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ABSTRACT 
Data-intensive applications often require exploratory analysis of 
large datasets. If analysis is performed on distributed resources, 
data locality can be crucial to high throughput and performance. 
We propose a “data diffusion” approach that acquires compute 
and storage resources dynamically, replicates data in response to 
demand, and schedules computations close to data. As demand 
increases, more resources are acquired, thus allowing faster 
response to subsequent requests that refer to the same data; when 
demand drops, resources are released. This approach can provide 
the benefits of dedicated hardware without the associated high 
costs, depending on workload and resource characteristics. The 
approach is reminiscent of cooperative caching, web-caching, and 
peer-to-peer storage systems, but addresses different application 
demands. Other data-aware scheduling approaches assume 
dedicated resources, which can be expensive and/or inefficient if 
load varies significantly. To explore the feasibility of the data 
diffusion approach, we have extended the Falkon resource 
provisioning and task scheduling system to support data caching 
and data-aware scheduling. Performance results from both micro-
benchmarks and a large scale astronomy application demonstrate 
that our approach improves performance relative to alternative 
approaches, as well as provides improved scalability as 
aggregated I/O bandwidth scales linearly with the number of data 
cache nodes. 

Categories and Subject Descriptors 
D.4.2 [Operating Systems]: Storage and Management – storage 
hierarchies 

General Terms 
Design, Management, Measurement, Performance 

Keywords 
Data diffusion, data caching, data management, data-aware 
scheduling, data-intensive applications, Grid, Falkon, Swift 

1. INTRODUCTION AND MOTIVATION 
The ability to analyze large quantities of data has become 
increasingly important in many fields. To achieve rapid 
turnaround, data may be distributed over hundreds of computers. 
In such circumstances, data locality has been shown to be crucial 
to the successful and efficient use of large distributed systems for 
data-intensive applications [7, 34]. 

One approach to achieving data locality—adopted, for example, 
by Google [3, 11]—is to build large compute-storage farms 
dedicated to storing data and responding to user requests for 
processing. However, such approaches can be expensive (in terms 
of idle resources) if load varies significantly over the two 
dimensions of time and/or the data of interest.  

This paper proposes an alternative data diffusion approach, in 
which resources required for data analysis are acquired 
dynamically, in response to demand. Resources may be acquired 
either “locally” or “remotely”; their location only matters in terms 
of associated cost tradeoffs. Both data and applications are copied 
(they “diffuse”) to newly acquired resources for processing. 
Acquired resources (computers and storage) and the data that they 
hold can be “cached” for some time, thus allowing more rapid 
responses to subsequent requests. If demand drops, resources can 
be released, allowing their use for other purposes. Thus, data 
diffuses over an increasing number of CPUs as demand increases, 
and then contracting as load reduces.  

Data diffusion thus involves a combination of dynamic resource 
provisioning, data caching, and data-aware scheduling. The 
approach is reminiscent of cooperative caching [18], cooperative 
web-caching [19], and peer-to-peer storage systems [17]. (Other 
data-aware scheduling approaches tend to assume static resources 
[1, 2].) However, in our approach we need to acquire dynamically 
not only storage resources but also computing resources. In 
addition, datasets may be terabytes in size and data access is for 
analysis (not retrieval). Further complicating the situation is our 
limited knowledge of workloads, which may involve many 
different applications. 

In our exploration of these issues, we build upon previous work 
on Falkon, a Fast and Light-weight tasK executiON framework [4, 
12], which provides for dynamic acquisition and release of 
resources (“workers”) and the dispatch of analysis tasks to those 
workers. We describe Falkon data caching extensions that enable 
(in their current instantiation) the management of tens of millions 
of files spanning hundreds of multiple storage resources. 
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In principle, data diffusion can provide the benefit of dedicated 
hardware without the associated high costs. It can also overcome 
inefficiencies that may arise when executing data-intensive 
applications in distributed (“grid”) environments, due to the high 
costs of data movement [34]: if workloads have sufficient internal 
locality of reference [22], then it is feasible to acquire and use 
even remote resources, if high initial data movement costs.  

The performance achieved with data diffusion depends crucially 
on the precise characteristics of application workloads and the 
underlying infrastructure. As a first step towards quantifying these 
dependences, we have conducted experiments with both micro-
benchmarks and a large scale astronomy application. The 
experiments presented here do not investigate the effects of 
dynamic resource provisioning, which we will address in future 
work. They show that our approach improves performance 
relative to alternative approaches, and provides improved 
scalability as aggregated I/O bandwidth scales linearly with the 
number of data cache nodes. 

2. RELATED WORK  
The results presented here build on our past work on resource 
provisioning [12] and task dispatching [4], and implement ideas 
outlined in a previous short paper [26].  

