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ACCELERATING OPTIMIZATION OF PARAMETRIC LINEAR
SYSTEMS BY MODEL ORDER REDUCTION*

YAO YUE! AND KARL MEERBERGENT

Abstract. Design optimization problems are often formulated as an optimization problem
whose objective is a function of the output of a large-scale parametric linear system, obtained from
the discretization of a PDE. To reduce the high computational cost of the objective and its gradient,
model order reduction techniques can be used. This paper uses interpolatory reduced models as
surrogate models in an optimization procedure. We replace the standard first-order condition by
the relaxed first-order condition, which is more suitable when algebraic reduced models are used
as surrogate models. The relaxed first-order condition imposes that the approximation quality of
the surrogate model at the interpolation point can be measured and refined and that the surrogate
model is equipped with an error bound on the entire parameter space. We propose two optimization
algorithms: one uses the error bound to define a trust region and the other penalizes the objective
with the error bound. We prove convergence of both methods under mild conditions in a unified
framework. These methods are efficient when surrogate models are cheap to build and evaluate,
since they only need these operations to achieve convergence. Numerical experiments from civil
engineering show good performance of the proposed methods.
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1. Introduction. Design optimization determines the optimal parameters of an
industrial design such as insulation panels and airplane engines. A common approach
to solve these problems is to conduct numerical parameter studies via a discretized
PDE model. One difficulty with this method is the high computational cost. First,
discretization results in high-order systems, whose output is expensive to evaluate.
Furthermore, the objective function is often some norm of the system output whose
computation requires a large number of evaluations of the system output over a time
interval or a frequency range. In this paper, we use g(v) to denote the objective
function, where v € C! represents [ design parameters.

Model order reduction (MOR) [4] has been successfully applied to many dif-
ferent fields, such as circuit simulations [13, 21], (vibro) acoustics [17], and MEMS
design [14], leading to significant speedups in computing the system output. There
are two rough classes of numerical optimization methods: line search methods and
trust region methods. MOR can be used to accelerate both classes of methods. We
now discuss three approaches from the literature.

1. In [27], we proposed the MOR framework that builds a reduced model for
each v accessed by the optimization algorithm, say, (Y. A reduced model is then
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used for efficiently estimating g(y(?)) and Vg(y(*?). Two-sided Krylov methods ap-
proximate both g(y(?) and Vg(y(?) well even for systems depending nonlinearly on
v [27, 8]. Although it is also possible to approximate Hessians [8], this is usually
more expensive. Therefore, gradient-based methods such as quasi-Newton methods
are very suitable to combine with this type of MOR method. A major drawback of
the MOR framework [27] is that it does not fully exploit the subspaces built by MOR.
Since also the gradient is well approximated, we expect the subspaces built at () to
be rich enough for 4’s near 4(* when the objective function is smooth.

2. An early work for applying MOR to optimization was the trust-region proper
orthogonal decomposition (TRPOD) method [5, 12], which embeds reduced models
in the classical trust region method. A disadvantage of TRPOD is the high computa-
tional cost. Since it uses the classical trust region method, it requires the first-order
condition, i.e., g (v®) = g(v¥) and Vg (y®) = Vg(y?), and therefore needs
direct evaluations of g, which are often quite computationally expensive.

3. Parametric model order reduction (PMOR) techniques can also be used. The
reduced basis method [22] uses an error estimator to successively refine the reduced
model by adding interpolation points in the parameter space where the error esti-
mation is large. The optimization method is then applied to the parametric reduced
model. The downside of this method is that a large amount of work is spent in
building an accurate reduced model for the entire parameter space, while the opti-
mization method only requires function and gradient evaluations on the optimization
path.

These observations lead us to the objectives of this paper: (1) building reduced
models according to the requirements of optimization algorithms, (2) fully exploiting
the subspaces built by MOR, and (3) proving convergence purely relying on reduced
models. In order to reuse the subspaces built for 4(*), we use them to project the full-
parameter model defined also for 4 # ~( in order to obtain a simple interpolatory
reduced model, which provides us an objective approximation on the entire parameter
space. We denote this interpolatory model by (¥ (). We say that §(*) () interpolates
at v(9) since we use the bases generated at (¥ for the projection. Note that an
interpolatory reduced model can have multiple interpolation points [8], but we do
not exploit this in the current paper since a local approximation is usually sufficient
for optimization. By exploiting §(*)(v) also for v # v, we expect to decrease the
number of reduced models needed and thereby reduce the computation time. However,
by doing this, we may also run into the risk of inaccurate approximations, especially
for 4’s far away from v(9). To achieve accuracy control, we develop a heuristic error
estimator of [g(y) — g ()|, denoted by e (v), for the entire parameter space.

An interesting question is whether it is possible to achieve convergence purely rely-
ing on surrogate models. Clearly, if the surrogate models are not accurate enough, this
is not possible. Fortunately, a good property of Krylov—Padé-type surrogate models is
that successively enlarging the Krylov subspaces can infinitely increase the accuracy
of both the objective function and its gradient at the interpolation point. This means
that the approximation quality can approach the first-order condition. We summa-
rize this situation in the more general “relaxed first-order condition”: (1) surrogate
models are equipped with an error bound on the entire parameter space and (2) the
approximation quality at the interpolation point can be infinitely refined. Under this
condition and some other mild conditions, we achieve convergence if all iterates sat-
isfy the proposed “error-aware sufficient decrease condition.” We show in section 5
that equipped with a heuristic error bound, Krylov—Padé-type interpolatory reduced
models heuristically satisfy the relaxed first-order condition.
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Inspired by the proposed convergence theory, we develop two algorithms in sec-
tion 4: the error-based trust region method (ETR) and the error-based penalty
method (EP). The goal of both algorithms is to locate iterates satisfying the error-
aware sufficient decrease condition. At the ith iteration, ETR and EP build a sur-
rogate model g interpolated at (9. To fully exploit g, we use §*) and its error
bound to formulate the ith optimization subproblem and conduct an inner phase
optimization for this subproblem. ETR and EP differ only in the definition of the
optimization subproblem. ETR uses the bound of the relative error to define a “trust
region,” i.e., only to trust a surrogate model when this bound is below a tolerance. EP
introduces a penalty term based on the error bound e(® (7). However, simply adding
the error bound to the objective function approximation leads to several difficulties
in both convergence theory and computational cost. To overcome these difficulties,
we introduce a weighting function for the penalty term.

In this paper, we apply ETR and EP to a specific class of applications, namely,
optimization of second-order linear systems arsing from structures and vibrations,
where we use Krylov—Padé-type interpolatory reduced models as surrogate models.
Numerical results show the effectiveness of ETR and EP. These results can be gener-
alized to any surrogate model satisfying the relaxed first-order condition, e.g., built
by PMOR [26, 15, 16, 8|, or rational Krylov methods [23, 26] that take multiple
interpolation frequencies and parameter values in interpolating reduced models.

We close the introduction with notation. We use lowercase letters for vectors,
uppercase letters for matrices, I for identity matrices, and 0 for zero matrices. We
use -* for the conjugate transpose of a matrix or a vector or for the complex conjugate
of a complex number. For a nonsingular matrix M, we use M ~* to denote (M *)_1.

We define the partial derivative of a parameterized matrix A(X) = [ap,q())] ey WoLLE
Aj as ag)fj‘) = [aagf;)‘)}nxn. The real part of a complex number z is denoted by

R{z}. For a variable in the original model, we use the same symbol with a hat for the
corresponding variable in the reduced model. The objective function is denoted by
g(7). The ith surrogate (reduced) model interpolated at the ith iterate v(*) is denote
by §? (7). In general, we use the superscript -(*) to indicate the ith optimization
subproblem and the subscript -; for other indices, e.g., the jth iteration in a subprob-
lem or the jth element of a vector. Following the notation system of [10], we denote
constants by k with different subscripts, e.g., kp: for the backtracking factor and kg
for the sufficient decrease factor in the Armijo condition.

2. Description of design optimization problems. In this paper, we focus
on parameter studies in the frequency domain. The linear system that we study is

Lw,7)z(w,7) = f,
(2.1) *

y(w,y) = Cx(w,7),
where L(w,) represents a large-scale sparse n X n matrix parameterized with the
frequency w and [ design parameters v = (7y1,%2,...,v) € C', f € C" the excitation,
x € C" the state vector, £ € C™ the output vector, and y the output. The objective
function of interest in this paper is the energy norm of the system output over the
frequency range [wr,wp]. The mathematical formulation of this problem is

WH

(2.2) mip. g(0). where g(7) = [ [yl )Po(w) dw,

~el’ wr

¢(w) is a scalar function, and I' represents the feasible region. The numerical integra-
tion of |y|? is of high computational cost since y has to be computed for many values
of w, each requiring a large sparse matrix factorization.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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The input-output behavior of system (2.1) is described by the transfer function

(2.3) y(w,7) = LW, ) f = (Llw,7) 0],

where we define the right and left state vectors as!

