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Abstract—Geostatistical modeling, one of the prime motivating appli-

cations for exascale computing, is a technique for predicting desired

quantities from geographically distributed data, based on statistical

models and optimization of parameters. Spatial data is assumed to

possess properties of stationarity or non-stationarity via a kernel fitted to

a covariance matrix. A primary workhorse of stationary spatial statistics

is Gaussian maximum log-likelihood estimation (MLE), whose central

data structure is a dense, symmetric positive definite covariance matrix

of dimension of the number of correlated observations. Two essential

operations in MLE are the application of the inverse and evaluation

of the determinant of the covariance matrix. These can be rendered

through the Cholesky decomposition and triangular solution. In this

contribution, we reduce the precision of weakly correlated locations to

single- or half- precision based on distance. We thus exploit mathe-

matical structure to migrate MLE to a three-precision approximation

that takes advantage of contemporary architectures offering BLAS3-like

operations in a single instruction that are extremely fast for reduced

precision. We illustrate application-expected accuracy worthy of double-

precision from a majority half-precision computation, in a context where

uniform single precision is by itself insufficient. In tackling the complexity

and imbalance caused by the mixing of three precisions, we deploy

the PaRSEC runtime system. PaRSEC delivers on-demand casting of

precisions while orchestrating tasks and data movement in a multi-GPU

distributed-memory environment within a tile-based Cholesky factoriza-

tion. Application-expected accuracy is maintained while achieving up to

1.59X by mixing FP64/FP32 operations on 1536 nodes of HAWK or 4096

nodes of Shaheen II, and up to 2.64X by mixing FP64/FP32/FP16

operations on 128 nodes of Summit, relative to FP64-only operations,

This translates into up to 4.5, 4.7, and 9.1 (mixed) PFlop/s sustained

performance, respectively, demonstrating a synergistic combination of

exascale architecture, dynamic runtime software, and algorithmic adap-

tation applied to challenging environmental problems.

Index Terms—Climate/Weather Prediction, Dynamic Runtime Systems,

Geospatial Statistics, High Performance Computing, Multiple Precisions,

User-Productivity.
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1 INTRODUCTION

Geostatistics is a means of modeling and predicting de-
sired quantities from spatially distributed data based on
statistical assumptions and optimization of parameters. It
is complementary to first-principles modeling approaches
rooted in conservation laws and typically expressed in
PDEs. Alternative statistical approaches to predictions from
first-principles methods, such as Monte Carlo sampling
wrapped around simulations with a distribution of inputs,
may be vastly more computationally expensive than sam-
pling from a distribution based on a much smaller number
of simulations. Geostatistics is relied upon for economic
and policy decisions for which billions of dollars or even
lives are at stake, such as engineering safety margins into
developments, mitigating hazardous air quality, locating
fixed renewable energy resources, and planning agricultural
yields or weather-dependent tourist revenues. Climate and
weather predictions are among the principal workloads
occupying supercomputers around the world and planned
for exascale computers, so even minor improvements for
production applications pay large dividends. A wide variety
of such codes have migrated or are migrating to mixed-
precision environments; we describe a novel migration of
one important class of such codes.

A main computational kernel of stationary spatial statis-
tics considered herein is the evaluation of the Gaussian
log-likelihood function, whose central data structure is a
dense covariance matrix of the dimension of the number
of (presumed) correlated observations, which is generally
the product of the number of observation locations and the
number of variables observed at each location. In the maxi-
mum log-likelihood estimation (MLE) technique considered
herein, two essential operations on the covariance matrix
are the application of its inverse and evaluation of its de-
terminant. These operations can all be rendered through the
classical Cholesky decomposition and triangular solution,
occurring inside the optimization loop that fits statistical
model parameters to the input data. The covariance matrix
is dense, symmetric, and positive definite, and possesses
a mathematical structure arising from its physical origin
that motivates approximations of various kinds for high-
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dimensional problems, especially in view of the demands
on storage and computation of the Cholesky formulation.
ExaGeoStat [1] is designed to provide controllable approx-
imations to extreme-scale MLE problems by introducing
novel algorithmic, architectural, and programming model
features and packing the power of hybrid distributed-
shared memory computing under the high-productivity sta-
tistical package R. Based on tile algorithms [2], the resulting
Cholesky factorization takes advantage of the covariance
matrix structure, which under a proper ordering [3] clusters
the most significant information around the diagonal.

We introduce ExaGeoStat_PaRSEC, i.e., ExaGeoStat
powered by PaRSEC, extending the approach in [4] to ac-
celerate the Cholesky factorization by mixing FP64 double-
precision (DP), FP32 single-precision (SP) and FP16 half-
precision (HP) to take advantage of the tensor cores of
modern GPUs, e.g., NVIDIA V100s. Precision adaptation
inveighs against predictable load-balancing, which therefore
requires reliance on a dynamic runtime system to schedule
computationally rich tasks of tile-sized granularity and data
exchanges. The nimble runtime system PaRSEC is lever-
aged to deal with the complexity of the proposed mixed-
precision algorithm, tackle the introduced imbalance, and
limit the memory usage on distributed-memory systems
equipped with multiple GPUs. While mixed-precision al-
gorithmic optimizations translate into performance gains,
we still guarantee application-expected accuracy that drives
the modeling and the ultimate prediction phases for climate
and weather applications. To the best of our knowledge,
this work is the first to highlight performance of large-
scale, task-based, and three-precision Cholesky factorization
for geostatistical modeling and prediction. Among the ar-
chitectural imperatives for exascale computing discussed
in [5], we: (1) reside on average higher on the memory
hierarchy by selectively using reduced precision words, (2)
reduce artifactual synchronizations, (3) exploit specialized
SIMD/SIMT instructions, and (4) exploit heterogeneity.

Our main contributions are as follows: (1) powering the
ExaGeoStat framework with the PaRSEC runtime system
and demonstrating their ability to perform modeling and
prediction on geospatial data using MLE with a novel
mixed-precision implementation of DP, SP and HP in a
Cholesky factorization; (2) optimizing the performance of
mixed-precision Cholesky factorization by shepherding the
task execution order and balancing the GPU workloads; (3)
validating accuracy via synthetic datasets and real datasets;
and (4) performing large-scale mixed-precision Cholesky
factorization on AMD-based, Intel-based CPU systems and
IBM-based multi-GPU system with up to 196, 608 cores,
131, 072 cores and 768 GPUs respectively.