Data management becomes more useful if coupled with compute 
resource management. Ranganathan et al. used simulation studies 
[10] to show that proactive data replication can improve 
application performance. The Stork [28] scheduler seeks to 
improve performance and reliability when batch scheduling by 
explicitly scheduling data placement operations. However, while 
Stork can be used with other system components to co-schedule 
CPU and storage resources, there is no attempt to retain nodes 
between tasks as in our work. 

The GFarm team implemented a data-aware scheduler in Gfarm 
using an LSF scheduler plugin [1, 23]. Their performance results 
are for a small system (6 nodes, 300 jobs, 900 MB input files, 
2640 second workload without data-aware scheduling, 1650 
seconds with data-aware scheduling, 0.1–0.2 jobs/sec, 90MB/s to 
180MB/s data rates); it is not clear that it scales to larger systems. 
In contrast, we have tested our proposed data diffusion with 64 
nodes, 100K jobs, input data ranging from 1B to 1GB, workflows 
exceeding 1000 jobs/sec, and data rates exceeding 8750 MB/s. 

BigTable [21], Google File System (GFS) [3], and MapReduce 
[11] (or the open source implementation in Hadoop [27]) couple 
data and computing resources to accelerate data-intensive 
applications. However, these systems all assume a static set of 
resources. Furthermore, the tight coupling of execution engine 
(MapReduce, Hadoop) and file system (GFS) means that 
applications that want to use these tools must be modified. In our 
work, we further extend this fusion of data and compute resource 
management by also enabling dynamic resource provisioning, 
which we assert can provide performance advantages when 
workload characteristics change over time. In addition, because 
we perform data movement prior to task execution, we are able to 
run applications unmodified. 

The batch-aware distributed file system (BAD-FS) [29] caches 
data transferred from centralized data storage servers to local 
disks. However, it uses a capacity-aware scheduler which is 
differentiated from a data-aware scheduler by its focus on 

ensuring that jobs have enough capacity to execute, rather than on 
placing jobs to minimize cache-to-cache transfers. We expect 
BAD-FS to produce more local area traffic than data diffusion. 
Although BAD-FS addresses dynamic deployment via multi-level 
scheduling, it does not address dynamic reconfiguration during 
the lifetime of the deployment, a key feature offered in Falkon. 

3. DATA DIFFUSION ARCHITECTURE  
We describe first the Falkon task dispatch framework [4] and then 
the Falkon extensions that implement data diffusion. 

3.1 Falkon 
To enable the rapid execution of many tasks on distributed 
resources, Falkon combines (1) multi-level scheduling [13, 14] to 
separate resource acquisition (via requests to batch schedulers) 
from task dispatch, and (2) a streamlined dispatcher to achieve 
one to two orders of magnitude higher throughput (487 tasks/sec) 
and scalability (54K executors, 2M queued tasks) than other 
resource managers [4]. Recent tuning and experimentation have 
achieved throughputs in excess of 3750 tasks/sec and the 
management of up to 1M simulated executors without significant 
degradation of throughput. 

The Falkon architecture comprises a set of (dynamically allocated) 
executors that cache and analyze data; a dynamic resource 
provisioner (DRP) that manages the creation and deletion of 
executors; and a dispatcher that dispatches each incoming task to 
an executor. The provisioner uses tunable allocation and de-
allocation policies to provision resources adaptively.  

In prior work, we have assumed that each task scheduled by 
Falkon accessed input and output files at remote persistent storage 
locations, for example via a shared file system, gridFTP server, or 
web server. This strategy provides acceptable performance in 
many cases, but does not scale for data-intensive applications, 
such as image stacking [5, 6] and mosaic services [15] in 
astronomy, which access digital image datasets that are typically 
large (multiple terabytes) and contain many (100M+) objects 
stored into many (1M+) files.  

3.2 Enhancing Falkon with Data Diffusion 
The intent of data diffusion is to achieve a separation of concerns 
between the core logic of data-intensive applications and the 
complicated task of managing large data sets, while improving 
resource utilization and ultimately application performance. To 
this end, we incorporate data caches in executors and data-aware 
task scheduling algorithms in the dispatcher.  

Individual executors manage their own caches, using local 
eviction policies, and communicate changes in cache content to 
the dispatcher. The dispatcher sends tasks to nodes that have 
cached the most needed data, along with the information on how 
to locate needed data. An executor that receives a task to execute 
will, if possible, access required data from its local cache or 
request it from peer executors. Only if no cached copy is available 
does the executor request a copy from persistent storage. 

