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In the years since the first human genome 
was sequenced at a cost of over $3 billion, 
technological advancements have driven 
the price below $1,000, making personal 
genome sequencing affordable to many 
people. Personal genome sequencing has the 
potential to enable better disease prevention, 
more accurate diagnoses, and personalized 
therapies. Furthermore, sharing genomic data 
with researchers promises identification of the 
causes of many diseases and the development 
of new therapies. However, sequencing costs, 
data privacy concerns, regulatory restrictions, 

and technical challenges impede the growth of 
genomic data and hinder data sharing. 

In this article, we propose that these challenges 
can be addressed by combining decentralized 
system design, privacy-preserving technologies, 
and an equitable compensation model in a 
platform that vests control over data with 
individual owners; ensures transparency and 
privacy; facilitates regulatory compliance; 
minimizes expensive data transfers; and shifts 
the sequencing costs from consumers, patients, 
and biobanks to researchers in industry and 
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academia. We exemplify this by describing the 
implementation of Nebula, a distributed genomic 
data generation, sharing, and analysis platform.

The Human Genome Project has sequenced 

and assembled the first human reference 
genome at a cost of over $3 billion.1 Since then, 

development of next-generation sequencing 

technology has resulted in exponentially 

decreasing sequencing cost (Figure 1).2 Today, 

the sequencing of a whole human genome 

costs less than $1,000. This price is projected 

to drop to $100 in the next few years.3 The 

exponentially decreasing DNA sequencing 

costs have made personal genome sequencing 

affordable to patients as well as healthy 

individuals. 

Personal genome sequencing is becoming 

more common as prices decline, but most 

genetic tests to date have been performed 

using DNA hybridization microarrays. These 

tests are referred to as genotyping and they 

assess the presence or absence of genetic 

variants associated with certain traits. For 

a cost less than $100, genotyping typically 

reads out only ~0.02% of the human genome, 

at predefined positions, often missing 

health-relevant genetic variants that must be 

reported. In addition, variant identification 

at a small number of positions does not 

allow discovery of novel variants, including 

those that cause disease; the majority of 

these variants are distributed throughout 

the genome and remain undiscovered.4 This 

limits the usefulness of genotyping data to 

researchers.

OPPORTUNITIES

As genomic sequencing becomes more affordable, 

it opens up opportunities for individuals as well as 

researchers in academia and industry.

Figure 1—Human genome sequencing cost, 2001–2017.
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Personal genome sequencing can support 

data-driven decision-making for health-related 

issues. Studies estimated that ~2% of people 

carry genetic variants that cause or predispose 

them to a wide variety of diseases at various 

levels of severity, the majority of which can be 

preventable or treatable.5 In addition, every parent 

carries, on average, approximately five genetic 
variants that might cause diseases in offspring 

if the other parent carries the same variant.6 The 

presence of certain genetic variants also has 

been associated with adverse effects for ~7% of 

Food and Drug Administration-approved drugs.5 

Personal genome sequencing can also help 

healthy individuals make better lifestyle choices. 

For example, genetic variants have been shown 

to cause sensitivities to certain nutrients7–9 and 

to increase risks of sports-related injuries.10–12 In 

the future, advancement in understanding human 

genetics will make personal genome sequencing 

more insightful, while correcting pathological 

genetic variants will become possible as more 

and more gene therapies enter clinical trials.13

Researchers study genomic data sets to 

identify genetic variants that cause diseases. 

This enables the research and development 

of therapies targeting disease-associated 

genes with increasing specificity. Genomics-
guided therapeutic discovery has been applied 

successfully to many types of cancers, rare 

genetic diseases, and, increasingly, common 

complex diseases.14 Furthermore, genomics-

guided patient cohort recruiting can reduce 

the failure rate of clinical trials by enriching 

for likely responders and reducing reducing 

adverse reactions. This approach to clinical trials 

promises to reduce surging drug development 

costs and lead to more drugs reaching the market 

and benefiting patients.15

These opportunities are recognized by the 

biopharma industry. For example, the leading 

personal genomics company 23andMe received 

$60 million from Genentech16 and $300 million 

from GlaxoSmithKline17 for access to genotyping 

data collected from its customers. Other 

biopharma companies have launched their own 

sequencing projects. AstraZeneca announced it 

would sequence 2 million human genomes,18 and 

Regeneron is leading a $100 million consortium 

to sequence approximately 500,000 samples 

collected by the UK Biobank.19 

CHALLENGES

Multiple obstacles hinder the realization of 

opportunities offered by personal genomics. 

Many people are deterred by the costs of 

personal genome sequencing, as well as concerns 

over genomic data privacy. Research is hampered 

by the resultant scarcity of genomic data and is 

further compounded by difficulties with respect 
to data access.

