
Accelerating Neuromorphic Vision Algorithms
for Recognition

Ahmed Al Maashri Michael DeBole† Matthew Cotter Nandhini Chandramoorthy

Yang Xiao Vijaykrishnan Narayanan Chaitali Chakrabarti‡

*Microsystems Design Lab, The Pennsylvania State University
{maashri, mjcotter, nic5090, yux106, vijay}@cse.psu.edu

†IBM System and Technology Group
mvdebole@us.ibm.com

‡School of Electrical, Computer and Energy Engineering, Arizona State University
chaitali@asu.edu

ABSTRACT
Video analytics introduce new levels of intelligence to automated
scene understanding. Neuromorphic algorithms, such as HMAX,
are proposed as robust and accurate algorithms that mimic the
processing in the visual cortex of the brain. HMAX, for instance,
is a versatile algorithm that can be repurposed to target several
visual recognition applications. This paper presents the design and
evaluation of hardware accelerators for extracting visual features
for universal recognition. The recognition applications include
object recognition, face identification, facial expression
recognition, and action recognition. These accelerators were
validated on a multi-FPGA platform and significant performance
enhancement and power efficiencies were demonstrated when
compared to CMP and GPU platforms. Results demonstrate as
much as 7.6X speedup and 12.8X more power-efficient
performance when compared to those platforms.

Categories and Subject Descriptors

C.3 [SPECIAL-PURPOSE AND APPLICATION-BASED

SYSTEMS]: Signal processing systems

General Terms

Design, Experimentation, Performance

Keywords

Recognition, Domain-Specific Acceleration, Heterogeneous
System, Power Efficiency

1. INTRODUCTION
The visual cortex of the mammalian brain is remarkable in its
processing and general recognition capabilities providing
inspiration for complex, power-efficient systems and
architectures. Researchers [1,2,3] have made advances in
understanding the processing that occurs in the visual cortex.
These advances have a profound impact on a range of application
domains used for image recognition tasks such as surveillance,
business analytics, and the study of cell migration.

As a step towards exploring how the brain efficiently processes
visual information, a brain-inspired feed-forward hierarchical
model (HMAX) [2] has become a widely accepted abstract
representation of the visual cortex. HMAX models are mainly
implemented on general-purpose processors (CPUs) and graphics
processing units (GPUs), which do not attain the power and
computational efficiency that can be achieved by custom
hardware implementations [3,4,5,6]. To achieve the performance,
power, and flexibility to support computations used in
neuromorphic applications, the ideal platform is the
heterogeneous integration of domain-specific accelerators with
general-purpose processor architectures.

This paper proposes a neuromorphic system, based on HMAX, for
universal recognition. The system is composed of customized
hardware accelerators that target four applications; namely, object
recognition, face identification, facial expression recognition, and
action recognition. This neuromorphic system is evaluated on a
prototype heterogeneous CMP system composed of multi-FPGA
system interfaced to quad-core Intel Xeon processor. The results
indicate that the proposed architecture achieves recognition
accuracies ranging from 70-90% across the four recognition
algorithms. A detailed comparison of the power and performance
with respect to HMAX variants executed on GPUs, multi-core
CPUs, and FPGAs is performed. The results reveal that the
proposed FPGA prototype provides frames-per-second(fps)-per-
watt improvement as much as 12.8X over CPUs, and 9.7X over
GPUs.

The rest of this paper is organized as follows; Section 2 provides

an overview of HMAX model. Section 3 describes the micro-

architecture of the accelerators developed for HMAX, while

Section 4 discusses the evaluation platforms and presents results

from the FPGA-based emulation system. Section 5 presents

Related Work. Finally, Section 6 concludes the paper.

2. HMAX COMPUTATIONAL MODEL
Figure 1 shows a computational template of HMAX [2,3,5]. The
model primarily consists of two distinct types of computations:
convolution and pooling (non-linear subsampling), corresponding
to the Simple, S, and Complex, C, cell types, respectively. The
first S-layer (S1) is comprised of fixed, simple-tuning cells,
represented by oriented Gabor filters. Following the S1 layer, the
remaining layers alternate between max-pooling layers and
template-matching layers tuned by a dictionary encompassing
patterns representative of the categorization task.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2012, June 3-7, 2012, San Francisco, California, USA.
Copyright 2012 ACM 978-1-4503-1199-1/12/06 …$10.00.