(2.4) 2(w,7) 2 Lw,7)'f and £(w,7) £ Llw,y) .

In structures and vibrations, the following second-order system resulting from the
discretization of the governing PDEs is of particular interest:

(K () +iwC(y) =M (7)) x(w,v) = [,
(25) {y(wv’}/) = é*x(wv'}/)v

where K(v), C(v), and M () are n x n parameterized matrices representing stiffness,
damping, and mass, respectively.

2.1. An example: Floor damper optimization. In this application, we con-
sider the design of a tuned mass damper (TMD) whose function is to alleviate the
vibration of a simply supported floor inside a building located near a highway. Its
conceptual model is shown in Figure 2.1(a). We used a discrete Kirchhoff triangular
shell element model [9] for the plate and obtained the following discrete system:

(2.6)

(Ko + (k1 + iwer ) K — szO) z=f,
y="~x,

where Ko = (1 90/ 0 e coxn agy = (N7 0 € €7, and Ky € C7X7. The
matrix K7 with four nonzero entries describes the interaction between the damper and
its attached element of the plate, Ky and My € Cr=Dx(n=1) are the stiffness matrix
and the mass matrix obtained from the shell element model of the floor, respectively,
cp represents the proportional damping ratio of the floor, and ki, ¢, and m; denote
the stiffness, the damping coefficient, and the mass of the damper, respectively. The
input vector f represents a unit vertical base excitation, and the output vector ¢ is
used to select the degree of freedom corresponding to the center of the plate. In
computing the objective g in (2.2), we use ¢(w) = w*. In this problem, our design
parameters are ky and ¢, namely, v = (k1,c1), and the constraints are k1 > 0 and
¢1 > 0. The contour plot of g(v) is shown in Figure 2.1(b).

2.2. Optimization algorithm. To choose a suitable optimization algorithm,
we first analyze the formulae for g(y) and its derivatives. Using the formulae

y="0L(w,) ", > = y*y,

Oy L) . OP [ oy
(27) aw - é ﬁ(wﬂl\/) aw E(w,'y) f7 80.) - 2% Yy aw 9

dy

L 0L(w, ) _ Ay { 8y}
L = 1 L(w, ) T L (w, ), I —opy =2,
(w,7) 0, (W) f s Y5,

we resort to the trapezoidal rule [11] to perform the numerical integration in comput-

w w w, 2
ing (1) =[5 [y(w. 7)[? dw and F = [ MEAE do.

LWe use ¢ to denote the left state vector, although it is commonly used to denote adjoint variables.
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10% ¢

10° 10" 10%2 10® 10* 10° 10° 107
&1

(a) The conceptual model (b) Contour plot of the objective function

F1c. 2.1. The floor damper optimization problem. For this plot, we used a discretized model of
dimension 280 in order to generate the plot in a short time.

From (2.7), we can see that because system (2.5) is linear and the output de-
pends linearly on the state vector, computing Vy is cheap after we have computed y
since both computations share the same large sparse matrix factorization. Therefore,
gradient-based optimization methods are preferred.

For design optimization problem (2.2), we consider only bound constraints in this
paper, i.e., I' is a hyperrectangle. Our approach consists of first using cotangent barrier
functions that we will discuss in section 2.2.1 to convert (2.2) to an unconstrained
optimization problem, and then solving it using the damped BFGS method with a
backtracking strategy. We require all line search steps to satisfy the Armijo condition,

(2.8) g(zr + arpr) < glxg) + nsang(xk)Tpk, Vg(xk)Tpk <0,

where ¢ is the objective function, zj is the current iterate, py is the current search
direction, oy, > 0 is the step length, and x, € (0, 1) is a constant, which we assign to
10~* in all our numerical tests. The Armijo condition forces sufficient decrease in the
objective function for each iteration and plays an important role in convergence [20].
Therefore, we also require it to hold for line searches used elsewhere in the paper, e.g.,
for the optimization subproblem in ETR and EP discussed in section 3.

2.2.1. Cotangent barrier. In design optimization, the design parameters must
take on values that carry physical meaning. For example, k1 and ¢; in model (2.6)
should always be positive and should not take on values that are too small. There-
fore, we use the following cotangent barrier function for all design parameters in our
applications:

0, v =yt (interval of interest),

(2.9) Bj(vj) = 4 pB, cot (#"yj) , 0<y < 'y;h (interval of barrier),
J

00, v <0 (forbidden interval),

where *y;h is the threshold value and pp, > 0 is a weighting term. In numerical tests,
we actually solve

(2.10) min. g(y)+ > B;(v)),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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where the objective function is smooth over the interior of the feasible domain int(T")
and equals g(v) for the region that we are interested in. Due to the Armijo condition
that we use for line searches, we never accept points lying outside int(2). When
a barrier term is active, the gradient of the barrier term helps us to return to the
domain of interest. However, whenever the barrier term Bj is active for the optimizer
obtained, we should increase pp; to obtain a stronger penalty term and/or increase
7;?}’ to enlarge the barrier domain, and then we gradually decrease these parameters
until the penalty term is inactive inside the domain of interest. Although we may need
to repeat this procedure, we cannot run into an infinite loop if ||Vg(v)]|| is bounded
from above and we allow pp; and ’y;h to increase without bound. For all our numerical
tests, we used pp, =1 and *y;h = 27 and never needed to increase their values.

3. Using error-aware surrogate models for design optimization. Recall
from the introduction that simply building a MOR reduced model for each parameter
value accessed by optimization does not fully exploit the effort spent in building the
reduced model. A more efficient way is to build an interpolatory reduced model based
on the bases generated by MOR, which can be used as a surrogate model in optimiza-
tion. Since building a surrogate model is much more expensive than evaluating it, we
want to exploit each surrogate model as much as possible in a region around the inter-
polation point. This corresponds well to the concept of a trust region method. In this
section, we consider a more general setting: the convergence theory and algorithms
of unconstrained optimization using surrogate models with the following properties:
(1) surrogate models are equipped with an error bound on the entire parameter space,
(2) the approximation quality at the interpolation point can be infinitely refined, and
(3) surrogate models are smooth with finite gradient everywhere.

This section is organized as follows. In section 3.1, we will review the first-order
condition, analyze the difficulty in meeting it in MOR-based design optimization,
and propose a relaxed first-order condition, which does not require exact matches
of the objective value and its gradient at the interpolation point but does require
an error bound on the objective and the possibility to refine the surrogate models.
To achieve convergence, it is common practice to require a sufficient decrease for
every iteration. However, the existing sufficient decrease conditions require directly
evaluating g(vy), which is too expensive. Therefore, in section 3.2, under the relaxed
first-order condition, we will present an error-aware sufficient decrease condition that
relies only on surrogate models. Roughly speaking, the general idea of this condition
is to require the approximate objective decrease achieved by the next iterate to be at
least that achieved by an approximate generalized Cauchy point, similarly to what
the standard trust region method does. The difference lies in that we never compute
the true objective decrease. We will prove that under mild conditions, convergence is
guaranteed if all iterates satisfy the error-aware sufficient decrease condition. We will
propose a practical procedure that takes both convergence and efficiency into account
in section 3.3.

3.1. The relaxed first-order condition. In this section, we first give a brief
introduction to the standard trust region method, where the first-order condition
plays a key role, and then propose the relaxed first-order condition to overcome the
difficulties we have with the first-order condition in MOR-based optimization.

For the ith iteration, the standard trust region method builds a surrogate model
3@ (7) to approximate the exact model g(7) around the current iterate v(9). A classical
surrogate model is the quadric determined by the function value, the gradient, and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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the (approximate) Hessian at ("), Other types of surrogate models [1] also exist.
The standard trust region method only trusts () () within a trust radius A;, so it
formulates the ith trust region subproblem as

(3.1) min. (7@ +5) st [|s] < A,

In practice, we normally do not target at locating an accurate optimizer of (3.1) but
only ask for a sufficient decrease in the objective g(*) (7). Suppose the ith iteration
returns v+t as its solution. To test whether it is good enough, we compute

= g(v) — g(+1)
70 () g0 (D)

(3.2)

Based on this value we determine whether we accept 4(**1)| enlarge or keep the trust
radius, and continue with the (i 4+ 1)st optimization subproblem, or we shrink the
trust radius and solve the ¢th trust region subproblem again.

For the standard trust region method to work, we normally require the following
first-order condition to hold.

ConNDITION 1 (first-order condition).