As in other computing systems that make use of caches, this 
general approach can enable significant performance 
improvements if an application’s working set fits in faster storage.  



 

 

3.2.1 Data Diffusion Architecture  
To support location-aware scheduling, we implement a centralized 
index within the dispatcher that records the location of every 
cached data object. This index is maintained loosely coherent with 
the contents of the executor’s caches via periodic update messages 
generated by the executors. In addition, each executor maintains a 
local index to record the location of its cached data objects. We 
believe that this hybrid (but essentially centralized) architecture 
provides a good balance between latency to the data and good 
scalability; see section 3.2.3 for a deeper analysis in the difference 
between a centralized index and a distributed one.  

Figure 1 shows the Falkon architecture, including both the data 
management and data-aware scheduler components. We start with 
a user which submits tasks to the Falkon wait queue. The wait 
queue length triggers the dynamic resource provisioning to 
allocate resources via GRAM4 from the available set of resources, 
which in turn allocates the resources and bootstraps the executors 
on the remote machines. The black dotted lines represent the 
scheduler sending the task to the compute nodes, along with the 
necessary information about where to find input data. The red 
thick solid lines represent the ability for each executor to get data 
from remote persistent storage. The blue thin solid lines represent 
the ability for each storage resource to obtain cached data from 
another peer executor. (The current implementation runs a 
GridFTP server [36] alongside each executor, which allows other 
executors to read data from its cache.) 
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Figure 1: Architecture overview of Falkon extended with data 

diffusion (data management and data-aware scheduler) 

3.2.2 Data Diffusion Execution Model  
We assume that data is not modified after initial creation, an 
assumption that we found to be true for many data analysis 
applications. Thus, we can avoid complicated and expensive 
cache coherence schemes. We implement four well-known cache 
eviction policies [18]: Random, FIFO (First In First Out), LRU 
(Least Recently Used), and LFU (Least Frequently Used). The 
experiments in this paper all use LRU; we will study the effects of 
other policies in future work. 

We also implement four task dispatch policies, as follows. 

The first-available policy ignores data location information when 
selecting an executor for a task; it simply chooses the first 
available executor, and furthermore provides the executor with no 
information concerning the location of data objects needed by the 
task. Thus, the executor must fetch all data needed by a task from 
persistent storage on every access. 

The first-cache-available policy selects executor for tasks in the 
same way as first-available; it differs in performing index lookups 
for each required data object and transferring the resulting 
location information along with the task description to the 
selected executor. Thus, the executor can fetch data needed by a 
task either from another executor, if cached there, or from 
persistent storage. 

The max-cache-hit policy uses information about data location to 
dispatch each task to the executor with the largest number of data 
needed by that task. If that executor is busy, task dispatch is 
delayed until the executor becomes available. This strategy can be 
expected to reduce data movement operations compared to first-
cache-available, but may lead to load imbalances, especially if 
data popularity is not uniform.  

The max-compute-util policy also leverages data location 
information, but in a different way. It always sends a task to an 
available executor, but if there are several candidates, it chooses 
the one that has the most data needed by the task.  

In each of the latter three cases, the centralized scheduler includes 
the necessary information to locate needed data (i.e., data stored 
in peer executor caches) without further lookups incurred at the 
executors. More details on the Falkon and data diffusion 
execution model are provided elsewhere [4, 30]. 

3.2.3 Centralized vs. Distributed Cache Index 
Our central index and the separate per-executor indices are 
implemented as in-memory hash tables. The hash table 
implementation in Java 1.5 requires about 200 bytes per entry, 
allowing for index sizes of 8M entries with 1.5GB of heap, and 
43M entries with 8GB of heap. Update and lookup performance 
on the hash table is good, with insert times in the 1~3 
microseconds range (1M to 8M entries), and lookup times 
between 0.25 and 1 microsecond (1M to 8M entries). Thus, we 
can achieve an upper bound throughput of 4M lookups/sec.  

In practice, the scheduler may make multiple updates and lookups 
per scheduling decision, and hence the effective scheduling 
throughput that can be achieved is lower. Falkon’s non-data-
aware scheduler (which simply does load balancing) can dispatch 
tasks at rates of 3800 tasks/sec on an 8-core system. In order for 
the data-aware scheduler to not become the bottleneck, it needs to 
make decisions within 2.1 milliseconds, which translates to over 
3700 updates or over 8700 lookups to the hash table. Thus, we see 
that the rate-liming step remains the communication between the 
client, the service, and the executors.  

Nevertheless, our centralized index could become saturated in a 
sufficiently large enough deployment. In that case, a more 
distributed index might perform and scale better. Such an index 
could be implemented using the peer-to-peer replica location 
service (P-RLS) [35] or distributed hash table (DHT) [31]. 