579

2.1 HMAX for Object Recognition
Our work uses a specific implementation for the object
recognition task developed by [7], as it represents the current
understanding of the ventral stream and produces good results
when used for classification. This model is represented by a total
of five layers: an image layer and four layers corresponding to the
alternating S and C units.

Image layer: In this layer, the image is converted to grayscale and
then downsampled to create an image pyramid of 12 scales, with
the largest scale being 256x256.

S1 (Gabor filter) layer: The S1 layer corresponds to the V1 [2]
simple cells in the ventral stream and is computed by performing
a convolution with the full range of orientations at each position
and scale. The number of orientations used in this model is 12,
producing 12 outputs per scale for a total of 144 outputs.

C1 (Local invariance) layer: This layer provides a model for the
V1 complex cells and pools over nearby S1 units with the same
orientation. Within a scale, each orientation is convolved with a
3D max filter of size 10x10x2 (10x10 units in position and 2 in
scale). This layer provides scale invariance over large local
regions.

S2 (Tuned features) layer: This layer models the V4 [2] by
matching a set of prototypes against C1 output. These prototypes
have been randomly sampled from a set of representative images.

C2 (Global invariance) layer: This layer provides global
invariance by taking the maximum response from each of the
templates across the scales. The layer removes all position and
scale information, leaving only a complex feature set which can
then be used later for classification.

2.2 Extensions of the HMAX Model
Neuroscientists have observed that the primates‘ visual system
often shares a general, early-level processing structure, which
eventually branches off into more specific higher-level
representations. This serves as a motivation to configure the
HMAX model to implement a variety of recognition problems
beyond object classification.

2.2.1 HMAX for Face Processing
In order to support face identification and facial expression
recognition, Meyers et al. [4] add a center-surround stage of
processing tomodel the ‗center-on surround-off‘ processing that

is present in the retinal and LGN of the thalamus. In addition, the
model does not perform S2 and C2 stages in order to maintain
visual features localized to a particular region in space.

LGN/Retinal (Center-Surround) Layer: The center-surround is
computed prior to pyramid generation and helps to eliminate
intensity gradients due to shadows. The processing is done by
placing a 2D window at each position in the input image that is
identical in size to the filter used for S1. The output is then
computedbydividingthecurrentpixel‘sintensitybythemeanof
the pixel intensities within the window.

2.2.2 HMAX for Action Recognition
While HMAX was originally limited to model the ventral stream,
a model of the dorsal stream is useful for analyzing motion
information. Jhuang et al. [6] have proposed augmenting the
original HMAX model with the dorsal path as it can then be
applicable to motion-recognition tasks, such as identifying actions
in a video sequence. Computationally, this is done by integrating
spatio-temporal detectors into S1, while adding two additional
layers, S3 and C3, which track features over time, providing time-
invariance to the structure.

Space-Time Oriented S1 (Gabor filter) layer: S1 units for motion
are extended by adding a third temporal dimension to the
receptive fields. Computationally, this layer becomes an
convolution across a sliding window of past, present, and future
frames, where n is total number of frames.

Space-Time Oriented S3/C3 (Tuning/Pooling) layers: S3 unit
responses are obtained by temporally matching the output of C2
features to a dictionary, similar to S2, where each patch represents
a sampled sequence of frames. C3 unit responses are the
maximum response over the duration of a video sequence.

Based on these observations, the design of an accelerator based on
the HMAX model should also contain additional hardware
accelerators designed for spatio-temporal detection, retinal
(center-surround) processing, and time-invariance operations,
with an option for preserving localized spatial features.

3. HMAX SYSTEM ARCHITECTURE
The proposed HMAX accelerators are interconnected using a
communication infrastructure that provides a number of features,
including: high-bandwidth communication, run-time re-
configurability and inter-accelerator message-passing for
synchronization. The infrastructure accepts two types of

Image Retina/LGN

S0,1

S0,k

S1,1

S1,k

V1 (S1)

C1,1

C1,k-1

V1 (C1)

S2,1

Center-Surround Image Scaling

Pre-Processing

Oriented Gabor filters

Convolution

Local Max

Pooling

S2,k-1S2 Dict.