(3.3) G =g(y) and VW (V) = Vg(y?).

Under the first-order condition, g(v(* 4 s) — g (v +s) = o(s) for smooth g(7y) and

3@ (v), which means that §( () is a good approximation of g() in the neighborhood
of v if g(v) is smooth and Vg(y(?)) is finite. Therefore, the average approximation
error inside the trust region approaches zero when the trust radius approaches zero,
which enables the standard trust region method to reduce the approximation error
below any positive number simply by reducing the trust radius.

For some applications, however, evaluating g(vy) directly is quite expensive and
thus both obtaining a model satisfying condition (3.3) and computing p; in (3.2)
are unrealistic. Constructing a surrogate model is much cheaper, but the first-order
condition (3.3) cannot hold. Therefore, in order to use such a surrogate model in
optimization, we must be able to measure its approximation accuracy at v and
improve its accuracy at request. Furthermore, to safely use the surrogate model
for v # 4, we actually need to measure the approximation accuracy of g on the
entire parameter space. See section 5 for an example of such a surrogate model. We
summarize the above properties mathematically in Condition 2.

CONDITION 2 (relaxed first-order condition).

Cl. Error bounds e® () and eg,i) are available for G (v) and V§® (vD), i.e.,
(34) 00 =9 <) and VGO (D) = V()] < el

C2. The surrogate model can be infinitely refined at v e, for any given Tg >0
and Tvg > 0, there ewists a surrogate model 39 satisfying

(@) () (#)

e Y €g

(35) vEwETTTTe S T and —_— T S TVg-
gO(@) =4 IVg® (v !

Lemma 3.1 shows that when 7v, is small, Vi@ (v) approximates Vg(y®) well
in both its norm and direction.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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LEMMA 3.1. Denote the angle between Vg (v®) and Vg(v®) with 9. Then,
under the relazed first-order condition, we have

[IVg(y D)l
S NIOICION 7
1—72
(3.7) and cos¥ > Vo
1+ T%g

Proof. Statement (3.6) directly follows from (3.4), (3.5), and
IVg(y) = 1IVgD (YD) = 115 (v ) = Vg (y DI,
V() < 1VgD (Y D) + VgD () = V(v D).
Statement (3.7) holds because
IVGD)? + IV )1? ~ Vg (D) — Vg(y )2

cost = e . -
2[VGD (YN[ Vg(vD)|]
~(4 i % 2
- IVGD (Y2 — (ef”)? L Sk VI

- . ) . ) i - 2
HVQ(“(W))H\/||V9(”(7(“)||2 +(ef)? \/1 79

In the rest of the paper, we assume that ¥ is acute, i.e., 7v4y < 1, which is always
possible under the relaxed first-order condition due to C2.

When we use surrogate models, we can define three levels of accuracy. The true
objective is g(7), so g(v) and Vg(v) provide the highest level of accuracy. When we
generate §g(¥), we impose conditions (3.4) and (3.5), so g (y(?) and Vg (v()) are of
high accuracy. For v # v(*), however, we normally only know that §(*)(v) is a good
approximation in a neighborhood of 4(9 due to the high accuracy of gt (7)) and
Vi@ (v®), so §@(v) is of low accuracy for v # ().

To develop efficient algorithms for our situation, we also make the following as-
sumptions for the computational cost.

ASSUMPTION 1 (three levels of computational cost). Directly computing g(v)
and Vg(v) is very expensive, which we want to avoid. Generating §(*) is expensive,
so we prefer to use fewer surrogate models. Evaluating §*) () and Vg (v) is cheap.

Under Assumption 1, we prefer to fully exploit each surrogate model to reduce
the number of surrogate models required. Therefore, at the ith iteration, we first
build the ith surrogate model interpolated at v(*), and then we use its output g (v)
and the error bound function e(*(v) to construct the ith subproblem

(3.8) min. FO(y) s.t. ¢ (y) > 0.
B!

F@ and ¢ are formulated to locate a ~y satisfying the error-aware sufficient decrease
condition that we will propose in section 3.2, which is the key in achieving convergence.
However, to fully exploit surrogate models, we aim at a larger decrease. Therefore, we
use an inner phase optimization, e.g., employing a quasi-Newton method confined to
the feasible domain, for solving (3.8). Normally, ' (1) equals to or is an upper bound
of g, In this paper, we assume that F*)(y) = §(?(y) holds in a neighborhood of
7 because in this case, VF® (y()) = 0 means Vg (y®) = 0, and Vg(7?) = 0
due to (3.6) since Ty, < 1. We postpone the details in formulating F*) () and ¢ (v)
to sections 4.1 and 4.2. For the convergence theory, we need only g(¥(v) and ¢ (v).
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3.2. An error-aware sufficient decrease condition for convergence under
the relaxed first-order condition. Following the spirit of the standard trust region
method, we use the following three steps to locate a solution of (3.8) and check the
sufficient decrease: (1) Look in a descent direction and find a point with sufficient
decrease in the surrogate model §(?, which is known as the approximate generalized
Cauchy point. (2) Locate a solution of (3.8), under the condition that the decrease in
the surrogate model §() achieved by it is no less than that achieved by the approximate
generalized Cauchy point. (3) Test the sufficient decrease condition that leads to the
convergence of the original model g.

3.2.1. The approximate generalized Cauchy point and sufficient objec-
tive decrease. Given a descent direction p(¥) satisfying Vg (y®)Tp(®) < 0 and
Hp(i)H = 1, the approximate generalized Cauchy point, which we denote by 7/(\1();(37 is
defined as a point that achieves sufficient decrease in the surrogate model g on

(3.9) v =79+ ap® (a>0).

For simplicity, this paper only considers obtaining ’y&%c by backtracking-Armijo

searches. Under this setting, 'yXéC should satisfy three conditions:
1. It should satisfy the Armijo condition (2.8) on §(¥),

(3.10) GO = gD (y) = k[ VGD (YD)[[[P — ]| cos @1,

where ®() represents the angle between —Vg§(® and p(*).
2. Tt should satisfy the constraint

(3.11) " () > 0.

3. The initial step length of the backtracking, which is denoted by aéi), should
not be too small w.r.t. | Vg (y(7)||; more specifically, there exists a s, > 0 satisfying

(3.12) al?! > ka|[VGD (YD) for all i’s.

For quasi-Newton methods, a —||(Bol )~ tvg® (’y(i))|\2()\§é)€tx)*l||§(i) (v)]|, where

(()l) is the initial Hessian approximation for the i¢th optimization subproblem and

)\%dx > 0 is the largest eigenvalue of B () . As long as )\%)dx does not grow without
bound, we can set 0 < &, < min;{(A max) 11, So when A%« becomes too large, we

can assign )\max to hg > 0 by resetting B(()) to hol.
PROCEDURE 1. Locate ’y&%c on a given descent search direction p(?.
1. Assign j =0 and choose /ibt € (0,1). Find an a((f satisfying (3.12).
2. Compute y = ) —l—a )p@ . Check whether v satisfies both (3.10) and (3.11).

2.1. If both conditions hold, assign "/géc =7.

2.2. Otherwise, assign 0‘§4)-1 = /ithég ), 7 =7+1, and go back to step 2.

If we use an Armijo line search to solve the optimization subproblems, "ygg;c is

simply the first iterate of the Armijo line search.

Theorem 3.2 shows that under mild conditions, we can find the ’Y/(\i();c within finite
steps. It also gives the minimal objective decrease on ™ achieved by 7/&%0.
THEOREM 3.2. Assume that ¢ and VD) are Lipschitz continuous, i.e., there

exist ul’ > 0 and u() > 0 such that |c(y) — D ()] < ugi)H'y — O and
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IV§D () = VgD (O < ugylly =¥ Il Then, if GO (3) is bounded from below,
() < 5, ks € (0,1), D (@) > 0, ug) >0, kp, > 0, and u(ai) > 0, we have the
following: A

1. Both conditions (3.11) and (3.10) hold for all v’s of the form (3.9) that satisfy

_ @) |7 g (~ (D) (@) (~(2)
@) . (1 F@s) cos ® HVg (A/ )H c (7 )
(3.13) v =~ < mln{ NG 5 ug) )
g

2. The approximate generalized Cauchy point ’y&%c satisfies

7 [ . 7 ~(% i C 0 )
(3.14) H’y,(\();c — 7@ > min {“(v)gHVg( TN ﬁth} |
Ue
where n(vi)g = min {K,, M}

u®
3. A lower bound of the decrease in g9 achieved by g¥) (’Y/(\%c) is given by
(315)  §09) -39 05k)

. ) . . ) . @ (~@
> (kecos 80 19 9) min {1, 195 () e =5 .
Ue
Proof. 1. If |[Vg®W(y®)| = 0, condition (3.13) becomes v = 4, so condi-
tions (3.11) and (3.10) hold. Now we consider the case where || Vg (y(®)|| # 0. For
the direction p( in (3.9), we have Vp(i)@(i) () = —|Vg® (v)|| cos @), Consider
the equation

(3.16) V0§ (7) = =r4[|V§D (v?)]| cos D).

