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ABSTRACT 
Video analytics introduce new levels of intelligence to automated 
scene understanding. Neuromorphic algorithms, such as HMAX, 
are proposed as robust and accurate algorithms that mimic the 
processing in the visual cortex of the brain. HMAX, for instance, 
is a versatile algorithm that can be repurposed to target several 
visual recognition applications. This paper presents the design and 
evaluation of hardware accelerators for extracting visual features 
for universal recognition. The recognition applications include 
object recognition, face identification, facial expression 
recognition, and action recognition. These accelerators were 
validated on a multi-FPGA platform and significant performance 
enhancement and power efficiencies were demonstrated when 
compared to CMP and GPU platforms. Results demonstrate as 
much as 7.6X speedup and 12.8X more power-efficient 
performance when compared to those platforms. 
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1. INTRODUCTION 
The visual cortex of the mammalian brain is remarkable in its 
processing and general recognition capabilities providing 
inspiration for complex, power-efficient systems and 
architectures. Researchers [1,2,3] have made advances in 
understanding the processing that occurs in the visual cortex. 
These advances have a profound impact on a range of application 
domains used for image recognition tasks such as surveillance, 
business analytics, and the study of cell migration. 

As a step towards exploring how the brain efficiently processes 
visual information, a brain-inspired feed-forward hierarchical 
model (HMAX) [2] has become a widely accepted abstract 
representation of the visual cortex. HMAX models are mainly 
implemented on general-purpose processors (CPUs) and graphics 
processing units (GPUs), which do not attain the power and 
computational efficiency that can be achieved by custom 
hardware implementations [3,4,5,6]. To achieve the performance, 
power, and flexibility to support computations used in 
neuromorphic applications, the ideal platform is the 
heterogeneous integration of domain-specific accelerators with 
general-purpose processor architectures. 

This paper proposes a neuromorphic system, based on HMAX, for 
universal recognition. The system is composed of customized 
hardware accelerators that target four applications; namely, object 
recognition, face identification, facial expression recognition, and 
action recognition. This neuromorphic system is evaluated on a 
prototype heterogeneous CMP system composed of multi-FPGA 
system interfaced to quad-core Intel Xeon processor. The results 
indicate that the proposed architecture achieves recognition 
accuracies ranging from 70-90% across the four recognition 
algorithms. A detailed comparison of the power and performance 
with respect to HMAX variants executed on GPUs, multi-core 
CPUs, and FPGAs is performed. The results reveal that the 
proposed FPGA prototype provides frames-per-second(fps)-per-
watt improvement as much as 12.8X over CPUs, and 9.7X over 
GPUs. 

The rest of this paper is organized as follows; Section 2 provides 

an overview of HMAX model. Section 3 describes the micro-

architecture of the accelerators developed for HMAX, while 

Section 4 discusses the evaluation platforms and presents results 

from the FPGA-based emulation system. Section 5 presents 

Related Work. Finally, Section 6 concludes the paper. 

2. HMAX COMPUTATIONAL MODEL 
Figure 1 shows a computational template of HMAX [2,3,5]. The 
model primarily consists of two distinct types of computations: 
convolution and pooling (non-linear subsampling), corresponding 
to the Simple, S, and Complex, C, cell types, respectively. The 
first S-layer (S1) is comprised of fixed, simple-tuning cells, 
represented by oriented Gabor filters. Following the S1 layer, the 
remaining layers alternate between max-pooling layers and 
template-matching layers tuned by a dictionary encompassing 
patterns representative of the categorization task. 
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2.1 HMAX for Object Recognition 
Our work uses a specific implementation for the object 
recognition task developed by [7], as it represents the current 
understanding of the ventral stream and produces good results 
when used for classification. This model is represented by a total 
of five layers: an image layer and four layers corresponding to the 
alternating S and C units. 

Image layer: In this layer, the image is converted to grayscale and 
then downsampled to create an image pyramid of 12 scales, with 
the largest scale being 256x256. 

S1 (Gabor filter) layer: The S1 layer corresponds to the V1 [2] 
simple cells in the ventral stream and is computed by performing 
a convolution with the full range of orientations at each position 
and scale. The number of orientations used in this model is 12, 
producing 12 outputs per scale for a total of 144 outputs. 

C1 (Local invariance) layer: This layer provides a model for the 
V1 complex cells and pools over nearby S1 units with the same 
orientation. Within a scale, each orientation is convolved with a 
3D max filter of size 10x10x2 (10x10 units in position and 2 in 
scale). This layer provides scale invariance over large local 
regions. 

