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Abstract

MR parameter mapping requires sampling along additional (parametric) dimension, which often
limits its clinical appeal due to a several-fold increase in scan times compared to conventional
anatomic imaging. Data undersampling combined with parallel imaging is an attractive way to
reduce scan time in such applications. However, inherent SNR penalties of parallel MRI due to
noise amplification often limit its utility even at moderate acceleration factors, requiring
regularization by prior knowledge. In this work, we propose a novel regularization strategy, which
utilizes smoothness of signal evolution in the parametric dimension within compressed sensing
framework (p-CS) to provide accurate and precise estimation of parametric maps from
undersampled data. The performance of the method was demonstrated with variable flip angle T1
mapping and compared favorably to two representative reconstruction approaches, image space-
based total variation regularization and an analytical model-based reconstruction. The proposed p-
CS regularization was found to provide efficient suppression of noise amplification and
preservation of parameter mapping accuracy without explicit utilization of analytical signal
models. The developed method may facilitate acceleration of quantitative MRI techniques that are
not suitable to model-based reconstruction because of complex signal models or when signal
deviations from the expected analytical model exist.
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INTRODUCTION

Quantitative mapping of fundamental MRI contrast parameters, longitudinal (T1) and
transverse (T2) relaxation times, may offer potentially more sensitive and specific
information about tissue properties than conventional radiological MRI (1). Further,
advanced T1/T2 relaxometry based on multicomponent models may provide additional
specificity to microstructural properties, such as myelination of white matter (2–4).
Depending on the mapping approach, estimation of T1/T2 requires acquisition of multiple
datasets with different operator-controlled pulse sequence parameters (or control
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parameters), e.g. flip angles, echo times (TE), inversion times (TI), which are subsequently
fit to a model equation to yield quantitative maps of parameters (free parameters). The
parametric mapping typically incurs a several-fold increase in scan time thereby limiting its
overall applicability in many clinical situations (1).

The advent of parallel MRI opened an elegant way to mitigate the aforementioned problems
of MRI relaxometry by accelerating acquisition of individual measurements (5,6). The
inherent SNR penalties of parallel MRI related to noise amplification may be offset using
prior information to regularize the reconstruction, for example, via classical Tikhonov
formalism (7–9), including quadratic regularization to control noise by encouraging smooth
signal transitions in image space (10–12). Efficient regularization may be also achieved
utilizing sparsity models of the underlying signals (13–16) within compressed sensing (CS)
framework (17). However, any regularization, except in trivial cases, may introduce errors
caused by potential mismatches between prior information invoked by a regularization term
and informational content of the actual object. This effect is most pronounced at higher
accelerations where the reconstruction has to rely more heavily on prior knowledge to
compensate for missing data. In quadratic Tikhonov regularization, the mismatch may
introduce aliasing artifacts and/or lead to resolution loss (8,9). In sparsity promoting CS
regularization, the artifacts caused by bias towards the assumed sparsity model may have
different appearance. For example, in total variation (TV) regularization (piecewise constant
model), images may suffer from blurring and patchy artifacts (14,18), while regularization
by a two-dimensional wavelet transform may yield incorrect (albeit less visually perceptible)
representation of tissue boundaries because of wavelets’ inefficiency for representation of
line singularities (19).

A distinct feature of MR parameter mapping is the existence of the control parameter
dimension, p, which may offer additional means for acceleration when the reconstruction
problem is addressed jointly in x-p space (20). Indeed, casting the problem in an x-p
framework allows exploiting inter-image dependencies in the parametric dimension as a
source of a priori knowledge to allow estimation from limited data. Several methods (20–23)
have been proposed to utilize analytical models or their linearization to constrain signal
evolution in the parametric dimension. While powerful, these approaches depend on
availability of a simple analytical representation of the signal. However, in some
applications, signal models may be too complex to utilize (21), for example, in tissues with
multiple exchanging compartments with different relaxation behavior such as in brain white/
gray matter (WM/GM) (4,24).

In this work, we propose a novel method to regularize reconstruction of parametric image
series (and improve parametric mapping) that avoids making any assumptions about spatial
structure of the images and does not require explicit knowledge of analytical models.
Instead, we limit our assumptions about signal in the parametric dimension to the fact that it
is described by a smooth (differentiable) function (25,26). The smoothness enters the CS-
type regularized minimization problem in x-p space in the form of a penalty term on the size
of derivatives in the parametric dimension. The image series obtained as the solution of this
minimization problem is then fit to a parametric model to yield parameter maps of interest.
We demonstrate the performance of the proposed approach on single (27) and multi-
component (4) relaxometry based on steady state acquisitions.

