidth between the CPU
and the GPU. The device is connected through PCI Express,
achieving a bandwidth of 13GB/s on average. For instance, a
batch of 10 million sequences of 1000 nucleotides represents
21GB of input data. Transferring all this data to the GPU
using the available peak bandwidth of 13GiB/s would take
1615 milliseconds. That is about 87% of the total execution

Table 5. Properties of devices used for evaluation.

V100 RTX 2080 Ti RTX 3080

Compute capability 7.0 7.5 8.6
Clock frequency (MHz) 877 1605 1710
SMs 80 68 68
Cores 5120 4352 8704
Maximum warps per SM 64 32 48
Register space per SM (KiB) 256 256 256
Shared memory per SM (KiB) 96 64 100
Global memory size (GiB) 16 11 10
L2 cache size (KiB) 6144 5632 5120
Host to Device bandwidth (GB/s) 67.1 13.2 12.3
Device to Host bandwidth (GB/s) 65.8 13.2 13.1

VOLUME 4, 2021 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3182714

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Table 6. Alignment time (in milliseconds) of 10 million alignments using
eWFA-GPU on different devices.

Average nucleotides Error V100 RTX 2080 Ti RTX 3080

2% 91 299 333
150 5% 95 298 332

10% 116 301 335

2% 144 555 585
300 5% 160 563 585

10% 252 565 590

2% 453 1864 1921
1000 5% 689 1878 1989

10% 1928 2900 2103

time. Even with the proposed strategy to overlap computation
with transfers, the overall execution time is bounded by data
transfers to the device.

In the case of the RTX 3080, most execution times are
similar to the RTX 2080 results, as they have similar PCI
Express bandwidth. Overall, computation kernels are faster
than memory transfers and can be effectively overlapped.
However, when aligning 1000 nucleotides long sequences
with 10% of error, computation kernels take more time than
memory transfers, mainly due to the intensive usage of shared
memory. As shown in Table 5, the RTX 3080 has more shared
memory available per SM than other devices, allowing it to
have more alignments per SM, and therefore, achieving better
performance than the RTX 2080.

V. RELATED WORK
Over the years, many efforts have been invested in finding
new algorithms and more efficient implementations to com-
pute pairwise edit-distance alignments. In [59], Navarro pro-
vides a comprehensive review of the most relevant algorithms
and a performance evaluation for different datasets and
configurations. Most alignment algorithms can be classified
into four categories: DP-based, automaton, filters, and bit-
parallel algorithms. In practice, bit-parallel algorithms out-
perform the rest approaches. Most notably, these include the
BPM [37], the O(ND) [45], and the Wu-Manber (WM) [35]
algorithms.

Based on the most successful algorithmic approaches,
many high-performance CPU libraries have been presented.
Some of them have become extensively used due to their
efficiency or versatility, most notably, Edlib [48], BGSA [49],
and SeqAn [60]. Edlib is an efficient CPU implementation
of the BPM algorithm used within many Bioinformatics
tools. BGSA is also a very efficient implementation of the
BPM algorithm, optimised to exploit vectorization on multi-
core and many-core CPUs. SeqAn is a sequence analysis
library that implements a hybrid algorithm that combines the
memory-efficient Hirschberg’s algorithm [60] with the BPM
algorithm.

Additionally, there have been many efforts to adapt and op-
timise these algorithms on GPU devices. Most relevant pro-
posals are based on DP, computing cells antidiagonal-wise

in parallel [61, 62, 63, 64, 65]. Meanwhile, some research
efforts have been focused on producing efficient CUDA im-
plementation of the classical Needleman-Wunsch [66] algo-
rithm; other proposals have focused on novel organisations of
the DP-matrix to exploit efficiently the GPU resources [67].
In particular, in [68] and [69], the authors propose an algo-
rithm to reduce memory operations when computing the DP-
matrix, by using warp-shuffle instructions of current Nvidia
GPU architectures.

