
Accelerating Leukocyte Tracking using CUDA:

A Case Study in Leveraging Manycore Coprocessors

Michael Boyer∗, David Tarjan∗, Scott T. Acton†, and Kevin Skadron∗

Departments of ∗Computer Science and †Electrical and Computer Engineering

University of Virginia, Charlottesville, VA 22904

Abstract

The availability of easily programmable manycore CPUs

and GPUs has motivated investigations into how to best

exploit their tremendous computational power for scientific

computing. Here we demonstrate how a systems biology

application—detection and tracking of white blood cells

in video microscopy—can be accelerated by 200x using

a CUDA-capable GPU. Because the algorithms and im-

plementation challenges are common to a wide range of

applications, we discuss general techniques that allow pro-

grammers to make efficient use of a manycore GPU.

1. Introduction

The microprocessor industry has recently shifted from

maximizing single-core performance to integrating multiple

cores on a single processor die. The number of integrated

cores is likely to continue increasing exponentially with

Moore’s Law for the foreseeable future. As core count grows

rapidly while per-core performance grows more slowly,

exploiting concurrency becomes essential for software to use

multicore processors to their full potential and realize the

benefits of semiconductor technology scaling.

Graphics Processing Units (GPUs) are notable because

they contain many processing elements–up to 240 in

NVIDIA’s GTX 280–and provide a level of concurrency

that cannot be found in any other consumer platform.

Although GPUs have been designed primarily for efficient

execution of 3D rendering applications, demand for ever

greater programmability by graphics programmers has led

GPUs to become general-purpose architectures, with fully

featured instruction sets and rich memory hierarchies. Tools

such as NVIDIA’s CUDA have further simplified the process

of developing general-purpose GPU applications. CUDA

presents to the programmer a fairly generic abstraction of

a manycore architecture supporting fine-grained parallelism.

CUDA and the GPU therefore provide massive, general-

purpose parallel computation resources with the potential

for dramatic speedups.

It should be noted that GPUs only represent one possible

direction for future manycore architectures. A variety of

companies and researchers have described possible many-

core architectures, most of which are currently envisioned

as coprocessors on a chip or board separate from the

main system CPU. Using CUDA and GPUs provides an

opportunity to draw general lessons on how to best make

use of manycore chips from the perspectives of both the

programmer and the system architect.

This paper discusses our experiences in parallelizing a

computationally intensive application from the field of sys-

tems biology: detection and tracking of rolling leukocytes

in in vivo video microscopy of blood vessels [1], [2].

Tracking leukocytes provides researchers with important

information about the inflammatory response of the vascular

system. Unfortunately, manual tracking is a tedious process,

requiring on the order of tens of hours of manual analysis for

a single video [2]. Automated approaches to the detection [1]

and tracking [2] of leukocytes obviate the need for manual

analysis, but are computationally expensive, requiring more

than four and a half hours to process one minute of video.

Significantly reducing the runtime of these automated ap-

proaches would accelerate the process of developing anti-

inflammatory medications.

This application was chosen partially because it demon-

strates an urgent need for dramatic speedups. More impor-

tantly, however, it is a useful case study because it illustrates

many of the issues that other applications will face in

trying to use manycore systems. It is a complex application

presenting nontrivial software engineering challenges as well

as presenting a workload that is representative of a much

broader class of applications. The application’s runtime is

dominated by a number of widely used operations, such as

stencil-based operations (specifically feature extraction and

image dilation) and an iterative solution procedure. These

first two operations are widely used in image processing,

and the last operation is widely used in high performance

computing.

The detection and tracking algorithm was originally im-

plemented in MATLAB, and re-implementing it in C re-

sulted in a significant performance improvement. We fur-

ther improved the performance by accelerating the most

computationally demanding stages using CUDA and, for

comparison, OpenMP. We achieved an overall speedup of

199.9x using a desktop system with an NVIDIA GeForce

skadron
Text Box
Preprint, to appear in the 23rd IEEE International Parallel and 
Distributed Processing Symposium, Rome, Italy, May 2009



GTX 280 GPU, compared to a speedup of 7.6x on the fastest

available multicore CPU system. These speedups demon-

strate the advantages of the throughput-oriented nature of

GPUs. Additionally, we have identified a number of bot-

tlenecks, in both hardware and software, whose elimination

would enable even more significant speedups and simplify

the development of efficient CUDA applications.

In addition to the substantial speedup, the main contri-

bution of this paper is to describe in detail the algorithmic

transformations needed to reduce the overheads associated

with a separate coprocessor. These overheads are particularly

acute with iterative algorithms such as iterative solvers.

The best implementation required abandoning the canonical

parallelization strategy suggested in the CUDA literature,

in which each output value is computed by a separate

thread. We also propose extensions to CUDA’s software

and hardware models that would provide better support

for applications with fine-grained interleaving of serial and

parallel regions.

2. CUDA

NVIDIA’s CUDA [3] architecture allows programmers to

use the C programming language to develop general-purpose

applications exploiting fine-grained parallelism. CUDA is

currently supported only on NVIDIA GPUs but recent work

has shown the viability of compiling CUDA programs for

execution on multi-core CPUs [4]. Nickolls et al. [3] pro-

vide a comprehensive overview of the CUDA programming

model. We only touch on the most important features here

and refer the reader to their work for more details.

CUDA consists of a runtime library and an extended

version of C. The main abstractions on which CUDA is

based are the notion of a kernel function, which is a single

routine that is invoked concurrently across many thread

instances; a software controlled scratchpad, which CUDA

calls the “shared memory”, in each SIMD core; and barrier

synchronization. CUDA presents a virtual machine consist-

ing of an arbitrary number of streaming multiprocessors

(SMs), which appear as 32-wide SIMD cores with a total

of up to 512 thread contexts (organized into warps of 32

threads each). Kernels are invoked on a 2D grid that is

divided into as many as 64K 3D thread blocks. Each thread

block is mapped in its entirety and executes to completion

on an arbitrary SM. All thread blocks in a kernel run to

completion before a subsequent kernel may start, providing

an (expensive) global memory fence.

