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Abstract

The main problem of the kernel density estimation methods is the
huge computational requirements, especially for large data sets. One
way for accelerating these methods is to use the parallel processing.
Recent advances in parallel processing have focused on the use Graph-
ics Processing Units (GPUs) using Compute Unified Device Architec-
ture (CUDA) programming model. In this work we discuss a naive and
two optimised CUDA algorithms for the two kernel estimation meth-
ods: univariate and multivariate. These optimised algorithms are based
on the use of shared memory tiles and loop unrolling techniques. We
also present exploratory experimental results of the proposed CUDA
algorithms according to the several values of parameters such as num-
ber of threads per block, tile size, loop unroll level, number of vari-
ables and data (sample) size. The experimental results show significant
performance gains of all proposed CUDA algorithms over serial CPU
version and small performance speed-ups of the two optimised CUDA
algorithms over naive GPU algorithms. Finally, based on extended per-
formance results are obtained general conclusions of all proposed CUDA
algorithms for some parameters.
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1 Introduction

Nonparametric methods which do not require distributional assumptions, are
one of the most important for applied data analysis, modeling and inference.
One of its popular tools is kernel density estimation (KDE) and it has been
successfully used to a large number of applications including computational
econometrics, market analysis and computational linguistics to name but a
few. There are numerous publications and references about the kernel density
estimation methods mostly concerning theoretical and practical aspects of the
estimation methods; see for example Silverman [22], Wand and Jones [24] and
Klemel [10].

Kernel density estimation methods are typical of computational order O(n?k)
where n is the number of observations and k is the number of variables and
in many cases the data sets are becoming larger in recent years and these
kernel estimation methods are becoming more computer intensive as econo-
metricians estimate more complicated models and utilize more sophisticated
estimation techniques. Methods of data-based bandwidth selection such as
cross-validation have also high computational requirements [5].

Few approximation techniques have been proposed for reducing the huge
computational requirements of kernel density estimation methods. The first
of them, proposed by Silverman [23], uses Fast Fourier Transform (FFT). The
other one applies Fast Gauss Transform (FGT) as suggested by Elgamall [6].

An alternative way to satisfy the computational demands of kernel estima-
tion methods is to use the parallel computing. The most important idea of
parallel computing is to divide a large-scale problem into a number of smaller
problems that can be solved concurrently on independent computers. Research
in parallel computing has focused on hardware and software. The most impor-
tant hardware technologies or high performance computer systems are a cluster
of workstations, multicore platforms and Graphics Processing Units (GPUs).
On the other hand, several well-designed software technologies are available
for utilizing parallel computing hardware. For example, the development and
programming of applications for cluster of workstations is based on message
passing programming model using the MPI library. Moreover, the parallelisa-
tion of applications on multicore architectures is based on thread programming
model using the Pthreads, OpenMP, Intel Cilk++ and Intel TBB frameworks.
Finally, the implementation of an application on GPUs is based on data par-
allel programming model using CUDA and OpenCL frameworks.
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There are many references about parallel computing for related non-parametric
and econometric methods and applications; see for example, Adams et al [1]
and Greel and Coffe [4] for a review and the monographs by Kontoghiorghes
[11, 12] treats parallel algorithms for statistics and linear econometric models.
However, in the field of the parallelisation of kernel density methods there are
a few research works. For example, Racine [20] presented a parallel imple-
mentation of kernel density estimation on a cluster of workstations using MPI
library. Further, Creel [3] implemented the kernel regression method in parallel
on a cluster of workstations using MPI toolbox (MPITB) for GNU Octave [7].
Moreover, Lukasik [13] presented three parallelisations for kernel estimation,
bandwidth selection and adaptation on a cluster of computers using MPI pro-
gramming model. Recently, Michailidis et al [14] presented an extended and
unified study of implementations for kernel density estimation on multicore
platform using different programming models such as Pthreads, OpenMP, In-
tel Cilk++4, Intel TBB, SWARM and FastFlow. The parallelisation of kernel
estimation methods of previous papers is based on the data partitioning tech-
nique where each computer or processor core executes the same operations on
different portions of a large data set.

Based on research background, there isn’t an extensive research work in the
field of the parallelisation of kernel estimation methods on GPUs accelerators.
For this reason, in this paper we present a naive and two optimised CUDA
algorithms for the two kernel estimation methods such as univariate and mul-
tivariate case. These two optimised CUDA algorithms are based on the use
of shared memory tiles and loop unrolling techniques. Moreover, the GPU
platform is characterized as a flexible because a variable number of concurrent
threads can be executed and there is a dynamic assignment of local resources,
such as registers and local memory to threads [21]. Based on this characteris-
tic of flexibility allow us to present an extended and exploratory experimental
study of the proposed CUDA algorithms in order to find the optimal perfor-
mance with several values of parameters such as number of threads per block,
tile size, loop unroll level, number of variables and data size. Finally, in this
paper we present a comparative study among the three CUDA algorithms (i.e.
the naive and two optimised versions) for the parallelisation of the two kernel
estimation methods.

An outline of the rest of the paper is as follows. In Section 2, a GPU archi-
tecture as well as the CUDA programming model is presented and in Section 3
there are sequential and CUDA algorithms for two kernel density estimation
methods. In Section 4 the experimental methodology including the GPU plat-
form, experimental parameters and performance metrics for the evaluation of
the algorithms is presented. In Section 5, an extended performance evaluation
of the three CUDA implementations is described. Finally, in Section 6 the
final conclusions are presented.
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2 GPU Architecture and GPU Programming

A heterogeneous computer system consists of two different types of compo-
nents: a host that is a CPU multicore and the devices that are GPU massively
parallel manycore cards. The GPU is connected to the CPU multicore system
via 16-lane PCI Express (PCle) 2.0 bus to provide 16 GB/s transfer rate, peak
of 8 GB/s in each direction. The data transfer rate between the GPU chip
and the GPU memory is more higher than the PCle bandwidth.

In the following subsections, we introduce the hardware architecture model
and the software programming model of the GPU.