The remainder of the paper is organized as follows. Sec-
tion 2 covers related work. Section 3 gives a brief overview
of the problem. Section 4 describes the ExaGeoStat frame-
work and PaRSEC dynamic runtime system. Section 5 de-
scribes the proposed mixed-precision Cholesky approach.
Section 6 highlights how PaRSEC helps to tune the perfor-
mance of ExaGeoStat with the three precisions approxi-
mation of the MLE operation in a single Cholesky factor-
ization. Section 7 analyses accuracy using synthetic and real
datasets in the context of climate/weather applications and
illustrates the performance results. We conclude in Section 8.

2 RELATED WORK

This section gives a brief review of the existing works on
both mixed-precision in climate/weather applications and
the existing efforts on runtime systems to accelerate large-
scale applications.

Large-Scale Climate/Weather Modeling. Large-scale
modeling is often prohibitive in climate/weather appli-
cations. In literature, numerous approximation algorithms
have been proposed to be able to analyse big geospatial data
and reduce the arithmetic complexity and memory footprint
in extreme problems. One way is to convert the given dense
covariance to a sparse matrix by replacing values of large
distance correlations with zero. In this case, sparse matrices
algorithms [6] or covariance tapering strategy [1] can be
used for fast computation. Dimension reduction is another
way to approximate and generate the covariance matrix. For
instance, the authors in [7] propose the Gaussian Predictive
Processes (GPP) to achieve the reduction by projecting the
original problem space into a subspace at a certain set
of locations. Although such means can reduce the com-
plexity of estimating the model parameters, they usually
underestimate the variance parameter [8]. Other methods of
dimension reduction include Kalman filtering [9], moving
averages [10], and low-rank splines [11]. Large covariance
matrix dimension has been also widely accommodated us-
ing Hierarchical matrices (H-matrices) and low-rank ap-
proximations. In the literature, different data approxima-
tion techniques based on H-matrices have been proposed
such as, Tile Low-Rank (TLR) [12], [13], Hierarchically
Off-Diagonal Low-Rank (HODLR) [14], [15], Hierarchically
Semi-Separable (HSS) [16], or H2-matrices [17], [18].

Mixed-Precision in Climate/Weather Applications and
Beyond. To the best of our knowledge, existing works
on mixed-precision and climate/weather applications are
related to studying the impact of applying mixed-precision
computation on the modeling operation. For instance, the
work in [19] provides a study on the effect of faulty hard-
ware low precision arithmetic on the accuracy of weather
and climate prediction. The authors have proved that such
faults have no impact on the overall accuracy of such
applications. In [20], the authors show how single- and
half- precision can replace full double-precision calculations
for weather and climate applications which can maintain
the desirable accuracy at the end. In [21], mixed-precision
Krylov sub-space solver for climate/weather applications
has been proposed. The study shows numerical instabilities
that impact the accuracy of prediction. For solving a linear
system of equations, mixed-precision iterative refinement
approaches have been studied using FP64/FP32 arithmetics
for sparse and dense linear algebra [22], [23], and lately
extended with FP16 [24], [25].

Runtime Systems. With the increased complexity of
the underlying hardware, delivering performance while ab-
stracting the hardware becomes critical. Beyond just MPI+X,
more revolutionary solutions explore more dynamic, task-
based systems as a substitute solution to both local and
distributed data dependencies management. The ideas be-
hind are similar to the concepts put forward in workflow,
parallelizing an algorithm over a heterogeneous set of dis-
tributed resources by dividing it into sets of interdependent
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tasks and organizing the data transfers to maximize the
occupancy of most resources. Many efforts to provide such
an abstraction via a fine-grain, task-based dataflow pro-
gramming exist, adding to those that have transitioned from
a grid-based workflow toward a task-based environment.
Some of the recent task-based runtimes like OmpSs [26],
StarPU [27], OpenMP [28], Legion [29], HPX [30], and
PaRSEC [31], among others, abstract the available resources
to isolate application developers from the underlying hard-
ware complexity and simplify the process of writing mas-
sively parallel scientific applications.

In this paper, we focus on mixed-precision arithmetic
to approximate and accelerate large-scale climate/weather
prediction applications. In particular, we extend the mixed
two-precision arithmetic approach [4] initially based on
StarPU to PaRSEC instead with mixed three-precision com-
putations. This represents much more than a simple swap
between runtimes. The precision conversion becomes now
a runtime decision made by PaRSEC as opposed to a user
decision with StarPU in [4]. This permits to provide on-
demand casting of precisions, while orchestrating tasks and
data movement on distributed-memory environment sys-
tems equipped with multiple GPU hardware accelerators.
PaRSEC is now empowered by not only task scheduling and
data motion but also converting data precision at runtime to
match the task operand datatypes. We integrate this novel
high productive programming model based on PaRSEC

into ExaGeoStat [1] and assess their synergism on large-
scale environmental applications using massively parallel
homogeneous and heterogeneous systems.

3 OVERVIEW OF GEOSPATIAL MODELING

Tackling the complexity of large-scale geospatial model-
ing in the context of climate/weather applications requires
efficient algorithms that are able to provide an accurate
estimation of the underlying spatial model with the aid of
leading-edge hardware architectures. This section provides
a brief background on geospatial modeling and prediction
from a statistical point of view.

Climate Modeling and Prediction using MLE. Spatial
data associated with climate and weather applications con-
sist of a set of locations regularly or irregularly distributed
across a given specific geographical region where each loca-
tion is linked with climate or environmental variables, such
as soil moisture, temperature, humidity, or wind speed. In
geostatistics, spatial data are usually modeled as a realiza-
tion from a Gaussian spatial random field. Assume a realiza-
tion of a Gaussian random field Z = {Z(s1), . . . , Z(sn)}⊤
at a set of n spatial locations s1, . . . , sn in R

d, d ≥ 1.
We assume a stationary and isotropic Gaussian random
field with mean zero and a parametric covariance func-
tion C(h;θ) = cov{Z(s), Z(s + h)}, where h ∈ R

d is a
spatial lag vector and θ ∈ R

q is an unknown parameter
vector of interest. C(h;θ) values depend on the distance
between any two locations and denoted by Σ(θ) with
entries Σij = C(si − sj ;θ), i, j = 1, . . . , n. The matrix Σ(θ)
is symmetric and positive definite. Statistical inference about
θ is often based on the Gaussian log-likelihood function as
follows:

ℓ(θ) = −n

2
log(2π)− 1

2
log |Σ(θ)| − 1

2
Z

⊤
Σ(θ)−1

Z. (1)

The modeling operation depends on computing θ̂, the
parameter vector that maximizes Equation (1). When the
number of locations n is large, the evaluation of the likeli-
hood function becomes computationally challenging due to
the Cholesky factorization, requiring O(n3) flops and O(n2)
memory. The estimated θ̂ can be used to predict missing
measurements at some other locations in the same region.
Prediction can be represented as a multivariate normal joint
distribution with the existing n known measurements Zn

and m missing measurements Zm [32], [33] as follows:

[
Zm

Zn

]
∼ Nm+n

([
µm

µn

]
,

[
Σmm Σmn

Σnm Σnn

])
, (2)

with Σmm ∈ R
m×m, Σmn ∈ R

m×n, Σnm ∈ R
n×m, and

Σnn ∈ R
n×n. The associated conditional distribution can be

represented as

Zm|Zn ∼ Nm(µm +ΣmnΣ
−1
nn(Zn − µn),

Σmm −ΣmnΣ
−1
nnΣnm)

(3)

Assuming that the observed vector Zn has a zero-mean
function (i.e., µm = 0 and µn = 0), the unknown vector
Zm can be predicted [32] by solving

Zm = ΣmnΣ
−1
nnZn, (4)

with associated prediction uncertainty given by

Um = diag[Σmm −ΣmnΣ
−1
nnΣnm] (5)

where diag denotes the diagonal of a matrix.
Computing the last two equations is challenging since

they require applying the Cholesky factor of the covariance
matrix during the forward and backward substitutions on
several right-hand sides.

Covariance Functions. Constructing a corresponding
covariance matrix Σ(θ) for a set of given locations in
MLE modeling or prediction operations requires defining a
covariance function to describe the correlation over a given
distance matrix. The Matérn family [34] has shown its ability
on a wide variety of applications, for example, geostatistics
and spatial statistics [35] and machine learning [36]. In
this study, we are interested in the powered exponential
covariance function [37] to model the geospatial data, an
alternative to the general Matérn covariance function. The
powered exponential covariance function is defined as:

C(r;θ) = θ0 exp

(−rθ2

θ1

)
, (6)

where r = ‖s − s
′‖ is the distance between two spatial

locations s and s
′, and θ = (θ0, θ1, θ2)

⊤. Here θ0 > 0 is the
variance, θ1 > 0 is a spatial range parameter that measures
how quickly the correlation of the field decays with distance,
and θ2 > 0 controls the smoothness of the random field,
with larger values of θ2 corresponding to smoother fields.

4 POWERING EXAGEOSTAT WITH PARSEC

We provide essential information on the high-performance
geostatistics modeling software ExaGeoStat and dynamic
runtime system PaRSEC before highlighting their synergism
to solve large-scale environmental applications.
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The ExaGeoStat Framework. ExaGeoStat [1] is a
computational software for geostatistical and environmen-
tal applications. ExaGeoStat has three main components,
namely, the synthetic data generator, the modeling tool,
and the predictor. It provides a generic tool for gener-
ating a reference set of synthetic measurements and lo-
cations, which generates test cases of prescribed size for
standardizing comparisons with other methods. This tool
facilitates the assessment of the quality of any proposed
approximation method with a wide range of datasets with
different features. ExaGeoStat performs modeling based
on the maximum likelihood estimation (MLE) approach (see
Eq. 1). ExaGeoStat depends on various software libraries
to provide a unified framework that is able to run on
different parallel hardware architectures. The overall MLE
optimization is performed using the NLOPT optimization
library [38] which aims at maximizing the likelihood es-
timation function by using different sets of the statistical
model parameters based on the given covariance function.
Furthermore, to perform the underlying linear algebra ma-
trix operations, ExaGeoStat relies on the state-of-the-art
numerical libraries Chameleon [39] (for dense operator [1])
and HiCMA [40] (for data-sparse operator [41]). Both libraries
rely on task-based programming models that enable fine-
grained asynchronous computations by splitting the matrix
operator into tiles. The numerical algorithm is translated
into a Directed Acyclic Graph (DAG), where the nodes
represent tasks and the edges define data dependencies. The
dynamic runtime system deploys the tasks across different
hardware resources, while ensuring the integrity of data de-
pendencies. The runtime might orchestrate task scheduling
and overlap communication with computations to reduce
load imbalance, while maintaining high occupancy. Last but
not least, the ExaGeoStat predictor tool aims at predicting
a set of unknown measurements at new spatial locations

using the parameters (i.e., θ̂ vector) estimated during the
modeling phase, as explained in Section 3. In the literature,
we assess the prediction quality with the mean squared pre-
diction error (MSPE), which can be computed as: MSPE =
1

m

∑m
l=1

‖Ẑ(s0,l) − Z(s0,l)‖2, where s0,1, s0,2, . . . , s0,m are
the m prediction locations.

PaRSEC Dynamic Runtime System. PaRSEC [42], an
event-driven task-based runtime for distributed heteroge-
neous architectures based on data-flow, is capable of dy-
namically unfolding a description of a DAG of tasks onto
a set of resources. PaRSEC understands data dependencies
and efficiently shepherds data between memory spaces
(between nodes but also between different memories on
different devices) and schedules tasks across heterogeneous
resources. PaRSEC facilitates the design of Domain Specific
Languages (DSLs) [43] that allow domain experts to focus
on their scientific application rather than on the underlying
complex hardware architecture. These DSLs rely on a data-
flow model to create dependencies between tasks and target
the expression of maximal parallelism with high produc-
tivity in mind. The DSL used in this paper, Parameter-
ized Task Graph (PTG) [44], uses a concise, parameterized,
task-graph description known as Job Data Flow (JDF) to
represent the dependencies between tasks. The main al-
gorithmic idea is that the unfolding of the parameterized

description may eventually lead to a complete description
of data dependencies between tasks from the DAG. Similar
to other runtimes, the task execution order depends on
a set of data dependencies (e.g., read, write, and read-
write) defined over the application data. The distributed
runtime scheduler assigns sets of tasks to the available
processing unit based on these dependencies which may
lead to runtime opportunities for asynchronous executions.
To enhance the productivity of the application developers,
PaRSEC implicitly infers all communications from the ex-
pression of the tasks, supporting one-to-many and many-to-
many types of communications. PaRSEC supports different
programming languages (e.g., Pthreads, CUDA, OpenCL,
and MPI) and runs on different hardware architectures (e.g.,
CPU/GPU, shared/distributed-memory). From a perfor-
mance standpoint, algorithms described in PTG have been
shown capable of delivering a significant percentage of the
hardware peak performance on many hybrid distributed-
memory machines for several scientific fields [45]–[49].