(i) Equation (3.16) has at least one solution. We prove this by contradiction. If
(3.16) has no solution, V&g () < —k,[| Vg (v())|| cos @ holds for all 4’s on the
search line, indicating that §(*) () approaches —oo as the step length o approaches co
according to Lagrange’s mean value theorem. This contradicts the assumption that
3@ (v) is bounded from below.

(ii) The Lipschitz continuity assumption on Vg indicates that a solution
of (3.16), which we denote by =, satisfies

V038P0 D) = V0 ()| _ (1 k) cos @D V5D ()]

0) ) ’
Ug Ug

(3.17) |y — | >

which means that (3.10) holds for all 4’s on the search direction (3.9) satisfying

(1 ) cos @D V5D ()]
N0

(3.18) 7 — 4] <

according to Lagrange’s mean value theorem.
Similarly, due to the Lipschitz continuity of ¢, a solution of ¢(¥)(y) = 0 must
satisfy
() (4D — (D) (4D (4) (~/(4)
i i e\ (e ¢y
7® =4 > LA el _ 707,

Ue Ue
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which means that condition (3.11) holds for all v’s on the search direction (3.9) sat-

isfying ||y — 7£“|| < % Based on arguments above, statement (3.13) holds.
2. First, if the initial point 7@ + af’d® satisfies both (3.11) and (3.12), its

distance to v(%) is at least min {/i(viLHVﬁ(i) (YD), e c('L;((»Z;'L)) } Then, if backtracking

occurs, it must stop before

, _ DITED (4[| @D ()

NG ) (1= k) cos OWVGH ()] (™)

(319) pr 0 H < Rt mln{ u(z) ) u(l)
Vg ¢

holds, since otherwise the previous backtracking point would satisfy condition (3.13)
and thus be already accepted as 'Y/(x%c- Therefore, (3.19) cannot hold for 'Y/(x%c-

According to these two arguments, *y&%c satisfies (3.14).

3. This is a direct result of (3.14) and (3.10). O

The assumptions in Theorem 3.2 are not very restrictive. If ¢(¥ and V§(® are
not, Lipschitz continuous, they can change abruptly, and gradient-based optimization
algorithms may run into problems. If ¢(*) ("/(i)) < 0, the optimization subproblem is
not properly defined. The assumption that §*)(v) is bounded from below makes sense
for physical applications, e.g., zero is a natural bound for an energy function.

3.2.2. An error-aware sufficient decrease condition and convergence
for the “ideal” case. Although 'yXéC is used to define a sufficient decrease in the
surrogate model §() rather than in the true model g, we now show that we can use it to
formulate an error-aware sufficient decrease condition and prove that if this condition
is satisfied by all iterations, which we call the ideal case, we attain convergence to the
minimizer of the original model g under some mild conditions.

CONDITION 3. The error-aware sufficient decrease condition is

(3.20) FII () < g0 (o),

where G denotes a surrogate model interpolated atv?) satisfying (3.5) with Tvg < 1.

This condition is computationally feasible to check since it needs no evaluation of
¢ but needs only one generation of a new surrogate model gt and two solves of the
surrogate models. If this condition is satisfied, we accept v+ and g+ and use
them to formulate the (i + 1)st optimization subproblem. Theorem 3.3 shows that
under mild conditions, we achieve convergence if we accept v(“+1) only when it satisfies
condition (3.20). We will discuss in section 3.2.3 what we do when condition (3.20)
fails.

THEOREM 3.3. Assume that (1) all conditions for Theorem 3.2 hold, (2) the
relazed first-order condition (Condition 2) holds, and (3) ® < & < g, D (y@) >
¢ >0,0< ugi) <, 0< ug) g foralli’s, vy <1, Ky >0, g (’y(o)) is finite and

39 (v) is bounded from below for all i’s. Then if the error-aware sufficient decrease
condition (3.20) holds for all i, we have lim;_, ||Vg(y®)|| = 0.
Proof. According to the assumptions and (3.15),

50 (719) = G ()

N ) (40
> (5 c0s @) 75 () [ min {m%’g||v9<l> (), nbt#} |
Ue
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So,  §0HO)—g® (™)
k—
>3 (ks cos @) [ 959 (1) | min {m%’gnvw ()

=

a0

~

; 1 — ks) cos ®) 1 — k) cos®
Since li(v) = min{nn, Foo( Fis) cOs } > min{ﬁn,w} 2 Kvg,

g =

ug) Ug
we have
k—1 c
—~ ~ (i) (i . (i) (i !
7060 = G6W) >k, cos® 3 19396 min f e, 1950 ) 2
i=0 ¢

Now we prove lim;_,o [|[V§® (7(?)|| = 0 by contradiction. Assume there would exist
an ¢ € (0, Vg (y(®)]) and a subsequence v(j) satisfying || Vg ()| > ¢ for
all j € N with v(0) = 0. Then,

k—1
lim g (@) —g"® (4¥®)) > lim «, cos ® Z € min {quf;‘, Kbt a } = +o00,
k—o0 -

k—o00 (7
7=0 N

contradicting the fact that §(®((?)) is finite and §*) () is bounded from below.
Therefore, lim; o |[VG®? (y®)|| = 0. According to (3.6), lim; s [|[Vg(v®?)|| = 0
since Tyy < 1. O

All assumptions in Theorem 3.2 are not very restrictive except that all iterates

satisfy (3.20). If ¢ (y()) does not approach zero, and ul, u(ai), and M)y do not

approach +o0, then ¢, uc, ug, and Amax are well deﬁned. Although o) may approach
5, we can change the search direction p) when &) exceeds ® to avoid this problem,
e.g., force ® = 0 by resetting B(()Z) to a multiple of the identity matrix for quasi-
Newton methods. Requiring all iterates to satisfy (3.20) is too optimistic; we now
discuss what to do when condition (3.20) fails.

3.2.3. Practical considerations and convergence for the general case.

Refine the approximate generalized Cauchy point by backtracking. Now we show
that even when the error-aware sufficient decrease condition (3.20) fails, we do not
necessarily need to reject 4(“+1) since condition (3.20) can be too restrictive. A good
sufficient decrease condition should not be too restrictive. For example, the Armijo
condition (2.8) in line searches usually employs such small , value as 10~%. However,
condition (3.20) can be too restrictive sometimes, i.e., the decrease of §*) achieved

by *yi%c is relatively large. Here, we give two extreme examples:

L 59 (184c) < miny g(y) and GO+ (y0+D) > g(y (D),
2. 'yXéC is the global minimizer of g* and gi+h (y(i+1)) > 50 (5 (+1)),
Note that these cases can even happen to surrogate models with high accuracy.

To deal with such difficulties, we have to relax condition (3.20). Fortunately, we
can relax condition (3.20) simply by conducting backtracking on *y&%c since when
’Y/(\i();c is sufficiently close to v(, we expect that backtracking leads to a ’Y/(\i();c with
smaller error and smaller decrease in §(?. More specifically, we assign
(3.21) ’Y/(\ig;c =D + ki (A//(x%c —7)
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until both conditions (3.11) and (3.10) hold. Backtracking on *y&%c is cheap since

no extra surrogate model is required. With this updated ’y&%c, we can still attain
convergence to the minimizer of g since if we assign a((f) = ||'*/Xéc —’y(i) I, Theorems 3.2
and 3.3 apply with no change.

COROLLARY 3.4. Assume that all assumptions of Theorems 3.3 hold. Then, if

all iterates satisfy (3.20), where we allow to conduct finite steps of backtracking for
’y&%c as in (3.21), we have lim;_, [|Vg(y?)| = 0.

Cure the failure of the error-aware sufficient decrease condition (3.20). When
condition (3.20) fails, we can use the following two strategies:

S1. Conduct backtracking on 'yg%c to make condition (3.20) easier to satisfy.

This option is always preferred since conducting backtracking on 'Y/(x%c is cheap.

S2. Reformulate the ith optimization subproblem and solve it again. Here we
have several possibilities: (1) Reduce 7 and 7y, and refine the surrogate model ac-
cording to these new tolerances; we can use this strategy for both ETR and EP.
(2) Use a more restrictive constraint c(); we use this strategy in ETR. (3) introduce
stronger error-based penalty in F(); we use this strategy in EP.