S2 (Tuned features) layer: This layer models the V4 [2] by 
matching a set of prototypes against C1 output. These prototypes 
have been randomly sampled from a set of representative images. 

C2 (Global invariance) layer: This layer provides global 
invariance by taking the maximum response from each of the 
templates across the scales. The layer removes all position and 
scale information, leaving only a complex feature set which can 
then be used later for classification. 

2.2 Extensions of the HMAX Model 
Neuroscientists have observed that the primates‘ visual system
often shares a general, early-level processing structure, which 
eventually branches off into more specific higher-level 
representations. This serves as a motivation to configure the 
HMAX model to implement a variety of recognition problems 
beyond object classification.  

2.2.1 HMAX for Face Processing 
In order to support face identification and facial expression 
recognition, Meyers et al. [4] add a center-surround stage of 
processing tomodel the ‗center-on surround-off‘ processing that 

is present in the retinal and LGN of the thalamus. In addition, the 
model does not perform S2 and C2 stages in order to maintain 
visual features localized to a particular region in space.  

LGN/Retinal (Center-Surround) Layer: The center-surround is 
computed prior to pyramid generation and helps to eliminate 
intensity gradients due to shadows. The processing is done by 
placing a 2D window at each position in the input image that is 
identical in size to the filter used for S1. The output is then 
computedbydividingthecurrentpixel‘sintensitybythemeanof
the pixel intensities within the window. 

2.2.2 HMAX for Action Recognition 
While HMAX was originally limited to model the ventral stream, 
a model of the dorsal stream is useful for analyzing motion 
information. Jhuang et al. [6] have proposed augmenting the 
original HMAX model with the dorsal path as it can then be 
applicable to motion-recognition tasks, such as identifying actions 
in a video sequence. Computationally, this is done by integrating 
spatio-temporal detectors into S1, while adding two additional 
layers, S3 and C3, which track features over time, providing time-
invariance to the structure. 

Space-Time Oriented S1 (Gabor filter) layer: S1 units for motion 
are extended by adding a third temporal dimension to the 
receptive fields. Computationally, this layer becomes an      
convolution across a sliding window of past, present, and future 
frames, where n is total number of frames. 

Space-Time Oriented S3/C3 (Tuning/Pooling) layers: S3 unit 
responses are obtained by temporally matching the output of C2 
features to a dictionary, similar to S2, where each patch represents 
a sampled sequence of frames. C3 unit responses are the 
maximum response over the duration of a video sequence. 

Based on these observations, the design of an accelerator based on 
the HMAX model should also contain additional hardware 
accelerators designed for spatio-temporal detection, retinal 
(center-surround) processing, and time-invariance operations, 
with an option for preserving localized spatial features. 

3. HMAX SYSTEM ARCHITECTURE 
The proposed HMAX accelerators are interconnected using a 
communication infrastructure that provides a number of features, 
including: high-bandwidth communication, run-time re-
configurability and inter-accelerator message-passing for 
synchronization. The infrastructure accepts two types of 
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Figure 1. Typical Structure of HMAX Model: Center-Surround can be optionally applied to gray-scale input image. Image 

Scaling (S0) produces k scales, forming a pyramid out of downsampled input image. A bank of Gabor filters (S1,1 S1,2 ... S1,k) are 

used to detect edges at n orientations, while local maximum pooling (C1,1 C1,2 ... C1,k-1) finds the maximum response over the S1 

output. Template matching is performed in S2. Finally, C2 performs global max operation producing a feature vector. 
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accelerators; namely, stream-based and compute-based. Stream-
based accelerators are more suited for on-the-fly processing of 
streaming data, while the compute-based accelerators are more 
suitable for iterative processing on non-contiguous blocks of data. 
Due to space limitation, this paper does not discuss the details of 
this infrastructure. A more in-depth treatment of the infrastructure 
can be found in [8]. 

3.1 HMAX Accelerators 
Table 1 lists the HMAX accelerators and their functions. In this 
paper, we focus on the S2/C2 accelerator since this is the most 
time consuming stage in the HMAX model. 

The S2/C2 accelerator combines the S2 and C2 stages into a single 
accelerator, which allows pooling to occur immediately following 
the computation of a current S2 feature. Also, this can effectively 
decrease the amount of data required to be sent across the network 

by                                                  . Here, S 

is the number of scales at the S2 stage, XS (YS) is the dimension of 
scale S in the x-direction (y-direction). Practically, with 5120 
prototypes using 12 scales and 12 orientations, this reduces the 
data transferred by 4,135X. 