2.1 GPU Architecture

More details for the historical evolution of GPU architecture from the graph-
ics pipeline into a full scalable parallel programmable processors, the readers
are referred to [19, 18]. Nvidia developed an unified GPU architecture that
supports both graphics and general purpose computing. In general purpose
computing, the GPU is viewed as a massively parallel processor array con-
tains many processor cores. Figure 1 presents a typical GPU architecture from
Nvidia [16]. The GPU consists of an array of streaming multiprocessors (SMs).
Each SM consists of a number of streaming processors (SPs) cores. Each SP
core is a highly multithreaded, managing a number of concurrent threads and
their state in hardware. Further, each SM has a SIMD (Single-Instruction
Multiple-Data) architecture: at any given clock cycle, each streaming proces-
sor core performs the same instruction on different data. Each SM consist
of four different types of on-chip memory, such as registers, shared memory,
constant cache and texture cache. Constant and texture caches are both read-
only memories shared by all SPs. On the other hand, the GPU has a off-chip
memory, namely global memory (to which Nvidia refers as the device memory)
in which has long access latency. More details for these different types of mem-
ory can be found in [16, 21]. For our numerical experimets, we take Nvidia
GeForce GTX 280 in which has 30 SMs, and each SM has 8 SPs, resulting in
a total of 240 processor cores. Moreover, each SM has 16 KB shared memory
and 16 KB registers.

2.2 GPU Programming Model

Programming GPUs is qualitatively different than programming multicore
CPUs. For this reason, parallel to the hardware, developed many software
environments for GPU computing in order to develop general purpose com-
puting applications such as BrookGPU, Microsoft’s Accelerator, RapidMind,
PeakStream, AMD CTM/HAL, Nvidia CUDA, OpenCL and DirectCompute.
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Figure 1: Typical GPU architecture from Nvidia [16]

More details for the history of software environments for GPU computing have
been summarized in [18, 2]. We focus on Nvidia Compute Unified Device Ar-
chitecture (in short, CUDA) programming model and software environment
which allows programming GPUs for general purpose applications via mini-
mal extension of the C programming language. The basic programming goal of
CUDA is to support heterogeneous computing model that the sequential parts
of an application are executed on the CPU and the computationally-intensive
parts are executed on the GPU.

To map large-scale problems on a GPU parallel architecture using the
CUDA programming model, the programmers follow the two-level data par-
allel decomposition scheme [15]: the problem is partitioned into coarse sub-
problems or blocks that can be computed independently in parallel and af-
terwards each sub-problem or block further is partitioned into finer sub-tasks
that can be computed cooperatively in parallel. The above two level paral-
lel scheme is compatible to the GPU architecture: streaming multiprocessors
compute coarse sub-problems and parallel threads compute finer sub-tasks.

The developer writes a unified program C for CUDA in which consists of
host code running on CPU and kernel code running on a device or GPU. The
host code is a simple code C that implements some parts of an application that
exhibit little or no data parallelism. The kernel code is a code using CUDA
keywords that implements some parts of an application exhibit high amount
of data parallelism. The kernel code implements the computation for a single
thread and is usually executed on GPU by a set of parallel threads. All parallel
threads execute the same code of the kernel with different data. Threads are
organized in a hierarchy of grids of thread blocks. A thread block is a set of
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concurrent threads that can cooperate via barrier synchronization and access
to a shared memory which is only visible to the thread block. Each thread in a
thread block has a unique thread ID number threadIdx. Thread ID can 1, 2,
or 3 dimensional. Usually there can be 512 threads per block. Thread blocks
are grouped into a grid and are executed independently. Each block in a grid
has a unique block ID number blockIdx. Block ID can be 1 or 2 dimensional.
Usually there are 65535 blocks in a GPU. The programmer invokes the kernel,
specifying the number of threads per block and the number of blocks per grid.
We must note that prior the invoking the kernel, all the data required for the
computations on GPU must be transferred from the CPU memory to GPU
(global) memory using CUDA library functions. Invoking a kernel will hand
over the control to the GPU and the specified kernel code will be executed on
this data.

Another important concept in CUDA is that the thread blocks are serially
assigned for execution on each SM. These blocks are then further divided into
groups called warps, each containing 32 parallel threads and is the scheduling
unit of each SM. When a warp stalls, the SM can swap for another warp
to execute. A warp performs one instruction at a time, so full performance
can only be achieved when all 32 parallel threads in the warp have the same
execution path.

Closely related to the thread hierarchy is the memory hierarchy. Each
thread uses registers, each thread block uses shared memory and each appli-
cation or grid uses global memory. The registers and shared memory are the
fastest memories and are located on the on-chip random-access memory, but
their sizes are limited. Registers are allocated by compiler, whereas shared
memory is allocated by the developer. The global memory is the slowest mem-
ory and is located on the off-chip dynamic random-access memory.

Naive implementations of computationally intensive applications on GPU
platform using CUDA model give important speed-ups over existing CPU,
but these are often suboptimal and do not uses the hardware resources to
a satisfactory degree. Achieving scalable and high performance applications
on the GPU architecture using CUDA, the programmers should follow some
optimization programming strategies and guidelines such as latency hiding,
careful use of three layers of memory hierarchy and other similar strategies
(2,9, 21].

In addition, Nvidia offers functional accelerated libraries, like cuBLAS,
cuFFT and Thrust which provide simple standard interface to often used rou-
tines for linear algebra, Fast Fourier Transform, data parallel primitives, re-
spectively. Finally, there are useful tools that help the software development
such as the compiler nvce, the debugger cudagdb, the profiler cudaprof and
documentation [16].
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3 Kernel Density Estimation: Sequential and
CUDA Algorithms

In this section we give the description of sequential kernel density estimation
methods both the univariate and multivariate cases and we also discuss how
they can be parallelised using the CUDA programming model.

