

Accelerating Large-Scale Data Exploration
through Data Diffusion

Ioan Raicu1, Yong Zhao2, Ian Foster1,3,4, Alex Szalay 5
1Department of Computer Science, University of Chicago, IL, USA

2Microsoft Corporation, Redmond, WA, USA
3Computation Institute, University of Chicago and Argonne National Laboratory, USA

4Mathematics and Computer Science Division, Argonne National Laboratory, Argonne IL, USA
5Department of Physics and Astronomy, The Johns Hopkins University, Baltimore MD, USA

iraicu@cs.uchicago.edu, yozha@microsoft.com, foster@mcs.anl.gov, szalay@jhu.edu

ABSTRACT
Data-intensive applications often require exploratory analysis of
large datasets. If analysis is performed on distributed resources,
data locality can be crucial to high throughput and performance.
We propose a “data diffusion” approach that acquires compute
and storage resources dynamically, replicates data in response to
demand, and schedules computations close to data. As demand
increases, more resources are acquired, thus allowing faster
response to subsequent requests that refer to the same data; when
demand drops, resources are released. This approach can provide
the benefits of dedicated hardware without the associated high
costs, depending on workload and resource characteristics. The
approach is reminiscent of cooperative caching, web-caching, and
peer-to-peer storage systems, but addresses different application
demands. Other data-aware scheduling approaches assume
dedicated resources, which can be expensive and/or inefficient if
load varies significantly. To explore the feasibility of the data
diffusion approach, we have extended the Falkon resource
provisioning and task scheduling system to support data caching
and data-aware scheduling. Performance results from both micro-
benchmarks and a large scale astronomy application demonstrate
that our approach improves performance relative to alternative
approaches, as well as provides improved scalability as
aggregated I/O bandwidth scales linearly with the number of data
cache nodes.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage and Management – storage
hierarchies

General Terms
Design, Management, Measurement, Performance

Keywords
Data diffusion, data caching, data management, data-aware
scheduling, data-intensive applications, Grid, Falkon, Swift

1. INTRODUCTION AND MOTIVATION
The ability to analyze large quantities of data has become
increasingly important in many fields. To achieve rapid
turnaround, data may be distributed over hundreds of computers.
In such circumstances, data locality has been shown to be crucial
to the successful and efficient use of large distributed systems for
data-intensive applications [7, 34].

One approach to achieving data locality—adopted, for example,
by Google [3, 11]—is to build large compute-storage farms
dedicated to storing data and responding to user requests for
processing. However, such approaches can be expensive (in terms
of idle resources) if load varies significantly over the two
dimensions of time and/or the data of interest.

This paper proposes an alternative data diffusion approach, in
which resources required for data analysis are acquired
dynamically, in response to demand. Resources may be acquired
either “locally” or “remotely”; their location only matters in terms
of associated cost tradeoffs. Both data and applications are copied
(they “diffuse”) to newly acquired resources for processing.
Acquired resources (computers and storage) and the data that they
hold can be “cached” for some time, thus allowing more rapid
responses to subsequent requests. If demand drops, resources can
be released, allowing their use for other purposes. Thus, data
diffuses over an increasing number of CPUs as demand increases,
and then contracting as load reduces.

Data diffusion thus involves a combination of dynamic resource
provisioning, data caching, and data-aware scheduling. The
approach is reminiscent of cooperative caching [18], cooperative
web-caching [19], and peer-to-peer storage systems [17]. (Other
data-aware scheduling approaches tend to assume static resources
[1, 2].) However, in our approach we need to acquire dynamically
not only storage resources but also computing resources. In
addition, datasets may be terabytes in size and data access is for
analysis (not retrieval). Further complicating the situation is our
limited knowledge of workloads, which may involve many
different applications.

In our exploration of these issues, we build upon previous work
on Falkon, a Fast and Light-weight tasK executiON framework [4,
12], which provides for dynamic acquisition and release of
resources (“workers”) and the dispatch of analysis tasks to those
workers. We describe Falkon data caching extensions that enable
(in their current instantiation) the management of tens of millions
of files spanning hundreds of multiple storage resources.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DADC’08, June 24, 2008, Boston, Massachusetts, USA.
Copyright 2008 ACM 978-1-60558-154-5/08/06...$5.00.

In principle, data diffusion can provide the benefit of dedicated
hardware without the associated high costs. It can also overcome
inefficiencies that may arise when executing data-intensive
applications in distributed (“grid”) environments, due to the high
costs of data movement [34]: if workloads have sufficient internal
locality of reference [22], then it is feasible to acquire and use
even remote resources, if high initial data movement costs.

The performance achieved with data diffusion depends crucially
on the precise characteristics of application workloads and the
underlying infrastructure. As a first step towards quantifying these
dependences, we have conducted experiments with both micro-
benchmarks and a large scale astronomy application. The
experiments presented here do not investigate the effects of
dynamic resource provisioning, which we will address in future
work. They show that our approach improves performance
relative to alternative approaches, and provides improved
scalability as aggregated I/O bandwidth scales linearly with the
number of data cache nodes.

2. RELATED WORK
The results presented here build on our past work on resource
provisioning [12] and task dispatching [4], and implement ideas
outlined in a previous short paper [26].

Data management becomes more useful if coupled with compute
resource management. Ranganathan et al. used simulation studies
[10] to show that proactive data replication can improve
application performance. The Stork [28] scheduler seeks to
improve performance and reliability when batch scheduling by
explicitly scheduling data placement operations. However, while
Stork can be used with other system components to co-schedule
CPU and storage resources, there is no attempt to retain nodes
between tasks as in our work.