In 2018, the number of genotyped people 

surpassed 10 million and is expected to grow to 

more than 100 million by 2021.20 This growth 

is driven by a combination of factors, notably 

consumer interest in ancestry analysis coupled 

with a decrease in genotyping costs below 

$100.21 In contrast, consumer interest in whole 

genome sequencing has grown slowly due to 

a significantly higher cost. A recent survey 
revealed that only ~3% of people are willing to 

pay >$1,000 for whole genome sequencing.22 

For the majority of consumers, whose primary 

interest in the area can best be described as 

nonmedical “infotainment,” the benefits of 
sequencing over genotyping do not justify the 

significantly higher cost.

At the same time, the surge in popularity of 

genetic testing, forensic utilization of genetic 

databases,23 and the purchase of genetic data 

by biopharma companies24 have increased 

consumer and media attention to genetic 
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data privacy. Studies show that privacy concerns 

are legitimate, as data sharing policies of 

many personal genomics companies do not 

fulfill transparency guidelines with regard 
to the confidentiality or sharing of customer 
genetic data.25 These developments are likely 

to exacerbate reported privacy concerns over 

genetic data26,27 and deter personal genomic 

sequencing. 

For researchers, low adoption of personal 

genome sequencing has resulted in low 

availability of genomic data. According to 

estimates, only ~500 thousand human genomes 

had been sequenced by 2017.3 This is detrimental 

for research because very large genomic 

data sets are necessary to find links between 
genetic variants and traits, such as disease 

predispositions. Finding such links is difficult 
because most traits are the product of complex 

interactions of many genetic variants, while the 

effects of individual genetic variants are, on 

average, very small.28 Low diversity of genomic 

data sets further compounds the search for links 

between genetics and disease.29 

The scarcity of genomic data is exacerbated by 

difficulty in data access due to fragmentation of 
genomic data across proprietary data silos.30 Data 

sharing is further hindered by the large size of 

genomic data, which impedes data transfer over 

networks.31 In addition to logistic and technical 

challenges, data access is often complicated by 

restrictive government regulations that hinder 

data sharing.32 Low availability of genomic 

data combined with data silos also results in 

high prices, making it unaffordable to many 

researchers. 

PREVIOUS WORK

Solutions to the challenges outlined above have 

been proposed previously. Federated data storage 

systems have been implemented to facilitate 

genomic data sharing, privacy-preserving 

computing has been utilized to protect genomic 

data privacy, and different compensation models 

have been explored to incentivize genomic data 

sharing. 

Genomic Data Sharing

The GA4GH Beacon Project33 and i2b2 

SHRINE34 are two of the most advanced 

systems for biomedical data sharing. Both are 

networks that enable participating institutions 

to connect their genomic (and clinical) databases 

and process queries about the presence of 

genetic variants and traits, including medical 

conditions. This federated model minimizes 

expensive data transfers and enables institutions 

to retain control of their data. This addresses 

privacy, regulatory, and technical challenges 

that are associated with centralized storage and 

transfers of genomic data.

However, there are limitations. First, 

functionality is currently limited to simple 

queries. Orchestrated, distributed computations 

required for data processing and analysis are 

currently not supported. Second, participation 

is limited to academic research institutions and 

hospitals. There are no patient- or consumer-

focused portals that would enable individuals 

to easily contribute their personal genomic 

data. Third, decentralized governance and 

compensation mechanisms have not been 

implemented. 

Genomic Data Protection

Distributed genomic data storage and computing 

can help protect genomic data privacy. However, 

data owners cannot always maintain in-house 

servers and therefore they often must outsource 

data storage and computing to third parties, 

such as cloud service providers. To protect 

the privacy of genomic data that are shared 

with untrusted third parties, encryption-based 
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privacy-preserving techniques have been adopted 

for genomics. These techniques enable third 

parties to execute computations and return results 

without having access to plaintext genomic data. 

Privacy-preserving techniques have been applied 

previously to distributed medical and genomic 

databases. For example, MedCo integrates 

with the i2b2 SHRINE framework and uses a 

homomorphic data encryption scheme to enable 

outsourcing of genomic data storage and query 

execution to untrusted third parties.35 Another 

example is the Secure Multi Party Query 

Language framework that implements similar 

functionality and privacy guarantees using secure 

multiparty computations.36 Data can also be 

protected using trusted hardware. An example 

is the PRINCESS framework that executes 

computations on genomic data inside protected 

memory regions of Intel microprocessors.37 

Compensation Models 

Over the past few years, personal genomics 

companies have explored different models to 

compensate individuals for contributing their 

personal genomic data to research studies. In 

2016, Genos offered to help its customers sell 

their genomic data to researchers.38 A similar 

model that uses a cryptocurrency instead of fiat 
money was adapted by EncrypGen in 2017.39 

Most recently, LunaDNA announced that it 

would compensate genomic data contributors 

with company stock.40 These models are similar 

in that individuals who want to participate must 

already own their personal genomic data, or 

choose to purchase genetic testing because of the 

prospect they will be rewarded later for sharing 

the data.