3.1 Sequential Algorithms

We begin with the simplest kernel estimator that is called a univariate density
estimator. Consider a random vector z = [z1 5 ... 7,7 of random variable
of length n. Drawing a random sample of size n in this setting means that we
have n observations of the random variable x and z; is denoted ¢ observation
of the random variable x. The goal is to estimate the kernel density of the
random variable # = [z; 25 ...2,|T that originally proposed by Rosenblatt
which is defined as [8, 20]

zn:iK( ; ),i=1,2,...n (1)

where f is a probability density function, K(z) is the kernel function that
satisfies [ K(z)dz = 1 and some other regularity conditions depending on its
order, and h is a bandwidth or the window width satisfying h — 0 as n — oc.
We must note that the bandwidth which is used in formula 1 is fixed.

A sequential algorithm in C language for a univariate fixed bandwidth
density estimator shown in Algorithm 1.

Algorithm 1: Sequential univariate kernel estimation algorithm

1 for i < 0 ton do

2 sum_ker < 0.0

3 for j + 0 tondo

4 L sum_ker < sum_ker + kernel((x[i| — y[j])/h)/h

pdf[i] < sum_ker /(double)n;

(411

We must note that the kernel is a C user-defined function which contains the
formula of the Gaussian kernel function. Moreover, the vectors pdf, x and y
are implemented as one-dimensional arrays.

Extension of the above approach to multivariate density estimation is
straightforward so that involving k£ random variables. Consider a k-dimensional
random vector z = [z1, ..., 2|7 where 1, ..., z; are one-dimensional random
variables. Drawing a random sample of size n in this setting means that we
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have n observations for each of the k random variables, x1,...,z;. Suppose
that we collect the ith observation of each of the £ random variables in the vec-
tor ;, L.e. ; = [w;,...ay)" for i =1,2,...n, where z;; is the ith observation
of the random variable z;. We adapt the univariate kernel density estimator
to the k-dimensional case using a product kernel. Therefore, the multivariate
kernel density estimator is defined as [§]

fle = - ST 5 K i =12, &)

=1 as ha ha

In the multivariate case, we consider that the bandwidth is equal in all dimen-
sions, i.e. h = hy = hy...hg, where d = 1,2,..., k. A sequential algorithm
in C language for a multivariate fixed bandwidth density estimator shown in
Algorithm 2.

Algorithm 2: Sequential multivariate kernel estimation algorithm

1 for i < 0 to n do
sum_ker < 0.0
for j + 0 tondo
prod_ker < 1.0
for k < 0 to nvar do
L prod_ker < prod_ker x kernel((z[i][k] — y[j][k])/h)/h

7 sum_ker < sum_ker + prod_ker

[=2 2L B VU V)

8 | pdf[i] < sum_ker/(double)n;

The vector pdf is implemented as one-dimensional array whereas the ma-
trices x and y are implemented as two-dimensional arrays. The variable nvar
is the number of random variables. We must note that in this paper we im-
plement the univariate and multivariate fixed bandwidth density estimator
with Gaussian kernel function. These two kernel estimation methods share a
common feature - they involve O(n?k) computations in contrast to, say, the
univariate density estimation that involve only O(n?) computations (in this
case, k = 1).

3.2 Naive CUDA algorithms

Starting from the CUDA implementation of the univariate kernel estimation
method, we observe that sequential algorithm 1 consists of an outer for loop
where each iteration calculates the probability density function of ¢ element of
vector pdf (i.e. each iteration calculates the kernel summation and the final
sum is stored in pdf[i]) and is independent of all the others. For implementing
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of the univariate kernel estimation method in CUDA, we follow the two-level
data parallel scheme: the result vector pdf is partitioned into coarse blocks
of equal size [n/t] (where n is the number of elements of vector pdf and ¢
is the number of blocks) and each block further is partitioned into finer sub-
tasks where each sub-task performs the calculation of the individual kernel
summation or the probability density function of ¢ element of the vector pdf.
Based on the above, we assign a coarse block to each thread block in a one-
dimensional grid and we also assign a sub-task to each individual thread within
a one-dimensional thread block. For this reason, an iteration of the outer loop
i of Algorithm 1 is replaced by an independent thread with identifier id where
id is the global identity of thread on a grid of threads. This global identity is
calculated based on its thread and block IDs so that each thread based on the
1d executes the desired calculation on the corresponding element of vector pdf.
Therefore, the serial algorithm 1 is transformed into the naive CUDA kernel
for a thread, as shown in Algorithm 3.

Algorithm 3: CUDA univariate kernel estimation algorithm
id < blockDim.x x blockIdzx.x + threadldzr.x
sum_ker < 0.0
for j < 0 ton do
| sum_ker < sum_ker + kernel((z[id] — y[j])/h)/h

pdf [id] < sum_ker /(double)n;

AW N =

4]

The variables ¢d and sum_ker are allocated by compiler as registers and
the vectors x,y and pdf are allocated as device or global memory.

Similarly, we follow the above parallelisation strategy for implementing
of the multivariate kernel estimation method, as shown in Algorithm 4. In
this case, an iteration of the outer loop ¢ of Algorithm 2 is replaced by an
independent thread with identifier ¢d. Each thread calculates a product and
a sum kernel and the final sum is stored in the corresponding element ¢d of
the vector pdf. We must note that the two-dimensional arrays x and y of
Algorithm 2 are transformed into two one-dimensional arrays so that these
arrays can handled by the CUDA model. Finally, the variables id, sum_ker
and prod_ker are allocated by compiler as registers whereas the vectors z,y
and pdf are allocated in the device or global memory.

There is data transfer between the CPU memory (host) to GPU (global
or device) memory both before and after kernel invocation. So, the CPU
allocates space over the global memory of GPU and transfers data required
by kernels. At the end of computations, results are transferred to the CPU
memory. Further, we specified one-dimensional number of blocks per grid and
one-dimensional number of threads per block in the kernel invocation.
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Algorithm 4: CUDA multivariate kernel estimation algorithm
1 id < blockDim.x x blockIdx.x + threadldx.x

2 sum_ker < 0.0
3 for j < 0 ton do

4 prod_ker < 1.0

5 for k£ < 0 to nvar do

6 | prod_ker < prod_kerxkernel((z[idxnvar+k]—ylj*nvar+k]/h)/h
7 sum_ker < sum_ker + prod_ker

8 pdf[id] < sum_ker/(double)n;

3.3 CUDA optimisations

In next two subsections, we discuss two CUDA optimisation techniques, namely
register and shared memory tiles in order to reduce the global memory accesses
of the two naive CUDA implementations and the loop unrolling to improve fur-
ther the performance.