The accelerator consists of one or more instances of systolic 2D 
filters, which are the most computationally demanding 
components of the S2 unit. These filters are designed to enable 
data reuse and take advantage of available parallel computational 
resources. Additionally, the accelerator makes efficient use of 
available memory hierarchies to improve performance. For 
instance, the per-scale outputs of the 2D filters in the convolver 
must be accumulated across all orientations. In order to avoid the 
network traffic associated with buffering these results in an 
external network-attached memory, the accelerator uses a 
scratchpad memory to store and accumulate these outputs 
immediately as they are produced. This results in increased 
performance of up to nX, where n is the number of orientations. 
However, scratchpad memories are not suitable for large volumes 
of data. As an example, in this implementation of HMAX for 
object recognition, the S2 uses 5120 prototypes which require 
approximately 24 MB of storage. A more suitable storage solution 
is the use of off-chip memory. While the communication 
infrastructure supports network-attached memories, the large 
increase in network traffic will degrade performance. Instead, the 
S2/C2 accelerator integrates an optimized memory controller that 
interfaces directly to an off-chip memory. 

3.2 HMAX Data Processing Flow 
The HMAX accelerators, listed in Table 1, are interconnected 
using a communication infrastructure [8]. This acceleration 
system can be loosely coupled to a CMP within a heterogeneous 
system, as illustrated in Figure 2. In this heterogeneous system, 
the processor, executing the main application, offloads the entire 
HMAX computation to the accelerators. However, prior to 
offloading the computation, the CMPs will configure these 
accelerators to reflect the current structure of the model (e.g. 
number of orientations, scales, pooling window sizes, etc…). 
Figure 2 also demonstrates an example application, action 
recognition, executed on the accelerators. First, the processor 
copies the data to the image buffer memory, Img_Mem, and a 
notification message to C1 through the interface. C1 performs 
several reads from the image buffer for every pooled output 
through flow0, calculating the proper scale and S1 tuned cells each 
time, on the fly. As each pooled output is computed, it is written 
to the S2/C2 accelerator unit through the Normalization, Norm, 
accelerator using flow1. C1 then messages S2/C2 notifying the 
latter that all scales have been written and initiating the 
computation of the S2/C2 tuned and pooled cells. Once that is 
completed, the S2/C2 writes the outputs to the C3 unit, which 
calculates the S3 tuned output during data-movement using flow2. 
Finally, when C3 has completed the computations; the output is 
returned via the interface to the invoking processor. Similarly, 
other recognition applications are executed according to their 
computational structure. 

4. EXPERIMENTAL EVALUATION 
To evaluate the neuromorphic accelerators, we use a Multi-FPGA 
system as an emulation platform. Also, the four vision application 
domains (i.e. object recognition, face identification, facial 
expression recognition and action recognition) were implemented 
on multi-core CPU and GPU platforms for performance and 
accuracy comparisons. The following subsections discuss the 
datasets used for testing the evaluated platforms and provide a 
comparative analysis of the performance of each platform. 

Table 1. HMAX accelerators and their functions 

Stream-based Function(s) 

Downsampling 
(DS) 

Generates multiple scales by subsampling 
input 

Normalization 
(Norm) 

Computes windowed average for 
normalizing S2 output 

Computes center-surround 

S1 Streaming 2D convolution 

S3 Streaming 1D convolution 

Compute-based Function (s) 

C1 Windowed pooling 

S2/C2 Prototype correlation and global max 

C3 Global max operation 
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Figure 2: A heterogeneous system showing the interactions 

between the CMP and neuromorphic accelerators. The 

neuromorphic accelerators require access to three memory 

banks used to store the feature dictionaries used for S2 and 

S3 (not shown) and intermediate frames required for action 

recognition (Img_Mem).  
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4.1 Datasets for Evaluation 
Table 2 shows the datasets used for evaluating the recognition 
accuracy of the neuromorphic accelerators. The Caltech 101 
dataset [9] is used to test the accuracy of object classification 
using all 102 different categories. The vehicles dataset, prepared 
in-house, consists of 16 categories with a variety of objects 
including vehicles, aircrafts, military equipment and background 
scenery. The ORL dataset [10], used for testing face identification 
accuracy, contains a collection of close-up images of the faces of 
40 different individuals from varying viewing angles. The FERET 
dataset [11] includes 1208 individuals from which a random 
subset of 10 individuals was chosen for evaluation. The JAFFE 
dataset [12] is used for testing the accuracy of facial expression 
recognition. Six different expressions were tested—anger, disgust, 
fear, happiness, sadness, and surprise. Finally, the Weizmann 
dataset [13] is used for testing human action recognition. This 
dataset includes 10 different categories of actions: bending, 
jumping jacks, vertical jumping, horizontal jumping, skipping, 
running, side-stepping, walking, one-hand-waving, and two-hand-
waving. 