PERSONAL GENOMICS 2.0

The traditional model for genomic data 

generation and sharing that has been adopted by 

most personal genomics companies contributes 

to the challenges described in the previous 

sections. This model requires consumers to pay 

for genetic testing and result interpretation, 

while personal genomics companies often take 

ownership of the generated genomic data and 

sell it to biopharma companies (Figure 2). This 

model requires consumers to carry the costs 

and relinquish ownership and control of their 

genomic data, which discourages genetic testing. 

In addition, this model promotes genomic data 

fragmentation across private data silos, which 

hampers data access and increases data prices.

We propose to combine and extend previous 

work on genomic data sharing networks, privacy-

preserving technologies, and compensation 

models to create a new model for personal 

genomics that may overcome these challenges 

(Figure 3). 

First, the functionality of genomic data sharing 

networks must be extended beyond simple 

queries. This requires a network that can be 

integrated with a full-fledged bioinformatics 
platform that supports genomic data processing 

and analysis. Implementing this functionality 

would bundle fragmented genomic data and 

make it available for analysis on a single 

network, thereby facilitating data access for 

researchers.

Second, the data sharing network must expand 

beyond research institutions and must be 

accessible to individuals who want to share their 

personal genomic data. However, the resulting 

network decentralization will necessitate a more 

democratic governance model. This potentially 

can be achieved by integrating blockchain 

technology, which holds the promise of enabling 

decentralized, self-governing networks.

Third, the privacy of genomic data must be 

protected. Data access control on the blockchain 
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can ensure transparent consent management, 

while privacy-preserving technologies can help 

protect shared genomic data. Together with 

the distributed computing model that “brings 

algorithms to the data,” these technologies can 

enable network participants to retain ownership 

and control of their genomic data, thereby 

reducing privacy concerns and incentivizing data 

sharing.

Fourth, genome sequencing and data sharing 

also must be incentivized by implementing 

subsidy and compensation mechanisms. The 

decentralized data sharing model can facilitate 

this, as it enables researchers to connect directly 

with individuals with traits of interest, subsidize 

their genome sequencing costs, and compensate 

them for data sharing. Elimination of middlemen 

also may result in a reduction in genomic data 

prices and thus empower more researchers to 

access large genomic data sets. 

DESIGN CONSIDERATIONS

To implement a system as outlined in 

the previous section, one must integrate 

a bioinformatics platform that supports 

distributed data storage and computing with a 

suitable blockchain framework, as well as with 

techniques for privacy-preserving computing. 

Here, we review and evaluate existing options. 

Bioinformatics Platforms

Bioinformatics platforms have been developed to 

facilitate organization of genomic data; to enable 

parallelized, high-performance computing with 

support for complex dependencies; and to allow 

Figure 2. The traditional model for genomic data generation and sharing.
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a modular pipeline design that is flexible and 
ensures reproducible results.41 Table 1 shows a 

comparison of popular bioinformatics platforms. 

The development of bioinformatics platforms 

has been driven by exponentially growing 

genomic data and marked by adaption of 

multiple computing trends. Storage and 

processing of genomic data has moved from 

local servers to remote clouds. This has enabled 

scalable data storage and computing and 

facilitated access sharing to genomic data sets. 

To scale beyond single clouds, efforts are being 

made to create federated cloud environments 

that could enable distributed data storage 

and computing.48,49 Furthermore, the growth 

of genomic data and development of new 

bioinformatics tools that must be integrated 

into workflows are driving the development of 
standardized workflow description languages, 

containerization of computing environments, 

and utilization of standardized application 

programming interfaces (APIs). 

Based on these considerations, Arvados and 

DNAstack appear as suitable choices for the 

proposed genomic data sharing platform. Both 

platforms have an API-focused architecture and 

data sharing functionality. DNAstack integrates 

with the GA4GH Beacon Network, while 

Arvados supports platform-agnostic, federated 

cloud environments and has an open-source 

codebase.

Blockchain Frameworks

Blockchain technology has three use cases 

in the proposed system. First, the need to 

provide transparent consent management can 

be addressed by the ability of blockchains 

to store data access permissions on an 

Figure 3—Alternative model for personal genomics that may overcome challenges.
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immutable public ledger. Second, blockchains 

can enable implementation of decentralized 

systems governed by network participants. 

Third, an immutable ledger can facilitate 

verification of the integrity of decentrally 
stored data. 

Based on these use cases, one can create a 

set of requirements that a suitable blockchain 

framework must fulfill. First, consent 
management requires that the identity of 

researchers who request to access data are 

known to data owners. To this end, network 

access must be limited to data buyers whose 

identity has been verified. Therefore, consent 
management requires a blockchain that supports 

permissioned access. 