 4 8 12 16

Template Matching

Convolution

Global Max

Pooling

Dict. Size = 5120

S0

(Optional)

1

n

n

1

Figure 1. Typical Structure of HMAX Model: Center-Surround can be optionally applied to gray-scale input image. Image

Scaling (S0) produces k scales, forming a pyramid out of downsampled input image. A bank of Gabor filters (S1,1 S1,2 ... S1,k) are

used to detect edges at n orientations, while local maximum pooling (C1,1 C1,2 ... C1,k-1) finds the maximum response over the S1

output. Template matching is performed in S2. Finally, C2 performs global max operation producing a feature vector.

580

accelerators; namely, stream-based and compute-based. Stream-
based accelerators are more suited for on-the-fly processing of
streaming data, while the compute-based accelerators are more
suitable for iterative processing on non-contiguous blocks of data.
Due to space limitation, this paper does not discuss the details of
this infrastructure. A more in-depth treatment of the infrastructure
can be found in [8].

3.1 HMAX Accelerators
Table 1 lists the HMAX accelerators and their functions. In this
paper, we focus on the S2/C2 accelerator since this is the most
time consuming stage in the HMAX model.

The S2/C2 accelerator combines the S2 and C2 stages into a single
accelerator, which allows pooling to occur immediately following
the computation of a current S2 feature. Also, this can effectively
decrease the amount of data required to be sent across the network

by . Here, S

is the number of scales at the S2 stage, XS (YS) is the dimension of
scale S in the x-direction (y-direction). Practically, with 5120
prototypes using 12 scales and 12 orientations, this reduces the
data transferred by 4,135X.

The accelerator consists of one or more instances of systolic 2D
filters, which are the most computationally demanding
components of the S2 unit. These filters are designed to enable
data reuse and take advantage of available parallel computational
resources. Additionally, the accelerator makes efficient use of
available memory hierarchies to improve performance. For
instance, the per-scale outputs of the 2D filters in the convolver
must be accumulated across all orientations. In order to avoid the
network traffic associated with buffering these results in an
external network-attached memory, the accelerator uses a
scratchpad memory to store and accumulate these outputs
immediately as they are produced. This results in increased
performance of up to nX, where n is the number of orientations.
However, scratchpad memories are not suitable for large volumes
of data. As an example, in this implementation of HMAX for
object recognition, the S2 uses 5120 prototypes which require
approximately 24 MB of storage. A more suitable storage solution
is the use of off-chip memory. While the communication
infrastructure supports network-attached memories, the large
increase in network traffic will degrade performance. Instead, the
S2/C2 accelerator integrates an optimized memory controller that
interfaces directly to an off-chip memory.

3.2 HMAX Data Processing Flow
The HMAX accelerators, listed in Table 1, are interconnected
using a communication infrastructure [8]. This acceleration
system can be loosely coupled to a CMP within a heterogeneous
system, as illustrated in Figure 2. In this heterogeneous system,
the processor, executing the main application, offloads the entire
HMAX computation to the accelerators. However, prior to
offloading the computation, the CMPs will configure these
accelerators to reflect the current structure of the model (e.g.
number of orientations, scales, pooling window sizes, etc…).
Figure 2 also demonstrates an example application, action
recognition, executed on the accelerators. First, the processor
copies the data to the image buffer memory, Img_Mem, and a
notification message to C1 through the interface. C1 performs
several reads from the image buffer for every pooled output
through flow0, calculating the proper scale and S1 tuned cells each
time, on the fly. As each pooled output is computed, it is written
to the S2/C2 accelerator unit through the Normalization, Norm,
accelerator using flow1. C1 then messages S2/C2 notifying the
latter that all scales have been written and initiating the
computation of the S2/C2 tuned and pooled cells. Once that is
completed, the S2/C2 writes the outputs to the C3 unit, which
calculates the S3 tuned output during data-movement using flow2.
Finally, when C3 has completed the computations; the output is
returned via the interface to the invoking processor. Similarly,
other recognition applications are executed according to their
computational structure.

4. EXPERIMENTAL EVALUATION
To evaluate the neuromorphic accelerators, we use a Multi-FPGA
system as an emulation platform. Also, the four vision application
domains (i.e. object recognition, face identification, facial
expression recognition and action recognition) were implemented
on multi-core CPU and GPU platforms for performance and
accuracy comparisons. The following subsections discuss the
datasets used for testing the evaluated platforms and provide a
comparative analysis of the performance of each platform.