Many other GPU-based methods have opted for accelerat-
ing bit-parallel algorithms. In [57], the authors propose using
warp-shuffle operations to simulate a 1024-bit machine word,
allowing to perform approximate string matching on long
patterns. Also, in [70], the authors exploit the Crochemore
algorithm based on Suffix automaton for bit-parallel align-
ment. Like [71], other proposals revisit the Shift-Or and Wu-
Manber algorithms, implementing them as inclusive-scan
operations to allow multiple parallel computations. Similarly,
in [30] the authors propose a thread-cooperative version of
the BPM algorithm, achieving very high performance results
in a Nvidia GTX 680 GPU.

Furthermore, there has been many proposal to optimise se-
quence alignment on field programmable gate array devices
(FPGA)[72, 73, 74, 75]. Most notable FPGA implementa-
tions exploit bit-parallel techniques and custom processing
designs to accelerate the computation of multiple alignments
in parallel.

Comparing the performance of multiple methods imple-
mented on different hardware platforms can be a challenging
task. For the purpose of making meaningful comparisons,
it is common to compare the peak number of Giga Cells
Updated Per Second (GCUPS) achieved by each implemen-
tation. GCUPS is an established metric used to measure the
performance of alignment algorithms regardless of the target
devices and other implementation specifics. It represents the
number of cells from the DP-matrix computed per second by
each implementation. GCUPS can be computed using Eq. 3
for an alignment of two sequences of length n and m, taking
s seconds. This way, Table 7 compares peak GCUPS reported
by the most relevant implementations. Note that the eWFA-
GPU algorithm doesn’t require computing the full DP-matrix
to obtain the optimal alignment. Even so, for a fair compari-
son, we report the total number of CUPS required to compute
to obtain the same alignment as our implementation. Overall,
our solution obtains between 8-1790× more GCUPs than
other GPU implementations. Notwithstanding the inherent
inaccuracies of this comparison method, it is significant that
eWFA-GPU produces 2 orders of magnitude more GCUPS
than the most efficient methods found in the literature.

GCUPS =
nm

s
× 10−9 (3)

VI. CONCLUSION
This paper presents eWFA-GPU, a GPU-accelerated algo-
rithm based on the WFA algorithm to compute the edit-

12 VOLUME 4, 2021

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3182714

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Table 7. Peak GCUPs of different edit-distance alignment tools as reported on
their work.

Device Paper Year Device Model GCUPs

GPU

Ours 2022 Tesla V100 22075
[71] 2016 GeForce GTX TITAN X 2800
[30] 2014 Geforce GTX 680 2300
[51] 2014 Tesla K40c 1000
[76] 2013 Geforce GTX 480 470
[77] 2013 Geforce GTX 480 470
[57] 2016 Tesla V100 420
[58] 2019 Tesla V100 206
[68] 2015 GeForce GTX 980 65
[78] 2016 GeForce GTX 960 50
[70] 2015 GeForce GTX 580 28
[79] 2020 GeForce GTX TITAN Black 14
[55] 2018 Tesla K40c 14

CPU [48] 2017 Intel i7-4710HQ 388
[80] 2016 Intel Xeon E5-2670 136
[60] 2008 3.2 GHz Intel Xeon 2

FPGA [73] 2019 Kintex KCU1500 161
Others [49] 2018 Intel Xeon Phi-7210 1895

distance. Our implementation provides exact edit-distance
alignment (i.e., not heuristic), outperforming other state-of-
the-art methods. Also, we present the piggybacked backtrace
strategy, a novel optimisation technique that dramatically re-
duces the amount of memory needed for aligning sequences.
Not only this technique requires storing only two wavefronts
(fitting in the fast shared GPU memories), it also makes the
alignment generation faster. Additionally, we implemented a
high-performance sequence packing kernel that allows block-
wise comparisons between sequences. This accelerated oper-
ation significantly improves one of the most time-consuming
operations of the WFA (the extend operator). Moreover, our
implementation is fully asynchronous and overlaps compute
kernels and memory transfers to accelerate the algorithm ex-
ecution, hiding memory transfer latencies with computation.