THEORY

Overview of Regularized Reconstruction and Rationale

In MRI, a digital image needs to be estimated from a discrete set of measurements. This
problem can be written in the matrix form as
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[1]

where d is the vector of measured data from all receiver channels, f is the column vector of
length M corresponding to the unknown image, E is the encoding matrix that includes
Fourier terms and coil sensitivities, and ε corresponds to the complex noise in the
measurements, which we assume to be identically independently distributed (i.i.d.) Gaussian
(28). In the general case, the elements in the signal vector d are indexed both by k-space
sample number (total Nk samples) and coil receiver number (total Nc ≥ 1), and the size of
the encoding matrix E is Nk Nc × M. If row rank of E (the number of linearly independent
rows) is less than M, the number of unknowns, then the problem of estimating f is ill-posed
and Eq. [1] has an infinite number of solutions. Otherwise, when rank(E) ≥ M, an SNR-
optimized estimation of image can be accomplished in the least squares sense:

[2]

where ||·||2 is the l2 norm. Still, the system of Eq. [1] may be poorly conditioned, for
example, when using high undersampling factors in multicoil parallel MRI reconstruction.
One existing approach to improve estimation of f is based on dimensionality reduction of the
matrix E by assuming that f belongs to a low-dimensional subspace, i.e. f= Pc, where vector
c has a small number of elements. Then, the product matrix EP is typically much better
conditioned than E, so a more stable solution c can be obtained by embedding the
transformation into the data consistency term and performing minimization of l2 norm of the
residual:

[3]

This approach is at the foundation of several model-based methods (22,23). The low-
dimensional subspace provides model linearization and is obtained through compression of a
dictionary by principal component analysis (PCA) in parametric dimension (22) or its
Fourier transform (23). The dictionary comprises a set of signals satisfying the given
analytical model evaluated on a densely sampled grid of free parameters. We will refer to
this family of methods as PC-basis, or PCB, techniques.

In this paper, we explore a different approach to improve estimation of f by minimizing a
cost functional that includes additional regularization terms:

[4]

Design of the penalty functionals ℜi is governed by available knowledge or model
assumptions about the images f (prior information) and, to lesser extent, by the feasibility of
implementation/computational complexity. Parameters λi provide balance between the data
fidelity (first term) and prior information assumptions (the remaining terms). Usually,

[5]
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where Φi is some transform, e.g. identity transform, discrete derivative, or wavelet
transform, usually applied in the spatial domain (13,14), and Xi is an appropriately chosen
(semi-)norm. Typically, Xi is chosen to be lp norm defined as

[6]

with p= 2 (Tikhonov-type regularization aimed to optimize noise) or p= 1 (CS-type
regularization promoting sparsity of the reconstructed images). The benefits of both norms
may be combined in norms with tunable hybrid l1/l2 behavior (29), which penalize outliers
by approximating l1 norm for large values of x, while treating small values in l2 fashion to
optimize noise.

In the case of acquisition of an image series for parameter mapping, the joint reconstruction
problem may be formulated in x-p space by combining all individual images fk, k-space
measurements dk, and all corresponding encoding matrices Ek into aggregate vectors f,̄ d¯
and a matrix Ē, respectively:

[7]

Here, regularization terms can act on the image series as a whole or on individual images.

Models used for CS regularization often rely on spatial sparsity, which may be hard to attain
since MR images have large variability in spatial structures, especially in the presence of
pathological tissue. In this work, we refrain from making assumptions about spatial
properties of the underlying images and propose to restrict the action of the transform
operators Φi to parametric dimension. In particular, we formulate the regularized
reconstruction of a parametric image series as:

[8]

where Φp is a transform acting in the parametric dimension. In the Results sections, we
illustrate the utility of the proposed sparsity promoting (CS) regularization in the parametric
dimension (p-CS) by applying it to single- and multi-component T1/T2 relaxometry based on
variable flip angle (VFA) steady-state acquisitions (4,27,30). Below we explain our rationale
for the choice of Φp based on the general properties of the parametric image series for these
imaging techniques.