3.3.1 Register and shared memory tiles optimisation

The global data accesses of the two naive CUDA algorithms are coalesced
memory accesses when global memory addresses accessed simultaneously by
multiple threads in the same warp in a contiguous way and can be aggregated
into a single data access. In this way, there is a reduction in the global memory
access. Nonetheless, we observe that there are two significant disadvantages
from naive CUDA algorithm 3. First, each thread with id reads the same id
element of the vector x, n times from the slow global memory and second all
the threads within the same block read frequently the same whole vector y, n
times from the global memory, i.e. the vector y is shared by all the threads
within the same block. These two disadvantages slow down the performance
of CUDA algorithm 3 significantly. For this reason, we can eliminate these two
disadvantages exploiting the memory hierarchy of the CUDA model in order to
reduce further the global memory accesses. Therefore, the first disadvantage
can be eliminated by the effective use of the registers. More specifically, we
declare a variable xr to each thread in order to load once the corresponding
1d element of the vector x. This variable will be allocated automatic by the
compiler as a register.

The second disadvantage can be eliminated by the shared memory use so
that the vector y accessed at the tile level reside on the shared memory. The
whole vector y is partitioned into blocks of size BSIZFE elements. A block with
BSIZFE contiguous elements is called tile and the BSIZ FE is the tile size. Each
block is loaded on the shared memory sequentially tile by tile. The loading of
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each tile on the shared memory is as follows: all the threads within the same
thread block load their corresponding elements of the vector y cooperatively.
This tile-loading procedure is performed when the tile size is equal the number
of threads (i.e. THREADS) in a thread block. When the tile size is greater
than the number of threads of a thread block, the above tile-loading procedure
can be performed in iterative and successive phases. The implementation of the
tile-loading procedure in CUDA requires the allocation of memory for the tile
in the shared memory and the execution of data transfer from global to shared
memory. The following piece of code C contains statements for allocating a
array in the shared memory using the __shared__ keyword and statements for
transferring of data from the global memory (y vector) to the shared memory
(yr vector):

__shared__ float yr[BSIZE];

for(j = 0; j < n; j += BSIZE) {
for(i = 0; i < BSIZE; i += THREADS)
yr[threadIdx.x + i] = y[(i + (threadIdx.x + j))];

}

Once each tile loaded into the shared memory, all operations within the tile
are calculated in the shared memory and registers. Based on the above ob-
servations, naive CUDA algorithm 3 is transformed into a shared memory
optimisation kernel for a thread, as shown in Algorithm 5.

Algorithm 5: CUDA optimisation algorithm for univariate kernel esti-
mation
__shared__ float yr[BSIZE)]
td < blockDim.x % blockIdx.x + threadldz.x
sum_ker < 0.0
xr <— zfid]
for j < 0 to n with step BSIZFE do

for i + 0 to BSIZE with step THREADS do

L yr(threadldx.x +i| < y[(i + (threadldz.x + j))]

for k < 0 to BSIZE do
9 | sum_ker < sum_ker + kernel((xzr — yr[k])/h)/h

o =R B NV

0]

10 pdf[id] < sum_ker/(double)n;

As far as the mulivariate case is concerned, naive CUDA algorithm 4 shares
the same disadvantages with CUDA algorithm 3. In the other words, each
thread loads the same row id of the array z, n - k times from the global
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memory. Moreover, all the threads within the same block read the same whole
matrix y, n - k times again from the global memory. For solving these global
memory access problems, we adapt the two above proposed solutions to the
multivariate kernel estimation method. For the first problem, we declare a
array xr of size k elements to each thread with id as a register in order to
load once the corresponding row id of the matrix x. This register declaration
requires the use of register keyword.

For the second problem, we use rectangular tiles in the shared memory to
minimize the global memory accesses. The whole matrix is partitioned into
tiles of size BSIZE x k elements (where k is the number of variables). Each
block is loaded on the shared memory vertically tile by tile. The loading of each
tile on the shared memory is similar to this the univariate kernel method, but
we load tile of size BSTZ E x k elements. After loading of each tile on the shared
memory follows the tile calculations within the shared memory. Therefore,
CUDA algorithm 4 is transformed into a shared memory optimisation kernel
for a thread, as shown in Algorithm 6.

Algorithm 6: CUDA optimisation algorithm for multivariate kernel es-
timation

1 register float xr[NUM_V ARS]

2 _shared__ float yd|[BSIZE|NUM_V ARS]

3 1d < blockDim.x x blockldx.x + threadldz.x

4 for k + 0 to nvar do
5
6

indx < k 4+ id * nvar
| ar[k] < z[indz]
7 sum_ker < 0.0

8 for j «+ 0 to n with step BSIZE do
for 1 < 0 to BSIZE with step THREADS do

VA

10 for k < 0 to nvar do
11 yd[threadldz.x + i][k]
yl(i x nvar) + (k + (threadldz.x + j) * nvar)]
12 for j7 < 0 to BSIZFE do
13 prod_ker < 1.0
14 for k < 0 to nvar do
15 L prod_ker < prod_ker x kernel((zr[k] — yd[jj][k]/h)/h
16 sum_ker < sum_ker + prod_ker

17 pdf[id] < sum_ker/(double)n;

The performance of algorithms 5 and 6 give the best performance because
they reduce further the global memory access. However, the amount of reg-
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isters and shared memory used by each thread block limits the number of
thread blocks and the number of concurrent threads executed on each SM.
For this reason, we must select appropriate tile sizes in order to maximize the
performance.

