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A fractional model is developed to investigate the thermal onset of carbon nanotubes containing single-wall carbon nanotubes
(SWCNTs) and multiwall carbon nanotubes (MWCNTs).Te blood and carboxymethyl cellulose (CMC) are utilized to report the
characteristics of the base material. Te thermal phenomenon is further supported with inclined magnetic force and mixed
convection features. Te vertical plate with an oscillatory nature induced the fow. After formulating the problem in view of fow
assumptions, the fractional framework is carried out via the Prabhakar technique.Te validation of the fractional model is ensured
in view of previous studies. Te comparative thermal aspect of carbon nanotubes and base materials by varying fow parameters
is tested.

1. Introduction

Te recent trend in thermal engineering proposes a cheaper
source of energy based on the utilization of nanoparticles in
the current century. Te thermal mechanism of various base
fuids is usually lower and less stable. Te continued work in
nanotechnology has experimentally proven that base ma-
terials’ thermal onset can be improved when nanomaterials
are immersed in a proper way. Te nanoparticles are low
sized metallic particles which reports exclusively enhanced
thermal impact. Recent applications of nanomaterials are
commonly noticed in thermal management systems,
chemical processes, as a heating source in industries, solar
systems, extrusion processes, etc. Te work on nanofuids
was initiated by Choi [1], and it is being further extended in
diferent directions by scientists. Turkyilmazoglu [2] dis-
cussed diferent thermal aspects of nanofuids with the
implementation of a single-phase model and tested their
stability properties. Ahmad et al. [3] incorporated the insight

thermal onset of micropolar nanofuid by incorporating the
modifed heat fux relations. Tumma et al. [4] observed the
optimized contribution of nanofuid with wall-heated
properties.Te binary chemical fow regarding the nanofuid
fow was addressed in the continuation of Abbasi et al. [5].
Rasool et al. [6] intended the nanofuid fow to be subjected
to the Darcy–Forchheimer phenomenon. Te isothermal
conducting fow of Maxwell nanofuid with the contribution
of Lorentz forces has been depicted by Rasool et al. [7].
Shafq et al. [8] investigated the Casson fuid properties due
to nanofuids with magnetic force impact. Ali et al. [9]
observed the elongated surface moving fow subject to hy-
brid nanofuids along with the rotation phenomenon.
Mahesh et al. [10] approached the non-Fourier framework
for nanofuid fow in view of entropy generation
applications.

In contrast to simple materials, carbon nanotubes
(CNTs) report more impressive thermal impact and stable
properties like electrical and thermal conductivities, density,
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dimensions, and size. In fact, carbon nanotubes (CNTs) are
taken as cylindrical molecules consisting of rolled-up sheets
of carbon atoms with a single layer. Te CNTs are classifed
as single-walled carbon nanotubes (SWCNT) and multi-
walled carbon nanotubes (MWCNT). Te diameter of
SWCNT is usually less than one nm, while the diameter of
(MWCNT) is approaching 100 nm. Diferent aspects of
CNTs have been studied by researchers with diverse fow
features. Reddy et al. [11] discussed the cavity fow due to the
uniform distribution of CNTs along with optimized con-
sequences. Noranuar et al. [12] evaluated the rotating ori-
entation of CNTs with Casson fuid following the disc fow.
Imtiaz et al. [13] reported the fuctuated thickness features
for CNTs with bidirectional moving regime. Te heating
object on the enclosure with CNT distribution has been
depicted in the continuation of Vishnu Ganesh et al. [14].
Shoaib et al. [15] worked out the neural computing inves-
tigation for a CNTs problem. Alzahrani and Ijaz Khan [16]
focused on the coating simulation of CNTs’ fow with the
contribution of Wu’s slip evaluation.