The GFarm team implemented a data-aware scheduler in Gfarm
using an LSF scheduler plugin [1, 23]. Their performance results
are for a small system (6 nodes, 300 jobs, 900 MB input files,
2640 second workload without data-aware scheduling, 1650
seconds with data-aware scheduling, 0.1–0.2 jobs/sec, 90MB/s to
180MB/s data rates); it is not clear that it scales to larger systems.
In contrast, we have tested our proposed data diffusion with 64
nodes, 100K jobs, input data ranging from 1B to 1GB, workflows
exceeding 1000 jobs/sec, and data rates exceeding 8750 MB/s.

BigTable [21], Google File System (GFS) [3], and MapReduce
[11] (or the open source implementation in Hadoop [27]) couple
data and computing resources to accelerate data-intensive
applications. However, these systems all assume a static set of
resources. Furthermore, the tight coupling of execution engine
(MapReduce, Hadoop) and file system (GFS) means that
applications that want to use these tools must be modified. In our
work, we further extend this fusion of data and compute resource
management by also enabling dynamic resource provisioning,
which we assert can provide performance advantages when
workload characteristics change over time. In addition, because
we perform data movement prior to task execution, we are able to
run applications unmodified.

The batch-aware distributed file system (BAD-FS) [29] caches
data transferred from centralized data storage servers to local
disks. However, it uses a capacity-aware scheduler which is
differentiated from a data-aware scheduler by its focus on

ensuring that jobs have enough capacity to execute, rather than on
placing jobs to minimize cache-to-cache transfers. We expect
BAD-FS to produce more local area traffic than data diffusion.
Although BAD-FS addresses dynamic deployment via multi-level
scheduling, it does not address dynamic reconfiguration during
the lifetime of the deployment, a key feature offered in Falkon.

3. DATA DIFFUSION ARCHITECTURE
We describe first the Falkon task dispatch framework [4] and then
the Falkon extensions that implement data diffusion.

3.1 Falkon
To enable the rapid execution of many tasks on distributed
resources, Falkon combines (1) multi-level scheduling [13, 14] to
separate resource acquisition (via requests to batch schedulers)
from task dispatch, and (2) a streamlined dispatcher to achieve
one to two orders of magnitude higher throughput (487 tasks/sec)
and scalability (54K executors, 2M queued tasks) than other
resource managers [4]. Recent tuning and experimentation have
achieved throughputs in excess of 3750 tasks/sec and the
management of up to 1M simulated executors without significant
degradation of throughput.

The Falkon architecture comprises a set of (dynamically allocated)
executors that cache and analyze data; a dynamic resource
provisioner (DRP) that manages the creation and deletion of
executors; and a dispatcher that dispatches each incoming task to
an executor. The provisioner uses tunable allocation and de-
allocation policies to provision resources adaptively.

In prior work, we have assumed that each task scheduled by
Falkon accessed input and output files at remote persistent storage
locations, for example via a shared file system, gridFTP server, or
web server. This strategy provides acceptable performance in
many cases, but does not scale for data-intensive applications,
such as image stacking [5, 6] and mosaic services [15] in
astronomy, which access digital image datasets that are typically
large (multiple terabytes) and contain many (100M+) objects
stored into many (1M+) files.

3.2 Enhancing Falkon with Data Diffusion
The intent of data diffusion is to achieve a separation of concerns
between the core logic of data-intensive applications and the
complicated task of managing large data sets, while improving
resource utilization and ultimately application performance. To
this end, we incorporate data caches in executors and data-aware
task scheduling algorithms in the dispatcher.

Individual executors manage their own caches, using local
eviction policies, and communicate changes in cache content to
the dispatcher. The dispatcher sends tasks to nodes that have
cached the most needed data, along with the information on how
to locate needed data. An executor that receives a task to execute
will, if possible, access required data from its local cache or
request it from peer executors. Only if no cached copy is available
does the executor request a copy from persistent storage.

As in other computing systems that make use of caches, this
general approach can enable significant performance
improvements if an application’s working set fits in faster storage.

3.2.1 Data Diffusion Architecture
To support location-aware scheduling, we implement a centralized
index within the dispatcher that records the location of every
cached data object. This index is maintained loosely coherent with
the contents of the executor’s caches via periodic update messages
generated by the executors. In addition, each executor maintains a
local index to record the location of its cached data objects. We
believe that this hybrid (but essentially centralized) architecture
provides a good balance between latency to the data and good
scalability; see section 3.2.3 for a deeper analysis in the difference
between a centralized index and a distributed one.

Figure 1 shows the Falkon architecture, including both the data
management and data-aware scheduler components. We start with
a user which submits tasks to the Falkon wait queue. The wait
queue length triggers the dynamic resource provisioning to
allocate resources via GRAM4 from the available set of resources,
which in turn allocates the resources and bootstraps the executors
on the remote machines. The black dotted lines represent the
scheduler sending the task to the compute nodes, along with the
necessary information about where to find input data. The red
thick solid lines represent the ability for each executor to get data
from remote persistent storage. The blue thin solid lines represent
the ability for each storage resource to obtain cached data from
another peer executor. (The current implementation runs a
GridFTP server [36] alongside each executor, which allows other
executors to read data from its cache.)

Task Dispatcher
Data-Aware Scheduler

Persistent Storage

Available Resources
(GRAM4)

Provisioned Resources

text

Executor
1

Wait Queue

Executor
i

Executor
n

Dynamic
Resource

Provisioning

User

Figure 1: Architecture overview of Falkon extended with data

diffusion (data management and data-aware scheduler)

3.2.2 Data Diffusion Execution Model
We assume that data is not modified after initial creation, an
assumption that we found to be true for many data analysis
applications. Thus, we can avoid complicated and expensive
cache coherence schemes. We implement four well-known cache
eviction policies [18]: Random, FIFO (First In First Out), LRU
(Least Recently Used), and LFU (Least Frequently Used). The
experiments in this paper all use LRU; we will study the effects of
other policies in future work.

We also implement four task dispatch policies, as follows.