We compared our eWFA-GPU implementation against
other CPU alignment libraries. Results obtained on the
Nvidia V100 GPU demonstrate speedups up to 265× com-
pared to Edlib, and up to 9.2× compared with the CPU ver-
sion of the WFA algorithm. Also, we obtain speedups up to
101.7× compared to the BPM, and up to 100.4× compared to
the O(ND) CPU implementation. Additionally, we compared
our implementation against GPU aligners: wmCudaTile from
XBitPar, GASAL2, and NVBio. We achieve a speedup up to
56.2× compared to wmCudaTile, up to 30.3× compared to
GASAL2, and up to 7.4× compared with NVBio. Beware
that GASAL2 is capable of computing gap-affine distance
(hence it performs more work).

All in all, our implementation represents an efficient solu-
tion for applications that require fast computation of exact
edit-distance alignment of large DNA sequence datasets.
eWFA-GPU is MIT-licence open-source, and its code is
publicly available at https://github.com/quim0/eWFA-GPU.

VII. FUNDING
This research was supported by the European Unions’s
Horizon 2020 Framework Programme under the DeepHealth

project [825111], by the European Union Regional Devel-
opment Fund within the framework of the ERDF Oper-
ational Program of Catalonia 2014-2020 with a grant of
50% of total cost eligible under the DRAC project [001-P-
001723]. It was also supported by the Ministerio de Cien-
cia e Innovacion MCIN AEI/10.13039/501100011033 under
contracts PID2020-113614RB-C21 and TIN2015-65316-P
and by the Generalitat de Catalunya GenCat-DIUiE(GRR)
(contracts 2017-SGR-313, 2017-SGR-1328 and 2017- SGR-
1414). M.M. was partially supported by the Spanish Ministry
of Economy, Industry and Competitiveness under Ramon y
Cajal fellowship number RYC-2016-21104.

References
[1] Amir Abboud, Virginia Vassilevska Williams, and

Oren Weimann. “Consequences of faster alignment
of sequences”. In: International Colloquium on Au-
tomata, Languages, and Programming. Springer.
2014, pp. 39–51.

[2] Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al.
Modern information retrieval. Vol. 463. ACM press
New York, 1999.

[3] Sandeep Kumar and Eugene H Spafford. “A pattern
matching model for misuse intrusion detection”. In:
(1994).

[4] Dan Gusfield. “Algorithms on stings, trees, and se-
quences: Computer science and computational biol-
ogy”. In: Acm Sigact News 28.4 (1997), pp. 41–60.

[5] Gautam Das et al. “Episode matching”. In: An-
nual Symposium on Combinatorial Pattern Matching.
Springer. 1997, pp. 12–27.

[6] Tommi A Pirinen and Krister Lindén. “State-of-the-art
in weighted finite-state spell-checking”. In: Interna-
tional Conference on Intelligent Text Processing and
Computational Linguistics. Springer. 2014, pp. 519–
532.

[7] Rafael C Gonzalez and Michael G Thomason. “Syn-
tactic pattern recognition: an introduction”. In: (1978).

[8] Jasha Droppo and Alex Acero. “Context dependent
phonetic string edit distance for automatic speech
recognition”. In: 2010 IEEE International Conference
on Acoustics, Speech and Signal Processing. IEEE.
2010, pp. 4358–4361.

[9] Zhongwen Ying and Thomas G Robertazzi. “Signa-
ture searching in a networked collection of files”.
In: IEEE Transactions on Parallel and Distributed
Systems 25.5 (2013), pp. 1339–1348.

[10] Tomasz Luczak and Wojciech Szpankowski. “A sub-
optimal lossy data compression based on approximate
pattern matching”. In: IEEE transactions on Informa-
tion Theory 43.5 (1997), pp. 1439–1451.

[11] Zhan Su et al. “Plagiarism detection using the Lev-
enshtein distance and Smith-Waterman algorithm”.
In: 2008 3rd International Conference on Innova-
tive Computing Information and Control. IEEE. 2008,
pp. 569–569.