Table 1. HMAX accelerators and their functions

Stream-based Function(s)

Downsampling
(DS)

Generates multiple scales by subsampling
input

Normalization
(Norm)

Computes windowed average for
normalizing S2 output

Computes center-surround

S1 Streaming 2D convolution

S3 Streaming 1D convolution

Compute-based Function (s)

C1 Windowed pooling

S2/C2 Prototype correlation and global max

C3 Global max operation

Interface (FSB Bus)

Im
g_Mem

D
S

S
1

C1

S2/
C2

S
3

C
3

CPU

Interface

Switching

Fabric

Norm

flow0
flow1

flow2

CPU CPU CPU

$ $ $ $

Figure 2: A heterogeneous system showing the interactions

between the CMP and neuromorphic accelerators. The

neuromorphic accelerators require access to three memory

banks used to store the feature dictionaries used for S2 and

S3 (not shown) and intermediate frames required for action

recognition (Img_Mem).

581

4.1 Datasets for Evaluation
Table 2 shows the datasets used for evaluating the recognition
accuracy of the neuromorphic accelerators. The Caltech 101
dataset [9] is used to test the accuracy of object classification
using all 102 different categories. The vehicles dataset, prepared
in-house, consists of 16 categories with a variety of objects
including vehicles, aircrafts, military equipment and background
scenery. The ORL dataset [10], used for testing face identification
accuracy, contains a collection of close-up images of the faces of
40 different individuals from varying viewing angles. The FERET
dataset [11] includes 1208 individuals from which a random
subset of 10 individuals was chosen for evaluation. The JAFFE
dataset [12] is used for testing the accuracy of facial expression
recognition. Six different expressions were tested—anger, disgust,
fear, happiness, sadness, and surprise. Finally, the Weizmann
dataset [13] is used for testing human action recognition. This
dataset includes 10 different categories of actions: bending,
jumping jacks, vertical jumping, horizontal jumping, skipping,
running, side-stepping, walking, one-hand-waving, and two-hand-
waving.

4.2 Experimental Setup
The accelerators were prototyped on a Multi-FPGA platform that
mimics a heterogeneous multi-core system. The platform contains
a quad-core Xeon processor running at 1.6 GHz interfaced to an
FPGA acceleration system through a Front-Side Bus, FSB. The
FPGA system contains four Virtex-5 SX-240T FPGAs [14], all
operating at 100 MHz. The quad-core processor is mainly used to
transfer data to the accelerators through the FSB and to retrieve
the output.

The reference CPU platforms contained 4- and 12-Core Xeon
CPU systems with the total number of threads executed on each
shown in Figure 3. The 4-Core CPU is clocked at 1.6 GHz, while
the 12-Core CPU is clocked at 2.4 GHz. All CPU platforms
utilized SSE instruction set extension. The 12-core Xeon
processor configuration with 12 threads serves as the CPU
reference when comparing implementations as it provides the best
performance across CPU platforms and configurations. The GPU
platform consists of an Nvidia Tesla M2090 board [15], which
houses three 1.3 GHz Tesla T20A GPUs, and using CUDA as the
programming language [5].

4.3 Performance
Accuracy: The fifth column in Table 2 shows the classification
accuracy across all datasets using the feature vector produced by
the accelerated HMAX. The recognition accuracy across all the
platforms was similar; however, since accelerators use 32-bit
fixed-point representation (1 bit for sign, 7 for integer and 24 for
fraction), a slight degradation in accuracy was observed (i.e. ≤
2%). This degradation is due to the truncation of the fixed-point
representation during the multiply-accumulate operation.

Speed: We use frames (segments) processed per second (fps) as
a metric to compare the speedup gained by each platform. In this
paper,weusetheterm―segment‖torefertoagroupof20frames
extracted from a video sequence for action recognition
application. Figure 4 shows a speedup comparison between the
three platforms in terms of fps for the four recognition
applications. The FPGA prototyping platform demonstrates a
speedup ranging from 3.5X to 7.6X (1.5X to 4.3X) when
compared to the CPU (GPU) platform. The FPGA platform
exhibits increased performance improvement in the action
recognition application. This is due to the cumulative effect of
per-frame performance of the S1 stage. Since each video segment

consists of 20 frames, the FPGA accelerator sees a linear increase
in performance with the number of frames.