In this paper, we leverage PaRSEC runtime system
within ExaGeoStat to perform operations beyond what
a traditional runtime system does. These operations are
inherent to the application but can be offloaded to runtimes,
in addition to their current duties of data movement and
task scheduling. In particular, we empower PaRSEC with
mixed-precision support to enable approximation within
ExaGeoStat for climate/weather prediction applications.
It becomes PaRSEC’s responsibility to convert on-the-fly the
precision arithmetic according to the datatypes of the task
operands, as explained in the next section.

5 EXAGEOSTAT MULTI-PRECISION CHOLESKY

FACTORIZATION FOR MLE

We design a mixed-precision approach for the Cholesky
factorization targeting the MLE climate modeling and pre-
diction. We apply tile-centric precision arithmetic by ex-
ploiting the data sparsity structure of the covariance matrix
Σ(θ). The correlations between nearby geospatial locations
are strong and usually reside around the matrix diagonal,
thanks to Morton ordering [3]. As we move away from the
main diagonal, the correlations between remote geospatial
locations weaken, and we capture this in the computation
by relying on a band strategy to appropriately select the
precision of the tiles Cij based on their row and column
coordinates (i, j) in the global matrix, with i ≥ j consid-
ering the lower triangular part of the symmetric matrix.
This approach is generic and accommodates for as many
precisions as necessary, but for the sake of simplicity we
will use a three-precision approach in the rest of this paper.
The tiles are tagged accordingly with DP, SP, and even
HP precision arithmetic for i ∼ j, i > j, and i ≫ j,
respectively. More precisely, we introduce band_size_dp

and band_size_sp (the number of bands/sub-diagonals)
to control the tile precision located in the DP and SP band
regions. The remaining tiles are located in the HP band
region. We rely on the standard Two-Dimensional Block
Cyclic Data Distribution (2DBCDD) to describe how the
matrix tiles are shared among a grid of processors in a
distributed-memory environment.
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(a) Data storage. (b) Data flow.

Fig. 1: Mixed-precision Cholesky: (a) data storage and
(b) data flow, and both with band_size_dp = 2 and
band_size_sp = 2 of a matrix with 9 × 9 tiles. Colors
for tiles/arrows represent different precisions: DP in red; SP
in blue; HP in green. In (b), data-flow for the 1st panel fac-
torization with different shapes/kernels: triangle / POTRF,
square / GEMM, pentagon / TRSM, and circle / SYRK.

Fig. 1a shows the tile-centric precision format for data
storage in the proposed three-precision approach. Since
HP is currently only supported for the GEMM operation (i.e.,
HGEMM), we generate the data in the parts corresponding to
HP, in other terms below the band_size_sp (e.g., parts
with green contour in Fig. 1a), in SP. This is still an
advantage in terms of memory footprint compared to the
traditional mixed-precision iterative refinement (IR) meth-
ods [24], [25]. Due to the tile storage, our approach is
not required to maintain multiple copies of the original
matrix with different precisions like IR methods do. We
only have a single copy of the matrix containing a collec-
tion of tiles with various precisions. The data-flow of the
mixed-precision Cholesky is the same as the regular single-
precision Cholesky except that now it also encapsulates the
datatype information for each operand of the computational
tasks. Fig. 1b depicts the representative data-flow during
the first Panel Factorization (PF) that engenders communi-
cations (red and blue arrows). There are two possible modes
of operations as far as the handling of the precision conver-
sions is concerned. The sender-based approach first converts
the data tile locally to the required precisions for all its
dependents before sending it. The receiver-based approach
receives the remote data tile in its original precision before
locally converting it to the required precision. Although
the sender-based approach sends the data tile in the right
precision required at the destination, it may end up sending
several copies of the same data tile with different precisions
to the same processor due to the 2DBCDD. On the other
hand, the receiver-based approach may receive the data tile
at a different precision from what is needed for the local
task and needs a type conversion. However, there is only a
single copy of the remote data tile with its original precision,
leading to a reduction in network traffic. The receiver-based
approach is the one we adopt throughout the paper.

Algorithm 1 details the new mixed-precision Cholesky
factorization for lower triangular matrices composed by
NT ×NT tiles using DP, SP and HP. The resulting pseudo-
code structure is quite similar to the regular Cholesky
factorization using one precision with the usual computa-
tional phases, i.e., the PF and the update of the trailing
submatrix. The naming conventions for the numerical ker-

Algorithm 1: Mixed-Precision Cholesky.

1 for k = 0 to NT − 1 /∗ Panel Factorization (PF) ∗/
2 DPOTRF (Ckk)
3 for m = k + 1 to NT − 1

4 if m− k < band size dp

5 DTRSM (Ckk , Cmk)

6 else
7 STRSM (C∗S

kk
, Cmk)

8 for m = k + 1 to NT − 1

9 DSYRK (C∗D

mk
, Cmm)

10 for m = k + 2 to NT − 1 /∗ Trailing Submatrix Update ∗/
11 for n = k + 1 to m− 1

12 if m− n < band size dp

13 DGEMM (C∗D

mk
, C∗D

nk
, Cmn)

14 else if m− n < band size dp+ band size sp

15 SGEMM (Cmk , C∗S

nk
, Cmn)

16 else
17 HGEMM (C∗H

mk
, C∗H

nk
, C∗H

mn)

nels follow the concatenation of “precision” and “kernel”,
where “precision” can be D (DP), S (SP) or H (HP) and
“kernel” represents POTRF, TRSM, SYRK or GEMM. Moreover,
the operands of the tasks with superscripts (i.e., *D, *S, or
*H) indicate that once received, they may (or may not in case
of the source and target precisions of the data tile are the
same) need to be eventually converted from their current
precision to the required precision of the kernels. Fig. 2
demonstrates Algorithm 1 by unrolling the entire algorithm
of the mixed-precision Cholesky factorization with 6 × 6
tiles, band_size_dp = 2, and band_size_sp = 1. At
the beginning of the factorization, numerical kernels with
all three precisions, i.e., DP, SP and HP, operate at the
same time. The tasks operating on the tiles with yellow
boundaries are launched sequentially since they belong to
the critical path of the DAG for that PF. These tasks need to
be overlapped with sufficient task parallelism coming from
the updates of the trailing submatrix (see Algorithm 1) in
order to reduce idle time. As the factorization proceeds,
tasks in HP disappear, and only tasks in DP/ SP continue
to operate, starting from the 3rd PF. As we reach the end
of the factorization in the 5th PF, we observe only DP tasks.
This mixture of three precisions for the Cholesky factoriza-
tion necessitates runtime decisions to provide on-demand
casting of precision. The support for multiple precisions
inherently brings load imbalance to an algorithm that may
be otherwise regular. These load imbalance issues require
novel runtime features and optimizations to maximize per-
formance while ensuring high user-productivity.