Application to Variable Flip Angle T1 Mapping

VFA T1 mapping exploits the dependency of spoiled gradient echo (SPGR) signal on the
excitation flip angle using a single compartment model:

[9]

where M0 is proton density, α is flip angle, TR is repetition time. Several images are
acquired for multiple flip angles and a fixed TR and the resulting system of equations arising
from Eq. [9] is solved for the unknown values of M0 and T1. The dependence of the SPGR
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signal on α is described by a smooth (infinitely differentiable) function. Figure 1 (a) shows a
representative signal curve along with its first and second derivatives, illustrating the
conjecture that differential operators may act as sparsifying transforms on sets of smooth
functions. We further examine sparsifying properties of such transforms by considering a
simulated VFA scan of a realistic 3D digital brain phantom (Brainweb database, http://
www.bic.mni.mcgill.ca/brainweb/) and the first and second derivatives of this image series
in the flip angle dimension. We normalize the maximal values (l∞-norm) of resulting image
series to 1 and compare non-increasing rearrangements (31) obtained by sorting all absolute
values in each series. Non-increasing rearrangements preserve l1 norm of functions (31),
thus providing an illustrative tool for the comparison of sparsifying properties of various
operators. Areas under the corresponding curves in Fig. 1 (b) show that both first and second
derivative operators in parametric dimension provide a sparsification of the image series,
with the second order differentiation exhibiting a more consistent performance as a
sparsifying operator.

We will further study the performance of these transforms by comparing series of images
reconstructed by solving:

[10]

with n = 1 and 2. In what follows, we will refer to these variants of the problem as  and

 p-CS regularization, respectively.

Application to Multi-Component Relaxometry in Steady State

Relaxation behavior of different tissue compartments as revealed by T1 and T2 spectra may
elucidate important information about tissue microstructure. For example, in white matter
imaging, signal with the short T2 values (less than 50 ms) from the so-called myelin water
component is associated with water trapped between myelin sheath layers (2). The ratio of
the short T2 signal to the total signal, or myelin water fraction (MWF), is a specific imaging
marker of myelination and may play an important role in treatment and management of
demyelinating diseases like multiple sclerosis (32).

One promising approach to quantify the water component within the myelin bilayers is to fit
a two-compartment model (mcDESPOT) of T1 and T2 relaxation to VFA SPGR and VFA
bSSFP (balanced steady-state free precession) measurements (4). The mcDESPOT modeling
equations contain seven free and four control parameters and thus may be too complex to
utilize for stable parameter mapping using approaches based on analytical models (21). We
note that similar to the SPGR signal (Fig. 1), a smooth dependence on flip angle values
exists for the bSSFP signal, making the previous assumptions and reconstruction design for
SPGR acquisitions also valid for bSSFP (26). Therefore, we also investigated the use of Eq.
[10] to reconstruct not only VFA SPGR but also VFA bSSFP datasets in mcDESPOT
method for accelerated mcDESPOT MWF mapping.

METHODS

Implementation Details

We compare image reconstruction and parametric map estimation from the image series
obtained by minimizing the expression in Eq. [10] with the first and second discrete
derivatives (divided differences) in the parametric dimension as well as using iterative
SENSE (28), spatial total variation (TV) sparsity constraint (14), and a basic version of PCB
technique (Eq. [3]) based on dimensionality reduction through PCA of the discretized
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analytical signal model (22). We also consider regularization with ℓ2 norm in Eq. [10] to
study the effect of the norm on reconstruction results. For each reconstructed image series,
T1 (or longitudinal relaxation rate R1=1/T1) values were estimated using pixelwise non-
linear least squares fit of Eq. [9];.

All reconstruction and data fitting algorithms were implemented in Matlab (MathWorks,
Inc., Natick, MA, USA). Implementation details of p-CS algorithm are provided in the
Appendix. For the solution of both the problem in Eq.[10] and TV minimization, we
implemented iteratively reweighted least squares algorithm (33) (total 10 reweighting). The
least squares inversion step was performed via a conjugate gradient algorithm for all
methods. The iterations were continued until relative error, defined as a ratio of squared
norms of k-space residual on the n-th step and first step, fell below a preset tolerance (ε) or
maximal number of iterations (N) were reached (34). These parameters were set at ε = 1e-7
and N = 200 for noisy data and ε = 1e-16 (numerical precision) and N = 2000 in the noise-
free case. Following (22), we obtained a PC basis by applying PCA to the matrix formed by
sampling analytical signal model of Eq. [9] on a dense grid (total of 1000 samples) of T1
values in the physiologically relevant range in human head at 1.5 T ([0.1 4.3] s) (35). The
first three principle components were chosen to form the basis for PCB reconstruction (ℓ2
compression error ~0.8%).