Second, a large, decentralized data marketplace 

requires smart contract functionality and high 

transaction throughput. Private blockchains can 

achieve higher transaction throughputs than 

public blockchains because the ability to write 

transactions to the blockchain is limited to a 

group of permissioned validator nodes. However, 

this makes private blockchains more centralized 

and less dependable.

Based on these requirements, permissioned 

blockchains frameworks such as Exonum and 

Hyperledger Fabric appear most suitable (Table 2). 

Hyperledger Fabric has been more widely adopted, 

but Exonum offers transparency and security that 

is comparable to public blockchains.

First, Exonum-based blockchains offer public 

read access but restrict write access to selected 

validator nodes. By making read access to the 

blockchain public, transaction audit does not 

rely on trusted parties. Exonum transactions 

are verified in real time by all nodes. Thus, 
all network participants are able to audit the 

blockchain state collectively. 

Second, Exonum supports anchoring of 

transaction logs in the Bitcoin blockchain. 

Hashes of the Exonum blockchain state are 

periodically written to the Bitcoin blockchain, so 

even if all permissioned Exonum nodes collude, 

the transaction history cannot be falsified unless 
the attacker succeeds in compromising the 

Bitcoin blockchain as well.

Third, Exonum uses a byzantine fault-tolerant 

(BFT) consensus algorithm that protects against 

Table 1. Comparison of bioinformatics platforms
Criteria Arvados42,43 DNAstack44 Seven Bridges45 DNAnexus46 Galaxy47

Hardware Federated 

clouds and 

servers

Google Cloud with 

Beacon Network 

integration

Clouds Clouds Local servers

Pipeline design API-based; 

web GUI

API-based; web 

GUI

Web GUI Web GUI Web GUI

Containers Yes Yes Yes Yes Yes

Workflow 
language

CWL WDL CWL Custom Custom

Open source Yes No No No Yes

Platform launch 

year 

2013 2014 2012 2010 2005

API: application programming interface; CWL: Common Workflow Language; GUI: graphical (rather than textual) user interface; 
WDL: Workflow Description Language.
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malicious behavior of permissioned nodes. 

In contrast, Hyperledger and other private 

blockchains rely on less computationally 

intensive fault-tolerant (FT) consensus 

algorithms that protect against node breakdown 

but not malicious behavior. Exonum offers both 

BFT consensus and high transaction throughput 

because it is written in Rust, one of the fastest 

programming languages. Furthermore, Rust 

offers memory safety which eliminates many 

vulnerabilities that are commonly exploited by 

hackers. 

Privacy-Preserving Technologies 

Table 3 shows a comparison of privacy-

preserving technologies that all have been 

applied to secure genomic data.53 Fully 

homomorphic encryption and secure multiparty 

computations enable computations on encrypted 

data that generate encrypted results. These 

encrypted results, when decrypted, correspond to 

the results of the same computation on plaintext 

data. However, fully homomorphic encryption 

is very slow and typically suffers from very 

large ciphertext expansion. The limitation of 

secure multiparty computation protocols is 

that they require transfers of very large data 

amounts during the computation. It is possible, 

however, to improve the performance of fully 

homomorphic encryption and secure multiparty 

computations significantly if they are optimized 
for specific use cases. Practical performance 
levels have been demonstrated for queries on 

genomic data54,55 and genome-wide association 

studies (GWAS).56

Alternative technologies have drawbacks of 

their own. Intel Software Guard Extensions 

technology is a hardware-assisted approach 

that protects data privacy by executing 

computations inside private memory regions. It 

offers good performance but has been affected 

by vulnerabilities that can compromise data 

privacy.57 Differential privacy methods protect 

data privacy by introducing randomness. 

However, obfuscation of computation results can 

complicate interpretation of studies.53 

NEBULA

In this section, concepts and design 

considerations outlined in the previous sections 

are illustrated by describing the technical 

implementation of Nebula—a decentralized 

genomic data generation, sharing, and analysis 

Table 2. Comparison of blockchain frameworks
Criteria Exonum50 Hyperledger Fabric51 Ethereum52

Read access Public Private Public

Write access Private Private Public

Consensus Byzantine fault-tolerant 

(BFT)

Fault-tolerant (FT) Proof of work (PoW)

Transactions per 

second (TPS)

~3,000 ~3,000 ~15

Smart contracts Yes (Rust, Java) Yes (Go, Java) Yes (Solidity)

Light clients Yes No Yes

Public blockchain 

anchoring

Yes No NA

Open source Yes Yes Yes

NA: not applicable.
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platform. Nebula integrates the Arvados42,43 

bioinformatics platform (github.com/curoverse/

arvados) with the Exonum50 blockchain 

framework (github.com/exonum) and a fully 

homomorphic data encryption scheme (Figure 4). 