Once a kernel is launched, a hardware scheduler assigns

each thread block to an SM with sufficient spare capacity to

hold the entire thread block. If multiple (small) thread blocks

fit onto a single SM, they will execute concurrently but

cannot communicate with or even be aware of the existence

of their co-resident thread blocks. Warps are multiplexed

onto the SIMD hardware on a cycle-by-cycle granularity

according to their execution readiness. Each thread is com-

pletely independent, scalar, and may execute arbitrary code

and access arbitrary addresses. Execution is most efficient

if all threads in a warp execute in lockstep; divergence is

handled with a branch stack and masking. Similarly, memory

access is more efficient if threads within a warp access

contiguous memory locations.

3. Leukocyte Detection and Tracking

Leukocytes, or white blood cells, play an important role

inside the body, acting as the body’s defense mechanism

against infection and cellular injury. Much effort has been

invested in studying the way leukocytes carry out this

role in the process of inflammation. The most commonly

used statistic predicting the level of cell recruitment dur-

ing inflammation is the velocity distribution of rolling

leukocytes [5], [6]. This distribution can help researchers

gain the requisite knowledge about the mechanisms behind

leukocyte rolling and arrest to create effective inflamma-

tion treatments. As a result, researchers investigating anti-

inflammatory drugs need a fast, accurate method of attaining

these measurements to test the validity of their treatments.

Currently velocity measurements are taken manually. Re-

searchers go through hours of video data frame-by-frame,

marking the centers of rolling leukocytes [5], [6], [7] at an

average rate of several minutes per leukocyte. To obtain a

valid estimate of the leukocyte velocity distribution hundreds

of cells must be tracked. This process requires many tire-

some hours and, like any human action, involves a certain

amount of observer bias. A method to automatically track

cells would solve both these problems and allow researchers

to focus more on the problem of creating treatments and less

on the tabulation of data. Furthermore, the possibility of real-

time leukocyte detection and tracking would give researchers

the ability to immediately view the results of their experi-

ments. This would enable a researcher to vary experimental

parameters until appropriate results are obtained, instead of

having to conduct many different experiments separated by

periods of data tabulation and analysis.

Automatic detection is accomplished using a statistic

called the Gradient Inverse Coefficient of Variation (GI-

COV) [1]. The GICOV computes, along a closed contour, the

mean outward gradient magnitude divided by the standard

deviation of this measure. In the implementation used in

this paper, the contours are restricted to circles of a known

range of radii. In the first image of a sequence, detection

is performed on the whole image. Following the initial

detection, subsequent detections only need to be performed

in a small window at the entry side of the venule. After

detection, an active contour (snake) algorithm is used to

track the boundary from frame to frame using a statistic

called the Motion Gradient Vector Flow (MGVF) [2]. The

MGVF is a gradient field biased in the assumed direction



Figure 1. Still image from an intravital video of a mouse cremaster muscle [1]. On the left is the original image; on

the right is the result of automatic detection with the leukocytes outlined.

of the movement of the leukocytes. This active contour

method works well in the cluttered, contrast-varying scene

encountered in intravital microscopy. The snake is tailored

to the leukocyte model and is constrained to prefer circular

shapes of a radius near the average radius for leukocytes of

a given species.

The images used for detection and tracking are of leuko-

cytes found in vivo, that is, within a living organism. The

videos are made using intravital microscopy, filming the

cremaster muscle of a mouse. This muscle is particularly

thin, making it transparent, and is filled with post capillary

venules. Part of a frame from such a movie is shown in

Figure 1. These intravital images present a salient challenge

for automated image analysis.

The particular video used in this work is a 640x480 un-

compressed AVI file. The actual blood vessel being analyzed

only occupies a third of each frame, so a frame is cropped

to a 218x480 sub-frame before detection is performed.

The cropping boundary is hard-coded for all performance

measurements, although in practice it would be designated

manually by the user in the first frame. During the tracking

stage, only a small, fixed-sized area around each cell is

analyzed, so the performance of the tracking stage is a

function of the number of cells being tracked rather than the

size of the frame. The video was recorded at 30 frames per

second (FPS), so achieving real-time analysis would require

processing each frame in 1/30th of a second.

4. Accelerating the Detection Stage

In order to automatically detect leukocytes in an image,

three operations are performed. First, for each pixel in the

image, the GICOV score is computed for circles of varying

radii (stencils) centered on that pixel, and the maximum of

those scores is output into a matrix. Second, this matrix

is dilated, which simplifies the process of determining if

the GICOV score at a given pixel is the maximum within

that pixel’s neighborhood. Third, for those pixels which have

locally maximum GICOV scores, an active contour is used

to refine the initial circle and more precisely determine both

the location and the shape of the leukocyte.

Previous work implemented both the detection [1] and

tracking [2] stages of the algorithm using MATLAB. In

the detection stage of that implementation, the GICOV

computation and dilation take 36.7% and 28.2% of the

overall runtime, respectively. In our C implementation of

the algorithm, these two operations further dominate the

execution, taking 59.1% and 39.2% of the runtime, respec-

tively. The C implementation is essentially a line-by-line

translation of the MATLAB implementation and provides a

speedup of 2.2x on the detection stage. To further improve

the performance, we accelerated the critical operations us-

ing OpenMP and CUDA. The OpenMP acceleration was

achieved with the introduction of two simple pragmas. The

CUDA acceleration was more complex, starting with a

straightforward translation and then applying increasingly

complex optimizations. The speedups achieved by the C,

OpenMP, and CUDA implementations of the detection stage

are shown in Figure 2.

Runtimes for all implementations were measured on a

machine running Ubuntu version 7.10 with a 3.2 GHz

quad-core Intel Core 2 Extreme X9770 processor and an

NVIDIA GeForce GTX 280 GPU, with NVIDIA driver

version 177.67. The original implementation was executed

in MATLAB version 7.6.0.324. The C code was compiled

using GCC version 4.2.3 and the CUDA code was compiled

using NVCC version 0.2.1221, CUDA Toolkit version 2.0,

and CUDA SDK version 2.0 Beta2. The first access to the

CUDA API incurs a non-negligible delay due to initializa-

tion overhead. Because a real-time implementation would

initialize the API before the video capturing begins, and

because this delay can vary significantly between different

runs, we started measuring the runtime after a dummy call

to the API.