3.3.2 Loop unrolling optimisation

From CUDA algorithm 6, two innermost loops such as lines 10-11 and lines
14-15 have added in order to perform the data tile transfer from the global
memory to the shared memory and the tile calculation, respectively. These
loops have a small body and constant iteration count. However, the iteration
count depends on the number of variables k each time. The performance of
algorithm 6 can further improved by unrolling these small inner loops by several
different levels according to the number of variables. Therefore, algorithm 6
can be transformed into a loop unrolling optimisation kernel, unrolling inner
loops with level 2 (i.e. for two variables), as shown in Algorithm 7.

Algorithm 7: CUDA optimisation algorithm for multivariate kernel es-
timation
register float xr[NUM_V ARS]
__shared__ float yd[BSIZE|[NUM_V ARS)|
td <— block Dim.x * blockIdx.x + threadldz.x
for k + 0 to nvar do
indx < k + id x nvar
L arlk] < x[indx]

S R W N =

sum_ker < 0.0
8 for j «+ 0 to n with step BSIZE do

N1

for 1 <+ 0 to BSIZE with step THREADS do
10 yd[threadldz.z+i][0] + y[(ixnvar)+(0+(threadldz.x+j)*nvar)]
11 yd[threadldz.x+i][1] < y[(ixnvar)+(1+(threadl dz.x+j)*nvar)]
12 for j7 < 0 to BSIZFE do
13 prod_ker < 1.0
14 prod_ker < prod_ker x kernel((xzr[0] — yd[77][0]/h)/h
15 prod_ker < prod_ker x kernel((xzr[1] — yd[jj][1]/h)/h
16 sum_ker < sum_ker + prod_ker

17 pdf[id] < sum_ker/(double)n;

This algorithm can easily modified unrolling inner loops for any level (i.e.
any number of variables). However, higher levels of loop unrolling give the min-
imal loop overhead and fewer instructions but this may increase the registers
use in each thread.
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4 Experimental Methodology

In this section we present the experimental methodology which used in our
experiments in order to compare the relative performance of the proposed
CUDA algorithms presented in previous section. The parameters which is
described the performance of the algorithms are: number of threads per thread
block, tile size, loop unroll level, number of variables k£ (i.e. univariate kernel
methods for & = 1 and multivariate kernel methods for & > 1) and data size
n. It is known that none of the algorithms are optimal or best in all five cases.
Therefore, the main goals in our experimental study are as follows:

1. to find the optimal performance of the naive CUDA algorithms against
the number of threads per block under the different number of variables,

2. to find the optimal performance of the shared memory CUDA algorithms
against the number of threads per block and the tile size under the
different number of variables,

3. to find the optimal performance of the loop unrolling CUDA algorithms
against the number of threads per block, the tile size and the loop unroll
level under the different number of variables and

4. to compare the practical performance among the proposed CUDA al-
gorithms based on the optimal values of the parameters (i.e. number
of threads per block, tile size and loop unroll level) under the different
number of variables and different data (sample) sizes.

The values of five parameters that we tested during our experiments are
as follows: we tested the values 64, 128, 256 and 512 for the parameter of the
thread block size, we also tested the values 2, 6, 14, 30 and 62 for the number
of variables, we tested the tile sizes ranging from 128 to 2048 elements for the
univariate kernel method and tile sizes ranging from 32 x k to 1024 x k (where
k is the number of variables) for the multivariate kernel method, we tested the
values 2, 6, 14, 30 and 62 for the parameter of the loop unroll level and finally
we tested data sizes ranging from 1024 to 10,240.

The experiments were run on an Intel Corel2 Duo (E8400) with a 3.00GHz
clock speed and 3 Gb of memory under Ubuntu Linux operating system version
10.04. The GPU used was the Nvidia GeForce GTX 280 with 1GB global
memory, 30 multiprocessors and 240 cores, enabling the use of a maximum
number of 1024 active threads per multiprocessor for a total of 30720 active
threads. To get reliable experimental results, the running time results were
measured as an average of 10 runs.

The implementations of serial and CUDA algorithms presented in the pre-
vious section were developed using the ANSI C programming language and
were compiled using Nvidia’s nvcee compiler with -O3 optimisation flag.
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For the evaluation of the CUDA algorithms we used the GPU running
time and the speed-up as measures. The GPU running time is the total time
in seconds an algorithm needs to perform the calculations on the GPU platform
and any transfer time between the host and the GPU and was measured using
the timer functions. Finally, the speed-up is the ratio of the serial running
time of an algorithm executed on the CPU platform to the GPU running time
of the same algorithm executed on the GPU platform.

5 Experimental Results

In this section we present the experimental results of the proposed CUDA
algorithms or kernels according to the four goals of the experimental study
as we discussed in the previous section. More specifically, we present the
experimental results of the CUDA algorithms according to the performance
of the naive algorithms, the shared memory optimisations, the loop unrolling
optimisation, and the performance comparison among the proposed CUDA
algorithms based on the optimal values of the parameters (i.e. the number of
threads per block, the tile size and the loop unroll level) using both univariate
and multivariate kernel methods.

5.1 Performance results of naive CUDA algorithms

Figure 2 (left) presents the performance speed-ups achieved by the parallel
execution of the two naive CUDA algorithms for a number of variables k > 1;
i.e. for kK = 1 the univariate kernel method and k£ > 1 the multivariate kernel
method under different numbers of threads per block for a data size of 10,240.
From the figure we can see that, for small numbers of variables, i.e. 1 to 2, the
performance of CUDA kernels is decreased slightly as the number of threads
per block is increased. More specifically, the performance is the same when the
number of threads per block is 64 or 128, whereas there is a small reduction in
performance speed-up when the thread block size is 256 or 512. Nonetheless,
in both cases, the same number of concurrent threads is executed on each
SM (i.e. achieving maximum occupancy), as shown in Figure 2 (right). This
figure shows the estimated number of thread blocks that takes each SM for a
given thread block size and number of variables. This estimated number of
thread blocks is calculated by Nvidia’s Occupancy tool [17] based on the thread
block size, number of registers per thread and amount of shared memory per
block. The estimated number of registers and the estimated amount of shared
memory used by each kernel code are reported by the PTX code via the pxta
option of the nvce compiler. The number of threads executed on each SM for
a given thread block size and number of variables is defined by the product
of the number of blocks and the thread block size. From this figure we can
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Figure 2: Performance speed-ups (left) and estimated number thread blocks
(right) for different numbers of variables under different numbers of threads
per block

see that each SM receives many blocks when the thread block size is small,
and this seems to be better (i.e. yielding a better performance speed-up) than
receiving a few blocks when the thread block size is large. On the other hand,
for the remaining number of variables, i.e. 6 to 62, the performance speed-up
is constant as the thread block size is increased. We also observe that there is
an optimal relative performance speed-up when the thread block size reaches
128 threads for any number of variables.