The first-available policy ignores data location information when
selecting an executor for a task; it simply chooses the first
available executor, and furthermore provides the executor with no
information concerning the location of data objects needed by the
task. Thus, the executor must fetch all data needed by a task from
persistent storage on every access.

The first-cache-available policy selects executor for tasks in the
same way as first-available; it differs in performing index lookups
for each required data object and transferring the resulting
location information along with the task description to the
selected executor. Thus, the executor can fetch data needed by a
task either from another executor, if cached there, or from
persistent storage.

The max-cache-hit policy uses information about data location to
dispatch each task to the executor with the largest number of data
needed by that task. If that executor is busy, task dispatch is
delayed until the executor becomes available. This strategy can be
expected to reduce data movement operations compared to first-
cache-available, but may lead to load imbalances, especially if
data popularity is not uniform.

The max-compute-util policy also leverages data location
information, but in a different way. It always sends a task to an
available executor, but if there are several candidates, it chooses
the one that has the most data needed by the task.

In each of the latter three cases, the centralized scheduler includes
the necessary information to locate needed data (i.e., data stored
in peer executor caches) without further lookups incurred at the
executors. More details on the Falkon and data diffusion
execution model are provided elsewhere [4, 30].

3.2.3 Centralized vs. Distributed Cache Index
Our central index and the separate per-executor indices are
implemented as in-memory hash tables. The hash table
implementation in Java 1.5 requires about 200 bytes per entry,
allowing for index sizes of 8M entries with 1.5GB of heap, and
43M entries with 8GB of heap. Update and lookup performance
on the hash table is good, with insert times in the 1~3
microseconds range (1M to 8M entries), and lookup times
between 0.25 and 1 microsecond (1M to 8M entries). Thus, we
can achieve an upper bound throughput of 4M lookups/sec.

In practice, the scheduler may make multiple updates and lookups
per scheduling decision, and hence the effective scheduling
throughput that can be achieved is lower. Falkon’s non-data-
aware scheduler (which simply does load balancing) can dispatch
tasks at rates of 3800 tasks/sec on an 8-core system. In order for
the data-aware scheduler to not become the bottleneck, it needs to
make decisions within 2.1 milliseconds, which translates to over
3700 updates or over 8700 lookups to the hash table. Thus, we see
that the rate-liming step remains the communication between the
client, the service, and the executors.

Nevertheless, our centralized index could become saturated in a
sufficiently large enough deployment. In that case, a more
distributed index might perform and scale better. Such an index
could be implemented using the peer-to-peer replica location
service (P-RLS) [35] or distributed hash table (DHT) [31].

Chervenak et al. [35] report that P-RLS lookup latency for an
index of 1M entries increases from 0.5 ms to just over 3 ms as the
number of P-RLS nodes grows from 1 to 15 nodes. To compare
their data with a central index, we present in Figure 2:

1) P-RLS performance data. Solid blue horizontal bars
represent Chervenak et al.’s data; from 1 to 15 nodes; solid
red horizontal bars represent predictions using a logarithmic
best-fit curve, from 16 to 1M. nodes.

2) The predicted aggregate P-RLS throughput, in lookups/sec,
based on the observed and predicted latency numbers, (The
blue curve with red dots.)

3) The throughput achieved using the central index running on
a single node, in lookup/sec. (The horizontal black line.)

We see that although P-RLS latencies do not increase
significantly with number of nodes (from 0.5 ms with 1 node to
15 ms with 1M nodes), a considerable number of nodes are
required to match that of an in-memory hash table. P-RLS would
need more than 32K nodes to achieve an aggregate throughput
similar to that of an in-memory hash table, which is 4.18M
lookups/sec.

1
10

100
1,000

10,000
100,000

1,000,000
10,000,000

100,000,000

1 4 16 64 25
6

10
24

40
96

16
38

4
65

53
6

26
21

44

1E
+0

6

Number of Nodes

Th
ro

ug
hp

ut
 (l

oo
ku

p/
se

c)

0.0001
0.001
0.01
0.1
1
10
100
1000
10000

Lo
ok

up
 L

at
en

cy
 (m

s)

Measured P-RLS Lookup Latency (ms)
Predicted P-RLS Lookup Latency (ms)
Measured Hashtable Lookup Latency (ms)
Aggregate P-RLS Throughput (lookups/sec)
1 Node Hashtable Throughput (lookups/sec)

Figure 2: P-RLS vs. Hash Table performance for 1M entries
(P-RLS data come from Chervenak et al. [35])

In presenting these results we do not intend to argue that we need
4M+ lookups per second to maintain 4K scheduling decisions per
second. However, these results do lead us to conclude that a
centralized index can often perform better than a distributed
index.

There are two disadvantages to our centralized index. The first is
the requirement that the index fit in memory. Single SMP nodes
can be bought with 128GB of memory, which would allow 683M
entries in the index. However, this might not suffice for large
applications. The second disadvantage is the single point of
failure. Note that other elements of the Falkon service are also
centralized, so distributing the index will only remove the single
point of failure. We will investigate approaches to distributing the
entire Falkon service to alleviate these two limitations.

4. MICRO-BENCHMARKS
This section describes our performance evaluation of data
diffusion using micro-benchmarks.

4.1 Testbed Description
Table 1 lists the platforms used in experiments. The UC_x64 node
was used to run the Falkon service, while the TG_ANL_IA32 and
TG_ANL_IA64 clusters [24] were used to run the executors. Both
clusters are connected internally via Gigabit Ethernet, and have a
shared file system (GPFS) mounted across both clusters that we
use as the “persistent storage” in our experiments. The GPFS file
system has 8 I/O nodes to handle the shared file system traffic.

We assume a one-to-one mapping between executors and nodes in
all experiments. Latency between UC_x64 and the compute
clusters was between one and two ms.