4.1. Comparison to OpenMP

A popular approach to parallelizing programs on shared-

memory machines is the OpenMP standard. In order to

provide a point of comparison to our CUDA implemen-

tations, we have also parallelized the leukocyte detection

using OpenMP. Specifically, the for loops in the GICOV

computation and dilation functions that iterate over the

pixels in the image were augmented with a parallel



2.0x
4.7x 6.2x

11.6x
15.5x

42.8x

58.5x

3.3x

13.5x

0x

10x

20x

30x

40x

50x

60x

70x

C 2 Threads 3 Threads 4 Threads Naïve

CUDA

Constant

Memory

Texture

Memory

Array

Ordering

One-Pass

Variance

C + OpenMP CUDA

S
p

e
e

d
u

p

Figure 2. Speedup of the different implementations of the detection stage over the original MATLAB implementation.

pragma. This transformation was trivial because the for loops

contain no inter-loop dependencies. The OpenMP speedups

for two, three, and four threads are shown in Figure 2.

With four threads, the OpenMP implementation achieves

speedups of 6.8x and 3.1x over the original MATLAB and

C implementations, respectively.

4.2. Naı̈ve CUDA Implementation

The CUDA implementations parallelize exactly the same

loops as in the OpenMP approach. The code inside the

nested for loops in each function was converted directly into

a kernel function, and the domains of the kernel functions

were defined to be the pixels in the image. This straightfor-

ward CUDA implementation achieves a 5.9x speedup over

the original C version.

4.3. CUDA Optimizations

Although the naı̈ve CUDA implementation achieves a

non-trivial speedup over the sequential version of the appli-

cation, it was written without taking into account the unique

architecture of the GPU. A number of optimizations were ap-

plied to the original CUDA implementation that significantly

improved its performance. Each optimization is described in

turn. Note that the optimizations are cumulative, meaning

that once an optimization has been applied, it remains in

effect in all subsequent optimizations. However, they are

independent of each other and could be applied in any

order. For each optimization, we also note its applicability

to programs parallelized using OpenMP.

Constant Memory: Many of the arrays accessed by both

kernels are read-only. Thus, they can be allocated in the

GPU’s constant memory address space, which allows them

to be cached on-chip. Accomplishing this change in CUDA

is trivial, but it allows the code to achieve a speedup of 6.8x

over the original C version and 1.2x over the naı̈ve CUDA

version. This optimization is not applicable to the OpenMP

version, since CPU architectures do not provide such special

purpose address spaces.

Texture Memory: GPUs also employ another special-

purpose address space for texture memory. Like constant

memory, texture memory only supports read-only data struc-

tures. Data structures mapped to texture memory can take

advantage of special hardware on the GPU which provides

a small amount of on-chip caching and slightly more ef-

ficient access to off-chip memory. By moving the large

arrays accessed by the two kernels into texture memory,

the application achieves a speedup of 7.8x over the original

C version and 1.2x over the previous CUDA version. As

texture memory is an architectural feature of GPUs, this

optimization is not applicable to the OpenMP version.

Array Ordering: The two largest arrays accessed by the

GICOV kernel were originally allocated in row-major order.

The memory access pattern of the kernel resulted in threads

within the same warp accessing non-contiguous elements

of the arrays. Allocating the arrays in column-major order

allows threads within the same warp to access contiguous

elements, which can significantly improve performance due

to the GPU’s ability to coalesce multiple contiguous memory

accesses into one larger memory access. With this optimiza-

tion, the detection stage achieves a speedup of 21.7x over

the original C version and 2.8x over the previous CUDA

version. Programs using OpenMP on manycore CPUs such

as Sun Niagara 2 [8] and Intel Larrabee [9] can benefit from

this optimization, as it makes more efficient use of the L1

data cache and memory bandwidth when working on many

data points in parallel. It does not impact the running time of



our OpenMP implementation, however, as each heavyweight

core processes a single data point at a time and can fully

buffer the array in the L1 cache in both layouts.

One-Pass Variance: For each point in the image, the GI-

COV kernel computes the sum of a function at 150 different

points and then computes the variance of the function across

those same points. This two-pass approach is inefficient

because it requires storing the 150 intermediate values,

which requires spilling those values to global memory1. The

variance can instead be computed in a single-pass using a

relatively straightforward algorithm [10]. This optimization

provides an overall speedup of 29.7x over the original C

version and 1.4x over the previous CUDA version. We

experimented with this optimization in the OpenMP version

and observed no speedup, since the L1 cache in each CPU

core is large enough to buffer the 150 intermediate values.

5. Accelerating the Tracking Stage

After the locations of leukocytes in frame i have been

determined by the detection stage of the algorithm, this

information is used by the tracking stage to determine the

new locations of those same leukocytes in frame i+1. These

updated locations are then fed back into the tracking stage to

determine the new cell locations in frame i+2. This process

continues, with detection typically performed once every 10

frames.

In each frame, all cells can be processed independently.

For each cell, the algorithm only analyzes a fixed-sized por-

tion of the frame (41x81 pixels for the particular leukocytes

studied in this work), centered around the cell’s location

in the previous frame. This explicitly limits the maximum

velocity at which a cell can be successfully tracked. Within

the sub-image of interest, two operations are performed.

First, the Motion Gradient Vector Flow (MGVF) matrix is

computed via an iterative Jacobian solution procedure. The

solver iterates until it has met a convergence criterion, which

is a function of all of the elements in the matrix. Second,

an active contour minimizes an energy function defined on

the MGVF matrix and computes the new location of the

leukocyte.

In the original MATLAB implementation of the tracking

stage, 93.5% of the execution time is spent in the itera-

tive solver. In the C implementation, the iterative solver

consumes essentially all (99.8%) of the overall runtime.

The C implementation provides a speedup of 2.0x over the

MATLAB implementation. As with the detection stage, the

tracking stage was accelerated further using OpenMP and

CUDA. The runtime of each of the different implementations

was measured on the same system as described in Section 4.

The speedups achieved by the C, OpenMP, and CUDA

1. Another option would be to spill to the on-chip shared memory.
Because the shared memory is small, however, this approach reduces the
number of threads per SM and reduces overall performance.

implementations over the original MATLAB implementation

are shown in Figure 3.