VOLUME 4, 2021 13

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3182714

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://github.com/quim0/eWFA-GPU

[12] Daniel Lopresti and Andrew Tomkins. “On the search-
ability of electronic ink”. In: Proceedings of the 4th
International Workshop on Frontiers in Handwriting
Recognition. Citeseer. 1994, pp. 156–165.

[13] David Sankoff. “Time warps, string edits, and macro-
molecules”. In: The Theory and Practice of Sequence
Comparison, Reading (1983).

[14] Jens Heine et al. “Algorithm for driver intention detec-
tion with fuzzy logic and edit distance”. In: 2015 IEEE
18th international conference on intelligent trans-
portation systems. IEEE. 2015, pp. 1022–1027.

[15] Stefan Jakšić et al. “Quantitative monitoring of STL
with edit distance”. In: Formal methods in system
design 53.1 (2018), pp. 83–112.

[16] Heng Li. “Aligning sequence reads, clone sequences
and assembly contigs with BWA-MEM”. In: arXiv
preprint arXiv:1303.3997 (2013).

[17] Santiago Marco-Sola et al. “The GEM mapper: fast,
accurate and versatile alignment by filtration”. In:
Nature methods 9.12 (2012), pp. 1185–1188.

[18] Angelika Merkel et al. “gemBS: high throughput pro-
cessing for DNA methylation data from bisulfite se-
quencing”. In: Bioinformatics 35.5 (2019), pp. 737–
742.

[19] Jared T Simpson et al. “ABySS: a parallel assembler
for short read sequence data”. In: Genome research
19.6 (2009), pp. 1117–1123.

[20] Sergey Koren et al. “Canu: scalable and accurate long-
read assembly via adaptive k-mer weighting and re-
peat separation”. In: Genome research 27.5 (2017),
pp. 722–736.

[21] Aaron McKenna et al. “The Genome Analysis
Toolkit: a MapReduce framework for analyzing next-
generation DNA sequencing data”. In: Genome re-
search 20.9 (2010), pp. 1297–1303.

[22] Bernardo Rodrıguez-Martın et al. “ChimPipe: ac-
curate detection of fusion genes and transcription-
induced chimeras from RNA-seq data”. In: BMC ge-
nomics 18.1 (2017), pp. 1–17.

[23] Cédric Notredame, Desmond G Higgins, and Jaap
Heringa. “T-Coffee: A novel method for fast and ac-
curate multiple sequence alignment”. In: Journal of
molecular biology 302.1 (2000), pp. 205–217.

[24] Richard Durbin et al. Biological sequence analysis:
probabilistic models of proteins and nucleic acids.
Cambridge university press, 1998.

[25] Neil C Jones, Pavel A Pevzner, and Pavel Pevzner. An
introduction to bioinformatics algorithms. MIT press,
2004.

[26] Zachary D Stephens et al. “Big data: astronomical or
genomical?” In: PLoS biology 13.7 (2015), e1002195.

[27] Lauren M Petersen et al. “Third-generation sequenc-
ing in the clinical laboratory: exploring the advantages
and challenges of nanopore sequencing”. In: Journal
of Clinical Microbiology 58.1 (2019), e01315–19.

[28] Wen-Mei W Hwu. GPU computing gems emerald
edition. Morgan Kaufmann Publishers Inc., 2011.

[29] John D Owens et al. “GPU computing”. In: Proceed-
ings of the IEEE 96.5 (2008), pp. 879–899.

[30] Alejandro Chacón et al. “Thread-cooperative, bit-
parallel computation of levenshtein distance on GPU”.
In: Proceedings of the 28th ACM international con-
ference on Supercomputing. 2014, pp. 103–112. DOI:
10.1145/2597652.2597677.

[31] Cheng-Hung Lin et al. “Perfect hashing based parallel
algorithms for multiple string matching on graphic
processing units”. In: IEEE Transactions on Parallel
and Distributed Systems 28.9 (2017), pp. 2639–2650.