4.2 Experimental Setup 
The accelerators were prototyped on a Multi-FPGA platform that 
mimics a heterogeneous multi-core system. The platform contains 
a quad-core Xeon processor running at 1.6 GHz interfaced to an 
FPGA acceleration system through a Front-Side Bus, FSB. The 
FPGA system contains four Virtex-5 SX-240T FPGAs [14], all 
operating at 100 MHz.  The quad-core processor is mainly used to 
transfer data to the accelerators through the FSB and to retrieve 
the output.  

The reference CPU platforms contained 4- and 12-Core Xeon 
CPU systems with the total number of threads executed on each 
shown in Figure 3. The 4-Core CPU is clocked at 1.6 GHz, while 
the 12-Core CPU is clocked at 2.4 GHz. All CPU platforms 
utilized SSE instruction set extension. The 12-core Xeon 
processor configuration with 12 threads serves as the CPU 
reference when comparing implementations as it provides the best 
performance across CPU platforms and configurations. The GPU 
platform consists of an Nvidia Tesla M2090 board [15], which 
houses three 1.3 GHz Tesla T20A GPUs, and using CUDA as the 
programming language [5]. 

4.3 Performance 
Accuracy: The fifth column in Table 2 shows the classification 
accuracy across all datasets using the feature vector produced by 
the accelerated HMAX. The recognition accuracy across all the 
platforms was similar; however, since accelerators use 32-bit 
fixed-point representation (1 bit for sign, 7 for integer and 24 for 
fraction), a slight degradation in accuracy was observed (i.e. ≤
2%). This degradation is due to the truncation of the fixed-point 
representation during the multiply-accumulate operation. 

Speed: We use frames (segments) processed per second (fps) as 
a metric to compare the speedup gained by each platform. In this 
paper,weusetheterm―segment‖torefertoagroupof20frames
extracted from a video sequence for action recognition 
application. Figure 4 shows a speedup comparison between the 
three platforms in terms of fps for the four recognition 
applications. The FPGA prototyping platform demonstrates a 
speedup ranging from 3.5X to 7.6X (1.5X to 4.3X) when 
compared to the CPU (GPU) platform. The FPGA platform 
exhibits increased performance improvement in the action 
recognition application. This is due to the cumulative effect of 
per-frame performance of the S1 stage. Since each video segment 

consists of 20 frames, the FPGA accelerator sees a linear increase 
in performance with the number of frames. 

Power Efficiency: Figure 5 compares the power efficiency 
(fps/Watt) across the three platforms. For the GPU, the command 
tool‗nvidia-smi -q‘isusedtoprobethepowerconsumptionfrom
a power sensor found on the GPU board. For the CPU and FPGA 
platforms, power consumption was measured using a power 
meter. The meter provides continuous and instantaneous reading 
of power drawn by the platform with 99.8% accuracy. 

The power consumption for all platforms is measured only after 
the platform reaches steady-state to obtain the baseline power 
measurement. Then, the workload is executed and peak power is 
measured throughout the duration of the workload execution. For 
example, the power measurements show that when running 
HMAX for object recognition, the GPU, CPU and FPGA 
platforms consume 144, 116 and 69 Watts, respectively. Using 
these measurements, the power efficiency of each platform is 
computed as shown in Figure 5. The results show that the HMAX 
accelerators demonstrate a significant performance-per-watt 
benefit, ranging from 5.3X to 12.8X (3.1X to 9.7X) when 
compared to CPU (GPU) platform.  

Configurability/Tradeoffs: It is often desirable to trade off 
accuracy for higher performance. We performed further 
experimentation with the accelerated HMAX to analyze impact of 
reduced overall accuracy on the execution time. For example, we 
experimented with changing the number of orientations processed 
by the HMAX model from 12 to 4. Reducing the number of 
orientations improved speed by 2.2X, while producing only a 
1.1% difference in accuracy for the vehicles dataset. In another 
experiment, the numbers of input scales was varied, while 
observing its influence on accuracy and speedup using the 
vehicles dataset. Figure 6 (left) shows that as the number of scales 
decreases the classification accuracy decreases until it reaches 
~70% when using 5 input scales. On the other hand, Figure 6 
(center, right), shows a consistent improvement in speedup and 
power efficiency as number of scales is decreased, effectively 
reaching 15.4X better speedup and power efficiency when using 
only 5 scales compared to 12-scale configuration. Permitting such 
trade-off analysis makes the proposed accelerator very suitable for 
studies in modeling refinements and vision algorithm tuning. 