5.1. Comparison to OpenMP

Accelerating the tracking stage with OpenMP was a

relatively straightforward transformation. Since each cell

being tracked can be processed in parallel, we simply added

a parallel pragma to the for loop that iterates over all

of the cells. Because the number of cells is small (generally

less than 50), this approach would not be effective if we

attempted to scale the OpenMP implementation to much

larger numbers of processors. For the hardware on which

we benchmarked the implementation, however, the decom-

position was good enough to achieve nearly linear scaling.

The OpenMP speedups for two, three, and four threads

are shown in Figure 3. With four threads, the OpenMP

implementation achieves speedups of 7.7x and 3.8x over the

original MATLAB and C implementations, respectively.

5.2. Naı̈ve CUDA Implementation

Because the runtime of the tracking stage is dominated by

calls to the iterative solver, which in turn is dominated by

calls to a regularized version of the Heaviside function, the

first CUDA implementation simply replaced each call to the

Heaviside function with a call to a Heaviside CUDA kernel.

In this implementation, each element in the output matrix

is computed by a single thread. Although the overall kernel

execution time is slightly less than one second, the memory

allocation and copying overheads add more than eleven

seconds to the overall runtime. Due to these overheads,

this implementation achieves a 2.6x slowdown compared to

the original C implementation (and is actually slower than

the MATLAB implementation). Parallelizing the OpenMP

implementation at the granularity of individual calls to

the Heaviside function similarly resulted in a significant

slowdown.

5.3. CUDA Optimizations

As with the detection stage, a number of optimizations

were applied to the naı̈ve CUDA implementation of the

tracking stage in order to improve its performance. For

each implementation, Figure 4 shows the overall runtime,

as well as the fraction of the runtime devoted to kernel

execution, memory copying, memory allocation, and non-

CUDA related code. Note that the optimizations are again

cumulative, but unlike in the detection stage, they are mostly

dependent on one other, since they change how and when

memory is allocated and when data is moved to and from

the GPU.

Larger Kernel: In the naı̈ve implementation, the Heav-

iside kernel is called eight times during each iteration of



2.0x 4.0x 5.9x 7.7x 0.8x

25.4x
40.7x

60.7x

211.3x

54.1x

6.3x

0x

50x

100x

150x

200x

250x

C 2 Threads 3 Threads 4 Threads Naïve

CUDA

Larger

Kernel

Reduced

Allocation

Partial

Reduction

Full

Reduction

(2 Kernels)

Full

Reduction

(1 Kernel)

Persistent

Thread

Block

C + OpenMP CUDA

S
p

e
e

d
u

p

Figure 3. Speedup of the different implementations of the tracking stage over the original MATLAB implementation.

the solver. In order to reduce the memory allocation and

copying overhead and the number of kernel calls and also

increase the amount of useful work performed in each kernel

call, the entire body of the inner loop was converted into

a single CUDA kernel. As in the previous implementation,

each element in the output matrix is computed by one thread.

Applying this optimization yields an overall speedup of

3.1x over the original C implementation and 8.1x over the

previous CUDA implementation. Recall that the OpenMP

implementation is parallelized across the cells being tracked.

If we instead parallelize that implementation across the indi-

vidual matrix elements in the iterative solver, as is done here

for the CUDA implementation, the OpenMP implementation

actually becomes 24% slower.

Reduced Allocation: Allocating and deallocating mem-

ory on the CPU via the C standard library functions malloc

and free is a very low overhead operation. Allocating

and deallocating memory on the GPU via the CUDA li-

brary functions cudaMalloc and cudaFree, however, is

considerably more expensive. On the system used in this

study, we measured the overhead of cudaMalloc to be

approximately 30-40 times greater than the overhead of

malloc (and significantly higher for memory sizes larger

than a few megabytes) and the overhead of cudaFree to

be approximately 100 times greater than the overhead of

free. This overhead is readily apparent in Figure 4 for

both the naı̈ve CUDA and larger kernel implementations,

whose runtimes are dominated by memory allocation.

In order to minimize this overhead, instead of allocating

and freeing memory on the GPU once each iteration of

the solver, initialization and cleanup functions were added

to allocate memory a single time at the start of the iter-

ative solver and then free memory at the end. Applying

this optimization yields an overall speedup of 12.6x over

the original C implementation and 4.0x over the previous

CUDA implementation. Note that even if the C standard

library memory allocation functions were as expensive as

the CUDA equivalents, this overhead would be negligible

in the OpenMP implementation because it does not allocate

memory within the iterative solver loop.

Partial Reduction: After each iteration of the solver, the

average of the absolute value of the change at each pixel is

computed in order to check for convergence. In the previous

CUDA implementation, the entire MGVF matrix is copied

back after each iteration, and the reduction is performed

entirely on the CPU. In order to improve the performance of

the reduction, the kernel was extended to perform a partial

reduction, in which each thread block computes the sum

of the absolute value of the change of each each pixel

within that thread block. With a thread block size of N

threads, this reduces by a factor of N both the amount of

memory copied from the GPU to the CPU as well as the

number of additions required by the CPU to perform the

reduction. Since typical values of N in CUDA applications

are 128 and 256, performing a partial reduction on the GPU

can result in a substantial performance improvement. In

this application, applying the optimization yields an overall

speedup of 20.3x over the original C implementation and

1.6x over the previous CUDA implementation. This and

the next two optimizations do not apply to the OpenMP

implementation because it does not transfer data between

disjoint memory spaces.

Full Reduction (2 Kernels): In order to further reduce

the reduction and memory copying overheads, a second

CUDA kernel was added to complete the reduction on the

GPU. This allows the copying of the partial sums to be

replaced by the copying of a single Boolean value indicating

whether or not the computation has converged. However,



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Naïve CUDA Larger Kernel Reduced

Allocation

Partial

Reduction

Full Reduction

(2 Kernels)

Full Reduction

(1 Kernel)

Persistent

Thread Block

P
e

rc
e

n
ta

g
e

 o
f 

R
u

n
ti

m
e

0

2

4

6

8

10

12

14

O
v

e
ra

ll
 R

u
n

ti
m

e
 (

s
e

c
o

n
d

s
)

Kernel Execution Memory Copying Memory Allocation Other

Figure 4. Impact of different overheads on the runtimes of the CUDA implementations. Each bar shows, starting at

the bottom, the percentage of runtime due to: executing the CUDA kernels, transferring memory between the CPU

and GPU, allocating memory on the GPU, and executing the other, non-CUDA related code. The line indicates the

overall runtime of each implementation.

this approach does not improve performance significantly

because, although it does reduce the amount of data copied,

it does not reduce the number of copies performed. At data

sizes less than about four kilobytes, the latency of a memory

transfer is essentially constant regardless of the amount of

data transferred.