Arvados has two core services: Keep and 

Crunch. Keep is a distributed content- 

addressable storage system that enables scalable 

storage of genomic big data, high throughput 

data access, and efficient data management. 
Crunch is a workflow management engine 
that enables flexible creation and parallelized 
execution of data analysis pipelines and 

generation of reproducible results. Arvados 

implements a distributed data storage and 

computing model that minimizes required data 

transfers. This helps address big data challenges, 

regulatory restrictions, and data privacy risks. 

Utilization of a homomorphic data encryption 

scheme enables implementation of privacy-

preserving queries on genomic data. The 

intention is to preserve data privacy by enabling 

investigators to query the whole database 

and discover their data of interest, without 

compromising the privacy of the queried data. 

In the future, it should be possible to extend the 

application of privacy-preserving technologies to 

GWAS and other computations.

The Nebula blockchain is an Exonum-based 

blockchain through which the Nebula network 

will be governed, consent will be documented, 

and the data will be secured. Exonum-based 

blockchains have three types of nodes: auditors, 

light clients, and validators. Auditors are 

full nodes that maintain a copy of the entire 

blockchain content and can generate transactions. 

Light clients also can generate transactions, but 

they replicate only information that is relevant 

to them instead of the whole blockchain content. 

Validators are permissioned nodes that verify 

transactions received from auditors and light 

clients and write new blocks to the blockchain. 

While the current implementation of Nebula 

Table 3. Comparison of privacy-preserving technologies

Criteria

Fully 

Homomorphic 

Encryption

Secure  

Multiparty 

Computations

Intel  

Software Guard 

Extensions

Differential  

Privacy

Principle Computations 

(additions AND 

multiplications) 

on ciphertexts

Distributed 

computations on 

ciphertexts

Computations inside 

private memory 

regions

Introduction of 

randomness to 

data/results of 

computations

Computation 

time 

Very slow Slow Fast Fast

Memory usage Very high High Low Very low

Communication 

cost

High Very high Low Low

Specific 
limitations

None None Vulnerabilities have 

been discovered; 

requires Intel CPUs

Noise makes 

interpretation 

of results more 

difficult 
CPU: central processing unit.
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uses the Exonum framework, other permissioned 

blockchains, in particular Hyperledger Fabric, 

can be used as well.

The Nebula network has four types of 

participants: data owners, network maintainers, 

data buyers, and storage and compute providers.

•  Data owners can be private individuals or 

institutions. They will store encrypted genomic 

data in public or private clouds that are part 

of the Keep storage system. They will be able 

to control access to their data and receive 

payments to their wallets by operating light 

clients on the Nebula blockchain. 

•  Network maintainers are organizations 

that operate validator nodes on the Nebula 

blockchain. Validator nodes will collectively 

control data access by managing encrypted 

key shares, verifying transactions, and keeping 

track of data stored in Keep and computations 

executed by Crunch.

•  Data buyers are researchers who wish to 

obtain access to genomic data. They will be 

operating auditor nodes to keep a local copy of 

Figure 4—Overview of the Nebula platform.

https://doi.org/10.30953/bhty.v1.34
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the metadata, which they will use to locate data 

stored in Keep, verify data integrity, and keep 

track of access permissions. Data buyers will 

be able to query homomorphically encrypted 

data, utilize smart contracts to acquire data 

access permissions from data owners, and use 

Crunch to run analysis pipelines.

•  Storage and compute providers are data 

owners that operate private clouds, or third 

parties that offer storage and computing 

services (e.g., Google, Amazon, and 

Microsoft). They will form a federated cloud 

environment that hosts the Keep storage 

system and Crunch-managed containers 

within which computations are executed.

The development of Nebula is ongoing. Some 

parts of the platform, in particular, Arvados, 

have been fully implemented over the past 

few years and are already being deployed by 

various organizations. Other parts of Nebula, in 

particular, the homomorphic encryption schemes, 

are a relatively recent addition and are not yet 

fully integrated. A report on the progress of our 

work was published in a white paper.58 Here we 

describe the implementation of Nebula in greater 

detail but also revise some previously made 

design choices.

Data Generation 

Genomic data
Personal genome sequencing cost is a significant 
factor in preventing more widespread consumer 

adoption. Therefore, a key consideration in the 

design of the Nebula platform was to provide a 

mechanism to shift sequencing costs from data 

owners (e.g., consumers and biobanks) to data 

buyers (e.g., pharma and biotech companies). 

This is being implemented by enabling data 

buyers to query the Nebula database, identify 

data sets of interest, and pay the sequencing costs 

to generate and access genomic data (Figure 5). 

To this end, the Nebula platform enables a 

data buyer to create a smart contract that 

specifies the blockchain addresses of data 

owners previously identified in a query and 

send cryptocurrency tokens to that smart 

contract. The data owners are notified that 

a buyer has offered to pay their sequencing 

costs. If a data owner accepts the offer by 

executing the smart contract, the deposited 

tokens are sent to a sequencing provider. 