Moreover, from Figure 2 (left) we can observe that, for each thread block
size, there is an inverse relation between the performance speed-up of the
CUDA algorithms and the number of variables. More specifically, the per-
formance speed-up is decreased as the number of variables is increased. This
is due to the fact that the workload per thread is increased as the number
of variables is increased, resulting in a performance degradation even though
the same number of concurrent threads is executed on each SM, as shown in
Figure 2 (right).

5.2 Performance results of shared memory optimisa-
tions

Figure 3 presents the performance speed-ups achieved by the parallel execution
of the CUDA shared memory optimisations for, respectively, 1, 2, 6, 14, 30 and
62 variables for a data size of 10,240. The performance results in each figure
are plotted for different tile sizes in combination with the number of variables
for each thread block size. Note that, as the number of variables is increased,
performance speed-up bars are not shown for some values of tile size and thread
block size. We will discuss this later. The observations from the first plot of
Figure 3 (univariate kernel method) are as follows. For small thread block
sizes such as 64 and 128 we can see that as we increase the tile size up to 256
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elements, the performance improves and stabilises due to a better use of shared
memory in combination with the larger number of concurrent threads executed
on each SM. This fact is supported in the first plot of Figure 4, where each SM
takes 8 thread blocks for thread block sizes up to 128 and tile sizes up to 256.
The number of thread blocks allocated to each SM depends on the amount
of shared memory used by each thread block, such that the total amount of
shared memory used by all thread blocks cannot exceed 16KB. However, as
we increase the tile size beyond 256 elements, the performance decreases. This
is due to the fact that, as we increase tile size for small block size, the shared
memory requirements are increased and the number of thread blocks allocated
to each SM is reduced, as shown in the first plot of Figure 4. This has the
effect of limiting the number of concurrent threads executed in each SM, and
therefore limits the parallelism and the performance speed-up. For large thread
block sizes such as 256 and 512 we can see that, as we increase the tile size, the
performance stabilises due to a better use of shared memory in combination
with the constant number of thread blocks (or concurrent threads) executed
on each SM with minimal exceptions, as shown in the first plot of Figure 4.
Another main reason for this constant performance speed-up is that only a few
phases are required for loading large tile sizes (i.e. lines 6-7 of algorithm 5)
when many threads participate in a thread block.

Furthermore, the performance of shared memory optimisation for the uni-
variate kernel method achieves optimal results for tile sizes ranging from 128
to 512 with only a few threads per block (i.e. 64 or 128) rather than many
threads per block. Small tile sizes work well with small thread block sizes
because they require only a small number of successive tile-loading phases (i.e.
lines 6-7 of algorithm 5), as shown in Table 1, and all threads in each block
participate cooperatively in these phases to load a complete tile, resulting in
a good performance speed-up. Conversely, the small tile sizes do not work
well on large thread block sizes because only half of the threads participate
in the tile-loading phases, whereas the remaining issue slots of a thread block
(i.e. threads) remain unused, which results in performance inefficiency. On
the other hand, the performance of algorithm 5 is optimal for tile sizes rang-
ing from 1024 to 2048 elements with 256 to 512 threads per block. This is
explained by the fact that the large tile sizes work well on many threads per
block because these threads execute a few successive phases for loading a large
tile size. However, small thread block sizes require more and more successive
phases for loading large tile sizes as shown in Table 1, thus creating additional
overhead time and thereby limiting the performance speed-up.

As we observed in Figure 3, as the number of variables is increased, some
performance bars are not shown for some values of tile size and thread block
size. This is because memory limits have been exceeded in these cases, and
therefore the thread blocks are not allocated to each SM for execution. It is
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L Th. blocksize | ¢\ 1 108 | 956 | 519
Tile size
128 21 1 [05]025
9256 41 211105
512 8| 4 | 2| 1
1024 16| 8 | 4
2048 32016 8 | 4

Table 1: Number of tile-loading phases for any combination of tile size and
thread block size for the univariate kernel method

known that the shape of the tile in the multivariate kernel methods consists
of rows and columns. The number of rows is chosen by the user, whereas the
number of columns is equal to the number of variables used by the multivariate
method each time. However, we must be careful to select the appropriate tile
size so as not to exceed the capacity of the shared memory. For this reason, the
smaller the number of rows, the larger the number of variables, or conversely
the larger the number of rows, the smaller the number of variables that will
fit within the shared memory. Therefore, when selecting the appropriate tile
size so as not to exceed the capacity of the shared memory, there is an inverse
relation between the number of rows and the number of variables of a tile.