4.4 Discussion of Results 
There are a number of factors that contribute to the increased 
performance of the accelerator-based system. First, the underlying 
framework provides up to 1.6 GB/s (3.2 GB/s) bandwidth when 

Table 2:  Datasets used for evaluation. Note that there is no 

overlap in training and testing samples. 

Application  

Domain 
Dataset 

#  

Classes 
# Test 

samples 
Accuracy 

(%) 

Object 
recognition 

Caltech 101 102 4543 70 

vehicles 16 1382 83 

Face ID 
ORL  40 200 85 

FERET  10 60 70 

Facial expr. 
recognition 

JAFFE  6 60 86.7 

Action recog. Weizmann 10 40 77.7 
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clocked at 100 MHz (200 MHz), supporting high transfer rates 
across the network. Second, the parallelism exploited by the 
architecture is enabled by the large number of resources 
(multipliers, registers, etc) available on the FPGA. For example, 
this allows up to 256 multiply-and-add operations to be performed 
simultaneously providing a 256X increase in performance over 
sequential operation. Third, the accelerators implement 
customized processing pipelines, taking advantage of data reuse. 
Finally, the ability to instantiate multiple processing units of the 
same type (e.g. S2/C2 units), leverages task-level parallelism to the 
user. 

Similarly, the power efficiency benefits are the result of 
customized, application-specific architectures that are able to 
process incoming data in fewer cycles (compared to CPU/GPU) at 
a lower frequency. The use of custom numerical representations 
also contributes to the performance gain. It should be noted that 
our FPGA was fabricated with an older 65nm technology, 
compared to 45nm and 40nm technologies used with CPU and 
GPU platforms, respectively. It is expected that implementing the 
neuromorphic accelerators in silicon rather than on an FPGA 
platform will accentuate such benefits. For instance, Kuon et al. 
[16] show that at 90nm fabrication process, moving from SRAM-
based FPGA to CMOS ASIC architectures improves critical path 
delay by 3X – 4.8X, and dynamic power by 7.1X – 14X. 

5. RELATED WORK 

The effort demonstrated in this work is synergistic with recent 
efforts aimed at domain-specific computing with configurable 
accelerators [17,18,19,20,21,22]. In [17] the authors detail the 
implementation of a multi-object recognition processor on SoC. 
They present a biologically inspired neural perception engine that 
exploits analog-based mixed-mode circuits to reduce area and 
power. However, except for the visual attention engine and the 
vector matching processors, all other algorithm acceleration is 
performed on multiple SIMD processors executing software 
kernels. Tsai et al. [18] propose a neocortical computing processor 
interconnected with high-bandwidth NoC. The processor consists 
of 36 cores; each contains multiple processing elements for 
performing the actual computations. Unlike the accelerators 
proposed in this paper, these processing elements are generic and 
not customized for any specific stage in the HMAX model. Other 
works [19,22] have proposed an architecture for image processing 
using Convolutional Neural Networks, CNN. These architectures 
can configure and train the neural network to support a variety of 
recognition algorithms. The convolution engine forms the critical 
component of these accelerators. While the authors in [19,22] 
indicate that mapping HMAX models to CNN structures is 
straightforward, the authors do not describe modifications 
necessary to implement large convolution windows or the n-
dimensional convolutions that are required in the S2 layer. 

6. CONCLUSIONS 
This work proposed reconfigurable neuromorphic accelerators for 
universal recognition that can be fabricated within a 
heterogeneous system. An FPGA prototyping platform is 
implemented as an emulation of the heterogeneous system. The 
prototyping platform exhibits a remarkable performance gain of 
up to 7.6X (4.3X) compared to the CPU (GPU). Moreover, this 
prototyping platform shows a superior power efficiency of 12.8X 
(9.7X) compared to the CPU (GPU) platform. 
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Figure 3: Performance of reference CPU platforms across four application domains. Number of threads is indicated within 

brackets on the x-axis. The metric used to measure performance is frames/second (segment/second) for the first three 

applications (action recognition application). Segment in this context refers to a group of twenty frames. 

 

 

 
Figure 4: Speedup (FPS): A comparison across the three 

platforms for each application domain. Figures are 

normalized to the CPU platform 

 Figure 5: Power Efficiency (fps/Watt): A comparison 

across the three platforms for each application domain. 

Figures are normalized to the CPU platform 

   
[Influence on accuracy] [Influence on speedup] [Influence on power efficiency] 

Figure 6: The influence of number of scales on classification accuracy and performance. As the number of input scales 

decreases, the classification accuracy decreases and power efficiency increases. Figures in “Speedup” & “Power Efficiency” are 
normalized to the 12-input-scale configuration 
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