We now explain how to choose between these two strategies in different situations.
To judge whether condition (3.20) is too restrictive, we define

o 9909) =g

3.22 = — - — - .
( ) g(z) (7(1)) — g(l) (7(14‘1))

Since g (@) > g® Wf&%c) > g (y*+1) due to the sufficient decrease condition?
that we impose on the optimization subproblem, we have 0 < () < 1.

If condition (3.20) fails, we have the following possibilities:

1. When g(+D (4(+1) > G0 (4(0) S1 cannot work since §®) (7)) > 5 (v{L,)
always holds. Therefore, we use S2.

2. When 0 is not sufficiently small, condition (3.20) is too restrictive since
’y&%c has achieved similar decrease as the optimizer. Therefore, we use S1.

3. When o is sufficiently small, condition (3.20) is not too restrictive. Thus
~*1) is not an adequate optimizer. Therefore, we use S2.

A means to reduce the computational cost. Directly checking the error-aware suf-
ficient decrease condition (3.20) requires building a new surrogate model g(*+1). If the
test fails, the surrogate model git1) cannot be used to define the next optimization
subproblem, which is a waste of computational cost. In this section, we will develop
sufficient and necessary conditions for the error-aware sufficient decrease condition,
which do not require an additional surrogate model to be built.

LEMMA 3.5. Under the relazed first-order condition (Condition 2),

1. a sufficient condition for (3.20) is

(3.23) GO (D) 4 e (4D 4 D (1) < GO (5 );
2. a necessary condition for (3.20) is
(3:24) §0() — D) - D () < GO (L),

250 (1% ) = 3 (7(+D) only when v+ = 4} .
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initial ¥ " > 1:1s (3.25) satisfied ? | Yes > Accept y
\ No
- N -
@] | Relax (3.25) by backtracking ¥ . (S1) |<—"—| 2.1s " sufficiently small?|
updated ¥
Yes Yes
Yes | X
| 3.15(3.26) satisfied? |
' * No
N
L 5: Reformulate subproblem (52) |<_°_|4. Is the true condition (3.20) satisfied ?]

Fi1G. 3.1. The proposed working procedure in checking condition (3.20).

Proof. Lemma 3.5 follows due to (3.20) and

Z]\(iJrl)(,y(iJrl)) < g(,\/(iJrl)) +€(i+1)(’y(i+1))

< GO (DY 4 (4 HD)) 4 eli41) (5 (1))
Z]\(iJrl)(,y(iJrl)) > g(,\/(iJrl)) _ e(i+1)(,y(i+1))

> GO (7 0FD) — ) (4 (H1)) _ oli41) (5 (1)) 0

Under the relaxed first-order condition, it is safe to accept v+ when
(3.25) FOGED) 4D () < GO,

since if at the generation of gt we require e(*1) (y(i+1) to be sufficiently smaller
than the difference between the right-hand side and left-hand side of (3.25), condi-
tion (3.23) will hold. Similarly, we assume that condition (3.24) does not hold when

(3.26) §9G0) = eDG0) > G0,

because the satisfactions of both (3.26) and (3.24) may require a large e(“+1) (741,
which leads to an inaccurate surrogate model for the next iteration.

3.3. A practical working procedure. Now, based on what we have discussed
in section 3.2, we give a practical working procedure shown in Figure 3.1 and Proce-
dure 2, which takes both convergence and efficiency into account.

PROCEDURE 2.

1. We first check condition (3.25) since it is cheap to check and lies on the
shortest path to acceptance. If it holds, we accept vtV and go to the next iteration.

2. Otherwise, if condition (3.25) fails, we have two options: S1 and S2. We
choose S1 whenever feasible because it requires no additional surrogate model. There-
fore, we check whether o is sufficiently small. If not, conduct backtracking for 722}0
(S1) and go to step 1.

3. Otherwise, if 0" is not sufficiently small, we check the necessary condi-
tion (3.26). If condition (3.26) holds, we are almost sure that Y0V is not a good
point. So in this case, we reformulate the optimization subproblem and solve it again
(S2) rather than build a new surrogate model to check (3.20).

4. Otherwise, if condition (3.26) fails, we build a new surrogate model gi+b
and check condition (3.20). If it holds, accept v("+1).

5. Otherwise, reject 0D and use S2 to update v(+1).
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TABLE 3.1
Parameters for solving the subproblem.

Name Meaning Range Suggested value
Kpt backtracking factor (0,1) 0.3-0.7
Ks sufficient decrease coefficient (0,1) very small, e.g., 10~%
Kn tolerance on the scaling (0,1) very small, e.g., 1072
P tolerance on the search angle 0, 3) very close to 4
o to choose between S1 and S2 (0,1) close to 0, e.g., 0.1

In Procedure 2, we build a new surrogate model only if we reach step 4, and we fail
to use it to formulate the next optimization subproblem only if we reach step 5. We
finalize this section by summarizing the parameters used by Procedure 2 in Table 3.1.

4. Two design optimization algorithms based on the relaxed first-order
condition. In terms of computational cost, the ideal case is that condition (3.25)
always holds. So an efficient algorithm should have a mechanism to make condi-
tion (3.25) easy to satisfy. Since after possible backtracking(s) on v\%¢, g (7)) <
g (7&%0) must hold, ETR requires e (y(i+1) to be small compared with these two
values in order to increase the possibility that (3.25) holds. EP considers g(*) (y( 1))+
e(?) (7(”1)) as a whole and introduces a penalty term to achieve error control.

4.1. ETR method. ETR defines the ith optimization subproblem as

. (@)
(4.1) min §0(y) st oD < (er > 0).
v g9 ()
To ensure that the feasible domain is not empty, ETR requires
(4) ((8)
(4.2) % <der  (6€(0,1)),
gD (D)

which means that the interpolation point must strictly satisfy the constraint in ETR
subproblem (4.1). If condition (4.2) does not hold, we refine the surrogate model.
We use a line search method, such as a quasi-Newton method, to solve the trust
region subproblem (4.1). To stay inside the trust region, we do backtracking not only
when the Armijo condition (2.8) is violated, but also when the current « lies outside

. . (%) . . . .
the trust region, i.e., S(Tm > €. Since we are not interested in accurately locating

()
an optimizer of (4.1) on the boundary, we use the following stopping criterion:

(@)

D e (20, 8E (D))
97 ()
where ¢ is defined in (4.2). This means that ETR terminates the ith optimization
subproblem either when an accurate stationary point is located or when the current
iterate is too close to the trust region boundary. In the latter case, we heuristically
assume that it is difficult to further decrease the objective inside the trust region.
Figure 4.1 shows four possible optimization paths for ETR.

We summarize the working flow of ETR in Algorithm 3.

AvrcoriTHM 3 (ETR).

1. Initialization: let i =0, 7 > T > 0, 6 € (0,1), B € (4,1), choose the initial

point v k, € (0,1), 7vg € (0,1). Specify a desired tolerance on the relative

. . T
error bound at the optimizer Topt, compute €p = 72—
op

(43) ||V§(Z)(7)H < Tsub or Ber, <
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Contour value: €,
——————————————— Contour value: Be,
@ e Optimization Path

A, B, C, D :Path Names
R, R, :Trust Region

Fic. 4.1. Four possible optimization paths for ETR. Paths A, C, and D terminate when they
reach a point too close to the boundary, while path B terminates when it reaches a stationary point.
Paths C' and D show that ETR may enter another trust region without noticing this. The contour
lines shown are for the relative error bound.

(i P Oy O
2. Generate the ith surrogate model g satisfying W < dey, eg) <T, and

o
IVg® (v =
3. Minimize g\ () with the stopping criterion (4.3); let the optimizer be v+,
4. Use Procedure 2 to determine how to continue.
The choice of ¢, follows from the fact that

[GP (") =gy [gP (W) = g(vW)] g (v W) er
< - Topta

g(v®) R 9(7““)) l—er

< 1vg. If |[VGD (vD)]| + eg (O < 7., return v9) and stop.

where we use % > 1 — €, a formula that can be proved similar to (3.6). This
relationship enables us to set 7,p¢, the tolerance on the relative error bound at the
optimizer a priori.

The convergence of ETR follows from Procedure 2. When Procedure 2 asks to
reconstruct the optimization subproblem, we know that the current trust region is too
large for §(V. So if we do not to refine §(?), we decrease e, below the relative error
obtained by 7(”1 since otherwise it is highly possible that we reach the same point.