Table 1: Platform descriptions
Name # of Nodes Processors Memory Network

TG_ANL_IA32 98 Dual Xeon 2.4 GHz 4GB 1Gb/s
TG_ANL_IA64 64 Dual Itanium 1.3 GHz 4GB 1Gb/s

UC_x64 1 Dual Xeon 3GHz w/ HT 2GB 100Mb/s

4.2 File System Performance
To understand data diffusion costs, we first study GPFS
performance in the ANL/UC TG cluster on which we conducted
all experiments. We performed 160 different experiments
involving, in aggregate, 19.8M files, the transfer of 3.7TB of data,
and 163 CPU hours. Due to space limitations, we only summarize
these results here; details are in a technical report [32].
GPFS read performance tops out at 3.4Gb/s for large files (1GB),
and achieves 75% of peak bandwidth with files as small as 1MB if
enough nodes access GPFS concurrently. The performance
increase beyond 8 nodes is only apparent for small files (1B to
1MB); for large files, the difference is small (<6% improvement
from 8 to 64 nodes). It appears that 8 compute nodes are enough
to saturate the 8 GPFS I/O servers given large enough files.
Read+write performance tops out at 1.1Gb/s, and there is little
gain from having more than 8 nodes access GPFS concurrently,
except for small files.
In contrast, aggregate local disk access speed scales linearly with
the number of nodes involved, and thus can reach much higher
rates when many nodes are used. Using all 162 nodes of the two
TG_ANL clusters, read throughput reaches 76Gb/s and
read+write throughput reaches 25Gb/s: both around 22 times
faster than GPFS. This performance differential is a great
motivator for applications to favor the use of local disks over
shared disks, especially as applications scale beyond the
capabilities of the statically configured I/O servers used to service
the shared file systems.

4.3 Data Diffusion Performance
We measured performance for eight configurations, two variants
(read and read+write), seven node counts (1, 2, 4, 8, 16, 32, 64),
and eight file sizes (1B, 1KB, 10KB, 100KB, 1MB, 10MB,
100MB, 1GB), for a total of 896 experiments. For all experiments
(with the exception of the 100% data locality experiments where
the caches were warm), data was initially located only on
persistent storage, which in our case was GPFS.

The eight configurations are:
1. Model (local disk): local disk performance
2. Model (persistent storage): GPFS performance
3. Falkon (first-available): Falkon using first-available task

dispatch policy (see Section 3.2.2).
4. Falkon (first-available) + Wrapper: the same as (3), except

that all task executions are performed via a wrapper similar to
that used in many applications to create a sandbox execution
environment. The wrapper script creates a temporary scratch
directory on persistent storage, makes a symbolic link to the
input file(s), executes the task, and finally removes the
temporary scratch directory from persistent storage, along with
any symbolic links

5. Falkon (first-cache-available; 0% locality): Falkon using
first-cache-available task dispatch policy, and with a workload
that does not repeat any files, and hence produces 0% cache
hits. That is, all files are read from persistent storage to local
disk, and then the operations are performed on the local data.

6. Falkon (first-cache-available; 100% locality): the same as
(5), but with the local disk caches first populated (not as part of
the timed experiment), and then the workload from (5) repeated
four times. Thus, we could achieve cache hit rates as high as
100% as the total requested data fits in available cache space.

7. Falkon (max-compute-util; 0% locality): identical to (5), but
using max-compute-util rather than first-cache-available policy.

8. Falkon (max-compute-util; 100% locality): identical to (6),
but using max-compute-util rather than first-cache-available
policy.

Figure 3 shows read throughput for 100MB files, seven of the
eight configurations, and varying numbers of nodes.
Configuration (8) has the best performance: 61.7Gb/s with 64
nodes (~94% of ideal). Even the first-cache-available policy
which dispatches tasks to executors without concern for data
location performs better (~5.7Gb/s) than the shared file system
alone (~3.1Gb/s) when there are more than 16 nodes.

100

1,000

10,000

100,000

1 2 4 8 16 32 64
Number of Nodes

R
ea

d
Th

ro
ug

hp
ut

 (M
b/

s)

1. Model (local disk)
2. Model (shared file system)
3. Falkon (first-available policy)
5. Falkon (first-cache-available policy – 0% locality)
6. Falkon (first-cache-available policy – 100% locality)
7. Falkon (max-compute-util policy – 0% locality)
8. Falkon (max-compute-util policy – 100% locality)

Figure 3: Read throughput (Mb/s) for large files (100MB) for

seven configurations for 1 – 64 nodes
With eight or less nodes, data-unaware scheduling with 100%
data locality performs worse than GPFS (note that GPFS also has
eight I/O servers); one hypothesis is that data is not dispersed
evenly among the caches, and load imbalances reduce aggregate
throughput, but we need to investigate further to better understand
the performance of data-unaware scheduling at small scales.

Figure 4 shows read+write performance, which is also good for
the max-compute-util policy, yielding 22.7Gb/s (~96% of ideal).
Without data-aware scheduling, throughput is 6.3Gb/s; when
simply using persistent storage, it is a mere 1Gb/s.

In Figure 3 and 4, we omit configuration (4) as it had almost
identical performance to configuration (3). Recall that
configuration (4) introduced a wrapper script that created a
temporary sandbox for the application to work in, and afterwards
cleaned up by removing the sandbox. The performance of these
two configurations was so similar here because of the large file
sizes (100MB) used, which meant that the cost to create and

remove the sand box was amortized over a large and expensive
operation.