6 PARSEC RUNTIME OPTIMIZATIONS

We embed the support of multiple precisions into PaRSEC

by incorporating the datatype information of the task
operands into the data-flow. To our knowledge, this is the
first time a runtime system provides a precision-agnostic
mechanism to seamlessly handle workloads with variable
precisions. This comes at the cost of introducing load im-
balance in terms of computations and communications. But
this performance bottleneck falls back into the original duty
of dynamic runtime systems.
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Fig. 2: Mixed-precision Cholesky factorization with 6× 6 tiles, band_size_dp = 2, and band_size_sp = 1. White tiles
represent the completed task. Other colors represent different precisions for each tile: DP in red, SP in blue, and HP in green.
Different shapes indicate different kernels: triangle POTRF, square GEMM, pentagon TRSM, and circle SYRK.

Load Imbalance. Although the total number of oper-
ations is the same for each precision variant, performing
HP computations is usually twice faster than SP, which
is in turn usually twice faster than DP. With the recent
advances in hardware compute capabilities (e.g., NVIDIA
Tensor Cores), these performance speedups increase dispro-
portionally for lower precision computations, especially for
the GEMM kernels that represent the most critical tasks for the
Cholesky factorization. Moreover, communications get also
impacted by load imbalance. The mixed-precision Cholesky
factorization may necessitate data movement involving tiles
with various precisions, as highlighted in Fig. 1b with the
red/blue arrows. To mitigate the load imbalance issue, we
design and implement two optimizations to guide PaRSEC
at runtime.

Lookahead Strategy. We apply a versatile lookahead
strategy, which permits to hide tasks located in the critical
path of every panel factorization with concurrent tasks
(i.e., updates of the trailing submatrix), as explained in
Section 5. This is a standard strategy used in linear al-
gebra libraries [48], [50], [51] to hide communication and
limit idle time. We further extend this strategy to mitigate
the overhead of load imbalance in the context of mixed-
precision workloads. The main idea consists in giving a
higher scheduling priority to tasks that belong to the critical
path than tasks that reside outside of the critical path. In
fact, tasks that permit to directly unlock data dependencies
of those executed in the critical path are also promoted with
a higher scheduling priority. We define the depth of the
lookahead as a tunable parameter that dynamically changes
based on the structure of the mixed-precision matrix.

We implement this strategy within PaRSEC by utilizing
the concept of control dependency between tasks. These
additional control dependencies guide the task execution
order and infer the proper priorities by adding empty
dependencies (without extra communication). In particular,
we apply control dependencies in the panel factorization
k in Algorithm 1 between the top DGEMM (m = k + 2
and n = k + 1, the utmost important task to release the
DTRSM in the critical path of the next panel factorization)
and xTRSMs with m − k > lookahead in the same panel
factorization. In this way, tasks with the lower precision
that are far away from the critical path will be delayed,
prioritizing the critical path, expediting the discovery of
the next panel factorization and eventually accelerating the
whole Cholesky factorization. Fig. 3a presents a lookahead
set to three, which prioritizes upcoming tasks of the critical
path within the next three panels (i.e., the cyan boundary

tiles in Fig. 3a) over the non-critical tasks (i.e., the magenta
boundary tiles in Fig. 3a released by the red arrows data
dependencies) that would otherwise delay progress in com-
putations. Meanwhile, tasks operating on these cyan bound-
ary tiles could be executed simultaneously, not starving the
hardware resources.

Nested Block Cyclic Data Distributions. Porting the
ExaGeoStat_PaRSEC as well as mixed-precision Cholesky
proposed here is implemented with complete GPU support,
i.e., distributed multi-GPUs, making it more prominent than
most of those about mixed-precision in the related works [4],
[21]–[23], [25], [52]. PaRSEC automatically handles asyn-
chronous data transfers between hosts and devices to over-
lap data movement with computations, and also provides
data locality scheduling policies to reduce communications
and improve load balancing. However, when extending to
GPU hardware accelerators in the context of the mixed-
precision Cholesky factorization, load imbalance becomes
so severe that lookahead and existing GPU-related opti-
mizations may not be sufficient to mitigate the overheads.
This load imbalance is indeed more exacerbated on GPU-
based platforms than on homogeneous CPU systems. This
is because GPUs, e.g., NVIDIA V100, provide customized
hardware for performing much faster GEMM in HP than
SP/DP. Currently, the proposed mixed-precision Cholesky
factorization relies on the standard 2DBCDD to distribute
the whole tiled matrix not only among MPI processes but
also among all the GPUs dedicated to each parent MPI pro-
cess. The non-critical tasks in the mixed-precision Cholesky
factorization (mostly HGEMM tasks) are expedited and do
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Fig. 3: Runtime optimizations of a matrix with 9 × 9 tiles.
Colors for tiles/arrows represent different precisions: DP
in red, SP in blue, and HP in green. Different shapes
represent different kernels: triangle POTRF, square GEMM,
pentagon TRSM, and circle SYRK. (a) band_size_dp = 4
and band_size_sp = 1; (b, c) band_size_dp = 2,
band_size_sp = 2, with process grid P × Q = 2 × 2
in cyan, the number of GPUs per MPI parent process g = 4,
and GPU ID (0, 1, 2, 3) annotates each tile.
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not slowdown the execution anymore, thanks to the high
GPU computational power and the lookahead optimization.
The performance bottleneck appears then in the tasks of the
critical path that are not evenly distributed among GPUs
within the parent MPI process. Fig. 3b showcases this load
imbalance with a matrix of 9× 9 tiles, band_size_dp = 2,
band_size_sp = 2, and using a 2DBCDD with an MPI
process grid P × Q = 2 × 2. We set the number of GPUs
per process g = 4 and annotate each tile with GPU ID
(0, 1, 2, 3) following also the traditional 2DBCDD. The
figure reveals how only a single GPU out of four (i.e.,
GPU ID 3) executes the tasks (i.e., yellow boundary tiles)
allocated to their MPI parent process. Therefore, a two-level
2DBCDD (MPI and GPU) backfires, and considering the
performance discrepancy between multiple precision tasks
observed when running on GPUs, it requires a new nested
level of data distribution to maintain high occupancy on
the devices. Fig. 3c demonstrates a new nested two-level
data distribution using 2DBCDD for the MPI processes and
1DBCDD among the GPUs belonging to each MPI par-
ent process. This nested 2DBCDD-1DBCDD now provides
proper load balancing for tiles located in the critical path,
operating in DP and SP on GPUs. For instance, most of
GPUs of the parent MPI process ID #3 (located at the right
bottom of a 2×2 process grid) are now busy operating in DP

and SP, as highlighted with the yellow boundary tiles. The
nested 2DBCDD-1DBCD contributes toward load balancing,
while increasing the GPU hardware occupancy with tasks
executed in the critical path.