4.2. EP method. Sometimes, the constraint in ETR is too restrictive since a ~y
value satisfying (3.25) is excluded from being exploited when A(,)EW) > €. Since (3.25)
is cheap to verify, we may further reduce the computation time if we accept such
points. A straightforward approach is to minimize the left-hand side of (3.25), i.e
b (y) = 3 (7) + e (5). But this leads to the following problems: (1) the penalty
term e(?)(v) can be nonconvex; (2) at the optimizer Yopt, || Ve (yopt)|| can be large
even when e()(y,,¢) is small; (3) locally, b is a worse approximation of g than
3D (), especially when the error bound e(® () overestimates the true error; and
(4) computing Ve (v) can be expensive, especially when the parameter space is of
high dimension. Therefore, we introduce a weighting function for the penalty term.
Let w(e) be a differentiable and monotonically increasing function satisfying

(4.4) w(e) =0 when e <er, w(e) =1, when e >eg (er < ep).
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Contour value: g,
@ e Optimization Path

A, B, C, D : Path Names
R, R, :Unpenalized Regions

Unpenalized Region

F1G. 4.2. Four possible optimization paths for EP. Paths B and C terminate at stationary
points in the unpenalized region, while paths A and D terminate when they stay in the penalized
region for u successive steps. The contour lines shown are for the relative error bound.

See (6.1) for an example of w(e). We define the ith optimization subproblem as

) . (2) )
(45) min. FO(y) = §0(y) +w (i . (7)) e ().
v g ()
So F () equals g () when the relative error estimator gi%g; < €7, and equals
b (y) when gi,;g; > ey. As in ETR, we require g to satisfy (4.2). Therefore, if

both e (v) and §(*)(v) are positive continuous functions, there exists a neighborhood
around v, where gi%g; < ¢z, holds and F®(v) = g{)(y). We call this region the
unpenalized region and call the region with nonzero penalty the penalized region.

Thanks to the weighting function w, (1) F(*)(v) is convex around v(?) as long as
3@ (v) is and (2) we avoid computing Ve () within the unpenalized region. When
we enter the penalized region, however, if we want to continue we need computing
VF® (~), which requires Ve® (v). It is possible that after a few iterations, we return
to the unpenalized region since VF() () also takes Ve()(y) into account for the
penalized region. However, if we stay within the penalized region for too many—
say, —successive steps, we prefer to terminate the current optimization subproblem
since (1) computing Ve® () is normally more expensive than computing g (v) and
e (), and (2) locating v with VF®(y) = 0 but V3! (y) # 0 is beyond our true
interest.

Therefore, we use the following stopping criterion for EP:

e®(v)
g9 (v)

Since p strongly impacts the algorithm’s behavior, we sometimes explicitly specify it
in the algorithm acronym as EP(x). Note that for = 1, we never compute Ve (),
which is desirable if computing Ve (7) is expensive. Larger p may save the total
number of iterations, but it also results in higher computational cost per iteration.
See section 6 for more discussions. Figure 4.2 shows four possible optimization paths
for EP.

(4.6) [|[VFD ()| < Tsup (Tsup = 0) or > ¢, holds for u successive steps.
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ALGORITHM 4 (EP).

1. Initialization: let i = 0, 7 > Toup > 0, § € (0,1), p a positive integer, choose
the initial point v, k, € (0,1), Tvg € (0,1). Specify a desired relative error
bound of the optimizer Topt, compute e, = —2— and choose €y € (e, 1).

1+7op
)
2. Generate the ith surrogate model g©*) satzsfymg W < dey, eg) <T, and

m < 1vg. If VGO (D)) + e ) < 7, return 7% and stop.
3. Minimize F9 () defined by (4.5) using the stopping criterion (4.6); let the
optimizer be v(t1)
4. Use Procedure 2 to determine how to continue.
The convergence of EP follows from Procedure 2. When Procedure 2 asks to
reconstruct the optimization subproblem, §( is certain to be not accurate enough at
AU+ but it is not fully penalized there. So if we do not refine §(?), we should decrease

er below the relative error at v(t1) to ensure that 1) will not be accepted again.

4.3. Implementation details for ETR and EP.
1. Large-step backtracking. In numerical tests, we divide the backtracking factor

ke by (1+ 005;88;) when ;E%g; > €. When gi%g; > €1, ETR uses backtracking

in order to return to the trust region. It is reasonable to use a large backtracking step

when 2 50 >EV§ is too large to reduce the number of backtracking steps required. For EP,

we can also use this technique to quickly escape the region with high error.

2. Hessian approzimation transfer (HAT). For the initial Hessian approximation
for the ith optimization subproblem Béz), it is common practice to take a multiple of
the identity matrix, which we denote by hgl. For ETR and EP, another possibility is
HAT, i.e., using the Hessian approximation trained by the ith iteration as the initial
Hessian approximation of the (i 4+ 1)st iteration. For EP, we use Vg rather than

VF® to train the Hessian approximation for HAT.

5. Combining MOR with ETR and EP. In this section, we first introduce
Krylov—Padé-type MOR and then discuss how to combine MOR with ETR and EP.

Two-sided Krylov—Padé-type MOR methods generate two n x k (k < n, and
typically k < n) matrices W}, and Vj, with orthogonal columns, approximate the right
state variable z as Vi.z (2 € C¥), and force the residual (£(w,7)Viz — f) orthogonal
to the range of Wy, i.e., Wi(L (w,7) Viz — f) = 0, to obtain the reduced model

{Ew,wz =7

(5.1) .
y=102,

where L(w,7) = WEL(w, ) Vi, 7= Wif, and U= Vi€, The left state vector of

system (5.1) is ((w,7) 2 L(w, 7)—*2, from which the left state vector of system (2.1)
¢ is approximated as & =~ W (.

The many different Krylov—Padé-type MOR methods use different strategies in
generating Wy and Vi, but they all satisfy the moment matching properties. In this
paper, we concentrate on the SOAR (second-order Arnoldi) [25, 6, 24] method.

5.1. SOAR and the MOR framework. Inthe MOR framework [27], when the
optimization algorithm needs the function value and gradient at 49, we fix v = ()
and generate a reduced model for system (2.5). To reduce the second-order system,
we resort to the two-sided SOAR method to generate Wy and Vi, from which we
derive the following reduced model:
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(5.2) ( t(w— w(® )C (w— w® ) J/\/[\)z(w —w(i),’y(i)) _ ,]?,
. ?/J\( w® Y z)) _ E* (w— w® ’Y(l ),

where K = W*(K(y®) + iw®C(D) — (O2MHD)V, C = W*(C(yD) -
2wOMN)V, M = W*M>HD)WV, f = Wif, and = V;*¢. The computation-
ally dominant part of SOAR is the LU factorization of the large-scale sparse matrix
(K(vD) + iwDC (D) — (wD)2M (vD)). See [27] for more details.

No design parameter is preserved in (5.2). However, if we use the bases Wy, and Vj
for the general system (2.1) as we did in (5.1), we obtain a parametric reduced model,
which can be seen as an interpolatory reduced model using a single interpolation point
~(". At the interpolation point 7(?), an important relationship between the original
model (2.5) and the SOAR reduced model (5.1) is the moment matching property.
Let the Taylor expansion of y(w,y®) and 7 (w,®) around w® be

Zm (il 1)@ = w7, T w,77) 2 3 Al 7 D)@ - w7,
§=0
where we call m (jlw®, ) and @ (jlw®, @) the jth moments of y and y with the
interpolation point (w(i), ’y(i)), respectively. We say the jth moments of y and y with
the interpolation point (w®, *y(i)) match if m (jlw®,yD) =@ (jlw®, D). Similarly
2, gz, a%! , and aa—gq (1 < ¢ <1). Theorem 5.1 [27]
summarizes the moment matching properties of SOAR.

THEOREM 5.1. Assume that SOAR generates Wi, and Vi, with the interpola-
tion point (W@, vD) and (K(vV) + iwDC(v?) — (w®)2M (v?)) is nonsingular.
Then for the order k generalized SOAR reduced model (5.1) and the order n original
model (2.1), we have the following moment matching properties:

1. The first 2k moments of y(w,¥?) and g (w,+?) match.

we can define the moments of 2

2. The first 2k — 1 moments of W . and 8“87‘”7)‘ " match.
= =
3. The first k moments of M‘ _and w (1 < q<1) match.
Yo y=y) Yo |y=y0)

All moments here are with the interpolation point (w(i),'y(i)).