Similar observations apply to the performance speed-up figures for the other
variables, 2,6, 14, 30 and 62. For small thread block sizes such as 64 and 128 we
can see that as we increase the tile size up to 256 x 2 elements, 128 X 6 elements,
64 x 14 elements, 32 x 30 elements and 32 x 62 elements for the number of
variables (2, 6, 14, 30 and 62, respectively), the performance improves and
stabilises due to a better use of shared memory in combination with the larger
number of concurrent threads or thread blocks executed on each SM, as shown
in Figure 4. On the other hand, as we increase the tile size beyond 256 x 2,
128 x 6, 64 x 14, 32 x 30 and 32 x 62 elements for the number of variables (2, 6,
14, 30 and 62, respectively), the performance decreases because the number of
thread blocks allocated to each SM is reduced, as shown in Figure 4. For large
thread block sizes such as 256 and 512, and any number of variables, we can
see that as we increase the tile size, the performance is constant with minimal
exceptions, and this is due to a better use of shared memory in combination
with the constant number of thread blocks executed on each SM, as shown in
Figure 4. In addition, for any number of variables, we can see from Figure 3
that the small thread blocks size, i.e. 128, achieves optimal performance speed-
up for small tile sizes because the small number of threads of a thread block
require a few successive phases for loading these small tile sizes, as we explained
earlier in the univariate case. Similarly, the best performance is achieved when
large numbers of threads are used (i.e. 512) for loading large tile sizes, as
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explained earlier. More specifically, for thread block size 128 there is optimal
performance for tile sizes of 256 x 2 elements for two variables, 128 x 6 for six
variables, 64 x 14 for 14 variables, 32 x 30 for 30 variables and 32 x 62 for
62 variables. On the other hand, for thread block size 512 there is optimal
performance for tile sizes of 1024 x 2 elements for two variables, 512 x 6 for
six variables, 256 x 14 for 14 variables and 128 x 30 for 30 variables. However,
from Figure 3 we can also observe that for a given problem with a specific
number of variables, optimal performance is achieved when the thread block
size reaches 128 with small tile sizes rather than 512 with large tile sizes.

As a first general conclusion, we can tell that, for small thread block sizes,
there is an inverse relation between the performance speed-up (or the number
of thread blocks) and the tile size regardless the number of variables, whereas,
for large thread block sizes, there is an constant relation slightly between the
performance speed-up and the tile size. Further, a second general conclusion,
we can tell that optimal performance of CUDA algorithms 5 and 6 is achieved
when there is a linear relation between the thread block size and tile size for any
number of variables. More specifically, optimal performance of these CUDA
algorithms is achieved when they process small or large tile sizes in the shared
memory with the cooperation of a small or large thread block size such that
the tile loading procedure in the shared memory can be accomplished in few
rather than many phases.

5.3 Performance results of loop unrolling optimisation

Figure 5 presents the performance speed-ups achieved by the parallel execution
of the CUDA loop unrolling optimisation for, respectively, 2, 6, 14, 30 and 62
variables, for a data size of 10,240. The experimental results aren’t displayed
for one variable (or the univariate method) because there is no sense in applying
the technique of loop unrolling to a single variable. The performance results in
each Figure are plotted for different tile sizes in combination with the number
of variables for each thread block size. Note that, as the number of variables is
increased, some performance bars in some values of tile size and thread block
size are not shown because the memory limits are exceeded in these cases and
therefore the thread blocks are not allocated to each SM for execution, as we
discussed earlier.

The trend of these results is similar to those of shared memory optimi-
sations, as discussed in the previous subsection. However, the performance
degradation of the algorithms for small thread block sizes (i.e. 64 and 128)
as we increase the tile size isn’t due only to the increased use of shared mem-
ory per block, but also to the increased use of registers per thread because of
the technique of loop unrolling. Note that we unroll the small inner loops of
algorithm 7 by different levels according to the number of variables. These ag-
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gressive increases in shared memory and register requirements limit the number
of thread blocks and the number of threads allocated to each SM (as shown in
Figure 6) quickly enough compared to the shared memory optimisations that
the parallelism is small. This observation is valid for any number of variables.

Finally, we can conclude that unrolling loops by higher levels achieves
higher performance speed-ups at the limited values of parameters such as the
tile and the thread block sizes through the limiting of resources, i.e. registers.
In other words, there is an inverse relation between the loop unroll level and
the use of resources.

5.4 Performance comparison among the proposed CUDA
algorithms

In this section we present performance comparisons of the proposed CUDA
algorithms for univariate and multivariate kernel estimation methods. Figure 7
presents the performance speed-ups of the two CUDA algorithms, 3 and 5, over
the CPU algorithm based on the optimal thread block size of 128 and the tile
size of 512 elements for different data sizes. From Figure 7 we can see that
the performance speed-up of both algorithms is increased as the data size is
increased. Note that, for this specific combination of thread block size and tile
size, algorithm 3 executes the maximum number of concurrent threads in each
SM (i.e 1024), whereas algorithm 5 uses only 768 concurrent threads. Based
on previous experimental results, this limited number of threads of algorithm 5
is due to the increased shared memory requirements. Although this limited
number of concurrent threads of algorithm 5, the performance speed-up of
algorithm 5 is greater than the speed-up of algorithm 3 as the data size is
increased because there is better reuse of shared memory data for this specific
combination of thread block size and tile size. More specifically, algorithm 5
achieves from 1.3X to 1.7X speed-up compared to algorithm 3.

Figure 8 presents the performance speed-ups of the three CUDA algo-
rithms, 4, 6 and 7, over the CPU algorithm for different data sizes under
different numbers of variables k. For k = 2 we used the optimal combination
of thread block size of 128 and tile size of 256 x 2 elements; for £ = 6 we used
the optimal combination of thread block size of 128 and tile size of 128 x 6
elements; for k& = 14 we used the optimal combination of thread block size
of 128 and tile size of 64 x 14 elements; and for £ = 30 and k£ = 62 we used
the optimal combination of thread block size of 128 and tile size of 32 x 30
elements. For any number of variables, we observe from these figures that the
performance speed-ups of the three algorithms are increased as the data size is
increased. Moreover, the speed-ups of algorithm 6 are higher than algorithm 4
as the data size and the number of variables are increased. Although the high
performance of algorithm 6, this algorithm executes the limited number of