Thankfully, performing the entire reduction on the GPU

enables a further optimization. Instead of checking the

convergence flag after each iteration, the computation kernel

can be modified to check the value of the flag and exit

if convergence has already been achieved. This allows the

computation and reduction kernels to be called an as many

times as desired without the need to explicitly copy the

convergence flag and without impacting the correctness of

the results. In other words, this allows the main loop of

the iteration to be unrolled to an arbitrary degree. In our

experiments, performing about 30 back-to-back kernel calls

before copying the convergence flag resulted in the best

performance. Applying these optimizations yields an overall

speedup of 26.9x over the original C implementation and

1.3x over the previous CUDA implementation.

Full Reduction (1 Kernel): Although the previous op-

timization reduces the overall runtime, it actually increases

the absolute runtime devoted to kernel execution, due to both

the increase in computation performed by the kernels as well

as the doubling of the number of kernel calls. To reduce the

kernel overhead, the computation and reduction kernels can

be merged into a single kernel. However, we must be careful

about the ordering of the computation and reduction in the

merged kernel. A seemingly reasonable approach would be

to compute the updated MGVF matrix at the beginning of

the kernel and then perform the reduction at the end of

the kernel. Unfortunately, this would require the use of a

global memory fence in order to ensure that all thread blocks

had finished their computations before the reduction was

performed, and CUDA does not provide such a fence except

across kernel calls.

To avoid this potential deadlock, in each kernel call we

first perform a reduction on the values produced by the pre-

vious kernel call. Only then do we proceed to compute the

next iteration (if the computation has not already converged).

Applying this optimization yields an overall speedup of

30.2x over the original C implementation and 1.1x over the

previous CUDA implementation.

Persistent Thread Block: In the previous implementa-

tion, about 24% of the time spent by the application waiting

for kernel execution is due to the overhead of kernel invoca-

tion, with only 76% of the time due to actually performing

useful work on the GPU. To reduce the overhead of kernel

execution, we can perform all of the iterations in a single

kernel call. As mentioned earlier, CUDA only provides a

per-thread-block memory fence, not a global memory fence.

Thus, in order to perform all of the iterations in a single

kernel call, we must perform all of the computation for

one cell within a single thread block. Since a single thread

block can contain no more than 512 threads, and there are



more than 3,000 elements in the MGVF matrix, we must

abandon the one-to-one mapping between threads and matrix

elements. Instead, within each iteration, the single thread

block traverses the entire matrix, computing a subset of the

matrix in each step.

If we simply modify the kernel to perform all of the

iterations for a cell in a single kernel call but still process

the individual cells sequentially, the application will not

effectively take advantage of the GPU’s parallel computation

resources and the resulting performance will be significantly

worse than the previous implementation. However, since

each cell now only requires a single thread block, it makes

sense to process all of the cells concurrently, with one thread

block allocated for each cell. The entire tracking stage for

one frame can then be completed with a single kernel call.

Implementing this optimization yields an overall speedup of

105.2x over the original C implementation and 3.5x over

the previous CUDA implementation. Note that the OpenMP

parallelization uses essentially the same approach, but with

only a single thread processing each cell rather than an entire

thread block.

6. Discussion

The final CUDA implementation of the detection and

tracking algorithm provides a speedup of 80.8x over the

single-threaded C implementation2. Even assuming perfectly

linear scaling, matching the performance of this CUDA

implementation with the OpenMP implementation would re-

quire about 80 CPU cores equivalent to the cores used in our

experiments. Given the choice to obtain the same speedup

by purchasing either 20 quad-core processors (and associated

hardware) or a single GPU, the most cost-effective choice is

clearly the GPU. Of course, in practice we have been unable

to achieve perfectly linear scaling with OpenMP on this

problem due to the relatively small sizes of the computations

involved, and we would be unable to match the performance

of the GPU with any number of additional CPU cores.

All of the performance results presented so far have been

expressed relative to the performance of other implementa-

tions. To provide a sense of how close each implementation

comes to achieving real-time analysis, Figure 5 shows the

number of frames of video that each implementation can

process per second. While the MATLAB, C, and OpenMP

implementations cannot even process a single frame per

second, the CUDA implementation can process more than

twenty. Given the increases in GPU performance expected

in the next few years, real-time detection and tracking

2. To compute the performance of the entire application, we assume that
detection is performed once every ten frames. Thus, the average time to
process one frame can be estimated by (D + 9T )/10, where D and T
are the average times to perform detection and tracking, respectively, on a
single frame.

of leukocytes appears realizable in the near future with

commodity hardware.

6.1. Lessons for CUDA Developers

We encountered a number of significant bottlenecks while

attempting to improve the performance of both the detection

and tracking stages using CUDA. Most of the bottlenecks

are a result of limitations of the underlying hardware and

software and are not fundamental limitations of the CUDA

programming model. Later we will suggest ways in which

system architects can significantly reduce or even eliminate

some of these bottlenecks, but here we focus exclusively

on techniques that allow CUDA application developers to

bypass these bottlenecks to some extent.

Reduce Kernel Overhead: We have shown earlier that

the overhead of launching a kernel can severely impact the

performance of a CUDA application. This is clearly evident

when we compare the performance of the naı̈ve CUDA

implementations of the two different stages of the algorithm.

In the detection stage, the most natural decomposition was

at a coarse-grained level, resulting in only two kernel calls

per frame. In the tracking stage, however, the most natural

decomposition was at a much finer-grained level, resulting

in approximately 50,000 kernel calls per frame. As a result,

only 0.1% of the time spent waiting for the execution of

the GICOV kernel in the detection stage is caused by the

kernel invocation overhead, with 99.9% of the time spent

performing actual computation on the GPU. Conversely,

73.1% of the time spent waiting for the execution of the

Heaviside kernel in the tracking stage is caused by the kernel

overhead, with only 26.9% of the time spent performing

actual computation. Thus, regardless of how much we were

able to improve the performance of the Heaviside kernel, we

would not be able to reduce the overall runtime of the kernel

by more than 26.9%. In order to reduce the impact of this

overhead, developers should attempt to make their kernels as

coarse-grained as is feasible, thereby increasing the amount

of work performed in each kernel call and reducing the total

number of kernel calls.