According to Theorem 5.1, we see that 7 (w®,~®) = y(w® ~®) and also
expect 7 (w,v?) to approximate y(w,y®) well for frequency values around w(®.
Therefore, we prefer a frequency shift w® within the frequency range of interest. In
our numerical tests, we always take w(?) = wrtwi

5.2. An approximate error bound. Finding a tight and computationally
cheap error bound for (3.4) in the relaxed first-order condition (Condition 2) is nor-
mally challenging. For a MOR reduced model that is valid only for a specific parameter
value, error bounds are developed in [7, 18]. However, for an interpolatory reduced
model defined on the entire parameter space, no error bound exists, to the knowledge
of the authors. Therefore, we introduce a heuristic error bound to make ETR and EP
applicable. Define the residual of the right and left state variables as

(63) 1P (w,7) = LNV 2Ow, ) = £ 1 (@) = L@ WD (w,7) — ¢
An approximate error bound for " can be derived as follows:

7 _ y(i)| —

ly CL(w,y) D) < e Lw,y) D)

L ey - f)‘ -

—x i Al — U DITE=R(
= [Lw, )Pl = 1L (@, 7) T ED [P = €.
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Then we can deduce an approximate upper bound of |y|%:

91> = 59 + (y = 7P < (1591 + ly - 59))°
i i i i ~(1 ~(1 i DA
= [FOP 427Dy — 79 + |y — D = [FOL + 27D [el) + {0 = L1,

based on which we define the surrogate model and its heuristic error bound

~(i (i i CH (s o2
g“(v)zf 15 dw, e<>(7):/ 205Dl 4 e duw,
wr, wr

The formula for computing %ﬁl@ is similar to (2.7). To compute %;;7), we deduce
LD (w, )~ . OLD (w,7)* .
OL W) T @) () PE )T ey oyt
7, (w,7) 7, (w,7)
o (w, ) _ OLw,7) () A ;
r ) _ 9 V ) E(z) W,y 71]/(-\(7,)
; oy * )
D A L OLD (w,7) 2 1
— Lo VO B ) EES 0 )1 O,
j
7 (i) 0] . RNY:Y20) 0]
aHﬁ (w77) ¢ H = —— 1 — R (ﬁ(z) (w’,\/)f*z\(z)) oL (vay) ¢ ,
9; [ £ (w,~) ==L || 9
0 Tﬁi) W,y 1 i * 87‘9 W,y
I a(l ) _ - ? (rﬁ)(w,ﬂ) 8(- )
i ([ (w, Yl i
oey) _ ANLDw, )T 70 (4 =g 2l @, )]
= r. (w,y)| + LD (w,~ =000 .
o S )+ £, ) B P

Then we derive

9e () / = Q9| de)
=92 Z) + (0 +e (1) _y'
37j wr, 87J (' | ) a%-

(@)

To obtain eg’, which is an upper bound of |Vg® (")) — Vg(y®)||, we derive

oy 9y
8% 8%

- Z*E“)(wry)1782(2$’7)Z<i’(w,7)1f = 020w O o)
- (Wkg)*%:”)vkz ¢ 85{;‘;7) ‘

= w0 5 v — o 2k iy P 060
< (Wﬂ)*%ﬂﬂm)lrﬁ“ | L) 1853(%7) '

< |[L(w, )~ % O+ || H‘C(w’w Ma(:Jw H
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AL (w,7)”
9

~ |[LD (w, ) r) LD (w,y)7

¢

|

oL (w,7)
—_— =2
6%-

A
= bg'radj (OJ, A/)

Then we define e 2 \/2221 (L2 byrad, (w,fy(j)))2.

The computations of §*)(vy) and V§(¥) () are cheap since only the reduced order
model is involved. For e (v), however, the computation involves large-scale matrix-
vector multiplications for all w’s accessed by the numerical integrator. The computa-
tions for Ve(® (7v) and egi) are even more expensive since the above computations are
needed for all I dimensions. Therefore, we use a fine grid for integrating g () and
V3§ (v) since their accuracy is important for optimization. For e (v), Ve (v) and
egf), however, we use a coarse grid to reduce the computational cost because as the
error bound is only heuristic and normally overestimated, we do not need to compute
it with full accuracy. To reuse the small-scale dense LU factorizations, the coarse grid
points are chosen among the fine grid points.

5.2.1. An illustration: Applying the error bound to the floor damper
optimization problem. Using the heuristic error bound developed above, we plot
(
e

i)
the contour lines of the relative error estimator 6“)21; for the floor damper optimiza-

tion problem in Figure 5.1. Figure 5.1 shows that (1) the reduced model approximates
the original model well in a large domain and (2) the contour lines for the relative
o
0

5.3. Combining SOAR with ETR and EP. SOAR reduced models serve as
suitable surrogate models for ETR and EP because they satisfy the relaxed first-order
condition (Condition 2) and Assumption 1:

For C1. See section 5.2 for the error bounds.

For C2. If the reduced model is not accurate enough, we can increase k and com-
pute more Krylov vectors to enlarge subspaces Wy, and Vj. This leads to more accurate
approximations for g and Vg due to moment matching properties. According to Theo-

error estimator can be convex, nonconvex, or even disconnected.

2e+08 T

""""" 0.007
) . 0.0013 =-------
0.000973
0.0008
0.0003
]ﬁ 1e+08— ]
0 — .
0 1e+06 2e+06

1

Fic. 5.1. Contour plot of the relative error estimator for the floor damper optimization problem.
For this plot, we used a discretized model of dimension 280 as the original model and a SOAR reduced
model of dimension 7 interpolated at (ki,c1) = (108,10%) as the surrogate model. We used a coarse
mesh for discretization in order to generate an accurate plot in a short time.
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rem 5.1, g () and Vg (")) are good approximations of (") and Vg(y)|,_,
with errors of orders [ O ((w—w®)?*) dw and [ O ((w —w®)*F) dw, respec-
tively. With k£ = n (assume W}, and Vj, are of full rank), we obtain an exact model.
For Assumption 1. Computing g(v) and Vg() requires LU factorizations of the
large-scale sparse matrix £(w,~) at all w values accessed by the numerical integrator;
building §* requires only one LU factorization of £(w,v) at the interpolation point
(w®,4()); evaluating g (v) requires no additional factorization of £(w, 7).

6. Numerical results. In this section, we apply ETR and EP to two design
optimization problems arising from structures and vibrations.

All our codes were implemented with the C++ package GLAS [19]. We solved
large-scale sparse linear equations with MUMPS [2] and small-scale dense linear equa-
tions with LAPACK [3]. All numerical tests were run using a DELL Latitude E6400
with Intel Core 2 Duo 2.66 GHz CPU and 4 GB of main memory.

6.1. Choice of parameters for ETR and EP in the MOR scenario. Recall
the paramaters listed in Table 3.1 for solving the subproblem. Here, we discuss the
other parameters required for ETR, EP, and SOAR.

1. For the order of the reduced model k, we do not have an automatic procedure
to determine it a priori. Normally, we rely on experience to choose k. Fortunately,
even when k is chosen too small, i.e., when the reduced model is not accurate enough,
we can refine it by enlarging k. This strategy is our implementation of S2 for Krylov—
Padé-type reduced models. Actually, we recommend use of a relatively large k, since
in that way we expect to take larger steps and use less reduced models for optimization
and to reduce the possibility that we need to increase k. In our numerical tests, we
never needed to increase k.

2. It is preferable not to use too-small €7, and ey since the heuristic error bound
proposed is not very tight. Using a too-small e¢; will result in too-small steps and
slow down the convergence. We experienced in numerical tests that the true relative
error at the optimizer is usually much lower than €. For all our numerical tests, we
chose e, = 0.1, eg = 0.2, and the weighting function w(e) defined in (4.4) as

0 when € < 0.1,
2 (10e — 1)* when 0.1 < € < 0.15,
6.1 =
(6.1) W) =91292-106° when 0.15 < e < 0.2,
1 when € > 0.2.

3. We choose 4 to be sufficiently smaller than 1 to prevent the trust/unpenalized
region from being too small. For 3, however, we set it just slightly below 1 to fully
exploit the surrogate model. In our numerical tests, we used 6 = 0.1 and 8 = 0.95.

4. The initial Hessian scaling h is chosen based on the expected step length and

the order of the gradient. When the largest eigenvalue of the Hessian approximation is
(max)

larger than Ay , we reset it to hol. Numerical results show that this happens more
often when we use HAT. For all numerical tests, we set hy = 107° and /\(Tmax) =1.

Note that when a quasi-Newton method is used, &, and ® (Table 3.1) depend on hg
and therefore need not be set.

6.2. Problem I: Floor damper optimization. See section 2.1 for the
problem descriptions. The floor is 10 x 10 x 0.3 m in size. Its Young’s modulus,
Poisson’s ratio, and density are 30 GPa, 0.3, and 2500 k&/m?, respectively. We used a
100 x 100 uniform mesh for the floor and obtained a model with 29,799 degrees of
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TABLE 6.1
Numerical results of the floor damper optimization problem. In this table, “Order” rep-
resents the dimension of the system matriz; “Optimum” is the objective wvalue of the lo-
cated optimizer computed via the original model g; the “Relative Error” shown is computed as
|9(vopt) — G(Yopt)|/9(vopt), where G is the last reduced model generated and Yopt is the located op-
timizer; Ni and Nm represent the total number of subiterations and the total number of reduced
models needed, respectively.