[32] Peter H Sellers. “The theory and computation of evo-
lutionary distances: pattern recognition”. In: Journal
of algorithms 1.4 (1980), pp. 359–373.

[33] Esko Ukkonen. “Finding approximate patterns in
strings”. In: Journal of algorithms 6.1 (1985),
pp. 132–137.

[34] Ricardo A Baeza-Yates. “Text-Retrieval: Theory and
Practice.” In: IFIP Congress (1). Vol. 12. Citeseer.
1992, pp. 465–476.

[35] Sun Wu and Udi Manber. “Fast text searching: allow-
ing errors”. In: Communications of the ACM 35.10
(1992), pp. 83–91.

[36] Gonzalo Navarro12. “A partial deterministic automa-
ton for approximate string matching”. In: (1997).

[37] Gene Myers. “A fast bit-vector algorithm for approx-
imate string matching based on dynamic program-
ming”. In: Journal of the ACM (JACM) 46.3 (1999),
pp. 395–415.

[38] Ricardo Baeza-Yates. Efficient text searching. Univer-
sity of Waterloo, 1989.

[39] Santiago Marco-Sola et al. “Fast gap-affine pairwise
alignment using the wavefront algorithm”. In: Bioin-
formatics 37.4 (2021), pp. 456–463.

[40] Alden H Wright. “Approximate string matching using
withinword parallelism”. In: Software: Practice and
Experience 24.4 (1994), pp. 337–362.

[41] Hajime Suzuki and Masahiro Kasahara. “Acceleration
of nucleotide semi-global alignment with adaptive
banded dynamic programming”. In: BioRxiv (2017),
p. 130633.

[42] Torbjørn Rognes and Erling Seeberg. “Six-fold speed-
up of Smith–Waterman sequence database searches
using parallel processing on common microproces-
sors”. In: Bioinformatics 16.8 (2000), pp. 699–706.

[43] Michael Farrar. “Striped Smith–Waterman speeds
database searches six times over other SIMD imple-
mentations”. In: Bioinformatics 23.2 (2007), pp. 156–
161.

[44] Andrzej Wozniak. “Using video-oriented instructions
to speed up sequence comparison”. In: Bioinformatics
13.2 (1997), pp. 145–150.

14 VOLUME 4, 2021

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3182714

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1145/2597652.2597677

[45] Eugene W Myers. “An O(ND) difference algorithm
and its variations”. In: Algorithmica 1.1-4 (1986),
pp. 251–266.

[46] Mengyao Zhao et al. “SSW library: an SIMD Smith-
Waterman C/C++ library for use in genomic applica-
tions”. In: PloS one 8.12 (2013).

[47] Alberto Zeni et al. “Logan: High-performance gpu-
based x-drop long-read alignment”. In: 2020 IEEE In-
ternational Parallel and Distributed Processing Sym-
posium (IPDPS). IEEE. 2020, pp. 462–471.

[48] Martin Šošić and Mile Šikić. “Edlib: a C/C++ library
for fast, exact sequence alignment using edit distance”.
In: Bioinformatics 33.9 (2017), pp. 1394–1395.

[49] Jikai Zhang et al. “BGSA: A bit-parallel global se-
quence alignment toolkit for multi-core and many-
core architectures”. In: Bioinformatics 35.13 (2019),
pp. 2306–2308.

[50] Gene Myers. “Efficient local alignment discovery
amongst noisy long reads”. In: International Work-
shop on Algorithms in Bioinformatics. Springer. 2014,
pp. 52–67.

[51] Subtil N Pantaleoni J. NVBIO. https://nvlabs.github.
io/nvbio. Accessed: 2021-09-15. 2015.

[52] Esko Ukkonen. “Algorithms for approximate string
matching”. In: Information and control 64.1-3 (1985),
pp. 100–118.