Chervenak et al. [35] report that P-RLS lookup latency for an 
index of 1M entries increases from 0.5 ms to just over 3 ms as the 
number of P-RLS nodes grows from 1 to 15 nodes. To compare 
their data with a central index, we present in Figure 2: 

1) P-RLS performance data. Solid blue horizontal bars 
represent Chervenak et al.’s data; from 1 to 15 nodes; solid 
red horizontal bars represent predictions using a logarithmic 
best-fit curve, from 16 to 1M. nodes. 



 

 

2) The predicted aggregate P-RLS throughput, in lookups/sec, 
based on the observed and predicted latency numbers, (The 
blue curve with red dots.) 

3) The throughput achieved using the central index running on 
a single node, in lookup/sec. (The horizontal black line.) 

We see that although P-RLS latencies do not increase 
significantly with number of nodes (from 0.5 ms with 1 node to 
15 ms with 1M nodes), a considerable number of nodes are 
required to match that of an in-memory hash table. P-RLS would 
need more than 32K nodes to achieve an aggregate throughput 
similar to that of an in-memory hash table, which is 4.18M 
lookups/sec. 
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Figure 2: P-RLS vs. Hash Table performance for 1M entries 
(P-RLS data come from Chervenak et al. [35]) 

In presenting these results we do not intend to argue that we need 
4M+ lookups per second to maintain 4K scheduling decisions per 
second. However, these results do lead us to conclude that a 
centralized index can often perform better than a distributed 
index.  

There are two disadvantages to our centralized index. The first is 
the requirement that the index fit in memory. Single SMP nodes 
can be bought with 128GB of memory, which would allow 683M 
entries in the index. However, this might not suffice for large 
applications. The second disadvantage is the single point of 
failure. Note that other elements of the Falkon service are also 
centralized, so distributing the index will only remove the single 
point of failure. We will investigate approaches to distributing the 
entire Falkon service to alleviate these two limitations. 

4. MICRO-BENCHMARKS 
This section describes our performance evaluation of data 
diffusion using micro-benchmarks.  

4.1 Testbed Description 
Table 1 lists the platforms used in experiments. The UC_x64 node 
was used to run the Falkon service, while the TG_ANL_IA32 and 
TG_ANL_IA64 clusters [24] were used to run the executors. Both 
clusters are connected internally via Gigabit Ethernet, and have a 
shared file system (GPFS) mounted across both clusters that we 
use as the “persistent storage” in our experiments. The GPFS file 
system has 8 I/O nodes to handle the shared file system traffic. 

We assume a one-to-one mapping between executors and nodes in 
all experiments. Latency between UC_x64 and the compute 
clusters was between one and two ms.  

Table 1: Platform descriptions 
Name # of Nodes Processors Memory Network

TG_ANL_IA32 98 Dual Xeon 2.4 GHz 4GB 1Gb/s
TG_ANL_IA64 64 Dual Itanium 1.3 GHz 4GB 1Gb/s

UC_x64 1 Dual Xeon 3GHz w/ HT 2GB 100Mb/s  

4.2 File System Performance 
To understand data diffusion costs, we first study GPFS 
performance in the ANL/UC TG cluster on which we conducted 
all experiments. We performed 160 different experiments 
involving, in aggregate, 19.8M files, the transfer of 3.7TB of data, 
and 163 CPU hours. Due to space limitations, we only summarize 
these results here; details are in a technical report [32]. 
GPFS read performance tops out at 3.4Gb/s for large files (1GB), 
and achieves 75% of peak bandwidth with files as small as 1MB if 
enough nodes access GPFS concurrently. The performance 
increase beyond 8 nodes is only apparent for small files (1B to 
1MB); for large files, the difference is small (<6% improvement 
from 8 to 64 nodes). It appears that 8 compute nodes are enough 
to saturate the 8 GPFS I/O servers given large enough files. 
Read+write performance tops out at 1.1Gb/s, and there is little 
gain from having more than 8 nodes access GPFS concurrently, 
except for small files. 
In contrast, aggregate local disk access speed scales linearly with 
the number of nodes involved, and thus can reach much higher 
rates when many nodes are used. Using all 162 nodes of the two 
TG_ANL clusters, read throughput reaches 76Gb/s and 
read+write throughput reaches 25Gb/s: both around 22 times 
faster than GPFS. This performance differential is a great 
motivator for applications to favor the use of local disks over 
shared disks, especially as applications scale beyond the 
capabilities of the statically configured I/O servers used to service 
the shared file systems. 