100

1,000

10,000

100,000

1 2 4 8 16 32 64
Number of Nodes

R
ea

d+
W

rit
e

Th
ro

ug
hp

ut
 (M

b/
s)

1. Model (local disk)
2. Model (shared file system)
3. Falkon (first-available policy)
5. Falkon (first-cache-available policy – 0% locality)
6. Falkon (first-cache-available policy – 100% locality)
7. Falkon (max-compute-util policy – 0% locality)
8. Falkon (max-compute-util policy – 100% locality)

Figure 4: Read+Write throughput (Mb/s) for large files

(100MB) for seven configurations and 1 – 64 nodes
Things look different when we consider smaller files. For
example, Figure 5 shows read and read+write performance on 64
nodes for file sizes ranging from 1B to 1GB. Notice that for small
file sizes (1B to 10MB), configuration (4) had one order of
magnitude lower throughput than configurations (2) and (3). We
find that the best throughput that can be achieved by 64
concurrent nodes with small files is 21 tasks/sec. The limiting
factor is the need, for every task, to create a directory on persistent
storage, create a symbolic link, and remove the directory. Many
applications that use persistent storage to read and write files from
many compute processors use this method of a wrapper to cleanly
separate the data between different application invocations. This
offers further example of how GPFS performance can
significantly impact application performance.

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

1B 1KB 10KB 100KB 1MB 10MB 100MB 1GB
File Size

Th
ro

ug
hp

ut
 (M

b/
s)

2. Model (shared file system): READ
3. Falkon (first-available policy): READ
4. Falkon (first-available policy) + Wrapper: READ
2. Model (shared file system): READ+WRITE
3. Falkon (first-available policy): READ+WRITE
4. Falkon (first-available policy) + Wrapper: READ+WRITE

Figure 5: Read and Read+Write throughput (Mb/s) for a wide

range of file sizes for three configurations on 64 nodes
Further results relating to Figure 3, 4, and 5 are in a technical
report [32]. Overall, the shared file system seems to offer good
performance for up to eight concurrent nodes (mostly due to there
being eight I/O nodes servicing GPFS), however when more than
eight nodes require access to data, the data diffusion mechanisms
significantly outperform the persistent storage system. The
improved performance can be attributed to the linear increase in

I/O bandwidth with compute nodes, and the effective data-aware
scheduling performed.

5. IMAGE STACKING IN ASTRONOMY
Prior to the work presented in this paper, we had assumed a
shared file system was used for all data access. This approach
works well for non-data intensive applications, but has scaling
problems when dealing with large datasets and with particular
data access patterns (many random small I/O reads/writes, and/or
data intensive access patterns) on the shared file system. Our
experience with astronomy specific data access patterns on
TeraGrid [20] has been that performance of processing data
directly from local disk as opposed to accessing the data from
shared storage resources (i.e., GPFS [8]) can produce an order of
magnitude difference [5, 6, 22].

We also evaluate the performance of our data diffusion
mechanism in a real application. The application in question
involves the “stacking” of image cutouts from different parts of
the sky, with the goal of improving signal-to-noise for faint
objects. Astronomical image collections usually cover an area of
sky several times (in different wavebands, different times, etc). On
the other hand, there are large differences in the sensitivities of
different observations: objects detected in one band are often too
faint to be seen in another survey. In such cases we still would
like to see whether these objects can be detected, even in a
statistical fashion. There has been a growing interest in re-
projecting each image to a common set of pixel planes, then
coadding many images to obtain a detectable signal that can to
measure their average brightness/shape, etc. While this method
has been applied for years manually for a small number of images,
performing it on wide areas of sky in a systematic way has not yet
been tried. It is also expected that much fainter sources (e.g.,
transient objects) can be detected from stacked images than can be
detected in any individual image.

5.1 Workload Characterization
Astronomical surveys produce terabytes of data, and contain
millions of objects. For example, the SDSS DR5 dataset (which
we base our experiments on) has 320M objects in 9TB of images
[9]. To construct realistic workloads, we identified the interesting
objects (for a quasar search) from SDSS DR5; we used the CAS
SkyServer [25] to issue the SQL command from Figure 6. This
query retrieved 168,529 objects, which after removal of duplicates
left 154,345 objects per band (there are 5 bands, u, g, r, I, and z)
stored in 111,700 files per band.

Figure 6: SQL command to identify interesting objects for a

quasar search from the SDSS DR5 dataset
The entire working set consisted of 771,725 objects in 558,500
files, where each file was either 2MB compressed or 6MB
uncompressed, resulting in a total of 1.1TB compressed and
3.35TB uncompressed. From this working set, various workloads
were defined (see Table 2) that had certain data locality
characteristics, varying from the lowest locality of 1 (i.e., 1-1

mapping between objects and files) to the highest locality of 30
(i.e., each file contained 30 objects on average of).

Table 2: Workload characteristics
Locality Number of Objects Number of Files

1 111700 111700
1.38 154345 111699

2 97999 49000
3 88857 29620
4 76575 19145
5 60590 12120
10 46480 4650
20 40460 2025
30 23695 790

5.2 Stacking Code Profiling
We first profile the stacking code to see where time is spent. We
partition time into four categories, as follows.

1. open: open Fits file for reading
2. radec2xy: convert coordinates from RA DEC to X Y
3. readHDU+getTile+curl+convertArray:

a. readHDU: reads header and image data
b. getTile: perform extraction of ROI from memory
c. curl: convert the 1-D pixel data (as read from the image

file) into a 2-dimensional pixel array
d. convertArray: convert the ROI from having SHORT

value to having DOUBLE values
4. calibration+interpolation+doStacking:

a. calibration: apply calibration on ROI using the SKY
and CAL variables

b. interpolation: do the appropriate pixel shifting to
ensure the center of the object is a whole pixel

c. doStacking: perform the stacking of ROI that are stored
in memory

5. writeStacking: write the stacked image to a file

To simplify experiments, we perform tests with a simple
standalone program on 1000 objects of 100x100 pixels, and
repeat each measurement 10 times, each time on different objects
residing in different files. In Figure 7, the Y-axis is time per task
per code block measured in milliseconds (ms). Having the image
data in compressed format affects the time to stack an image
significantly, increasing the time needed by a factor of two.
Similarly, accessing the image data from local disk instead of the
shared file system speeds up processing 1.5 times. In all cases, the
dominant operations are file metadata and I/O operations. For
example, calibration, interpolation, and doStacking take less than
1 ms in all cases. Radec2xy consumes another 10~20% of total
time, but the rest is spent opening the file and reading the image
data to memory. In compressed format (GZ), there is only 2MB of
data to read, while in uncompressed format (FIT) there are 6MB
to read. However, uncompressing images is CPU intensive, and in
the case of a single CPU, it is slower than if the image was
uncompressed. In the case of many CPUs, the compressed format
is faster mostly due to limitations imposed by the shared file
system. Overall, Figure 7 shows the stacking analysis to be I/O
bound and data intensive.