Order Optimum CPU time  Relative error Ni Nm
7 1.316206122e+10 220s 2.626620741e-09 69 20

ETR 10 1.316206122e+10 355 2.424547354e-11 14 3

7 1.316206122e+10  192s  2.571925506e-09 61 20

ETR + HAT 10 1.316206122e+10 37s 4.696182922-11 15 3
EP(1) 7 1.316206119e+10  120s  2.616067046e-09 32 16

10 1.316206122e+10 41s 1.720372585¢-11 10 4

7 1.316206119e+10  141s  2.594100758e-09 35 17

EP(1) + HAT 10 1.316206122e+10 405 3.049540945¢-11 9 4
EP(2) 7 1.316206122e+10  169s  2.585171968e¢-09 48 17

10 1.316206122e+10 455 3.963751122¢-11 14 4

7 1.316206122e+10  194s  2.593526614e-09 103 20

EP(2) + HAT 10 1.316206122¢+10 445 9.38070038¢-11 13 4
EP(1) (&> 8) 10 1.316206123e+10 58s 7.083806541e-11 20 4
ETR & EP(p) (u>1) 12 1.316206122e+10 255 3.87328218e-11 9 2
MOR framework [27] 7 1.316206122e+10 89s 2.6865095¢-09 9 9
Direct method 29800 1.316206122e+10 7202 — 9 0

freedom (DOFs). The damper is 3750 kg in weight, and it is described by a classical
stiffness-damping-mass model. The design parameters are its stiffness k; and damping
coefficient ¢;. The frequency range of interest is [2rad/s; 200rad/s]. The feasible
domain is [1N/m, 10 N/m] x [1Ns/m, 1010 Ns/i] and the initial point is [k§0),c§0)] =
[107 N/m, 107 Ns/m]. In numerical integration, we used 151 interpolation frequencies for
g (v) and Vg¥ () and 11 interpolation frequencies for e(? (), Ve®(v), and eéi).
Since Ky in (2.6) is singular, we first shift the interpolating frequency to w(® = %
to make MOR applicable.
Now we analyze the numerical results shown in Table 6.1.

1. Most methods listed take different paths, but all of them converge to the
same optimizer. This shows the effectiveness of the optimization algorithms used.

2. When the reduced models are of size 7, EP(1) is more efficient than ETR.
In this case, the reduced models are not so accurate and the trust regions are small,
which means that ETR can take only relatively small steps. From Figure 6.1(a), we
can see that for each reduced model, ETR first takes relatively large steps, but the
steps become smaller when ETR approaches the boundary of the trust region. For
EP(1), however, Figure 6.1(b) shows that this phenomenon is not so severe as in ETR.

3. When the reduced models are of size 10, ETR is slightly more efficient than
EP(1). In this case, the reduced models are more accurate. Comparing Figure 6.1(c)
with Figure 6.1(d), we see that EP(1) still converges faster, but since the unpenalized
region of the second reduced model is by chance relatively small, it needs one more
reduced model than ETR.

4. Comparing Figure 6.1(a) and Figure 6.1(b) with Figure 6.1(e) and Fig-
ure 6.1(f), we see HAT leads to smoother convergence paths, but not necessarily
better performance.

5. EP with u > 8 locates an accurate optimizer for each optimization subprob-
lem. However, this leads to slower convergence (larger Ni) and more CPU time since
locating a stationary point outside the unpenalized region is beyond our true interest.
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(a) ETR, order 7 reduced model (b) EP(1), order 7 reduced model
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Fic. 6.1. Convergence paths for several cases in the floor damper optimization problem. Iterates
of all optimization subproblems are marked with + and the interpolation points for the surrogate
models are marked with *.

6. When the reduced models are of size 12, ETR and EP turn out to be the same
since the reduced models are very accurate: only one reduced model is required for
locating the optimizer and another reduced model is used to check its gradient. Fur-
ther increasing the order of the reduced models would lead to longer CPU time, since
both the generation and the evaluation of reduced models become more expensive.

7. For comparison, we also list the numerical results of the MOR. framework and
the direct method, which uses sparse solvers for all points accessed by the integrator.
The MOR framework [27] lacks error control but costs more time than ETR and EP
with the reduced model of size 10 or 12. The direct method is very time-consuming.

6.3. Problem II: Footbridge damper optimization. In this problem, we
optimize the stiffnesses and damping coefficients of four TMDs to reduce the vibration
of a footbridge located over the Dijle river in Mechelen (Belgium). It is about 31.354 m
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in length and the four TMDs are located at nodes at 11.299 m, 19.314 m, 10.549 m,
and 20.309 m, respectively, each of which is 40.72 kg in weight.
The discretized model describing the above dynamic system is

i=1

4
(62) <KO + iWCO + Z(kz + iwci)Ki — w2M0> T = f7

y=1{"x,

where Ky and M, are obtained from a finite element model with 25,962 DOFs,
Co = 0.1003My + 0.0001591 K represents Rayleigh damping, K; is a matrix with
four nonzero entries that represents the interaction between the ith TMD and the
footbridge, the input vector f represents a unit excitation at the center span, and
the output vector £ picks out the vibration at the center span. To avoid numerical
difficulties, we set £ = 10%¢. In computing the objective g in (2.2), we use ¢(w) = 1.
In numerical integration, we used 151 interpolation frequencies in computing g (v)
and Vg (y), and 11 interpolation frequencies in computing e (v), Ve®(y), and
eéz). Our design objective is to locate the optimal stiffness k; and damping coef-
ficient ¢; for each damper in the sense of minimizing the energy norm of y over
[wL, wH] = [0 rad/s 107 1Vad/s].
To get the relative error at the optimizer op¢, we used direct solves of y(w, Yopt)
to compute g(Yopt). A single evaluation of g without using MOR costs about 540 s.
From Table 6.2, we deduce similar conclusions as in section 6.2 except for a few

cases:

1. EP(1) appears to be much slower than ETR when k£ = 18 and HAT is not
used. The reason may be that EP(1) unluckily follows a path that converges slowly.

2. HAT works better for this problem. A possible explanation is that it takes
more iterations to train an adequate Hessian approximation when we optimize on
more design parameters since each damped BFGS iteration adds only a rank two
change to the Hessian approximation.

3. EP(2) seems to work better for this problem. We observed that in this prob-
lem, the probability that EP(2) returns from the penalized region to the unpenalized
region is much higher, which reduces the number of reduced models needed.

TABLE 6.2
Numerical results of the footbridge damper optimization problem.

Order Optimum CPU time Relative error Ni Nm
18 24.77751668 705s 1.313402699e-12 116 16

ETR 20 24.78594112 205 4.465054737e-12 75 3

18 24.7775165 588's 8.806680611e-13 82 17

ETR + HAT 20 24.7775165 200s 3.70147281e-12 58 5
EP(1) 18 24.77751694 1245 s 1.033587692e-11 148 25

20 24.7762798 295s 3.730479306e-12 96 3

18 24.7775165 481s 3.056098836e-12 67 19

EP(1) + HAT 20 24.7775165 304 s 8.247767536e-12 65 4
EP(2) 18 24.77751799 542 7.982648976e-12 80 11

20 24.7775166 190s 7.944365742e-12 63 3

18 24.7812096 985s 5.484359479e-12 123 17

EP(2)+ HAT 20 24.77627985 189s 3.11547216e-12 67 3
ETR & EP(u) (n>1) 32 24.80397266 194 s 1.092742827e-11 82 2
MOR framework [27] 12 24.77751651 879s 2.023983216e-07 70 70
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6.4. Remarks on ETR and EP. For reduced models with relatively low ac-
curacy, EP(1) outperforms ETR since larger steps are allowed. For reduced models
with higher accuracy, ETR can outperform EP(1) since it may require fewer reduced
models than EP(1). Whether EP with u > 1 performs well is problem dependent,
but at least for the cases where the gradient of the error bound is too expensive to
compute, we do not recommend this method.

7. Conclusions and further discussions. This paper presented two meth-
ods, ETR and EP, to fully exploit surrogate models equipped with error bounds
in optimization. They are of particular interest to surrogate models that are ex-
pensive to build, but with function values and an error bound cheaply available.
Under the relaxed first-order condition, both methods are proved to converge to a
stationary point and allow for an approximation tolerance specified a priori. As an
example, we developed a heuristic error bound for Krylov—Padé-type reduced mod-
els and used them as surrogate models for ETR and EP. Numerical results show
that ETR and EP are less expensive than the MOR framework [27]. They are also
more robust than the MOR framework since they take the approximation error into
account.
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