Te fractional research provides modern tools of com-
putations for performing the analytical and numerical
simulations. Te widely work in the area of fractional
mathematics, diferent algorithms are defned by re-
searchers. Such tools are important to defne the solution to
diferential and integral problems. Te motivations and
valuable applications of such tools are associated with the
computation of various problems in engineering, industrial
development, thermal engineering, chemistry, physics, bio-
engineering, and the computational sciences. After focusing
on diferent fractional tools, it is observed that the Caputo
and Fabrizio (CF) technique is the frst interesting and novel
fractional defnition, which has been widely used by re-
searchers for diferent problems [17–19]. Atangana and
Baleanu [20] provided a new type of fractional algorithm
with a stronger approach. Te AB tools provide a modif-
cation of the CF approach and enable simulations for
nonsingular kernels [21–24]. In diferent fractional studies,
the Prabhakar fractional approach is another analytical
framework that is not focused in a comprehensive way. Te
distinct aspect of this fractional approach is the assessment
of the odd behavior of a fuctuating person with a nonlocal
kernel. Following this defnition, the nonsingular and
nonlocal kernel problems can be efectively treated [25–27].

Te current investigation provides fractional simulations
for oscillating fows of carbon nanotubes to improve the
thermal properties of blood and carboxymethyl cellulose
(CMC)-based fuids. Te thermal classifcation of CNTs is
observed by using single-wall carbon nanotubes (SWCNTs)
and multiwall carbon nanotubes (MWCNTs). Te mixed
convection features are attributed to natural convection
fow. Te fractional computations are performed via the
Prabhakar fractional model. Tis model provides answers to
the following research questions:

(i) How carbon nanotubes (CNTs) with SWCNTs and
MWCNTs are efective to enhance the thermal
measurement of blood and carboxymethyl cellulose
(CMC)?

(ii) Referring to blood and CMC base materials, which
material reports more impressive thermal perfor-
mances with the interaction of CNTs?

(iii) How a mathematical model based on the basic
defnition of Prabhakar fractional technique is
developed?

(iv) Which nanomaterial reports a more stable thermal
impact associated with the CMC-SWCNTs and
CMC-MWCNTs interactions?

(v) What is the role of magnetic force and mixed
convection phenomenon in enhancing the thermal
transportation process.

(vi) For accelerating fow, how are slip efects important
to control the fow?

2. Flow Model with Governing Equations

Te thermal impact of CNTs with SWCNTs andMWCNTs is
focused. Te uniform suspension of SWCNTs and
MWCNTs along with blood and carboxymethyl cellulose
(CMC) is considered. Te oscillating surface fow caused the
vertically accelerating fow. Te inclined direction along
angle θ is considered to incorporate the magnetic force
impact. Te fow pattern is based on time-dependent fow.
Te base fuid properties are notifed via viscoelastic fow
model. Te vertical plate oscillates with velocity
H(t)Cos(ωt) with uniform frequency ω. Te stream tem-
perature and concentrations are T∞ and C∞, respectively.
Te fow model using such assumptions is developed in the
following set of equations:

Momentum equation:
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Termal equation:
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nf

zT(ξ,t)

zt
� −

zq(ξ,t)

zξ
. (2)

Fourier law of thermal fux:
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zT(ξ,t)
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Difusion balance equation:

zC(ξ,t)

zt
� −

zJ(ξ,t)

zξ
. (4)

Fick’s law:
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. (5)
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Te oscillating boundary constraints for slip fow are as
follows:

u(ξ,0) � 0,

T(ξ,0) � T∞,

C(ξ,0) � C∞;∀ξ ≥ 0,
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(6)

Te mathematical formulae for distinct fow charac-
teristics is notifed via Table 1.
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with Prandtl number Pr, heat Grashof number Gr, mass
Grashof number Gm, magnetic constant M, and viscoelastic
parameter β1. Te dimensionless system in view of defned
variables is as follows:

z
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with:
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u(ξ,0) � 0,

T(ξ,0) � 0,

C(ξ,0) � 0,

u(0,t) − h
zu
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ξ�0
� H(t)f(t),
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zξ

ξ�0
� − 1 + T(0,t) ,

C(0,t) � 1 u(ξ,t)⟶ 0, T(ξ,t)⟶ 0, C(ξ,t)⟶ 0;   ξ⟶∞.

(11)

Te thermal results reported in Table 2 justify the nu-
merical refection of materials like CMS, blood, SWCNTs,
and MWCNTs.

3. Prabhakar Model

Let us utilize the defnition of Prabhakar model as
follows:
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Using the Prabhakar’s Laplace technique,
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4. Solution Methodology via a
Fractional Approach

4.1. Solution of the Heat Equation. Te use of the Laplace
transform on equations (9) and (12) yields
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Te implementation framework of the Laplace transform
is given in Tables 3 and 4.