Power Efficiency: Figure 5 compares the power efficiency
(fps/Watt) across the three platforms. For the GPU, the command
tool‗nvidia-smi -q‘isusedtoprobethepowerconsumptionfrom
a power sensor found on the GPU board. For the CPU and FPGA
platforms, power consumption was measured using a power
meter. The meter provides continuous and instantaneous reading
of power drawn by the platform with 99.8% accuracy.

The power consumption for all platforms is measured only after
the platform reaches steady-state to obtain the baseline power
measurement. Then, the workload is executed and peak power is
measured throughout the duration of the workload execution. For
example, the power measurements show that when running
HMAX for object recognition, the GPU, CPU and FPGA
platforms consume 144, 116 and 69 Watts, respectively. Using
these measurements, the power efficiency of each platform is
computed as shown in Figure 5. The results show that the HMAX
accelerators demonstrate a significant performance-per-watt
benefit, ranging from 5.3X to 12.8X (3.1X to 9.7X) when
compared to CPU (GPU) platform.

Configurability/Tradeoffs: It is often desirable to trade off
accuracy for higher performance. We performed further
experimentation with the accelerated HMAX to analyze impact of
reduced overall accuracy on the execution time. For example, we
experimented with changing the number of orientations processed
by the HMAX model from 12 to 4. Reducing the number of
orientations improved speed by 2.2X, while producing only a
1.1% difference in accuracy for the vehicles dataset. In another
experiment, the numbers of input scales was varied, while
observing its influence on accuracy and speedup using the
vehicles dataset. Figure 6 (left) shows that as the number of scales
decreases the classification accuracy decreases until it reaches
~70% when using 5 input scales. On the other hand, Figure 6
(center, right), shows a consistent improvement in speedup and
power efficiency as number of scales is decreased, effectively
reaching 15.4X better speedup and power efficiency when using
only 5 scales compared to 12-scale configuration. Permitting such
trade-off analysis makes the proposed accelerator very suitable for
studies in modeling refinements and vision algorithm tuning.

4.4 Discussion of Results
There are a number of factors that contribute to the increased
performance of the accelerator-based system. First, the underlying
framework provides up to 1.6 GB/s (3.2 GB/s) bandwidth when

Table 2: Datasets used for evaluation. Note that there is no

overlap in training and testing samples.

Application

Domain
Dataset

Classes
Test

samples
Accuracy

(%)

Object
recognition

Caltech 101 102 4543 70

vehicles 16 1382 83

Face ID
ORL 40 200 85

FERET 10 60 70

Facial expr.
recognition

JAFFE 6 60 86.7

Action recog. Weizmann 10 40 77.7

582

clocked at 100 MHz (200 MHz), supporting high transfer rates
across the network. Second, the parallelism exploited by the
architecture is enabled by the large number of resources
(multipliers, registers, etc) available on the FPGA. For example,
this allows up to 256 multiply-and-add operations to be performed
simultaneously providing a 256X increase in performance over
sequential operation. Third, the accelerators implement
customized processing pipelines, taking advantage of data reuse.
Finally, the ability to instantiate multiple processing units of the
same type (e.g. S2/C2 units), leverages task-level parallelism to the
user.

Similarly, the power efficiency benefits are the result of
customized, application-specific architectures that are able to
process incoming data in fewer cycles (compared to CPU/GPU) at
a lower frequency. The use of custom numerical representations
also contributes to the performance gain. It should be noted that
our FPGA was fabricated with an older 65nm technology,
compared to 45nm and 40nm technologies used with CPU and
GPU platforms, respectively. It is expected that implementing the
neuromorphic accelerators in silicon rather than on an FPGA
platform will accentuate such benefits. For instance, Kuon et al.
[16] show that at 90nm fabrication process, moving from SRAM-
based FPGA to CMOS ASIC architectures improves critical path
delay by 3X – 4.8X, and dynamic power by 7.1X – 14X.