Next, the data owner receives a saliva 

collection kit and submits a saliva sample 

to the sequencing facility. The sample 

is sequenced, and the genomic data are 

deposited on a Keep server specified by 

the data owner. Data hashes, along with 

blockchain addresses of all data owners and 

buyers, are written to the blockchain. The 

data buyer who paid the sequencing costs is 

permitted to access and analyze the data. The 

data owner receives interpretations of his 

genomic data and is able to share data access 

with additional data buyers. 

Phenotypic data

Information about medical conditions and 

other traits is referred to as phenotypic data. 

These data are generated primarily through 

survey questions. The platform utilizes a 

phenotyping toolkit that maps plain-language 

survey responses to clinical descriptions 

in Human Phenotype Ontology (HPO)59 

format. Survey data can be verified using two 
approaches. First, comparing the incidence of 

medical conditions in the general population to 

the incidence observed in the platform’s data 

set will enable identification of survey results 
that deviate from the expected results. Second, 

survey data can be verified by referencing 
Electronic Health Records (EHRs) imported 

through the Fast Healthcare Interoperability 

Resources (FHIR) API.

https://doi.org/10.30953/bhty.v1.34
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Data Encryption

Privacy of genomic and phenotypic data are 

protected through client-side encryption by 

data owners and encryption key management 

by blockchain validator nodes. To enable data 

buyers to discover data prior to purchasing data 

access, the platform implements a lattice-based 

fully homomorphic encryption scheme. To this 

end, blockchain validator nodes generate public–

private key pairs and construct a single collective 

public key (Figure 4). Data owners encrypt their 

survey responses and genetic variant lists with 

the collective public key and upload them to 

a Keep server. The homomorphic encryption 

scheme protects data privacy by enabling data 

buyers to execute Structured Query Language 

(SQL)-like queries on the homomorphically 

encrypted data. Files that contain raw sequencing 

data and are not used for queries are Advanced 

Encryption Standard (AES) encrypted. The AES 

keys are encrypted with validator public keys and 

bundled with the encrypted data. 

Data Storage

Data

Genomic data are stored in Keep, a distributed 

content-addressable storage system that retrieves 

files based on their content. Addresses of files 
are generated through cryptographic digest of 

their content. Keep combines content-addressing 

with the distributed storage architecture of the 

Google File System.60 Keep splits encrypted files 
into 64-megabyte blocks and stores them in an 

underlying object store or file system (Figure 6). 
The content addresses of the blocks are stored on 

the blockchain and are used to find data locations 
and check data integrity.

Figure 5—Genome sequencing subsidy payment on the blockchain.
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Keep is designed for storing genomic and other 

types of biomedical big data. First, its content-

addressing offers high-speed storage and retrieval 

by eliminating an indexing service, a potential 

bottleneck and point of failure, and enabling 

direct connections between the storage and 

compute subsystems. Second, content-addressing 

works well for data written to disk once and read 

many times, a characteristic of genomic data, 

as it does not change over time but is accessed 

frequently. Third, fixed-size data blocks allow 
scalable distributed storage of big data, and 

content-addressing enables easy file verification, 
which is particularly important for distributed 

databases.

Keep is designed to be a distributed, hybrid 

storage system. Data owners can choose to 

store their data in clouds such as Amazon Web 

Services (AWS), Google Cloud Platform (GCP), 

and Microsoft Azure, or on private bare-metal 

servers. Decentralized file storage solutions such 
as InterPlanetary File System (IPFS), Sia, and 

Storj can potentially be supported if computing 

on stored data becomes possible. Data owners 

can register new, personal cloud instances or 

store their encrypted data in shared clouds. 

Based on phenotypic information, data sets that 

are likely to be analyzed together are stored in 

physical proximity, which minimizes slow and 

expensive data transfers.

As sequencing data are processed, different 

file formats are generated and stored in Keep. 
Typically, Keep stores FASTQ files that contain 
raw sequencing data (~200 gigabytes/genome), 

Binary Alignment Map files that store aligned 
sequencing reads (~100 gigabytes/genome), 

and Variant Call Format files that store genetic 
variants (~200 megabytes/genome). Additionally, 

Nebula uses the Compact Genome Format (CGF) 

to generate compact genomic data summaries. 

Genomes in the CGF format are represented by 

pointers referencing sequences in a tile library 

(Figure 7). CGF offers a consistent, standardized 

representation of genomic data that makes 

Figure 6—Data blocks are stored in Keep. Block hashes are stored on the blockchain.
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different types of sequencing and genotyping 

data interoperable. The CGF representation 

is also very space efficient (~30 megabytes/
genome), which facilitates file transfers, and 
enables fast queries and efficient analysis.60

Tabular phenotypic data generated through 

surveys and imports of EHRs are stored in 

physical proximity with associated genomic data. 

In contrast to static genomic data, phenotypic 

information is much more dynamic and smaller 

than genomic data. This makes utilization of the 

Google File System and content addressability 

unsuitable. Therefore, phenotypic data files are 
stored as Not only SQL documents. 