[53] Alejandro Chacón et al. “Boosting the FM-index on
the GPU: Effective techniques to mitigate random
memory access”. In: IEEE/ACM transactions on com-
putational biology and bioinformatics 12.5 (2014),
pp. 1048–1059.

[54] Alejandro Chacón et al. “FM-index on GPU: A co-
operative scheme to reduce memory footprint”. In:
2014 IEEE International Symposium on Parallel and
Distributed Processing with Applications. IEEE. 2014,
pp. 1–9.

[55] Keh Kok Yong and Hong Hoe Ong. “Accelerating Bit-
Parallel Approximate Matching On GPU Platforms
For Small Patterns”. In: 2018 Fourth International
Conference on Advances in Computing, Communica-
tion & Automation (ICACCA). IEEE. 2018, pp. 1–5.

[56] Khaled Balhaf et al. “Accelerating Levenshtein and
Damerau edit distance algorithms using GPU with
unified memory”. In: 2017 8th international con-
ference on information and communication systems
(ICICS). IEEE. 2017, pp. 7–11.

[57] Tuan Tu Tran, Yongchao Liu, and Bertil Schmidt.
“Bit-parallel approximate pattern matching: Kepler
GPU versus Xeon Phi”. In: Parallel Computing 54
(2016), pp. 128–138.

[58] Nauman Ahmed et al. “GASAL2: a GPU accelerated
sequence alignment library for high-throughput NGS
data”. In: BMC bioinformatics 20.1 (2019), pp. 1–20.

[59] Gonzalo Navarro. “A guided tour to approximate
string matching”. In: ACM computing surveys (CSUR)
33.1 (2001), pp. 31–88.

[60] Andreas Döring et al. “SeqAn an efficient, generic
C++ library for sequence analysis”. In: BMC bioinfor-
matics 9.1 (2008), pp. 1–9.

[61] Amine Dhraief, Raik Issaoui, and Abdelfettah Bel-
ghith. “Parallel computing the longest common sub-
sequence (LCS) on GPUs: efficiency and language
suitability”. In: The 1st International Conference on
Advanced Communications and Computation (INFO-
COMP). 2011.

[62] Ayumu Tomiyama and Reiji Suda. “Automatic pa-
rameter optimization for edit distance algorithm on
GPU”. In: International Conference on High Per-
formance Computing for Computational Science.
Springer. 2012, pp. 420–434.

[63] Khaled Balhaf et al. “Using gpus to speed-up leven-
shtein edit distance computation”. In: 2016 7th Inter-
national Conference on Information and Communica-
tion Systems (ICICS). IEEE. 2016, pp. 80–84.

[64] Zuqing Li, Aakashdeep Goyal, and Haklin Kimm.
“Parallel longest common sequence algorithm on mul-
ticore systems using openacc, openmp and open-
mpi”. In: 2017 IEEE 11th international symposium on
embedded multicore/many-core systems-on-chip (MC-
SoC). IEEE. 2017, pp. 158–165.

[65] Kailash W Kalare et al. “Parallelization of Global Se-
quence Alignment on Graphics Processing Unit”. In:
2020 International Conference on Communications,
Computing, Cybersecurity, and Informatics (CCCI).
IEEE. 2020, pp. 1–5.

[66] Da Li and Michela Becchi. “Multiple pairwise se-
quence alignments with the needleman-wunsch algo-
rithm on GPU”. In: 2012 SC Companion: High Perfor-
mance Computing, Networking Storage and Analysis.
IEEE. 2012, pp. 1471–1472.

[67] Reza Farivar et al. “An algorithm for fast edit distance
computation on GPUs”. In: 2012 Innovative Parallel
Computing (InPar). IEEE. 2012, pp. 1–9.

[68] Lucas SN Nunes et al. “A fast approximate string
matching algorithm on GPU”. In: 2015 Third inter-
national symposium on computing and networking
(CANDAR). IEEE. 2015, pp. 188–192.