7 PERFORMANCE RESULTS AND ANALYSIS

The correctness and performance of our mixed-precision
approach are measured by synthetic and real datasets with
different sizes and characteristics, on three HPC clusters
with various kinds of architectures to evaluate the proposed
approach’s effectiveness:

• Shaheen II at KAUST: an Intel-based Cray XC40 system
with 6, 174 compute nodes, each of which has two 16-core
Intel Haswell CPUs at 2.30 GHz and 128 GB of memory.

• HAWK at HLRS: an AMD-based system with 5, 632 com-
pute nodes, each of which has two 64-core AMD EPYC
7742 CPUs at 2.25 GHz and 256 GB of main memory.

• Summit at ORNL: an IBM-based system with 4, 356 com-
pute nodes, each of which has two 22-core Power9 CPUs
at 3.07 GHz and 256 GB of main memory, and each CPU
is deployed with three NVIDIA Tesla V100 GPUs.

We use the term “‘a’D:‘b’S:‘c’H” to represent the per-
centage of different precision formats per band regions,
where a = band_size_dp/NT ∗ 100 (NT is the number
of tiles in a dimension), b = band_size_sp/NT ∗ 100, and
a + b + c = 100. For BLAS and LAPACK, we link against
the vendor optimized libraries for each HPC cluster, i.e.,
Intel Math Kernel Library (MKL) on Shaheen II, AMD
Optimizing CPU Libraries (AOCL) on HAWK, and IBM Engi-
neering and Scientific Subroutine Library (ESSL) along with
Compute Unified Device Architecture (CUDA) on Summit.
The matrix is distributed by two-dimensional block cyclic
data distribution (2DBCDD) with a process grid P × Q (as
square as possible) where P ≤ Q.

Fig. 4: Left: Soil moisture residuals at the topsoil of the
Mississippi River basin. Right: Wind speed (m/s) in the
Arabian Sea.

7.1 Synthetic Datasets

Synthetic datasets are a common way to validate the ef-
fectiveness of statistical modeling and prediction before
applying them to real datasets. Herein, we use Monte Carlo
simulations to show the impact of changing the precision
of the covariance matrix using the proposed three-precision
approach. Herein, we generate 40K synthetic datasets with
different characteristics to mimic real cases. The generation
process is performed using ExaGeoStat_PaRSEC software
at irregular locations in a two-dimensional space with an
unstructured covariance matrix, as suggested in [53]. To
ensure that no two spatial locations are too adjacent, the data
locations are generated using n1/2(r−0.5+Xrl, l−0.5+Yrl)
for r, l ∈ {1, . . . , n1/2}, where n represents the number of
locations, and Xrl and Yrl are generated using uniform
distribution on (−0.4, 0.4). Our Monte Carlo simulations
strategy depends on generating 100 datasets with specific
characteristics (i.e., correlation and smoothness) using a set
of truth model parameters. All datasets are then modeled
using mixed-precision variants to estimate the underlying
model parameters for each dataset. The quality of each
computation variant will depend on how close is the median
of estimated parameters from the truth parameters.

7.2 Real Datasets

In this study, we consider two real datasets from two differ-
ent regions of the world as follows.

The Soil Moisture Dataset. The U.S. soil moisture
dataset is a high-resolution daily soil moisture data at the
topsoil layer of the Mississippi River Basin (MRB) observed
on January 1st, 2004. This dataset has been widely used
to assess the quality of the spatial data modeling in litera-
ture [41], [54]–[56]. In [54], the original soil dataset has been
updated by fitting a zero-mean Gaussian process model
with a Matérn covariance function to the residuals to reduce
the possibility of non-stationary data. The spatial resolution
of the original dataset is of 0.0083 degrees, and the distance
of one-degree difference in this region is approximately 87.5
km. The grid consists of 1830 × 1329 = 2,432,070 locations
with 2,153,888 measurements, as shown in Fig. 4. We have
only considered a random subset of the dataset with size 1M
in this paper although the whole dataset can be processed,
as shown in previous work [41].

The Wind Speed Dataset. The wind speed dataset
from the Middle-East region is a 2D dataset consisting of
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two variables, zonal wind component, U , and meridional
wind component, V . A single univariate wind speed value
(ws) can be computed from both components using, ws =√
U2 + V 2. Herein, we use a horizontal spatial resolution

of 5 km gathered from a Weather Forecasting and Research
(WRF) model simulation on the [43◦E, 65◦E]× [5◦S, 24◦N ]
region of the earth [57]. The target dataset has been re-
stricted to the Arabian Sea, as shown in Fig. 4, with a
total number of 116,100 locations. The choice of this par-
ticular subregion is motivated by the need to ensure that
the measurements exhibit spatial isotropy, i.e., the cross-
covariance depends only on the distance between locations
and not on the locations themselves. Often, this isotropy
assumption holds when the locations are situated in areas
with similar characteristics. As the locations are all on the
ocean in the 116K dataset, this behavior can be expected.
One more modification has been applied to the wind speed
dataset to obtain a zero-mean random field: we remove a
spatially varying mean using the longitudes and latitudes as
covariates (we assume means are zero in our experiments).

7.3 Qualitative Analysis Using Synthetic Datasets

We use the Monte Carlo simulation to estimate the pa-
rameters of a powered exponential covariance model, with
a set of truth parameters. We fix the variance parameter
(θ0) to 1.5 and we use two levels of smoothness (θ2), 0.6
(rough field), and 1.5 (smooth field). We use the rough field
with the three correlation lengths and give one example of
smooth and strong correlated data. For the range parameter
(θ1), we compute it using Effective Ranges (ER) with weak,
medium, and strong correlations. ER refers to the distance at
which the marginal correlation drops to 0.05. We report our
results as a set of boxplots to differentiate between different
variants of mixed-precision computations when assessing
estimation quality, number of iterations to converge, predic-
tion accuracy, and prediction uncertainty.

Parameter Estimation.