Simulation Studies

For the simulation studies, we used a realistic digital brain phantom from the Brainweb
database (www.bic.mni.mcgill.ca/brainweb/) that describes image pixels as a mix of
different tissues (36). An eight-channel VFA SPGR 2D Cartesian acquisition (Eq. [9]; image
matrix 128×128, FA=[1, 2, 3, 4, 5, 6, 8, 10, 13, 16]°, TR = 5 ms) of the digital brain was
simulated using brain tissue parameters at 1.5 T (35). The coil sensitivities were obtained in
a separate phantom scan (5) and combined with information about object support to
facilitate convergence of iterative SENSE reconstruction (28). To assess sparsifying
properties of the transforms in conditions closely approximating the theoretical requirements
of compressed sensing (37), we started with a random sampling pattern with uniform
distribution and with zero noise level in the data samples. This was done by randomly
selecting columns of the encoding matrix used to obtain the reference data for each
undersampling factor R from R=1 (fully sampled case) to R=12. The central 8×8 square in
kx-ky plane was always fully sampled. We carried out a series of reconstructions for a range
of λ to determine the optimal value, chosen as the one minimizing normalized root mean
square error (nRMSE) of R1 estimates in a specific brain region:

[11]

where R1 and R1̃ are computed from the fully sampled reference and accelerated data,
respectively, and ||·||2,Ω denotes the l2 norm measured over the brain region Ω composed of
white matter, gray matter and CSF regions as defined in the realistic digital brain phantom
(36).

To study two independent sources contributing to a composite nRMSE measure, estimation
bias (accuracy) and noise propagation (precision), separately, we carried out a series of
Monte-Carlo experiments. One hundred realizations of i.i.d. Gaussian noise (K=100, mean
SNR of 60 for fully sampled case) were added to k-space data and each data set was
reconstructed with the proposed methods and subsequently fit to Eq. [9] to yield R1 maps

, k=1, …, K1. Additionally, the same number of reconstructions from fully sampled data
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with the same noise levels was performed. The reconstruction bias was assessed by taking a
pixelwise mean across all reconstructed Monte-Carlo samples

[12]

and calculating nRMSE for the obtained map. The propagation of noise to R1 was estimated
by calculating a noise amplification factor equivalent to g-factor in parallel MRI (5):

[13]

where  and  are noise variances for reduced (by a factor of R) and full data
reconstructions calculated across Monte-Carlo samples as follows:

[14]

The Monte-Carlo experiments were additionally repeated for two practical sampling
schemes: randomly selected phase encoding lines with variable density undersampling rate
linearly changing from 1 in the center of k-space (6 fully sampled lines) to 6 at the edges of
k-space (total R=4), referred to as VD sampling, and radial sampling pattern (R=10)
interleaved with bit reverse scheduling (38). Images in Fig. 2 illustrate sampling patterns
used in the Monte-Carlo experiments.

In-Vivo Data

Informed consent was obtained from all human volunteers prior to the exams (total number
of 6). Fully sampled data were acquired on a clinical GE 3.0 T scanner (GE Healthcare,
Waukesha, WI, USA) using an 8-channel head coil. The hybrid radial (in-plane)/Cartesian
(through-plane) SPGR data (FOV=220×220 mm, slice thickness = 3 mm, 20 slices, FA=[1,
3, 5, 7, 9, 11, 13, 15, 17, 19]°, TR = 6 ms) were retrospectively undersampled (R=6) in an
interleaved manner with bit reverse scheduling (38). Flip angle maps were acquired in the
same session with actual flip angle imaging (AFI) (39,40) and were used to correct for
spatial variation in the excitation flip angles on T1 estimation stage. The fully sampled T1
maps were supplied to FAST tool from FSL software library (FSL; FMRIB, Oxford, UK) to
produce a 3-class segmentation (WM/GM/CSF).

Datasets for mcDESPOT processing were collected with image matrix 96×96 and 2-mm3

isotropic resolution (SPGR: TR = 3.7 ms, FA =[3, 4, 5, 6, 7, 9, 13, 18]°; bSSFP: TR = 4.5
ms, FA=[10, 14, 18, 23, 29, 35, 45, 60]°). Balanced SSFP scans were repeated twice for ϕ =
0°/180° hase cycling to remove the effect of SSFP banding artifacts to avoid areas of signal
zeroing and estimate B0 field as described in (41). Next, all mcDESPOT datasets were
retrospectively undersampled in the phase encoding direction and reconstructed using

parallel imaging alone and  p-CS. Note that model-based PCB reconstruction was not
applied in this case due to excessive complexity of the multi-parametric model. MWF maps
were derived from the resulting image series and compared to the maps obtained from the
fully sampled data.
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RESULTS