4.2. Simulations for the Concentration Equation.
Incorporating the Laplace algorithms to equations (10) and
(13), gives
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4.3. Solution for Velocity Profle. Implementing the defni-
tion of Laplace in equation (8):
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Te analytical solution is as follows:
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Using the Stehfest and Tzou’s algorithms, we obtain as
follows:
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Table 1: Flow characteristics with mathematical expressions.

Termal features Mathematical representation
Efective density ρnf � (1 − φ)ρf + φρs

Dynamic viscosity μnf � (μf/(1 − φ)2.5)

Electrical conductivity σnf � (1 + 3(σs/σf − 1)φ/(σs/σf + 2) − (σs/σf − 1)φ)σf

Termal expansion (ρβT)nf � (1 − φ)(ρβT)f + φ(ρβT)s

Heat capacitance (ρCp)nf � (1 − φ)(ρCp)f + φ(ρCp)s

Termal conductivity kf � ((kCNTs − 2φ(kf − kCNTs) + 2kf)/(kCNTs + 2φ(kf − kCNTs) + 2kf))kf

Electrical conductivity σnf � σf(1 + 3(σs/σf − 1)φ/(σs/σf + 2) − (σs/σf − 1)φ)
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Table 3: Numerical variation of the temperature profle at diferent times for diferent numerical algorithms.

ξ T(ξ, t) by Stehfest T(ξ, t) by Stehfest T(ξ, t) by Tzous T(ξ, t) by Tzous
t � 0.5 t � 1.0 t � 0.5 t � 1.0

0.1 1.4683 0.7295 1.4674 0.6850
0.3 1.0699 0.4734 1.0693 0.4375
0.5 0.7796 0.3031 0.7790 0.2745
0.7 0.5679 0.1909 0.5675 0.1682
0.9 0.4137 0.1176 0.4134 0.0998
1.1 0.3014 0.0703 0.3012 0.0564
1.3 0.2195 0.0402 0.2194 0.0294
1.5 0.1599 0.0213 0.1598 0.0130
1.7 0.1164 0.0099 0.1164 0.0035
1.9 0.0848 0.0031 0.0847 0.0021

Table 4: Numerical variation of the concentration feld at diferent times for diferent numerical schemes.

ξ C(ξ,t) by Stehfest C(ξ,t) by Stehfest C(ξ,t) by Tzou’s C(ξ,t) by Tzou’s
t � 0.5 t � 1.0 t � 0.5 t � 1.0

0.1 0.8964 0.8765 0.8963 0.8757
0.3 0.7200 0.6725 0.7200 0.6707
0.5 0.5782 0.5151 0.5782 0.5125
0.7 0.4643 0.3839 0.4642 0.3909
0.9 0.3727 0.3004 0.3726 0.2975
1.1 0.2991 0.2287 0.2990 0.2258
1.3 0.2400 0.1736 0.2400 0.1710
1.5 0.1925 0.1315 0.1925 0.1290
1.7 0.1545 0.0993 0.1545 0.0971
1.9 0.1240 0.0747 0.1239 0.0728

Table 2: Termal impact of CMS, blood, SWCNTs, and MWCNTs.

Material CMC Blood SWCNTs MWCNTs
ρ(kg/m3) 997 1053 2600 1600
Cp(J/kg K) 4179 3594 425 796
k(W/mK) 0.613 0.492 6600 3000
βT × 105(K− 1) 0.9 0.18 27 44
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Figure 1: Graphical comparison between Stehfest and Tzou’s techniques.
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Figure 5: Variation for temperature profle with deviation in (a) volume fraction and (b) comparison of diferent nanoparticles.
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Figure 9: Velocity profle for c and β1 when α � β � 0.8, Sc � 5.2, Gr � 4.1, Gm � 6.4, θ � (π/6),Pr � 7.2,φ � 0.02, M � 0.6, t � 0.8.
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Figure 10: Velocity profle for Gr, Gm when α � β � c � 0.8, Sc � 5.2, θ � π/6,Pr � 7.2,φ � 0.02, M � 0.6, t � 0.8.
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5. Validation of the Fractional Model

First, the accuracy of implemented Stehfest and Tzou’s is
ensured in for temperature profle and concentration profle
in Figures 1(a) and 1(b), respectively. Te reported results
convey good agreement between both techniques. Te so-
lution based on Prabhakar’s approach is validated in Figure 2
by making the comparison with work of Ahmad et al. [28]. A
fne accuracy of results is noticed.