select SpecRa, SpecDec
from QsoConcordanceAll
where bestMode=1
 and SpecSciencePrimary=1
 and SpecRa<>0

0

50

100

150

200

250

300

350

400

450

GPFS GZ LOCAL GZ GPFS FIT LOCAL FIT
Filesystem and Image Format

Ti
m

e
(m

s)

open
radec2xy
readHDU+getTile+curl+convertArray
calibration+interpolation+doStacking
writeStacking

Figure 7: Stacking code performance profiling for 1 CPU

5.3 Performance Evaluation
All tests performed in this section were done using the testbed
described in Table 1, using from 1 to 64, and the workloads
(described in Table 2) that had locality ranging from 1 to 30. The
experiments investigate the performance and scalability of the
stacking code in four configurations: 1) Data Diffusion (GZ), 2)
Data Diffusion (FIT), 3) GPFS (GZ), and 4) GPFS (FIT). At the
start of each experiment, all data is present only on the persistent
storage system (GPFS). In the data diffusion experiments, we use
the max-compute-util policy and cache data on local nodes. For
the GPFS experiments we use the next-available policy and
perform no caching. GZ indicates that the image data is in
compressed format while FIT indicates that the image data is
uncompressed.

Figure 8 shows the performance difference between data diffusion
and GPFS when data locality is small (1.38). We normalize the
results here by showing the time per stacking operation (as
described in Section 5.2 and Figure 7) per CPU used; with perfect
scalability, the time per stack should remain constant as we
increase the number of CPUs.

We see in Figure 8 that data diffusion and GPFS perform quite
similarly when locality is low, with data diffusion slightly faster;
data diffusion has a growing advantage as the number of CPUs
increases. This similarity in performance is not surprising because
most of the data must still be read from GPFS to populate the
local disk caches. Note that in with small number of CPUs, it is
more efficient to access uncompressed data; however, as the
number of CPUs increases, compressed data becomes preferable.
A close inspection of the I/O throughput achieved (not shown for
space reasons) reveals that GPFS becomes saturated at around 16
CPUs with 3.4Gb/s read rates. In the compressed format (which
reduces the amount of data that needs to be transferred from
GPFS by a factor of three), GPFS only becomes saturated at 128
CPUs. We also find that when working in the compressed format,
it is faster (as much 32% less per stack time) to first cache the
compressed files, uncompress the files, and work on the files in
uncompressed format, as opposed to working directly on the
uncompressed files from GPFS.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2 4 8 16 32 64 128
Number of CPUs

Ti
m

e
(m

s)
 p

er
 s

ta
ck

 p
er

 C
PU

Data Diffusion (GZ)
Data Diffusion (FIT)
GPFS (GZ)
GPFS (FIT)

Figure 8: Performance of the stacking application for a

workload data locality of 1.38 using data diffusion and GPFS
while varying the CPUs from 2 to 128

While the previous results from Figure 8 shows an almost worst
case scenario where the data locality is small (1.38), the next set
of results (Figure 9) shows a best case scenario in which the
locality is high (30). Here we see an almost ideal speedup (i.e., a
flat line) with data diffusion in both compressed and
uncompressed formats, while the GPFS results remain similar to
those presented in Figure 8.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2 4 8 16 32 64 128

Number of CPUs

Ti
m

e
(m

s)
 p

er
 s

ta
ck

 p
er

 C
PU

Data Diffusion (GZ)
Data Diffusion (FIT)
GPFS (GZ)
GPFS (FIT)

Figure 9: Performance of the stacking application for a

workload data locality of 30 using data diffusion and GPFS
while varying the CPUs from 2 to 128

Data diffusion can make its largest impact on larger scale
deployments, and hence we ran a series of experiments to capture
the performance at a larger scale (128 CPUs) as we vary the data
locality. We investigated the data-aware scheduler’s ability to
exploit the data locality found in the various workloads and its
ability to direct tasks to computers on which needed data was
cached. We found that the data-aware scheduler can get within
90% of the ideal cache hit ratios in all cases (see Figure 10). The
ideal cache hit ratio is computed by 1 – 1/locality; for example,
with locality 3 (meaning that each file is access 3 times, one cache
miss, and 2 cache hits), the ideal cache hit ratio is 1 – 1/3 = 2/3.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 1.38 2 3 4 5 10 20 30
Locality

Lo
ca

l D
is

k
C

ac
he

 H
it

Pe
rc

en
ta

ge

max-compute-util: cache hit ratio
ideal cache hit ratio
% of ideal

Figure 10: Cache hit performance of the data-aware scheduler

for the stacking application using 128 CPUs for workloads
ranging from 1 to 30 data locality using data diffusion

The following experiment (Figure 11) offers a detailed view of the
performance (time per stack per CPU) of the stacking application
as we vary the locality. The last data point in each case represents
ideal performance when running on a single node. Note that
although the GPFS results show improvements as locality
increases, the results are far from ideal. However, we see data
diffusion gets close to the ideal as locality increases beyond 10.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 1.38 2 3 4 5 10 20 30 Ideal
Locality

Ti
m

e
(m

s)
 p

er
 s

ta
ck

 p
er

 C
PU

Data Diffusion (GZ)
Data Diffusion (FIT)
GPFS (GZ)
GPFS (FIT)

Figure 11: Performance of the stacking application using 128
CPUs for workloads with data locality ranging from 1 to 30,

using data diffusion and GPFS
Figure 12 shows aggregate I/O throughput and data movement for
the experiments of Figure 11. The two dotted lines show I/O
throughput when performing stacking directly against GPFS: we
achieve 4Gb/s with a data locality of 30. The data diffusion I/O
throughput is separated into three distinct parts: 1) local, 2) cache-
to-cache, and 3) GPFS, as a stacking may read directly from local
disk if data is cached on the executor node, from a remote cache if
data is on other nodes, and from GPFS as some data may not have
been cached at all.