4.3 Data Diffusion Performance 
We measured performance for eight configurations, two variants 
(read and read+write), seven node counts (1, 2, 4, 8, 16, 32, 64), 
and eight file sizes (1B, 1KB, 10KB, 100KB, 1MB, 10MB, 
100MB, 1GB), for a total of 896 experiments. For all experiments 
(with the exception of the 100% data locality experiments where 
the caches were warm), data was initially located only on 
persistent storage, which in our case was GPFS.  

The eight configurations are: 
1. Model (local disk): local disk performance  
2. Model (persistent storage): GPFS performance  
3. Falkon (first-available): Falkon using first-available task 

dispatch policy (see Section 3.2.2). 
4. Falkon (first-available) + Wrapper: the same as (3), except 

that all task executions are performed via a wrapper similar to 
that used in many applications to create a sandbox execution 
environment. The wrapper script creates a temporary scratch 
directory on persistent storage, makes a symbolic link to the 
input file(s), executes the task, and finally removes the 
temporary scratch directory from persistent storage, along with 
any symbolic links 



 

 

5. Falkon (first-cache-available; 0% locality): Falkon using 
first-cache-available task dispatch policy, and with a workload 
that does not repeat any files, and hence produces 0% cache 
hits. That is, all files are read from persistent storage to local 
disk, and then the operations are performed on the local data. 

6. Falkon (first-cache-available; 100% locality): the same as 
(5), but with the local disk caches first populated (not as part of 
the timed experiment), and then the workload from (5) repeated 
four times. Thus, we could achieve cache hit rates as high as 
100% as the total requested data fits in available cache space. 

7. Falkon (max-compute-util; 0% locality): identical to (5), but 
using max-compute-util rather than first-cache-available policy. 

8. Falkon (max-compute-util; 100% locality): identical to (6), 
but using max-compute-util rather than first-cache-available 
policy. 

Figure 3 shows read throughput for 100MB files, seven of the 
eight configurations, and varying numbers of nodes. 
Configuration (8) has the best performance: 61.7Gb/s with 64 
nodes (~94% of ideal). Even the first-cache-available policy 
which dispatches tasks to executors without concern for data 
location performs better (~5.7Gb/s) than the shared file system 
alone (~3.1Gb/s) when there are more than 16 nodes.  
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Figure 3: Read throughput (Mb/s) for large files (100MB) for 

seven configurations for 1 – 64 nodes 
With eight or less nodes, data-unaware scheduling with 100% 
data locality performs worse than GPFS (note that GPFS also has 
eight I/O servers); one hypothesis is that data is not dispersed 
evenly among the caches, and load imbalances reduce aggregate 
throughput, but we need to investigate further to better understand 
the performance of data-unaware scheduling at small scales. 

Figure 4 shows read+write performance, which is also good for 
the max-compute-util policy, yielding 22.7Gb/s (~96% of ideal). 
Without data-aware scheduling, throughput is 6.3Gb/s; when 
simply using persistent storage, it is a mere 1Gb/s.  

In Figure 3 and 4, we omit configuration (4) as it had almost 
identical performance to configuration (3). Recall that 
configuration (4) introduced a wrapper script that created a 
temporary sandbox for the application to work in, and afterwards 
cleaned up by removing the sandbox. The performance of these 
two configurations was so similar here because of the large file 
sizes (100MB) used, which meant that the cost to create and 

remove the sand box was amortized over a large and expensive 
operation.  
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Figure 4: Read+Write throughput (Mb/s) for large files 

(100MB) for seven configurations and 1 – 64 nodes 
Things look different when we consider smaller files. For 
example, Figure 5 shows read and read+write performance on 64 
nodes for file sizes ranging from 1B to 1GB. Notice that for small 
file sizes (1B to 10MB), configuration (4) had one order of 
magnitude lower throughput than configurations (2) and (3). We 
find that the best throughput that can be achieved by 64 
concurrent nodes with small files is 21 tasks/sec. The limiting 
factor is the need, for every task, to create a directory on persistent 
storage, create a symbolic link, and remove the directory. Many 
applications that use persistent storage to read and write files from 
many compute processors use this method of a wrapper to cleanly 
separate the data between different application invocations. This 
offers further example of how GPFS performance can 
significantly impact application performance.  
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Figure 5: Read and Read+Write throughput (Mb/s) for a wide 

range of file sizes for three configurations on 64 nodes 
Further results relating to Figure 3, 4, and 5 are in a technical 
report [32]. Overall, the shared file system seems to offer good 
performance for up to eight concurrent nodes (mostly due to there 
being eight I/O nodes servicing GPFS), however when more than 
eight nodes require access to data, the data diffusion mechanisms 
significantly outperform the persistent storage system. The 
improved performance can be attributed to the linear increase in 



 

 

I/O bandwidth with compute nodes, and the effective data-aware 
scheduling performed. 