[69] ThienLuan Ho, Seung-Rohk Oh, and HyunJin Kim.
“A parallel approximate string matching under Lev-
enshtein distance on graphics processing units using
warp-shuffle operations”. In: PloS one 12.10 (2017),
e0186251.

[70] Katsuya Kawanami and Noriyuki Fujimoto. “A GPU
Implementation of a Bit-parallel Algorithm for Com-
puting the Longest Common Subsequence”. In: Infor-
mation and Media Technologies 10.1 (2015), pp. 8–16.

[71] Yasuaki Mitani, Fumihiko Ino, and Kenichi Hagihara.
“Parallelizing exact and approximate string matching
via inclusive scan on a GPU”. In: IEEE Transac-
tions on Parallel and Distributed Systems 28.7 (2016),
pp. 1989–2002.

VOLUME 4, 2021 15

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3182714

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://nvlabs.github.io/nvbio
https://nvlabs.github.io/nvbio

[72] David Castells-Rufas et al. “OpenCL-based FPGA
Accelerator for Semi-Global Approximate String
Matching Using Diagonal Bit-Vectors”. In: 2021 31st
International Conference on Field-Programmable
Logic and Applications (FPL). IEEE. 2021, pp. 174–
178.

[73] Liangwei Cai et al. “A Design of FPGA Acceleration
System for Myers bit-vector based on OpenCL”. In:
2019 International Conference on Intelligent Infor-
matics and Biomedical Sciences (ICIIBMS). IEEE.
2019, pp. 305–312.

[74] Jörn Hoffmann, Dirk Zeckzer, and Martin Bogdan.
“Using FPGAs to accelerate Myers bit-vector algo-
rithm”. In: XIV Mediterranean Conference on Medi-
cal and Biological Engineering and Computing 2016.
Springer. 2016, pp. 535–541.

[75] Abbas Haghi et al. “An FPGA Accelerator of the
Wavefront Algorithm for Genomics Pairwise Align-
ment”. In: 2021 31st International Conference on
Field-Programmable Logic and Applications (FPL).
IEEE. 2021, pp. 151–159.

[76] Adnan Ozsoy, Arun Chauhan, and Martin Swany.
“Achieving teracups on longest common subsequence
problem using GPGPUs”. In: 2013 International Con-
ference on Parallel and Distributed Systems. IEEE.
2013, pp. 69–77.

[77] Adnan Ozsoy, Arun Chauhan, and Martin Swany. “To-
wards Tera-Scale Performance for Longest Common
Subsequence Using Graphics Processor”. In: IEEE
Supercomputing (SC) (2013).

[78] Lucas SN Nunes et al. “A memory-access-efficient
implementation of the approximate string matching al-
gorithm on GPU”. In: 2016 Fourth International Sym-
posium on Computing and Networking (CANDAR).
IEEE. 2016, pp. 483–489.

[79] Muhammad Umair Sadiq et al. “NvPD: novel par-
allel edit distance algorithm, correctness, and per-
formance evaluation”. In: Cluster Computing 23.2
(2020), pp. 879–894.

[80] Jeff Daily. “Parasail: SIMD C library for global, semi-
global, and local pairwise sequence alignments”. In:
BMC bioinformatics 17.1 (2016), pp. 1–11.

QUIM AGUADO-PUIG received the BSc degree
in computer science in 2019 from the Universitat
Autònoma de Barcelona (UAB). He is an MSc
student at the Universitat Politècnica de Catalunya
(UPC) in the innovation and research in informat-
ics programme. He works as a research engineer
in the project Designing RISC-V-based Acceler-
ators for next-generation Computers (DRAC) in
collaboration with the Barcelona Supercomput-
ing Center (BSC). His research interests include

high-performance computing, massively parallel architectures, and GPU
programming; with applications to genomics, computational biology, and
sequence alignment.