Simulations

Plots in Fig. 3 illustrate the dependence of R1 estimation error on the acceleration factor for
noise-free, randomized data samples. All considered regularization approaches, as well as
model-based PCB method, clearly outperform SENSE, indicating that use of prior
knowledge can efficiently reduce the error of image reconstruction, especially at higher

reduction factors. Methods relying on prior information in parametric dimension ( 
p-CS regularization and PCB) consistently outperform image space regularization with TV

penalty.  p-CS regularization entails a significantly more accurate reconstruction than 
p-CS regularization, as a result of improved sparsification in parametric dimension. The

errors of model-based PCB reconstruction and  p-CS regularization remain close, with
the latter outperforming the former for R<8 and the trend reversing for R>8. For model-
based PCB approach, a non-zero error exists even for the fully sampled case (R=1), due to
linearization of the nonlinear signal model, which may cause a mismatch between the
assumed model and actual signal and propagate into final solution through data consistency
term, the effect mentioned in (22). For higher accelerations, the relative effect of the
mismatch becomes less significant compared to undersampling error, hence performance of

PCB approaches that of  p-CS regularization or slightly exceeds it for very high
acceleration factor R>8.

Figure 4 shows results of studying noise propagation and accuracy of R1 mapping for the
methods employing prior information in parametric dimension (two representative
acceleration factors R=3 and 8, noisy data). The p-CS regularization with second derivative

( ) significantly outperforms the first ( ) in terms of accuracy, especially in high
acceleration regime (R=8), which may be attributed to better sparsifying properties of the

second derivative operator (Fig. 1). At the same time, noise amplification (g-factor) for 
p-CS in this regime exhibits somewhat higher values while still staying within a tolerable
range (g-factor less than 2), which may be explained by additional differentiation compared

to  and is further addressed in the Discussion section. PCB reconstruction and second

difference ( ) p-CS regularization demonstrate comparable performance both in terms of
accuracy and noise propagation, both significantly outperforming non-regularized SENSE

reconstruction. At the same time, utilization of the second difference operator ( ) with ℓ2
norm, which heavily penalizes outliers, results in a significant loss of accuracy compared to

ℓ1-based p-CS regularization, which indicates that  does not provide a complete
sparsification of signal evolution in the parametric dimension.

The performance of these two constrained reconstruction approaches, as well as iterative
SENSE, was further compared for two practical k-space sampling trajectories (VD and
radial sampling) (Fig. 5). The relative performance of the three algorithms remains the same
with both p-CS and PCB exhibiting similarly low reconstruction bias and high quantitative
accuracy as confirmed by T1 values measured in ROIs in white and gray matter (Table 1).
However, noise properties are significantly affected by the choice of sampling trajectory.

Indeed, even for constrained  p-CS and PCB reconstructions values of g-factor at R=4
VD sampling exceed g-factor values for R=8 random sampling and R=10 radial sampling,
while non-regularized SENSE reconstruction predictably is affected the most. This stark
difference in noise properties is due to uncontrolled large gaps at k-space edges produced by
random undersampling of phase encoding lines and somewhat coherent undersampling
artifacts, both of which may be hard to resolve even by utilizing prior information. By
contrast, the controlled undersampling of k-space by radials and dispersed undersampling
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artifacts provide a more benign acquisition. Even for a high R= 10, accuracy degradation
occurs mostly along edges, which indicates problems with the reconstruction of higher
spatial frequency content (the most undersampled portion of k-space in radial acquisitions).

In-Vivo Experiments

Figure 6 shows the reconstruction results for in-vivo radial acquisition. Table 2 shows
results of quantitative measurement of T1 values in ROIs defined in Fig. 6a. A
representative SENSE image is degraded by streaking artifacts and correlated noise, which
propagate in the T1 map causing a significant bias of resulting T1 values (Table 1), which is
consistent with T1 bias observed in low-SNR conditions (42). These effects are reduced in
TV-regularized SENSE, which, however, exhibits loss of spatial resolution through blurring.

 p-CS regularization and model-based PCB reconstruction efficiently suppress noise in
the source images and subsequently derived T1 maps without compromising spatial
resolution. For most ROIs consisting predominantly of a single tissue type (ROI#1-5), both
methods exhibit high compliance with quantitative measurements derived from fully
sampled data. However, model-based PCB gives a noticeably higher error than p-CS
approach for ROI#6, which contains pixels with partial voluming.

Similar distinctions between  p-CS regularized and unregularized reconstructions can
also be observed for MWF mapping with mcDESPOT (Fig. 7). Again, SENSE images

contain increased, spatially non-uniform noise due to high g-factor. The proposed  p-CS
regularization significantly suppresses noise in the reconstructed images and in the resulting
myelin water fraction (MWF) maps.