1470 P. D. Michailidis and K. G. Margaritis

8 T T 8 T T T
32x2 — 32x6
62x2 EXXH 64x6 EXXH
1282 12846 sz
7+ 256x2 m— 7t 256x6 m—|
512x2 E5=3 51246 ==
1024x2 zza 1024x6 zza
6 R 6 R
= =
% %
] ]
o 5T 1 2 5 4
3 3
= =
E E]
B 4r 1 B 4r 4
g 8
£ % £
z 5 g
5 °r [ ] 5 o ]
2 o8 -]
g K g
2 & 2
2F %! 1 2r 1
%
%!
%
X3
i K3 1 ir 1
%!
2!
i
0 - 0 £
64 128 256 512 128 256
Number of threads per block Number of threads per block
6 T T T T 4 T T T T
32x14 — 32x30 ——
64x14 EXX® 64x30 EXXR
128414 Bz 128:30 E
256x14 m— 351 256x30 mm—
L 512414 == | 512:30 £S5
5 1024x14 Tzz2a 1024x30 ezz2a
3k 1
= =
% %
5 4T 1 5
> o 25p 4
8 8
E E]
g er 1 ) i 1
2 £ 3
2 b4 &
5 S %
8 g 151 & i
£ L1 1 £ %
E 2 K £ 54
3 % 3 %]
z o z 5|
ok 1h o 1
& b
%!
1t B 1
% 05 4
%!
&
o
o
0 . 0 L
64 128 256 512 64 128 256 512
Number of threads per block Number of threads per block
2 T T T T
32x62 ——1
6ax62 EXXR
128462 EEm=
25662 mu—
512x62 5=
1024x62 Tzza
15 - q
=
%
]
2
8
E
B 1+ 4
2
s
3
3
€
5
2
o5 R
° . . . .

Figure 6: Estimated number of thread blocks per SM for different numbers of
threads per block and tile sizes under the different numbers of variables 2, 6,
14, 30 and 62 (from left to right)



Accelerating kernel density estimation on the GPU 1471

1800

Algorithm3 ©——
‘Algorithms £x=

1600
1400
1200

1000

Speedup

800 |

8
s

600 |

Ll

1024 2048 3072 4096 5120 6144 7168 8192 9216 10240
Data size

2
s

2
8
8

2

5
8

Figure 7: Performance speed-ups of the two CUDA algorithms 3 and 5 over
the CPU algorithm for different data sizes for number of variables 1

concurrent threads in each SM such as 768, 512, 512, 512 and 256 threads for
2, 6, 14, 30 and 62 variables, respectively, instead of 1024 threads that uses
algorithm 4. This limited number of threads is due to the increased shared
memory requirements as the tile size in combination with the number of vari-
ables is increased, as we discussed earlier. Further, the performance speed-up
gap between algorithms 4 and 6 widens in favour of algorithm 6 as the number
of variables and the data size are increased. This is due mainly to two reasons:
first, there is better reuse of shared memory data for tile sizes where the num-
ber of rows is small and the number of columns is large in combination with
the small number of phases required for loading such a tile with a few rows
(lines 9-11 of algorithm 6). Secondly, the increased use of fast registers by each
thread for storing the & elements (the number of variables) that correspond to
a row of the matrix x (i.e. lines 4-6 of algorithm 6).

Finally, for each number of variables, we can see that the performance of
algorithm 7 is higher than the other two CUDA algorithms as the data size
is increased, and this is due to the increased use of the fast registers com-
pared to the other two algorithms. This increased register use is due to the
loop unrolling technique, and therefore this technique appears to yield the best
performance speed-ups. Furthermore, the performance of algorithm 7 achieves
higher speed-ups as the number of variables is increased up to 30 variables,
and this is due to the increased use of registers. This increase occurs because
we unroll the inner loops by different levels according to the number of vari-
ables. Consequently, the algorithm is executed quickly. Algorithm 7 achieves
higher speed-ups compared with algorithm 4 and smaller speed-ups compared
with algorithm 6 as shown in Figure 9 for 2, 6, 14, 30 and 62 variables, respec-
tively. Although the high performance of algorithm 7, this algorithm executes
the limited number of concurrent threads in each SM compared with algo-
rithms 4 and 6 and this is due to the aggressive shared memory and register
requirements. Finally, we observe that the performance of the three CUDA
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algorithms is limited as the number of variables is increased for a given data
size.

6 Conclusions

In this paper we discussed the three CUDA algorithms for parallelisation of
the univariate and multivariate kernel estimation methods. Moreover, we pre-
sented an extended and exploratory performance study of the CUDA algo-
rithms in order to find the optimal performance according to several experi-
mental parameters such as the number of threads per block, the tile size, the
loop unroll level, the number of variables and the data size. Based on exper-
imental results we obtain the following general conclusions. First, there is a
significant relationship between the performance of all proposed CUDA algo-
rithms and the number of variables regardless of the thread block size whereas
there is a constant relationship between the performance of the naive CUDA
algorithms and thread block size regardless of the number of variables. Sec-
ond, there is a negative relationship between the performance (or the number
of thread blocks) of the two optimised algorithms and the tile size regardless
the number of variables. Third, there is a positive relationship between the
thread block size and tile size regardless of the number of variables in the op-
timal performance of two proposed optimised CUDA algorithms (i.e. shared
memory optimisation and loop unrolling). Fourth, the performance of the
loop unrolling algorithm depends on the loop unroll level (or the number of
variables) significantly, and this also relates to the use of resources. In other
words, the higher the loop unroll level, the more resources (i.e. registers) used,
resulting in limited or no parallelism. Fifth, the performance gains of all pro-
posed CUDA algorithms are significant high over the CPU versions whereas
the performance gains of the two optimised algorithms are small over the naive
CUDA versions. However, these performance gains are achieved by a difficult
and careful GPU programming effort for a beginner in order to develop opti-
misation schemes such as shared memory tiles and loop unrolling. Finally, the
best performance among the proposed CUDA algorithms based on the optimal
values of the same parameters is the shared memory algorithm 5 for the uni-
variate kernel case and the loop unrolling algorithm 7 for the multivariate case
with the minimal number of concurrent threads executed by each SM. This
high performance of algorithm 7 is achieved based on the appropriate choice
of parameters: thread block size, tile size and number of variables; otherwise
it achieves limited or no parallelism.

The present experimental study could be extended in order to test other
kernel functions such as epanechnikov, rectangular, triangular and cosine in
the univariate and multivariate kernel estimation methods.
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Figure 9: Performance speed-ups of the CUDA algorithm 7 over the CUDA
algorithms 4 and 6 for different data sizes under different numbers of variables
k 2,6, 14, 30 and 62 (from left to right)
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