GPFS throughput is highest with low locality and lowest with
high locality; the intuition is that with low locality, the majority of
the data must be read from GPFS, but with high locality, the data
can be mostly read locally. Note that cache-to-cache throughput
increases with locality, but never grows significantly; we attribute
this result to the good performance of the data-aware scheduler,

always gets within 90% of the ideal cache hit ratio (for the
workloads presented in this paper). Using data diffusion, we
achieve an aggregated I/O throughput of 39Gb/s with high data
locality, a significantly higher rate than with GPFS, which tops
out at 4Gb/s.

0

5

10

15

20

25

30

35

40

45

50

1 1.38 2 3 4 5 10 20 30
Locality

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
G

b/
s)

Data Diffusion Throughput Local
Data Diffusion Throughput Cache-to-Cache
Data Diffusion Throughput GPFS
GPFS Throughput (FIT)
GPFS Throughput (GZ)

Figure 12: I/O throughput of the stacking application using

128 CPUs, for workloads with data locality ranging from 1 to
30, and using both data diffusion and GPFS

0

1

2

3

4

5

6

7

8

9

10

1 1.3818 2 3 4 5 10 20 30

Locality

D
at

a
M

ov
em

en
t (

M
B

) p
er

 S
ta

ck

Data Diffusion Size Local
Data Diffusion Size Cache-to-Cache
Data Diffusion Size GPFS
GPFS Size (FIT)
GPFS Size (GZ)

Figure 13: Data movement for the stacking application using
128 CPUs, for workloads with data locality ranging from 1 to

30, using data diffusion and GPFS
Finally, Figure 13 investigates the amount of data movement that
occurs per stacking as we vary data locality. In summary, data
diffusion (using compressed data) transfers a total of 8MB (2MB
from GPFS and 6MB from local disk) for a data locality of 1; if
data diffusion is not used, we need 2MB if in compressed format,
or 6MB in uncompressed format, but this data must come from
GPFS. As data locality increases, data movement from GPFS does
not change (given a large number of CPUs and the small
probability of data being re-used without data-aware scheduling).
However, with data diffusion, the amount of data movement
decreases substantially from GPFS (from 2MB with a locality of 1
to 0.066MB with a locality of 30), while cache-to-cache increases
from 0 to 0.421MB per stacking respectively. These results show
the decreased load on shared infrastructure (i.e., GPFS), which
ultimately allows data diffusion to scale better.

6. CONCLUSIONS
Dynamic analysis of large datasets is becoming increasingly
important in many domains. When building systems to perform
such analyses, we face difficult tradeoffs. Do we dedicate
computing and storage resources to analysis tasks, enabling rapid
data access but wasting resources when analysis is not being
performed? Or do we move data to computers when analysis
requests occur, incurring expensive data transfer costs?

We describe here a data diffusion approach to this problem that
seeks to combine elements of both dedicated and on-demand
approaches. The key idea is that we respond to demands for data
analysis by allocating data and compute systems and migrating
code and data to those systems. We then retain these dynamically
allocated resources (and cached code and data) for some time, so
that if workloads feature data locality, they will obtain the
performance benefits of dedicated resources.

To explore this approach, we have extended the Falkon dynamic
resource provisioning and task dispatch system to cache data at
executors and incorporate data-aware scheduling policies at the
dispatcher. In this way, we leverage the performance advantages
of high-speed local disk and reduce access to persistent storage.

Results from both micro-benchmarks and an astronomy image
stacking application show that our approach can improve
performance relative to alternative approaches. The performance
benefits increase with the number of nodes used, as aggregate
local I/O bandwidth scales linearly with the number of executors.

In future work, we plan to explore more sophisticated algorithms
that address, for example, what happens when an executor is
released; should we discard cached data, should it be moved to
another executor, or should it be moved to persistent storage; do
cache eviction policies affect cache hit ratio performance?
Answers to these and other related questions will presumably
depend on workload and system characteristics.

We also plan to use the Swift parallel programming system to
explore data diffusion performance with more applications and
workloads. We have integrated Falkon into the Karajan workflow
engine used by Swift [16, 33]. Thus, Karajan and Swift
applications can use Falkon without modification. Swift has been
applied to applications in the physical sciences, biological
sciences, social sciences, humanities, computer science, and
science education. We have already run several applications
(fMRI, Montage, MolDyn) without data diffusion [4, 16, 33], on
which we will investigate the benefits of data diffusion as well.

7. ACKNOWLEDGEMENTS
This work was supported in part by the NASA Ames Research
Center GSRP Grant Number NNA06CB89H and by the
Mathematical, Information, and Computational Sciences Division
subprogram of the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Dept. of Energy, under Contract
DE-AC02-06CH11357. We also thank TeraGrid and the
Computation Institute at University of Chicago for hosting the
experiments reported in this paper.