In spatial statistics, the accuracy of the model parameters
is critical to better understand and analyze the underlying
spatial data. Fig. 5 presents the sensitivity of the parameter
vector in presence of mixed-precision MLE computations
(based on Cholesky factorization) for various correlation
strengths and field characteristics. The figure presents the
MLE boxplots of the estimated parameters for the synthetic
datasets generated from a set of truth θt vector. There are
four columns, each labelled with the truth θt vector that
corresponds, from left to right, to rough field with weak
correlations, to rough field with medium correlations, to
rough field with strong correlations, and to smooth field
with strong correlations. Each row provides the estimation
accuracy of the variance θ0, range θ1, and smoothness
θ2 parameters based on the powered exponential matrix
kernel, as defined by the initial truth θt vector (i.e., red
dotted lines). The first three columns in the given box-
plots show that when correlation increases, the parameters
vector becomes harder to estimate for configurations with
lower precisions. Thus, one may experience accuracy loss
with highly correlated data when using configurations with
lower precisions. Moreover, when comparing the 3rd/4th
columns with rough / smooth fields and strong correlations,

Fig. 5: Parameter estimation boxplots on 2D synthetic
datasets with 40K locations using different mixed-precision
MLE variants. “‘a’D:‘b’S:‘c’H” represents the percent-
age of different precision formats, i.e., Double, Single, and
Half, per band region.

smooth fields seem to require higher precision accuracy to
properly estimates the model parameters, even with less
correlated data (not shown in Fig. 5). Fig. 6 reports the
impact of mixed-precision MLE computations on the total
number of iterations performed during the learning phase.
The single iterations of mixed-precision MLE are usually
faster than the pure DP MLE. We observe that the mixed-
precision MLE converges faster than DP MLE as the corre-
lation strengths become stronger or in presence of smooth
fields. This indicates that mixed-precision MLE has attained
a local maximum that may or may not be close to the
global maximum retrieved by the pure DP MLE. For in-
stance, the mixed-precision MLE configurations with strong
correlations and smooth field (4th column) do around four
times less iterations than pure DP MLE but fail to precisely
estimate θ0 and θ1, as shown in Fig. 5. However, some
mixed-precision MLE configurations manage to successfully
estimate θ2.

Prediction Accuracy. Prediction accuracy in spatial
statistics can be defined by two metrics, i.e., the Mean
Square Prediction Error (MSPE) and the prediction uncer-

Fig. 6: Number of iterations on 40K 2D synthetic datasets
using different mixed-precision MLE variants.
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(a) Mean Square Prediction Errors (MSPEs). (b) Prediction uncertainty.

Fig. 7: Prediction error (MSPE) and prediction uncertainty boxplots using 40K 2D synthetic datasets for 90% observed
locations and 10% missing locations with different mixed-precision MLE variants.

TABLE 1: Qualitative assessment of the MLE based on the mixed-precision approach using 2D soil moisture dataset.

Variants Variance (θ0) Range (θ1) Smoothness (θ2) Log-Likelihood (llh) MSPE Prediction Uncertainty Iterations
100D 0.7223 0.0933 0.9983 -59740.65974 0.044926 4.734439e+03 180

10D:90S 0.7314 0.0953 0.9969 -59741.37532 0.044933 4.736149e+03 207
10D:30S:60H 0.7239 0.0936 0.9982 -59740.65200 0.044927 4.734435e+03 244
5D:5S:90H 0.7106 0.0927 0.9967 -59741.35348 0.044935 4.736572e+03 204
1D:99H 0.9330 0.1286 0.9863 -59867.53239 0.044980 4.750953e+03 159

TABLE 2: Qualitative assessment of the MLE based on the mixed-precision approach using 2D wind speed dataset.

Variants Variance (θ0) Range (θ1) Smoothness (θ2) Log-Likelihood (llh) MSPE Prediction Uncertainty Iterations
100D 0.8407 0.0751 1.9905 241480.9994 1.752914E-02 2.2855E+00 666

10D:90S 0.9924 0.1794 1.9757 239908.1004 1.766194E-02 2.9170E+00 91
10D:30S:60H 0.9761 0.1804 1.9576 232783.9932 1.765651E-02 5.2836E+00 94

tainty. We use 100 samples each with 40K locations to
validate the prediction accuracy using synthetic datasets.
Fig. 7 shows two boxplots assessing both MSPE and the
prediction uncertainty. The MSPE boxplots do not show a
significant difference with mixed-precision MLE variants,
except for the smooth case (i.e., 4th column) in Fig. 7a.
In general, it seems that the MSPE accuracy is slightly
impacted by the mixed-precision approach. Fig. 7b shows
the prediction uncertainty with different mixed-precision
variants. With strong correlation and smooth field spatial
data, the prediction uncertainty values of MP variants are
higher than the DP variant’s uncertainty values. However,
if the data characteristic has exclusively one of those cases
(i.e., strong correlation and smooth field), the prediction un-
certainty difference compared to the high precision variant
remains insignificant. Another observation from the figure
that If comparing different mixed-precision variants to each
other, the uncertainty values do not necessarily increase
the uncertainty values with less precision. With the MP
approximation, the process starts to be non-linear, and non-
expected uncertainty values can pop up.

7.4 Qualitative Analysis Using Real Datasets

We estimate the underlying model parameters for the two
aforementioned real datasets. For the 1M soil moisture
dataset, Table 1 reports all the results corresponding to dif-
ferent mixed-precision MLE variants. The estimation of the
model parameters (i.e., variance, range, and smoothness) for
different configurations are close to the pure DP MLE, except
for the 1D:99H variant. We tried several band sizes for each
precision and kept only the ones showing some difference
in parameters estimation, MSPE, or prediction uncertainty.
Moreover, we observe from the estimated parameters that
this dataset has medium correlated data with an average

smooth field. This corroborates the analysis made with
synthetic datasets that concludes on the effectiveness of the
mixed-precision MLE for such data characteristics even with
most of the computations performed in HP. The table also
shows the sensitivity of the maximum log-likelihood values
that correspond to the estimated parameters for each com-
putation variant. The log-likelihood values also reflect the
accuracy of the parameter estimation for each variant. Thus,
all the mixed-precision MLE variants reach a similar log-
likelihood value estimation after convergence, except for the
1D:99H configuration. The prediction accuracy (i.e., MSPE
and prediction uncertainty) using the estimated parameters
suggests that the mixed-precision MLE preserves it. In fact,
such dataset characteristic seems to be resilient to accuracy
loss even with the extreme 1D:99H variant.