5. RELATED WORK

The effort demonstrated in this work is synergistic with recent
efforts aimed at domain-specific computing with configurable
accelerators [17,18,19,20,21,22]. In [17] the authors detail the
implementation of a multi-object recognition processor on SoC.
They present a biologically inspired neural perception engine that
exploits analog-based mixed-mode circuits to reduce area and
power. However, except for the visual attention engine and the
vector matching processors, all other algorithm acceleration is
performed on multiple SIMD processors executing software
kernels. Tsai et al. [18] propose a neocortical computing processor
interconnected with high-bandwidth NoC. The processor consists
of 36 cores; each contains multiple processing elements for
performing the actual computations. Unlike the accelerators
proposed in this paper, these processing elements are generic and
not customized for any specific stage in the HMAX model. Other
works [19,22] have proposed an architecture for image processing
using Convolutional Neural Networks, CNN. These architectures
can configure and train the neural network to support a variety of
recognition algorithms. The convolution engine forms the critical
component of these accelerators. While the authors in [19,22]
indicate that mapping HMAX models to CNN structures is
straightforward, the authors do not describe modifications
necessary to implement large convolution windows or the n-
dimensional convolutions that are required in the S2 layer.

6. CONCLUSIONS
This work proposed reconfigurable neuromorphic accelerators for
universal recognition that can be fabricated within a
heterogeneous system. An FPGA prototyping platform is
implemented as an emulation of the heterogeneous system. The
prototyping platform exhibits a remarkable performance gain of
up to 7.6X (4.3X) compared to the CPU (GPU). Moreover, this
prototyping platform shows a superior power efficiency of 12.8X
(9.7X) compared to the CPU (GPU) platform.

7. ACKNOWLEDGMENTS
This work was funded in part by an award from the Intel Science
and Technology Center on Embedded Computing, NSF Awards
1147388, 0916887, 0903432, 0829607.

8. REFERENCES
[1] L. Itti, C. Koch, and E. Niebur, "A Model of Saliency-Based

Visual Attention for Rapid Scene Analysis," IEEE

Transactions on Pattern Analysis and Machine Intelligence,
vol. 20, no. 11, pp. 1254-1259, Nov 1998.

[2] M. Riesenhuber and T. Poggio, "Hierarchical Models of
Object Recognition in Cortex," Nature Neuroscience, vol. 2,
no. 11, pp. 1019-1025, November 1999.

[3] T. Serre et al., "Robust Object Recognition With Cortex-Like
Mechanisms," IEEE PAMI, vol. 29, no. 3, March 2007.

[4] E. Meyers and L. Wolf, "Using Biologically Inspired
Features for Face Processing," International Journal of

Computer Vision, vol. 76, no. 1, pp. 93-104, January 2008.

[5] J Mutch, U Knoblich, and T Poggio, "CNS: A GPU-Based
Framework for Simulating Cortically-Organized Networks,"
Massachusetts Institute of Technology, Cambridge, MA,
MIT-CSAIL-TR-2010-013 / CBCL-286 2010.

[6] H. Jhuang, T. Serre, L. Wolf, and T. Poggio, "A Biologically
Inspired System for Action Recognition," in International

Conference on Computer Vision (ICCV), 2007, pp. 1-8.

[7] J. Mutch and D. G. Lowe, "Object Class Recognition and
Localization Using Sparse Features with Limited Receptive
Fields," International Journal of Computer Vision (IJCV),
vol. 80, no. 1, October 2008.

[8] S. Park et al., "System-On-Chip for Biologically Inspired
Vision Applications," Information Processing Society of

Japan, 2012, [In Press].

[9] L. Fei-Fei et al., "Learning Generative Visual Models from
Few Training Examples: An Incremental Bayesian Tested on
101 Object Categories," in IEEE CVPR 2004, Workshop on

Generative-Model Based Vision, 2004.

[10] F. Samaria and A. Harter, "Parameterisation of a Stochastic
Model for Human Face Identification," in 2nd IEEE

Workshop on Applications of Computer Vision, 1994.

[11] P. J. Phillips et al., "The FERET Evaluation Methodology for
Face Recognition Algorithms," Trans. of Pattern Analysis

and Machine Intelligence, vol. 22, no. 10, October 2000.

[12] M. Lyons et al., "Coding Facial Expressions with Gabor
Wavelets," in Third IEEE International Conference on

Autmatomatic Face and Gesture Recognition, 1998.

[13] M. Blank et al., "Actions as Space-Time Shapes," in
International Conference on Computer Vision, 2005.

[14] Xilinx, "Virtex-5 Family Overview," DS100(v5.0) 2009.

[15] Nvidia. (2011) Tesla M2090 Board Specification. [Online].
http://www.nvidia.com/docs/IO/43395/Tesla-M2090-Board-
Specification.pdf

[16] I. Kuon and J. Rose, "Measuring the Gap Between FPGAs
and ASICs," IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 26, no. 2, pp. 203-

583

215, February 2007.