DISCUSSION

We described a novel method for accurate accelerated MR parameter mapping via improved
reconstruction of the corresponding image series from incomplete data. The proposed
method utilizes the parametric dimension to implement sparsity-promoting CS-type
regularization (p-CS). Briefly described in (25,26), our algorithm relies on the assumption
that signal varies smoothly in the parametric dimension, thereby admitting sparsification by
differentiation in this dimension. The parametric image series is reconstructed by solving a
joint regularized minimization problem in x-p space with a penalty term on the size of the
derivatives in the parametric dimension as measured by a CS-like, sparsity promoting robust

norm. Regularization by the second derivative ( ) demonstrated an excellent combination
of low reconstruction bias and efficient suppression of noise amplification for both low and
high accelerations without typical deficiencies of image-space based regularization such as
resolution loss (Fig. 7). The proposed method was successfully demonstrated with VFA T1
mapping and mcDESPOT myelin water fraction (MWF) mapping.

The proposed p-CS regularization compared favorably (Figs. 3–6, Tables 1–2) with a basic
implementation (without additional spatial regularization terms) of approach of (22), which
relies on availability of analytical signal model in parametric dimension to design a new
reconstruction basis through PCA. Although a comparable performance of a method based
on a general transform (the proposed technique) and a method based on a more accurate
problem-tailored prior knowledge (PCA-based technique) may seem paradoxical at first, it
can be explained by the fundamental difference between the two approaches. Our method
exploits sparsity in parametric dimension in the traditional CS sense, i.e. by employing
sparsity promoting ℓ1 norm during reconstruction, while the model-based approach relies on
dimensionality reduction in the least squares problem (Eq. [3]) by learning a sparse
representation from the analytical signal model through a PC basis prior to reconstruction.
From the mathematical point of view, this solution is equivalent to finding the best ℓ2
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approximation to the hyperplane defined by the data consistency term from a finite-
dimensional subspace of a fixed low dimension. Since in such problem formulation the
solution is sought only among images whose signal evolution in parametric dimension can
be represented exactly by a linear combination of PC basis elements, it is critical to choose a
basis that can provide a most accurate representation of the signal for a range of free
parameters. It appears that for the cases, when the analytical signal model is known, PC
basis may provide a near-optimal choice of approximation subspace, though a residual
approximation error exists even in a non-accelerated case (Fig. 3). Similar least squares
approximation accuracy cannot be achieved by a general transform/approximation basis,
such as the second derivative operator proposed in this work, as illustrated by the results in

Fig. 4 of using  with ℓ2 norm. However, when used in conjunction with a robust ℓ1 norm,

 p-CS regularization exhibits performance comparable to the PCB reconstruction. Hence,
the use of ℓ1 norm promoting sparsity in parametric dimension was essential for
reconstruction success in our method, while it is not required in PCB approaches (22,23).
We anticipate that a combination of model-based dimensionality-reduction techniques with
ℓ1 norm acting in parametric dimension may further improve performance of MRI
relaxometric techniques, which is a subject of continuing research (43,44). Additional
performance gains may be expected for both PCB and p-CS methods with inclusion of ℓ1
norm-based spatial regularization terms, as was proposed in a full version of REPCOM
technique (22) or using nonlinear image enhancement on the post-processing stage (45). As
the proposed regularization relies on a general type of knowledge about signal evolution in
the parametric dimension rather than on precise knowledge of the analytical signal model,

we believe that the proposed  p-CS regularization may be especially useful in situations
when it is infeasible to use the analytical model because of its high complexity (21), as in
case of multi-parametric methods such as mcDESPOT, or in the presence of signal
deviations from the expected analytical models, for example, due to partial voluming (Table
2).