SANTIAGO MARCO-SOLA received the MSc
and PhD degrees on computer science from the
Universitat Politècnica de Catalunya (UPC) in
2017. During his PhD, he worked in the Algo-
rithm Development and Bioinformatics group at
the Spanish National Centre for Genome Anal-
ysis (CNAG). Currently, he is a postdoctoral re-
searcher at the Barcelona Supercomputing Center
(BSC) and lecturer at the Universitat Autònoma
de Barcelona (UAB). He participates in the

project Designing RISC-V-based Accelerators for next-generation Comput-
ers (DRAC). His research interests include high-performance computing,
heterogeneous architectures, genomic data analysis, and machine learning
algorithms in the context of bioinformatics and computational biology.

JUAN CARLOS MOURE is an associate profes-
sor in the Computer Architecture and Operating
Systems Department at the Universitat Autònoma
of Barcelona (UAB), where he teaches Computer
Architecture, Performance Engineering and Par-
allel Programming. His current research interests
include massive parallel architectures, program-
ming, and algorithms, mainly focused on Com-
puter Vision, Signal Processing and Bioinformat-
ics applications. He is the author of more than 50

papers, and has participated in several European and Spanish projects related
to high-performance computing.

DAVID CASTELLS-RUFAS received the B.S.,
M.S., and Ph.D. degrees in Computer Science
from Universitat Autònoma de Barcelona (UAB),
Spain in 1994, 2009, and 2016 respectively. From
2003 to 2018 he was working as research assistant
and Post-doc researcher with CEPHIS/CAIAC re-
search center of the UAB, where he also was
adjunct professor. From 2020, he is with the Com-
puter Architecture and Operating Systems Depart-
ment of the same university. His research interests

include high performance computing, reconfigurable systems, and embed-
ded systems

LLUC ALVAREZ Lluc Alvarez received the BSc
degree from the Universitat de les Illes Balears
(UIB), Palma, Spain, in 2006, and the MSc and
PhD degrees from the Universitat Politecnica de
Catalunya (UPC), Barcelona, Spain, in 2009 and
2015, respectively. Currently he is a researcher
with the Barcelona Supercomputing Center (BSC)
and a lecturer with the Universitat Politecnica de
Catalunya (UPC), and his main research interests
include parallel architectures, memory systems,

programming models for high-performance computing, and accelerators for
bioinformatics applications.

16 VOLUME 4, 2021

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3182714

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

ANTONIO ESPINOSA received the B.Sc. degree
in computer science in 1994 and the Ph.D. de-
gree in computer science in 2000. He is a asso-
ciate professor in the Computer Architecture and
Operating Systems Department at the Universitat
Autònoma de Barcelona. During the last 10 years,
he has participated in several European and na-
tional projects related to bioinformatics and high-
performance computing, in collaboration with a
number of biotechnology companies and research

institutions.

MIQUEL MORETO is a Ramón y Cajal fellow
at the Universitat Politècnica de Catalunya (UPC)
and an associate researcher at the Barcelona Su-
percomputing Center (BSC). Prior to joining UPC,
he was a Fulbright post-doctoral fellow at the
International Computer Science Institute (ICSI),
Berkeley, USA. He received the Ph.D. degree from
UPC in 2010. His research interests include high
performance computer architectures and domain-
specific accelerators.

VOLUME 4, 2021 17

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3182714

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

	Introduction
	Background
	Edit-Distance Sequence alignment
	The Wavefront alignment algorithm
	GPU Architecture and CUDA programming model

	GPU implementation of the WFA algorithm
	Piggybacked alignment operations
	Kernel specialisation
	Bit-parallel Packed Sequence Comparison
	Batch execution. Overlapping kernel computation with data transfers

	Experimental evaluation
	Experimental setup
	Performance evaluation
	Profiling, scalability, and limitations
	Overall system profiling
	Alignment kernel performance profiling
	Alignment kernel selection

	Parameter Tuning
	Evaluation on other devices

	Related work
	Conclusion
	Funding
	Quim Aguado-Puig
	Santiago Marco-Sola
	Juan Carlos Moure
	David Castells-Rufas
	Lluc Alvarez
	Antonio Espinosa
	Miquel Moreto