[17] J.-Y. Kim et al., "A 201.4 GOPS 496 mW Real-Time Multi-
Object Recognition Processor With Bio-Inspired Neural
Perception Engine," IEEE Journal of Solid-State Circuits,
vol. 45, no. 1, pp. 32-45, Jan 2010.

[18] C.-Y. Tsai et al., "A 1.0TOPS/W 36-Core Neocortical
Computing Processor with 2.3Tb/s Kautz NoC for Universal
Visual Recognition," in IEEE Int. Conference Digest of

Technical Papers, San Francisco, 2012, pp. 480-482.

[19] C. Farabet et al., "Hardware Accelerated Convolutional
Neural Networks for Synthetic Vision Systems," in ISCAS,
Paris, 2010, pp. 257-260.

[20] R. Iyer et al., "CogniServe: Heterogeneous Server
Architecture for Large-Scale Recognition," IEEE Micro, vol.
31, no. 3, pp. 20-31, May-June 2011.

[21] J. Clemons et al., "EFFEX: An Embedded Processor for
Computer Vision Based Feature Extraction," in The 48th

ACM/EDAC/IEEE DAC, San Diego, 2011, pp. 1020-1024.

[22] S. Chakradhar et al., "A Dynamically Configurable
Coprocessor for Convolutional Neural Networks," in ISCA,
2010, pp. 247-257.

[Object Recognition] [Face Identification] [Facial Expr. Recognition] [Action Recognition]

Figure 3: Performance of reference CPU platforms across four application domains. Number of threads is indicated within

brackets on the x-axis. The metric used to measure performance is frames/second (segment/second) for the first three

applications (action recognition application). Segment in this context refers to a group of twenty frames.

Figure 4: Speedup (FPS): A comparison across the three

platforms for each application domain. Figures are

normalized to the CPU platform

 Figure 5: Power Efficiency (fps/Watt): A comparison

across the three platforms for each application domain.

Figures are normalized to the CPU platform

[Influence on accuracy] [Influence on speedup] [Influence on power efficiency]

Figure 6: The influence of number of scales on classification accuracy and performance. As the number of input scales

decreases, the classification accuracy decreases and power efficiency increases. Figures in “Speedup” & “Power Efficiency” are
normalized to the 12-input-scale configuration

0

0.03

0.06

0.09

0.12

0.15

4
-C

o
re

 (
1
T

)

4
-C

o
re

 (
4
T

)

1
2
-C

o
re

 (
1
T

)

1
2
-C

o
re

 (
1
2
T

)

F
ra

m
es

/S
ec

o
n

d

0

3

6

9
4
-C

o
re

 (
1
T

)

4
-C

o
re

 (
4
T

)

1
2
-C

o
re

 (
1
T

)

1
2
-C

o
re

 (
1
2
T

)

F
ra

m
es

/S
ec

o
n

d

0

3

6

9

4
-C

o
re

 (
1
T

)

4
-C

o
re

 (
4
T

)

1
2
-C

o
re

 (
1
T

)

1
2
-C

o
re

 (
1
2
T

)

F
ra

m
es

/S
ec

o
n

d

0

0.1

0.2

0.3

0.4

0.5

4
-C

o
re

 (
1
T

)

4
-C

o
re

 (
4
T

)

1
2
-C

o
re

 (
1
T

)

1
2
-C

o
re

 (
1
2
T

)

S
eg

m
en

t/
S

ec
o
n

d

0

2

4

6

8

Object Recog. Face ID Facial Expr.
Recog.

Action Recog.

S
p

ee
d

U
p

CPU GPU Accelerator

0

3

6

9

12

15

Object Recog. Face ID Facial Exp.
Recog.

Action Recog.

P
o
w

er
 E

ff
ic

ie
n

cy

CPU GPU Accelerator

65

70

75

80

85

12 11 10 9 8 7 6 5

A
cc

u
ra

cy
 (

%
)

Input Scales

0

4

8

12

16

12 11 10 9 8 7 6 5

S
p

ee
d

U
p

Input Scales

0

4

8

12

16

12 11 10 9 8 7 6 5

P
o
w

er
 E

ff
ic

ie
n

cy

Input Scales

584