Metadata

To organize data stored in Keep, Nebula stores 

metadata on the blockchain in a key-value store. 

When new data are added to Keep or existing 

data are modified, blockchain transactions 
are generated. Validator nodes verify these 

transactions, add new blocks to the blockchain, 

and update the key-value store. Storage of 

metadata on an immutable ledger helps secure 

the integrity of the decentralized Nebula 

database. To this end, multiple column families 

are implemented:

• Data ownership is registered by assigning each 

block content address the blockchain address of 

the data owner who added the block to Keep.

• Data locations are described by assigning each 

block content address the Uniform Resource 

Locator (URL) of a Keep server.

• Data integrity is verified by re-hashing data 
blocks and comparing their hashes with content 

addresses that are stored on the blockchain.

• Data buyer identities, including names and 

institutional affiliations, are verified, linked 
to blockchain addresses, and stored on the 

blockchain.

• Access permissions to the Nebula platform and 

data stored in Keep also are managed on the 

blockchain.

Figure 7—Simplified representation of a tile library and a Compact Genome Format (CGF) file. The 
rectangles represent tile variants at different positions and the dotted line illustrates the tile composition of 
specific genome.
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Data Discovery

Utilization of fully homomorphic encryption is 

intended to address the privacy barrier to data 

sharing. It enables data owners to make their data 

available for discovery without privacy risks, 

while at the same time allowing data buyers 

to explore the database before purchasing data 

access to perform analyses.

To this end, data buyers will construct a SQL-like 

query and encrypt it with the collective public 

key that has been constructed by validator nodes 

and used to encrypt phenotypic information 

and genetic variant lists. The encrypted query is 

executed on homomorphically encrypted data 

and an encrypted result is generated. The query 

result is re-encrypted by the validator nodes 

under a public key provided by the data buyer 

and shared with data buyer who can now decrypt 

it with its private key. A query can return the 

number of data owners that matched the specified 

criteria, as well as their blockchain addresses. 

This enables data buyers to connect with data 

owners to pay sequencing costs or to purchase 

access to existing genomic data (Figure 8).

Data Analysis

The Arvados container and pipeline management 

engine, Crunch, executes computations on data 

stored in Keep. Crunch implements a distributed 

computing model whereby workflows, and not 
the genomic data, are moved between cloud 

instances whenever possible. Highly distributed 

genomic data processing is possible because 

many intensive bioinformatics computations, 

such as alignment and variant calling, are 

performed on single genomes and are easily 

parallelizable. To this end, Crunch executes 

tasks inside Docker containers that are created 

physically close to the data locations in Keep 

and distributes computations between many 

processing units.

Figure 8—Secure data discovery through queries on homomorphically encrypted data.
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Crunch ensures result reproducibility through 

standardization of computing workflows 
using Common Workflow Language (CWL),61 

which enables connection of open-source 

and proprietary bioinformatics software into 

workflow pipelines that are flexible, portable, 
and scalable. Crunch can access CWL pipelines 

stored in public or private Git repositories such 

as GitHub.

CWL can be used to implement end-to-

end bioinformatics analysis pipelines. 

Typically, CWL pipelines include common, 

computationally intensive “secondary analysis” 

tasks, such as alignment of sequencing reads to a 

reference genome and variant calling. However, 

“tertiary analysis” tasks, which often involve 

computing on genomic data sets rather than 

single genomes and are less standardized, also 

can be incorporated into CWL pipelines. Typical 

examples are statistical tests that are used in 

GWAS to identify correlations between genetic 

variants and phenotypes. For such tertiary 

analysis tasks, Nebula uses Lightning,62 a system 

for high-performance, in-memory computations 

on genomic data in the CGF. Lightning integrates 

into CWL pipelines and enables fast queries and 

execution of complex machine learning tasks on 

large genomic data sets.

CWL pipelines can also be used to analyze and 

interpret personal genomic (and phenotypic) 

data. First, users can build their own custom 

pipelines to analyze their personal data and 

also share pipelines among each other using 

public Git repositories. Second, developers 

can build and monetize genomic apps. To this 

end, CWL pipelines can be stored in private 

repositories, and access by Crunch may require 

a smart contract-mediated token payment to the 

pipeline developer. The approach of bringing 

apps to the data facilitates protection of personal 

information. 

Security

Homomorphic encryption can enable privacy-

preserving queries for data discovery. However, 

most computations that are necessary for 

typical genomic data analysis workflows do not 
achieve practical runtimes when executed on 

homomorphically encrypted data. Therefore, 

other security mechanisms must be utilized. 

Platform access control
To protect data owners and their data, data 

buyers are required to go through a partially 

decentralized, three-step permission process. 

The first step is data buyer authentication. 
Here, a blockchain validator node will verify a 

data buyer’s personal and institutional identity. 