There is also a performance advantage due to launching

many kernels back-to-back. For example, in both full re-

duction implementations of the tracking stage, the overhead

of kernel invocation is significantly more severe without

unrolling the iterative solver loop. This is because, in the

most recent versions of the CUDA API, kernel invocations

are asynchronous. With unrolling, multiple kernel calls are

batched in the GPU driver, and the application can overlap

kernel execution on the GPU with accessing the driver on the

CPU. Without unrolling, there is an implicit synchronization

when the convergence flag is copied back to the CPU after

each kernel call, and there is no overlap between kernel

execution and driver access.



0.11 0.22 0.83

21.6

0

5

10

15

20

25

MATLAB C C + OpenMP CUDA

F
ra

m
e
s
 p

e
r 

S
e
c
o

n
d

 (
F

P
S

)

Figure 5. Overall rates at which the four implementations can detect and track leukocytes.

Reduce Memory Management Overhead: Although

most programmers have learned that memory allocation

is a relatively inexpensive operation, this assumption is

no longer valid in the context of CUDA. As mentioned

earlier, cudaMalloc and cudaFree are approximately

30-40 and 100 times more expensive than their equivalent C

standard library functions malloc and free. The results

for the naı̈ve CUDA and larger kernel implementations of the

tracking stage demonstrate this clearly. Allocating memory

on the GPU consumes approximately 72% and 71%, respec-

tively, of the runtimes of those two implementations. The

solution here is straightforward: wherever possible, allocate

GPU memory once at the beginning of an application and

then reuse that memory in each kernel invocation.

Reduce Memory Transfer Overhead: Another ineffi-

ciency caused by the disjoint address spaces of the CPU

and GPU is the need to explicitly transfer data between the

two memories. The transfer overhead can be significant: in

the reduced allocation implementation of the tracking stage,

memory copying consumes 56% of the overall runtime.

To reduce the severity of this overhead, developers should

attempt to perform as much computation on the GPU as

possible. For example, in the partial reduction implementa-

tion, the convergence condition is partially computed on the

GPU in order to reduce the memory transfer overhead. With

this change the number of elements transferred decreases

from the number of elements in the matrix (generally 3,321)

to the number of thread blocks (52 in this case). It is

important for developers to understand that accelerating a

computation using CUDA does not have to be an all-or-

nothing proposition. Even if an entire computation cannot

be (easily) implemented using CUDA, it is possible that

offloading only a part of the computation will improve the

overall performance.

Note also that moving a computation to the GPU may

prove beneficial even if that computation would be more

efficiently executed on the CPU. To further reduce the

memory copying overhead of the partial reduction imple-

mentation, the two-kernel full reduction implementation uses

a second kernel to finish summing the partially reduced

values produced by the first kernel. Even though the second

kernel is invoked with only a very small number of threads,

which certainly perform the reduction significantly slower

than would a CPU thread, overall the change improves the

application’s performance because the reduction in the mem-

ory transfer overhead outweighs the increase in computation

time. CUDA implicitly encourages developers to fill the

GPU with thousands of threads, so that they are trained

to think that they are wasting the GPU’s computational re-

sources if they use only a small number of threads. However,

as we have seen here, it is sometimes advantageous to accept

computational inefficiency in exchange for a reduction in

memory transfer overhead.

Understand Memory Access Patterns: CPUs are de-

signed to reduce the effective memory access latency

through extensive caching. Thus, a slightly irregular memory

access pattern, such as the one exhibited by the stencil

operation used in the GICOV computation, can be success-

fully captured by the CPU’s caches. However, that same

access pattern may be irregular enough to prevent efficient

utilization of the GPU’s memory bandwidth, because the

restrictions on access patterns that must be met in order to

achieve good memory performance are much more strict

on a GPU than they are on a CPU. This is evident in

the GICOV kernel of the detection stage. In the original

implementation, the input matrices are allocated in row-

major order, so access would be most efficient if neighboring

threads access neighboring elements from the same row.



However, the access pattern actually exhibited by the kernel

is that neighboring threads access neighboring elements from

the same column. This explains why allocating the input

matrices in column-major order provides a 2.8x speedup.

The same change in the CPU version does not significantly

impact the runtime because the caches are large enough to

capture the entire stencil regardless of the order of traversal.

These access pattern restrictions can be partially relaxed

by taking advantage of the GPU’s special-purpose address

spaces. Both constant and texture memory provide small on-

chip caches that allow threads to take advantage of fine-

grained spatial and temporal locality. In addition, texture

memory relaxes the alignment requirements that must be met

in order for multiple memory accesses from within the same

warp to be coalesced. Another effective approach is to use

the software-controlled shared memory as an explicitly man-

aged cache, which can significantly improve performance

when data elements are frequently reused among threads in

the same thread block.

Tradeoff Computation and Memory Access: The GI-

COV and dilation kernels used in the detection stage perform

relatively simple computations across a large number of data

elements. Thus, their performance is more a function of

the GPU’s memory system performance than its process-

ing performance. It can be beneficial for such memory-

bound kernels to decrease the number of memory accesses

required by increasing the complexity of the computation.

Such a case arises in the GICOV kernel, which at each

pixel and for each stencil computes the variance of a

function across the 150 sample points within that stencil.

The original CUDA implementation computes the variance

in two passes. Since computing each point in the function

requires accessing global memory, implementing a single-

pass algorithm for computing the variance essentially halves

the number of memory accesses. Even though the single-

pass algorithm significantly increases the complexity of the

variance computation, it provides a 1.4x speedup over the

two-pass algorithm because the impact of the reduction in

memory usage far outweighs the impact of the increased

computational complexity. Similar transformations are likely

to be possible for other memory-bound kernels.

Avoid Global Memory Fences: As discussed earlier,

CUDA does not provide a global, inter-thread-block memory

fence. Thus, if multiple thread blocks need to communicate,

they must do so across kernel calls. This would not present

a problem if the overhead of kernel invocation were not so

high. In the two-kernel full reduction implementation of the

tracking stage, a global memory fence is needed in each

iteration between the matrix computation and the conver-

gence check. This fence is implemented by creating separate

kernels for the two steps. Unfortunately, this doubles the

number of kernel calls, which limits the overall performance.