8. REFERENCES
[1] W. Xiaohui, et al. “Implementing data aware scheduling in

Gfarm using LSF scheduler plugin mechanism”, 2005

International Conference on Grid Computing and
Applications, pp.3-10, 2005

[2] P. Fuhrmann. “dCache, the commodity cache,” IEEE Mass
Storage Systems and Technologies 2004

[3] S. Ghemawat, H. Gobioff, S.T. Leung. “The Google file
system,” ACM SOSP 2003, pp. 29-43

[4] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, M. Wilde.
“Falkon: a Fast and Light-weight tasK executiON
framework”, IEEE/ACM SC 2007

[5] I. Raicu, I. Foster, A. Szalay. “Harnessing Grid Resources to
Enable the Dynamic Analysis of Large Astronomy Datasets”,
IEEE/ACM SC 2006

[6] I. Raicu, I. Foster, A. Szalay, G. Turcu. “AstroPortal: A
Science Gateway for Large-scale Astronomy Data Analysis”,
TeraGrid Conference 2006

[7] A. Szalay, J. Bunn, J. Gray, I. Foster, I. Raicu. “The
Importance of Data Locality in Distributed Computing
Applications”, NSF Workflow Workshop 2006

[8] F. Schmuck and R. Haskin, “GPFS: A Shared-Disk File
System for Large Computing Clusters,” FAST 2002

[9] SDSS: Sloan Digital Sky Survey, http://www.sdss.org/, 2007
[10] K. Ranganathan, I. Foster, “Simulation Studies of

Computation and Data Scheduling Algorithms for Data
Grids”, Journal of Grid Computing, V1(1) 2003

[11] J. Dean, S. Ghemawat. “MapReduce: Simplified Data
Processing on Large Clusters”, USENIX OSDI 2004

[12] I. Raicu, C. Dumitrescu, I. Foster. “Dynamic Resource
Provisioning in Grid Environments”, TeraGrid Conf. 2007

[13] G. Banga, P. Druschel, J.C. Mogul. “Resource Containers: A
New Facility for Resource Management in Server Systems.”
USENIX OSDI 1999

[14] J.A. Stankovic, et al. “The Spring System: Integrated Support
for Complex Real-Time Systems”, Real-Time Systems, 1999

[15] G.B. Berriman, et al. ”Montage: a Grid Enabled Engine for
Delivering Custom Science-Grade Image Mosaics on
Demand.” SPIE Conference on Astronomical Telescopes and
Instrumentation, 2004

[16] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von
Laszewski, I. Raicu, T. Stef-Praun, M. Wilde. “Swift: Fast,
Reliable, Loosely Coupled Parallel Computation”, IEEE
Workshop on Scientific Workflows 2007

[17] R. Hasan, et al. “A Survey of Peer-to-Peer Storage
Techniques for Distributed File Systems”, ITCC 2005

[18] S. Podlipnig, L. Böszörmenyi. “A survey of Web cache
replacement strategies”, ACM Computing Surveys, 2003

[19] R. Lancellotti, , et al. “A Scalable Architecture for
Cooperative Web Caching”, Workshop in Web Engineering,
Networking 2002

[20] C. Catlett, et al. “TeraGrid: Analysis of Organization, System
Architecture, and Middleware Enabling New Types of
Applications,” HPC 2006

[21] F. Chang, et al. “Bigtable: A Distributed Storage System for
Structured Data”, USENIX OSDI 2006

[22] I. Raicu, I. Foster. “Characterizing Storage Resources
Performance in Accessing the SDSS Dataset,” Tech. Report,
Univ of Chicago, 2006

[23] X. Wei, W.W. Li, O. Tatebe, G. Xu, L. Hu, and J. Ju.
“Integrating Local Job Scheduler – LSF with Gfarm”,
Parallel and Distributed Processing and Applications,
Springer Berlin, Vol. 3758/2005, pp 196-204, 2005

[24] ANL/UC TeraGrid Site Details,
http://www.uc.teragrid.org/tg-docs/tg-tech-sum.html, 2007

[25] CAS SkyServer,
http://cas.sdss.org/dr6/en/tools/search/sql.asp, 2007

[26] I. Raicu, Y. Zhao, I. Foster, A. Szalay. “A Data Diffusion
Approach to Large Scale Scientific Exploration,” Microsoft
eScience Workshop at RENCI 2007

[27] A. Bialecki, M. Cafarella, D. Cutting, O. O’Malley.
“Hadoop: a framework for running applications on large
clusters built of commodity hardware”,
http://lucene.apache.org/hadoop/, 2005

[28] T. Kosar. “A New Paradigm in Data Intensive Computing:
Stork and the Data-Aware Schedulers”, IEEE CLADE 2006

[29] J. Bent, D. Thain, et al. “Explicit control in a batch-aware
distributed file system.” USENIX/ACM NSDI 2004

[30] I. Raicu. “Harnessing Grid Resources with Data-Centric Task
Farms”, Technical Report, University of Chicago, 2007

[31] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H.
Balakrishnan. “Chord: A scalable peer-to-peer lookup
service for internet application”, ACM SIGCOMM, 2001

[32] I. Raicu, I. Foster. “A Comparison of Data Diffusion to the
GPFS Shared File System”, Technical Report, University of
Chicago, 2007

[33] Y. Zhao, I. Raicu, I. Foster, M. Hategan, V. Nefedova, M.
Wilde. “Realizing Fast, Scalable and Reliable Scientific
Computations in Grid Environments”, Grid Computing
Research Progress, Nova Pub. 2008

[34] J. Gray. “Distributed Computing Economics”, Technical
Report MSR-TR-2003-24, Microsoft Research, Microsoft
Corporation, 2003

[35] M. Cai, A. Chervenak, M. Frank, “A Peer-to-Peer Replica
Location Service Based on A Distributed Hash Table”,
IEEE/ACM SC04, 2004

[36] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C.
Dumitrescu, I. Raicu, I. Foster. “The Globus Striped
GridFTP Framework and Server”, ACM/IEEE SC05, 2005