Blockchain addresses of verified data buyers will 
be added to the blockchain metadata store. Data 

buyers will then be able to connect to Nebula 

REST API servers and use Crunch to execute 

pipelines on data stored in Keep. Data buyer 

authentication will enable data owners to verify 

data buyer identity before agreeing to share 

data access. Furthermore, immutable storage of 

data buyer identities on the blockchain enables 

identification of data buyers who have violated 
consent agreements or have bypassed pipeline 

execution control.

Pipeline execution control
To protect data privacy, the platform design 

incorporates the ability to define approved 
bioinformatics tools and CWL workflows. 
The intent is to prevent data buyers from 

downloading genomic data or executing any 

computations that attempt to extract a large 

amount of information about individual data 

owners. This approach was chosen because it 

has the ability to provide a sufficient level of 
data privacy protection without significantly 
restricting data buyers. 
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Data access control

The first task in every CWL pipeline is to get 
access to the input data (Figure 9). Here, a 

data buyer executes a smart contract on the 

blockchain. The inputs are the data buyer’s 

blockchain address and the content addresses of 

all data blocks of the input files. The data buyer 
also deposits tokens inside the smart contract 

and defines a token payout for data access. When 
a data owner’s light client synchronizes with 

the blockchain, the data owner is notified of the 
data access request. The data owner can decide 

about data sharing based on offered payment and 

identity of the data buyer. The data owner grants 

data access by executing the smart contract. 

The blockchain validator nodes then verify the 

integrity of the requested data stored in Keep by 

comparing data hashes with the content addresses 

stored on the blockchain and collectively 

re-encrypt the data under the data buyer’s public 

key. Finally, the data buyer’s access permission 

is registered on the blockchain and tokens are 

sent from the smart contract to the data owner’s 

wallet. Crunch can now load decrypted data into 

a Docker container and begin pipeline execution. 

Governance

The Nebula blockchain can be used to enable 

Nebula network participants to collectively 

govern the network, in particular, to help 

maintain data protection. To this end, for 

example, Token-Curated Registries (TCRs)63 

can be used to conduct elections that determine 

validator nodes or whitelist data analysis 

pipelines. TCRs are lists that are curated 

decentrally by token holders. Importantly, 

economic incentives drive the token holders to 

curate the list’s contents judiciously. In brief, 

Figure 9—Data access control and data purchases.
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network participants can cast votes whereby the 

weights of votes scale with their token holdings. 

Since token holders are invested in the network, 

they are incentivized to maintain its proper 

operation that ensures data protection. 

DISCUSSION

The obstacles that hinder personal genome 

sequencing and genomic data sharing have a 

significant impact on the progress of research 
into disease prevention, drug development, 

and other crucial aspects of human health. We 

described one approach to overcoming these 

obstacles, using a combination of multiple 

technologies. A number of challenges remain 

to be addressed regarding data privacy, data 

validation, data curation, and data economics.

Data privacy protection requires decentralization 

of data generation and further development of 

privacy-preserving technologies. Today, genomic 

data generation is limited to laboratories that 

own expensive sequencing machines operated 

by experienced technicians. Centralized genomic 

data generation leads to data privacy risks that 

may be averted if sequencing is decentralized. 

We anticipate that this will become possible soon 

as new technologies are being developed that 

would enable compact, affordable, and easy-to-

operate sequencing machines.64 Data privacy 

protection is also impaired by current limitations 

of privacy-preserving technologies that do not 

allow complex computations on large data sets 

and require extensive optimization for every 

use case, which hinders effective data analysis. 

However, practicality of privacy-preserving 

technologies has been steadily increased over 

the past few years, and we anticipate continuing 

progress in the future.

Data validation and curation are another area of 

challenge. Validation of genomic data requires 

assistance of the sequencing facilities that have 

produced the data. If the source of the genomic 

data is unknown, or the sequencing facility 

does not cooperate, genomic data cannot be 

validated. A possible solution to this problem 

can be a model that compensates personal 

genomics companies and other genomic data 

producers for validating data authenticity. Data 

collected from different sources also must be 

made interoperable. It is particularly challenging 

to curate health records and other types of 

phenotypic data. However, standards such as 

FHIR are being developed very actively and 

have already enabled applications that can collect 

EHRs across different health systems.65

The idea of a personal data marketplace is very 

new and has not yet been implemented at scale. 

A personal data marketplace is likely to differ 

from traditional marketplaces in important ways. 

For example, data supply can be regarded as 

being unlimited because an individual can share 

data access with an unlimited number of data 

buyers. Personal data marketplaces also would 

be asymmetric, since individuals are likely to be 

unaware of the value of their personal data and 

are thus at risk of not being compensated fairly. 

The novelty of personal genomic data further 

compounds these challenges and makes market 

dynamics difficult to predict. We anticipate 
that future research into economics of data 

marketplaces will help answer these and other 

open questions.
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