As described earlier, one technique for reducing the number

of kernel calls is to switch the order of the two steps and

combine them into a single kernel, so that the convergence

check occurs before the matrix computation in each iteration.

Although this introduces redundant computation, since the

final step in the reduction is performed by each thread block

instead of by a single thread block, the reduction in the

kernel overhead produces an overall speedup of 1.1x over

the two-kernel implementation. This technique is generally

applicable to any iterative solver that uses a convergence

criterion for early exit.

Although this approach reduces the number of kernel calls

by a factor of two, it still requires the use of a global memory

fence after each iteration. This is because there is a one-to-

one mapping between threads and matrix elements, and the

number of matrix elements is larger than the maximum size

of a thread block. The thread mapping scheme used here

is typical in CUDA programs, because CUDA developers

are encouraged to make their threads as fine-grained as

possible in order to fully utilize the GPU’s vast computa-

tional resources. However, abandoning this canonical thread

mapping and instead using only a single thread block allows

an arbitrary number of iterations to be computed in a single

kernel call without the need for a global fence. As long as

there are enough independent computations (corresponding

to individual cells in this work) to occupy most or all of the

SMs, this approach can provide significant speedups. Note

also that the performance advantage increases as the number

of iterations of the solver increases. Thus, the slower the

computation converges, the more advantageous it becomes

to use a single, persistent thread block for each independent

computational unit.

6.2. Lessons for System Architects:

As shown above, there exist techniques for avoiding many

of the performance bottlenecks that a CUDA developer may

encounter. A more effective approach, however, would be

for system designers to avoid introducing such bottlenecks

altogether, or at least reduce the impact of those bottlenecks.

We suggest a number of approaches that a system architect

can take, at both the hardware and software levels, to

reduce the amount of effort required for developers to obtain

satisfactory performance. Removing some of the barriers to

high performance will help speed the adoption of CUDA

and other GPGPU programming models.

Streamline Memory Management: Perhaps the simplest

bottleneck to address would be the slow memory manage-

ment provided by the CUDA API. As noted earlier, the

cudaMalloc and cudaFree functions are significantly

slower than the equivalent C standard library functions,

malloc and free. If the CUDA memory allocation func-

tions were as fast as the equivalent C standard library

functions, the larger kernel implementation of the tracking

stage would provide a 2.5x speedup over the best OpenMP

implementation instead of the 1.2x slowdown that it actually



provides. Thus, with a relatively straightforward translation

to CUDA and without any complex optimizations, this

CUDA implementation would have been adequate to pro-

vide better performance than the best CPU implementation.

Reducing the overhead of memory management would both

simplify the process of achieving satisfactory speedups with

simple implementations and enable even more impressive

speedups with complex implementations.

The inefficiency of memory allocation may be a byproduct

of the fact that most graphics applications tend to allocate

memory both in large chunks and on an infrequent ba-

sis. Thus, there traditionally has been little incentive for

the authors of graphics drivers to optimize the memory

management functions. With increased adoption of CUDA

and other GPGPU programming models, it becomes more

important to address these inefficiencies. Since the allocation

functions cannot be executed on the GPU but instead must

be executed on the CPU, the driver on the CPU should be

able to maintain tables of allocated and available memory

without any interaction with the GPU. Thus, there seems to

be no fundamental reason that the CUDA functions and the

C standard library functions cannot be implemented in the

same way and achieve the same level of performance.

Provide a Global Memory Fence: CUDA’s lack of an

inter-thread-block global memory fence forced us to use

a non-intuitive implementation strategy in order to achieve

the most significant speedup on the tracking stage. The use

of a persistent thread block runs counter to the standard

CUDA development strategy of making threads as fine-

grained as possible. If CUDA provided an inter-thread-block

memory fence, the full reduction implementation could

have achieved significantly better performance without the

need to abandon the one-to-one mapping between threads

and matrix elements. Assuming that the overhead of the

fence would be negligible in comparison to the overhead

of the computation itself, using a memory fence in the full

reduction implementation instead of multiple kernel calls

would speed up that implementation by 1.3x.

Without detailed knowledge of the GPU’s microarchitec-

ture, it is difficult to assess the complexity of implementing a

global memory fence. One required change is clear, however.

In the general case, implementing a global fence in CUDA

would require thread blocks that reach the fence to yield

to thread blocks that are still waiting to begin execution,

in order to ensure forward progress when there are more

thread blocks than can execute concurrently on the GPU.

Yielding a thread block would require each thread to write its

current state to memory. For small numbers of thread blocks,

this would be relatively inexpensive. However, the CUDA

specification allows a kernel to be invoked across more than

four billion thread blocks of up to 512 thread blocks each.

Clearly the GPU’s memory would not be large enough to

store the state for so many threads, and thus an application

using a global memory fence would require a much lower

limit on the number of threads per kernel invocation. For

many applications, this would be an acceptable tradeoff.

Add Caches: The GPU’s use of on-chip caches for the

constant and texture memory spaces allows developers to

achieve good memory performance even with kernels whose

memory access patterns are slightly irregular. Unfortunately,

in order to achieve good memory performance with data

structures allocated in the global memory space, the access

pattern restrictions are much more severe. Thus, for data

structures that need to be updated and which are unsuitable

for the on-chip shared memory, there is a significant burden

placed upon developers to meet those restrictions. The

introduction of a relatively modest amount of on-chip cache

for the read-write global memory space would substantially

reduce the burden on developers of ensuring the regularity

of a kernel’s memory accesses at the expense of raising

coherence issues.

Add a Control Processor: A more substantial architec-

tural change would be to add to the GPU a small control

processor that provides higher single-thread performance

than the underlying throughput-oriented PEs. If this core

were able to launch kernels, then the overhead of kernel

invocation would be significantly decreased since the latency

between the control processor and the parallel substrate

would be much lower than the latency between the CPU

and the substrate. Additionally, applications with non-trivial

sequential phases could be efficiently supported in a more

straightforward manner. For example, the reduced allocation

implementation of the tracking stage performs one iteration

of the solver on the GPU and then transfers the current state

of the matrix back to the CPU to perform the reduction

and check for convergence. Copying the matrix from the

GPU to the CPU consumes more time than the actual kernel

execution. If the serial reduction could instead be executed

on the GPU’s control processor, almost all of the memory

transfer overhead could be avoided.