In this paper, we additionally studied the effect of k-space sampling trajectories on the
performance of the tested methods. We undertook an incremental approach, starting with
randomized sampling with uniform distribution in undersampled areas (37) and then
proceeding with more practical choices of acquisition trajectories, such as randomized phase
encodes with variable density undersampling and radial sampling. All randomized sampling
schemes demonstrated increased noise amplification (g-factor) often accompanied by loss of
accuracy compared to a radial trajectory undersampled with much higher reduction factor
(Fig. 5). As randomized sampling schemes often produce large k-space gaps, the need to
resolve uncertainty about missing spatial frequencies led to tradeoffs between restoration of
higher spatial frequencies and noise amplification, with the non-regularized reconstruction
often incurring unacceptably large errors (Fig. 4, 5). Although regularized approaches
mollified this effect to different degrees, irregularity of sampling hindered their performance
as well. This phenomenon was most pronounced for VD sampling, where the detrimental
effect of large regions of missing high spatial frequency information was coupled with semi-
regular aliasing artifacts from the choice of sampling pattern. Although VD sampling was
demonstrated in (46) to minimize sampling basis coherence for the case of signals, which
are sparse in Haar basis (TV minimization), this sampling strategy appears to be suboptimal
in terms of g-factor properties for the considered problem of p-CS based reconstruction. At
the same time, for an interleaved radial acquisition, we observed a significantly more benign
behavior of g-factors and improved reconstruction accuracy for all reconstruction
approaches even at high acceleration factors. Thus, trajectories with controlled gap size may
be a better practical match for constrained reconstruction approaches as was previously
noted in (47). Thus, a trajectory with controlled maximal distance between neighboring
samples (such as radials and regularly undersampled Cartesian (Fig. 7) or Poisson disk
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sampling in 3D (48), may be more valuable for practical implementation of sparsity
promoting regularization with improved noise/accuracy performance. This observation is
consistent with conclusions made previously by other authors studying the effect of
sampling schemes on performance of CS-driven techniques (49). Finally, although a proper
choice of sparsifying transform is important to ensure unbiased estimation, for a more
optimized performance the design of CS-like, sparsity promoting reconstruction may need to
include consideration of noise properties of both trajectory design and the sparsifying
transform. For instance, while application of higher order derivatives in parametric
dimension may provide a better sparsification of the image series, increased noise penalty
incurred from additional differentiation may negate the sparsity advantage for  for n>2.

Similar to methods relying on knowledge of the analytical models, the proposed method
requires a sufficient number of measurements in the parametric dimension to support

regularization (from our experience, eight and more for  -regularization). The requisite
number of measurements does not impose any additional scan time penalties as many MR
parameter mapping techniques already satisfy this requirement. Indeed, while in theory VFA
T1 mapping needs only two “ideal” angles to estimate a particular T1 value, typically more
angles are required to obtain optimized estimates for a range of T1 values observed in
different tissues/pathologies. Several studies suggest using 6–10 different flip angles to
estimate T1 in the human brain (50,51). A typical mcDESPOT protocol acquires 8–10 flip
angle points for both SPGR and bSSFP (potentially with and without phase cycling) datasets
to fully describe the two-compartment model of T1/T2 relaxation. In addition, p-CS may be
effective for quantitative MRI methods that acquire many more measurements along
smoothly varying signal curves in the dimension of control variable such as spin-echo T2
mapping, inversion-recovery T1 mapping (preliminary results obtained but not shown), and
quantitative magnetization transfer imaging (1).

CONCLUSIONS

In this work, we described and evaluated a method that utilizes smoothness of signal
evolution in the parametric dimension as a base for a novel CS-type, sparsity promoting
regularization strategy for parametric image series reconstruction from incomplete data. The
method was successfully applied to VFA T1 mapping and mcDESPOT myelin water
fraction (MWF) mapping. The proposed p-CS regularization may be a valid alternative to
image space-based regularization or to analytical model-based reconstruction, when
traditional representation systems are inadequate for modeling of actual image content or
when it is not feasible to use the underlying analytical image model. The developed method
may facilitate the use of relaxometric techniques, including whole brain mcDESPOT MWF
mapping, in clinical settings by making scan times more tolerable for patients who have
difficulties remaining still for extended periods of time (children and elderly populations).
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APPENDIX

Choice of Hybrid Norm

Although other choices are available for a definition of hybrid l1/l2 norm (18) used in Eq.
[10], we followed (52) setting:

[15]

where the balance between l1 and l2-like behavior is determined by the parameter σ. As in
(52), we defined σ to be 0.6 of the standard deviation of x after the first reweighting. Then,
we gradually decreased its value in the subsequent reweightings similar to (53) with one
tenth of the original value in the last reweighting in order to shift the norm behavior more
towards l1 mode.

Discretization of Derivatives

Our approach to discretization of the derivatives takes into account the fact that parametric
dimension may be sampled in a non-uniform fashion, e.g. as proposed in (4) for multi-
component relaxometry. For signal values (s1, s2, …, sP) corresponding to flip angle
values(α1,α2, …, αP), we approximate the values of derivatives ∂S∂α and ∂2S∂α2 by the
corresponding divided differences:

[16]

[17]

For these definitions to be applicable to the first and last points in the sequence, we need to
augment the vectors (sk) and (αk) in a consistent way. For example, for , since our model
assumes sparsity of the second derivative, we pad these sequences linearly by setting
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[18]