5. IMAGE STACKING IN ASTRONOMY  
Prior to the work presented in this paper, we had assumed a 
shared file system was used for all data access. This approach 
works well for non-data intensive applications, but has scaling 
problems when dealing with large datasets and with particular 
data access patterns (many random small I/O reads/writes, and/or 
data intensive access patterns) on the shared file system. Our 
experience with astronomy specific data access patterns on 
TeraGrid [20] has been that performance of processing data 
directly from local disk as opposed to accessing the data from 
shared storage resources (i.e., GPFS [8]) can produce an order of 
magnitude difference [5, 6, 22].  

We also evaluate the performance of our data diffusion 
mechanism in a real application. The application in question 
involves the “stacking” of image cutouts from different parts of 
the sky, with the goal of improving signal-to-noise for faint 
objects. Astronomical image collections usually cover an area of 
sky several times (in different wavebands, different times, etc). On 
the other hand, there are large differences in the sensitivities of 
different observations: objects detected in one band are often too 
faint to be seen in another survey. In such cases we still would 
like to see whether these objects can be detected, even in a 
statistical fashion. There has been a growing interest in re-
projecting each image to a common set of pixel planes, then 
coadding many images to obtain a detectable signal that can to 
measure their average brightness/shape, etc. While this method 
has been applied for years manually for a small number of images, 
performing it on wide areas of sky in a systematic way has not yet 
been tried. It is also expected that much fainter sources (e.g., 
transient objects) can be detected from stacked images than can be 
detected in any individual image.  

5.1 Workload Characterization 
Astronomical surveys produce terabytes of data, and contain 
millions of objects. For example, the SDSS DR5 dataset (which 
we base our experiments on) has 320M objects in 9TB of images 
[9]. To construct realistic workloads, we identified the interesting 
objects (for a quasar search) from SDSS DR5; we used the CAS 
SkyServer [25] to issue the SQL command from Figure 6. This 
query retrieved 168,529 objects, which after removal of duplicates 
left 154,345 objects per band (there are 5 bands, u, g, r, I, and z) 
stored in 111,700 files per band.  

 
Figure 6: SQL command to identify interesting objects for a 

quasar search from the SDSS DR5 dataset 
The entire working set consisted of 771,725 objects in 558,500 
files, where each file was either 2MB compressed or 6MB 
uncompressed, resulting in a total of 1.1TB compressed and 
3.35TB uncompressed. From this working set, various workloads 
were defined (see Table 2) that had certain data locality 
characteristics, varying from the lowest locality of 1 (i.e., 1-1 

mapping between objects and files) to the highest locality of 30 
(i.e., each file contained 30 objects on average of). 

Table 2: Workload characteristics 
Locality Number of Objects Number of Files

1 111700 111700
1.38 154345 111699

2 97999 49000
3 88857 29620
4 76575 19145
5 60590 12120
10 46480 4650
20 40460 2025
30 23695 790  

5.2 Stacking Code Profiling 
We first profile the stacking code to see where time is spent. We 
partition time into four categories, as follows. 

1. open: open Fits file for reading 
2. radec2xy: convert coordinates from RA DEC to X Y  
3. readHDU+getTile+curl+convertArray:  

a. readHDU: reads header and image data  
b. getTile: perform extraction of ROI from memory 
c. curl: convert the 1-D pixel data (as read from the image 

file) into a 2-dimensional pixel array  
d. convertArray: convert the ROI from having SHORT 

value to having DOUBLE values  
4. calibration+interpolation+doStacking: 

a. calibration: apply calibration on ROI using the SKY 
and CAL variables 

b. interpolation: do the appropriate pixel shifting to 
ensure the center of the object is a whole pixel 

c. doStacking: perform the stacking of ROI that are stored 
in memory  

5. writeStacking: write the stacked image to a file 

To simplify experiments, we perform tests with a simple 
standalone program on 1000 objects of 100x100 pixels, and 
repeat each measurement 10 times, each time on different objects 
residing in different files. In Figure 7, the Y-axis is time per task 
per code block measured in milliseconds (ms). Having the image 
data in compressed format affects the time to stack an image 
significantly, increasing the time needed by a factor of two. 
Similarly, accessing the image data from local disk instead of the 
shared file system speeds up processing 1.5 times. In all cases, the 
dominant operations are file metadata and I/O operations. For 
example, calibration, interpolation, and doStacking take less than 
1 ms in all cases. Radec2xy consumes another 10~20% of total 
time, but the rest is spent opening the file and reading the image 
data to memory. In compressed format (GZ), there is only 2MB of 
data to read, while in uncompressed format (FIT) there are 6MB 
to read. However, uncompressing images is CPU intensive, and in 
the case of a single CPU, it is slower than if the image was 
uncompressed. In the case of many CPUs, the compressed format 
is faster mostly due to limitations imposed by the shared file 
system. Overall, Figure 7 shows the stacking analysis to be I/O 
bound and data intensive.  