7. Related Work

The availability of cheap, high-performance GPUs which

can be programmed using a familiar programming ab-

straction has led a large number of developers to port

their applications to CUDA. Garland et al. [11] provide a

good overview of the experiences and speedups achieved

in a number of application domains. Many developers are

working with applications that are more naturally ported to

CUDA because they consist of kernels that perform huge

amounts of work. These developers do not encounter many

of the overheads associated with fine-grained kernels that

we explore in this work. Only a few have fully explored the

optimizations necessary to obtain significant speedups.

Automating the exploration of CUDA configurations in

order to optimize performance was explored by Ryoo et

al. [12]. The authors of that work do not consider mapping



major data structures to different memory spaces in CUDA

or reorganizing their memory layout to achieve higher per-

formance, and do not explore more complex optimizations

such as trading off the amount of computation done on

the CPU and on the GPU. The optimization strategies of

multiple applications and the use of CUDA’s rich memory

hierarchy were explored by Che et al. [13]. However, they

focus on applications which have a large amount of work

per kernel call, and thus do not have to deal with the system

bottlenecks explored in this work.

8. Conclusions

We have shown that leukocyte detection and tracking

can benefit greatly from using a CUDA-capable GPU. The

algorithms used in the detection and tracking stages, stencil

computations and iterative solvers, are also used in a wide

range of other application domains, which can all benefit

from the optimizations we have discussed. Overall, the

best CUDA implementation provides speedups of 58.5x and

211.3x on the detection and tracking stages, respectively,

over the original MATLAB implementation and 9.4x and

27.5x over the best OpenMP implementation. While the

MATLAB implementation takes more than four and a half

hours to process one minute of video, the CUDA imple-

mentation can process that same video in less than one

and a half minutes. Put another way, while the MATLAB

implementation can detect and track leukocytes at 0.11

FPS, the CUDA implementation operates at 21.6 FPS. For

video recorded at 30 FPS, continued scaling of hardware

resources mean that real-time analysis is now within reach

for inexpensive workstations.

While straightforward CUDA implementations can

achieve substantial benefits, especially with a modest amount

of tuning, significant programmer effort can be required to

make full use of the GPU’s potential when irregular memory

access patterns or small kernels are present. Despite this

extra effort required to realize the potential of the GPU,

the benefits can be dramatic. Our experiences with CUDA

show the power of the GPU as a parallel platform, and

help demonstrate how the variety of manycore platforms that

we expect to see in the future will transform computational

science.

Acknowledgments

This work was supported in part by NSF grant IIS-

0612049, SRC grant 1607.001, a GRC AMD/Mahboob

Khan Ph.D. fellowship, an NVIDIA research grant, and

equipment donated by NVIDIA. The authors would like to

thank Saurav Basu for his help with the original MATLAB

implementation, as well as Leo Wolpert, Donald Carter,

and Drew Gilliam for their prior work on implementing the

leukocyte detection and tracking algorithm.

References

[1] G. Dong, N. Ray, and S. T. Acton, “Intravital leukocyte
detection using the gradient inverse coefficient of variation,”
IEEE Transactions on Medical Imaging, vol. 24, no. 7, pp.
910–924, July 2005.

[2] N. Ray and S. T. Acton, “Motion gradient vector flow:
An external force for tracking rolling leukocytes with shape
and size constrained active contours,” IEEE Transactions on
Medical Imaging, vol. 23, no. 12, pp. 1466–1478, December
2004.

[3] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable
parallel programming with CUDA,” ACM Queue, vol. 6,
no. 2, pp. 40–53, 2008.

[4] J. A. Stratton, S. S. Stone, and W. W. Hwu, “MCUDA:
An efficient implementation of CUDA kernels for multi-core
CPUs,” in Proceedings of the 21st International Workshop on
Languages and Compilers for Parallel Computing, 2008.

[5] N. Ray, S. T. Acton, and K. Ley, “Tracking leukocytes in
vivo with shape and size constrained active contours,” IEEE
Transactions on Medical Imaging, vol. 21, pp. 1222–1235,
2002.

[6] S. B. Forlow, E. J. White, S. C. Barlow, S. H. Feldman,
H. Lu, G. J. Bagby, A. L. Beaudet, D. C. Bullard, and
K. Ley, “Severe inflammatory defect and reduced viability
in CD18 and E-selectin double-mutant mice,” Journal of
Clinical Investigation, vol. 106, pp. 1457–1466, 2000.

[7] S. T. Acton and K. Ley, “Tracking leukocytes from in vivo
video microscopy using morphological anisotropic diffusion,”
in IEEE International Conference on Image Processing, 2001,
pp. 300–303.

[8] U. Nawathe, M. Hassan, K. Yen, A. Kumar, A. Ramachan-
dran, and D. Greenhill, “Implementation of an 8-core, 64-
thread, power-efficient SPARC server on a chip,” Journal of
Solid State Circuits, vol. 43, no. 1, pp. 6–20, 2008.

[9] L. Seiler et al., “Larrabee: a many-core x86 architecture for
visual computing,” ACM Transactions on Graphics, vol. 27,
no. 3, pp. 1–15, 2008.

[10] B. P. Welford, “Note on a method for calculating corrected
sums of squares and products,” Technometrics, vol. 4, no. 3,
pp. 419–420, 1962.

[11] M. Garland, S. L. Grand, J. Nickolls, J. Anderson, J. Hard-
wick, S. Morton, E. Phillips, Y. Zhang, and V. Volkov,
“Parallel computing experiences with CUDA,” IEEE MICRO,
vol. 28, no. 4, pp. 13–27, 2008.

[12] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi,
S. Ueng, J. A. Stratton, and W. W. Hwu, “Program optimiza-
tion space pruning for a multithreaded GPU,” in Proceedings
of the International Symposium on Code Generation and
Optimization, 2008, pp. 195–204.

[13] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer,
and K. Skadron, “A performance study of general-purpose
applications on graphics processors using CUDA,” Journal
of Parallel and Distributed Computing, vol. 68, no. 10, pp.
1370–1380, 2008.