The same augmentation approach was used for the vector (αk). This ensures that the second
divided difference vanishes in the additionally introduced endpoints.
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Figure 1.
Illustration of signal evolution and the effect of differentiation operators in the flip angle
dimension on SPGR signal (digital phantom data, T1=1 s, TR=8 ms). a: Dependence of
SPGR signal and its first and second derivatives on the flip angle. Note that the second
derivative is close to zero in the range of interest. b: Normalized non-increasing
rearrangements of the VFA image series and its 1st and 2nd divided differences in flip angle
dimension. The corresponding l1 norms are 0.3624, 0.1239, and 0.1031.
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Figure 2.
Sampling patterns used in Monte-Carlo experiments: a: Uniform density random
undersampling of k-space with fully sampled center (the first three frames). b: Variable
density random undersampling of phase encoding lines (the fully sampled read-out direction
is perpendicular to the drawing plane). c: Radial trajectory with bit-reversed scheduling of
interleaves in parametric direction (the first four frames).
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Figure 3.
Comparison of error in R1 maps versus total acceleration factor R for images obtained with
iterative SENSE, SENSE with spatial TV penalty, proposed p-CS regularized
reconstructions using first and second divided differences in the flip angle dimension, and
analytical model-based PC-basis reconstruction (PCB) (randomized trajectory).
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Figure 4.
Results of Monte-Carlo experiments for randomized Cartesian data (R=3,8). Rows 1 and 3:
g-factor for R1 maps. Rows 2 and 4: R1 bias (accuracy) maps with the corresponding
normalized mean squared errors.
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Figure 5.
Results of Monte Carlo experiments: g-factor (top) and bias (bottom) of R1 maps for VD
(R=4) sampling (left) and radial (R=10) sampling (right) with the corresponding normalized
mean squared errors of R1 error maps.
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Figure 6.
Results of in-vivo radial T1 mapping experiments. a) Brain segmentation with numbered
ROIs. b) Representative images and corresponding T1 maps from different reconstruction
methods.
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Figure 7.
Performance of p-CS for mcDESPOT (uniformly undersampled Cartesian data, R=3.95).
Top and middle rows: representative source images for mcDESPOT obtained with SPGR
(α= 9°) and one of bSSFP (α= 29°, phase cycling ϕ= 180°) acquisitions, respectively.
Bottom row: myelin water fraction (MWF) maps obtained by mcDESPOT processing.

Velikina et al. Page 22

Magn Reson Med. Author manuscript; available in PMC 2014 November 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

Velikina et al. Page 23

T
a
b

le
 1

R
O

I-
ba

se
d 

T
1 

m
ea

su
re

m
en

ts
 in

 G
M

/W
M

 in
 s

im
ul

at
io

n 
st

ud
ie

s 
fo

r 
pr

ac
ti

ca
l k

-s
pa

ce
 s

am
pl

in
g 

tr
aj

ec
to

ri
es

.

R
ef

er
en

ce
 T

1,
 m

s
V

D
 C

ar
te

si
an

 (
R

=4
)

R
ad

ia
l (

R
=1

0)

SE
N

SE
P

C
B

 p
-C

S
SE

N
SE

P
C

B
 p

-C
S

W
M

78
1.

8
83

7.
7

78
0.

1
78

0.
5

79
3.

7
78

4.
4

78
1.

3

G
M

11
02

.5
11

38
.7

11
09

.0
11

09
.6

11
10

.7
10

99
.3

11
06

.2

Magn Reson Med. Author manuscript; available in PMC 2014 November 01.



N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

Velikina et al. Page 24

T
a
b

le
 2

R
es

ul
ts

 o
f 

T
1 

m
ea

su
re

m
en

ts
 in

 b
ra

in
 R

O
Is

 in
 F

ig
. 6

a 
(i

n-
vi

vo
 s

tu
di

es
, r

ad
ia

l t
ra

je
ct

or
y)

.

R
O

I 
#

R
ef

er
en

ce
 T

1,
 m

s
, m

s

SE
N

SE
T

V
-S

E
N

SE
P

C
B

 p
-C

S

1
11

06
.8

−
 1

90
.7

−
19

.2
1.

5
−

1.
6

2
11

98
.2

−
 1

84
.3

−
19

.5
−

7.
1

−
1.

1

3
12

39
.4

−
 2

27
.4

−
15

.2
6.

9
6.

6

4
16

08
.4

−
24

5.
7

−
9.

6
16

.4
5.

7

5
17

07
.3

−
36

1.
4

−
68

.4
−

14
.7

2.
0

6
20

21
.3

−
52

3.
2

−
60

.5
−

37
.6

0.
5

Magn Reson Med. Author manuscript; available in PMC 2014 November 01.