select SpecRa, SpecDec  
from QsoConcordanceAll  
where bestMode=1  
  and SpecSciencePrimary=1 
  and SpecRa<>0 
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Figure 7: Stacking code performance profiling for 1 CPU 

5.3 Performance Evaluation 
All tests performed in this section were done using the testbed 
described in Table 1, using from 1 to 64, and the workloads 
(described in Table 2) that had locality ranging from 1 to 30. The 
experiments investigate the performance and scalability of the 
stacking code in four configurations: 1) Data Diffusion (GZ), 2) 
Data Diffusion (FIT), 3) GPFS (GZ), and 4) GPFS (FIT). At the 
start of each experiment, all data is present only on the persistent 
storage system (GPFS). In the data diffusion experiments, we use 
the max-compute-util policy and cache data on local nodes. For 
the GPFS experiments we use the next-available policy and 
perform no caching. GZ indicates that the image data is in 
compressed format while FIT indicates that the image data is 
uncompressed.  

Figure 8 shows the performance difference between data diffusion 
and GPFS when data locality is small (1.38). We normalize the 
results here by showing the time per stacking operation (as 
described in Section 5.2 and Figure 7) per CPU used; with perfect 
scalability, the time per stack should remain constant as we 
increase the number of CPUs. 

We see in Figure 8 that data diffusion and GPFS perform quite 
similarly when locality is low, with data diffusion slightly faster; 
data diffusion has a growing advantage as the number of CPUs 
increases. This similarity in performance is not surprising because 
most of the data must still be read from GPFS to populate the 
local disk caches. Note that in with small number of CPUs, it is 
more efficient to access uncompressed data; however, as the 
number of CPUs increases, compressed data becomes preferable. 
A close inspection of the I/O throughput achieved (not shown for 
space reasons) reveals that GPFS becomes saturated at around 16 
CPUs with 3.4Gb/s read rates. In the compressed format (which 
reduces the amount of data that needs to be transferred from 
GPFS by a factor of three), GPFS only becomes saturated at 128 
CPUs. We also find that when working in the compressed format, 
it is faster (as much 32% less per stack time) to first cache the 
compressed files, uncompress the files, and work on the files in 
uncompressed format, as opposed to working directly on the 
uncompressed files from GPFS. 
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Figure 8: Performance of the stacking application for a 

workload data locality of 1.38 using data diffusion and GPFS 
while varying the CPUs from 2 to 128 

While the previous results from Figure 8 shows an almost worst 
case scenario where the data locality is small (1.38), the next set 
of results (Figure 9) shows a best case scenario in which the 
locality is high (30). Here we see an almost ideal speedup (i.e., a 
flat line) with data diffusion in both compressed and 
uncompressed formats, while the GPFS results remain similar to 
those presented in Figure 8. 
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Figure 9: Performance of the stacking application for a 

workload data locality of 30 using data diffusion and GPFS 
while varying the CPUs from 2 to 128 

Data diffusion can make its largest impact on larger scale 
deployments, and hence we ran a series of experiments to capture 
the performance at a larger scale (128 CPUs) as we vary the data 
locality. We investigated the data-aware scheduler’s ability to 
exploit the data locality found in the various workloads and its 
ability to direct tasks to computers on which needed data was 
cached. We found that the data-aware scheduler can get within 
90% of the ideal cache hit ratios in all cases (see Figure 10). The 
ideal cache hit ratio is computed by 1 – 1/locality; for example, 
with locality 3 (meaning that each file is access 3 times, one cache 
miss, and 2 cache hits), the ideal cache hit ratio is 1 – 1/3 = 2/3.  