For the wind speed dataset, Table 2 reports the param-
eters estimation and the prediction accuracy. This dataset
comes from a highly smooth field (θ2). Thus, the estimation
of the model parameters is impacted starting from the first
mixed-precision 10D:90S variant and further deteriorates
with lower precision configurations. Indeed, the results
show differences in parameter estimations, likelihood esti-
mation, and prediction accuracy. For instance, the prediction
uncertainty is even doubled 10D:30S:60H although MSPE
is still acceptable. This qualitative assessment demonstrates
how important it is to consider all these statistical metrics
for obtaining an effective insight. These reported results
match the trend seen for synthetic datasets boxplots in Fig. 5,
where highly smooth data suffers when mixed-precision
MLE is used. The two tables also show the total number
of iterations to converge in each case. The reported results
confirm the findings from the synthetic datasets in Fig. 6,
where the number of iterations with the pure DP MLE are
larger than the lower precision MLE variants in the case of
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Fig. 8: Incremental effect of
optimizations on Summit.
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Fig. 9: Performance of mixed
precisions on Summit.

strong correlation and rough data (Table 1) and even larger
for strong correlation and smooth data (Table 2).

7.5 Performance Impact of Optimizations

Two optimizations are proposed to guide the PaRSEC

runtime system and efficiently tackle the load imbalance
incurred by using mixed-precision Cholesky factorization.
Fig. 8 shows the incremental impact of the lookahead (L)
and nested data distribution (DD) optimizations on 128
nodes Summit using the mixed-precision Cholesky fac-
torization variant 10D:10S:80H, which provides decent
qualitative assessment for various data characteristics. In the
figure, NONE means no optimization, and we also provide
an upper bound (BOUND) for the performance, which exe-
cutes the entire mixed-precision Cholesky, while disabling
all HGEMMs. The mixed-precision Cholesky factorization
achieves up to 10% performance improvement with the
nested DD and up to 24% when both nested DD and looka-
head are applied, reaching the upper bound. The resulting
performance of 6.9 PFlop/s is about 1.6X compared to the
DP Linpack performance on 128 Summit nodes.

7.6 Performance Comparisons

We compare the proposed mixed-precision Cholesky against
two state-of-the-art mixed-precision applications on shared-
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Fig. 10: Performance comparison against state-of-the-
art (i.e., PaRSEC speedup compares to two differ-
ent StarPU-based applications, MOAO_StarPU [58] and
ExaGeoStat_StarPU [4]) using: (a), shared-memory: per-
formance on four V100 GPUs; (b), distributed-memory:
strong scalability with matrix size 640K × 640K on
Shaheen II.
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Fig. 11: Performance of mixed DP/ SP.

and distributed-memory, i.e., a computational astron-
omy (i.e., MOAO_StarPU [58]) and a geostatistics appli-
cations (i.e., ExaGeoStat_StarPU [4]), with 20S:80H

and 10D:90S mixed precision configurations, respectively.
We only report on these two configurations since they
maintain sufficient accuracy for both applications. Both
applications are powered by StarPU runtime system,
which does not provide inherent support for mixed-
precision computations like PaRSEC. Therefore, the user
is in charge of manually converting the tiles at the re-
ceiver side, which engenders higher volume of commu-
nication than PaRSEC. MOAO_StarPU mixes SP and HP,
and targets a shared-memory system with four V100 GPUs;
ExaGeoStat_StarPU deals with DP and SP computa-
tions on distributed-memory systems. Fig. 10 shows the
detailed performance comparisons. When running both ap-
plications with the same precision, PaRSEC outperforms
StarPU thanks to a native support for collective com-
munications, while StarPU uses point-to-point communi-
cations. For 20S:80H, ExaGeoStat_PaRSEC outperforms
MOAO_StarPU with up to 1.46X speedup, while achieving
80.0 TFlop/s on four V100 GPUs (Fig. 10a). For 10D:90S,
ExaGeoStat_PaRSEC outperforms ExaGeoStat_StarPU
on a distributed-memory system, and the advantage is
more significant as the number of nodes increases with
up to 1.53X speedup (Fig. 10b), thanks to a reduction in
communication volume.

7.7 Performance Evaluation at Scale

In this section, we evaluate the proposed mixed-precision
Cholesky factorization at a large scale on the three before
mentioned HPC clusters. HAWK and Shaheen II do not
support HP, so Fig. 11 showcases only the mixed DP and
SP performance for 100D, 10D:90S and 100S, along with
the speedup of 100S and 10D:90S to 100D, on 1536 HAWK
nodes and 4096 Shaheen II nodes. On Shaheen II, We
report about 1.56X speedup from 10D:90S to 100D and
2.05X speedup from 100S to 100D when matrix size is
larger than 2.4M. For the performance of 100D, it could
achieve about 3.2 PFlop/s which is about 88% of the DP
Linpack performance. Similarly on HAWK, we achieve per-
formance of about 2.8 PFlop/s for 100D, while 4.5 PFlop/s
for 10D:90S, and 5.6 PFlop/s for 100S with up to 1.59X
speedup from 10D:90S to 100D and 1.98X speedup from
100S to 100D. On Summit, Fig. 9 shows the performance
results with different combinations of DP, SP and HP, and
their speedup relative to 100D on 128 nodes. The SP and DP
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curves show performance efficiency degradation after a cer-
tain matrix size due to memory swapping between host and
device main memory. With the mixed-precision Cholesky
factorization, we save memory footprint and we can achieve
a significant efficiency and scalability as we increase the
matrix size. In particular, we obtain up to 9.1 PFlop/s for
1D:99H, i.e. 2.06X of the DP Linpack performance, that
translates into up to 2.64X speedup against the DP Cholesky
factorization.

All in all, these results show the efficiency and scala-
bility ExaGeoStat_PaRSEC for mixed-precision Cholesky
factorization while maintaining acceptable accuracy for geo-
statistical modeling and prediction.

8 CONCLUSION AND FUTURE WORK

We demonstrate Maximum Likelihood Estimation (MLE)
with a novel mixed three-precision Cholesky factorization
powered by a dynamic runtime system on four major HPC
systems. The resulting ExaGeoStat_PaRSEC framework
exploits the mathematical structure of the covariance ma-
trix by on-demand casting of precisions in computations
and communications. This synergistic approach permits to
achieve up to 9.1 (mixed) PFlop/s sustained performance
by maximizing hardware occupancy using lookahead and
nested data distributions. Application-expected accuracy is
achieved thanks to a band region mechanism to set the pre-
cision arithmetics, tunable to preserve high productivity for
users. In future work, we intend to leverage Tile Low-Rank
approximations [48], [49] with mixed precisions to further
reduce memory footprint and shorten time to solution.
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[19] P. Düben, H. McNamara, and T. Palmer, “The Use of Imprecise
Processing to Improve Accuracy in Weather & Climate Predic-
tion,” J. of Computational Physics, vol. 271, pp. 2–18, 2014.
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