6. Discussion of Results

Te physical onset due to variations in parameters is pre-
sented in this section. In order to report the more benefciary
aspect of thermal problem, the comparative results are
deduced for CMC-SWCNTs, CMC-MWCNTs decomposi-
tion. Figures 3(a) and 3(b)) present the change in thermal
rate due to two fractional constants α and β. Te investigated
analysis is inspected for CMC-SWCNTs and CMC-
MWCNTs suspensions. Te declining trend in temperature
against α is claimed for SWCNTs and MWCNTs. However,
the improvement in thermal profles for SWCNTs and
MWCNTs is noted when β varied. Te thermal report due to
CMC − SWCNTs is more stable when compared with
CMC − SWCNTs. Te observations for CMC − SWCNTs

base and CMC − SWCNTs in view of fractional constant c

and Prandtl number Pr has been addressed in Figures 4(a)
and 4(b). A lower temperature range for c and Pr is noted.
However, the stable heating rate for MC − SWCNTs is
achieved. Te controls of thermal rate due to Pr is based on
the fact of low thermal difusivity. Figure 5(a) displays the
results for volume fraction φ on temperature profle in view
of CMC − SWCNTs and CMC − MWCNTs nanofuid
suspensions. A decreasing impact on the temperature profle
with larger φ is noted. Te declining change in thermal
phenomenon is lower for CMC − MWCNTs. Te graphical
onset reported in Figure 5(b) claims a comparative thermal
infuence of diferent suspensions like − SWCNTs , blood −

SWCNTs,CMC − MWCNTs and blood − MWCNTs. Te
thermal infuence of CMC − SWCNTs has been noted as a
more stable and enhancing. Te lower thermal impact of
blood − MWCNTs is reported. Terefore, it is concluded
that the thermal impact of blood is improved by utilizing the
SWCNTs. Tese novel observations may present many
applications in health sciences, biosciences, and various
engineering processes. Te signifcance of CMC − SWCNTs

and CMC − MWCNTs for concentration profle with dif-
ferent values of α and β has been featured in Figures 6(a) and
6(b)). Two times instants are used to compute the simula-
tions. Te enhancing and lower concentration rates are
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Figure 11: Velocity profle for M and θ1 when α � β � c � 0.8, Sc � 5.2, Gr � 4.1, Gm � 6.4,Pr � 7.2,φ � 0.02, t � 0.8.

Table 5: Numerical variation of the velocity profle at diferent times for diferent numerical schemes.

ξ u(ξ,t) by Stehfest u(ξ,t) by Stehfest u(ξ,t) by Tzou’s u(ξ,t) by Tzou’s
t � 0.5 t � 1.0 t � 0.5 t � 1.0

0.1 1.3577 2.8595 1.3637 2.8748
0.3 1.4143 3.2507 1.4217 3.2694
0.5 1.4125 3.4344 1.4207 3.4549
0.7 1.3706 3.4687 1.3739 3.4900
0.9 1.3025 3.3982 1.3110 3.4195
1.1 1.2184 3.2569 1.2266 3.2776
1.3 1.1256 3.0702 1.1334 3.0900
1.5 1.0296 2.8570 1.0369 2.8756
1.7 0.9341 2.6312 0.9409 2.6485
1.9 0.8418 2.4027 0.8480 2.4186
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noted for β and α, respectively. A comparatively stable
impact for CMC − SWCNTs is achieved. Te results
depicted via Figures 7(a) and 7(b) report the behavior of
concentration profle for c and Sc. Lower information for
concentration profle is achieved for both parameters. Te
control of the concentration profle associated to Sc is due to
less mass difusivity.