 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 1.38 2 3 4 5 10 20 30
Locality

Lo
ca

l D
is

k 
C

ac
he

 H
it 

Pe
rc

en
ta

ge

max-compute-util: cache hit ratio
ideal cache hit ratio
% of ideal

 
Figure 10: Cache hit performance of the data-aware scheduler 

for the stacking application using 128 CPUs for workloads 
ranging from 1 to 30 data locality using data diffusion  

The following experiment (Figure 11) offers a detailed view of the 
performance (time per stack per CPU) of the stacking application 
as we vary the locality. The last data point in each case represents 
ideal performance when running on a single node. Note that 
although the GPFS results show improvements as locality 
increases, the results are far from ideal. However, we see data 
diffusion gets close to the ideal as locality increases beyond 10. 
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Figure 11: Performance of the stacking application using 128 
CPUs for workloads with data locality ranging from 1 to 30, 

using data diffusion and GPFS 
Figure 12 shows aggregate I/O throughput and data movement for 
the experiments of Figure 11. The two dotted lines show I/O 
throughput when performing stacking directly against GPFS: we 
achieve 4Gb/s with a data locality of 30. The data diffusion I/O 
throughput is separated into three distinct parts: 1) local, 2) cache-
to-cache, and 3) GPFS, as a stacking may read directly from local 
disk if data is cached on the executor node, from a remote cache if 
data is on other nodes, and from GPFS as some data may not have 
been cached at all. 

GPFS throughput is highest with low locality and lowest with 
high locality; the intuition is that with low locality, the majority of 
the data must be read from GPFS, but with high locality, the data 
can be mostly read locally. Note that cache-to-cache throughput 
increases with locality, but never grows significantly; we attribute 
this result to the good performance of the data-aware scheduler, 

always gets within 90% of the ideal cache hit ratio (for the 
workloads presented in this paper). Using data diffusion, we 
achieve an aggregated I/O throughput of 39Gb/s with high data 
locality, a significantly higher rate than with GPFS, which tops 
out at 4Gb/s.  
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Figure 12: I/O throughput of the stacking application using 

128 CPUs, for workloads with data locality ranging from 1 to 
30, and using both data diffusion and GPFS 
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Figure 13: Data movement for the stacking application using 
128 CPUs, for workloads with data locality ranging from 1 to 

30, using data diffusion and GPFS 
Finally, Figure 13 investigates the amount of data movement that 
occurs per stacking as we vary data locality. In summary, data 
diffusion (using compressed data) transfers a total of 8MB (2MB 
from GPFS and 6MB from local disk) for a data locality of 1; if 
data diffusion is not used, we need 2MB if in compressed format, 
or 6MB in uncompressed format, but this data must come from 
GPFS. As data locality increases, data movement from GPFS does 
not change (given a large number of CPUs and the small 
probability of data being re-used without data-aware scheduling). 
However, with data diffusion, the amount of data movement 
decreases substantially from GPFS (from 2MB with a locality of 1 
to 0.066MB with a locality of 30), while cache-to-cache increases 
from 0 to 0.421MB per stacking respectively. These results show 
the decreased load on shared infrastructure (i.e., GPFS), which 
ultimately allows data diffusion to scale better. 



 

 

6. CONCLUSIONS 
Dynamic analysis of large datasets is becoming increasingly 
important in many domains. When building systems to perform 
such analyses, we face difficult tradeoffs. Do we dedicate 
computing and storage resources to analysis tasks, enabling rapid 
data access but wasting resources when analysis is not being 
performed? Or do we move data to computers when analysis 
requests occur, incurring expensive data transfer costs? 

We describe here a data diffusion approach to this problem that 
seeks to combine elements of both dedicated and on-demand 
approaches. The key idea is that we respond to demands for data 
analysis by allocating data and compute systems and migrating 
code and data to those systems. We then retain these dynamically 
allocated resources (and cached code and data) for some time, so 
that if workloads feature data locality, they will obtain the 
performance benefits of dedicated resources. 

To explore this approach, we have extended the Falkon dynamic 
resource provisioning and task dispatch system to cache data at 
executors and incorporate data-aware scheduling policies at the 
dispatcher. In this way, we leverage the performance advantages 
of high-speed local disk and reduce access to persistent storage.  

Results from both micro-benchmarks and an astronomy image 
stacking application show that our approach can improve 
performance relative to alternative approaches. The performance 
benefits increase with the number of nodes used, as aggregate 
local I/O bandwidth scales linearly with the number of executors. 

In future work, we plan to explore more sophisticated algorithms 
that address, for example, what happens when an executor is 
released; should we discard cached data, should it be moved to 
another executor, or should it be moved to persistent storage; do 
cache eviction policies affect cache hit ratio performance? 
Answers to these and other related questions will presumably 
depend on workload and system characteristics. 

We also plan to use the Swift parallel programming system to 
explore data diffusion performance with more applications and 
workloads. We have integrated Falkon into the Karajan workflow 
engine used by Swift [16, 33]. Thus, Karajan and Swift 
applications can use Falkon without modification. Swift has been 
applied to applications in the physical sciences, biological 
sciences, social sciences, humanities, computer science, and 
science education. We have already run several applications 
(fMRI, Montage, MolDyn) without data diffusion [4, 16, 33], on 
which we will investigate the benefits of data diffusion as well. 
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