Figures 8(a) and 8(b) pronounce the role of α and β on
velocity profle u(ξ, t). Assigning variation of α and β
slows down the velocity. Figure 9(a) exhibited the change
u(ξ, t) for CMC − SWCNTs and CMC − MWCNTs due to
c. Here, the declining results are noted. Similar kind of
lower observations are noted in Figure 9(b) where role of
β1 is justifed. Figures 10(a) and 10(b) denote the con-
tribution of Gr and Gm on profle of u(ξ, t). A signifcant
enhanced in u(ξ, t) for Gr and Gm is claimed. Physically,
the heat Grashof number Gr causes the natural con-
vection due to buoyancy and viscous forces, and subse-
quently, an increment in Gr enhances the buoyancy
forces, which results in a velocity increment.
Figures 11(a) and 11(b) are prepared for assessing the
contribution of magnetic parameter M and inclination
angel θ for velocity profle. Both M and θ declined the
velocity. Te association of magnetic forces is referred to
as the Lorentz force, which resists the velocity fow.
Furthermore, the maximum efect of the Lorentz forces is
when the angle of inclination of the applied magnetics is
perpendicular to the oscillating plate.

Tables 3–6 show the results for numerical achievement
based on Stehfest and Tzou’s schemes. Various time instants
are used to compute the simulations for accelerating phe-
nomenon. A declining change in thermal and concentration
profle for larger ξ is noted. For larger time instant, the heat
and mass transfer rate is lower. From Table 6, it is observed
that the Nusselt number, Sherwood number, and wall shear
force declined with increasing α.

 . Conclusions

Te fractional investigation is reported for the carbon
nanotubes fow for suggesting the enactment in blood and
carboxymethyl cellulose base liquids. For CNTs, the impacts
of SWCNTs and MWCNTs are incorporated. Te

computational simulations are facilitated with Prabhakar’s
fractional scheme. Te comparative thermal onset is pre-
sented. Te novel fndings are as follows:

(i) Te suspension of CMC − SWCNTs and CMC −

MWCNTs is declined for the fractional parameter.
(ii) A control of thermal decomposition of SWCNTs

and MWCNTs is noted for the Prandtl number.
(iii) More stable and improved thermal impact of

SWCNTs − CMS suspension is observed as com-
pared to MWCNTs − CMS decomposition.

(iv) Te concentration change enhanced was due to a
fractional constant or CMC − MWCNTs material.

(v) Te increasing trend in velocity fow is observed for
mass and thermal Grashof constants.

(vi) Te implemented Prabhakar fractional scheme
seems to be more efective for performing the
computation of diferent complicated problems.

Nomenclature

U: Fluid velocity (m/s)
t: Times (s)
g: Gravity acceleration (m/s2)
Knf: Termal conductivity of the nanofuid (W/mk)

Cf: Skin friction (− )

k∗: Mean absorption parameter (− )

ρnf: Nanofuid density (kg/m3)

Uo: Characteristic velocity (ms− 1)

θ: Angle of magnetic inclination (− )

Pr: Prandtl number (− )

Gr: Heat Grashof number (− )

Gm: Mass Grashof number (− )

Sc: Schmidth number (− )

M: Magnetic feld (− )

s: Laplace transform variable (− )

α, β, c: Prabhakar fractional parameters (− )

Bo: Magnetic feld strength (kg/s2)
Cp: Specifc heat at constant pressure (J/kgK)

μnf: Dynamic viscosity (kg/ms)
βT: Termal expansion coefcient (1/k)

σ: Electrical conductivity (− )

T∞: Ambient temperature (K)

Nu: Nusselt number (− )

Sh: Sherwood number (− )

kc: Generalized thermal conductivity (− )
CD

c

α,β,α: Prabhakar fractional (− ).

Data Availability

All data used to support the fndings of this study are
available in the manuscript.
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Table 6: Numerical analysis of the local Nusselt number, Sherwood
number, and skin friction.

α Nu Sh Cf

0.1 1.1466 0.4338 3.2543
0.2 1.2238 0.4631 3.0731
0.3 1.3312 0.5037 2.9875
0.4 1.4735 0.5575 2.9629
0.5 1.6502 0.6244 2.9771
0.6 1.8533 0.7013 3.0154
0.7 2.0687 0.7828 3.0671
0.8 2.2805 0.8629 3.1256
0.9 2.4748 0.9364 3.1843
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